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We provide a systematic study of the position-dependent correlation function in weak-lensing
convergence maps and its relation to the squeezed limit of the three-point correlation function (3PCF)
using state-of-the-art numerical simulations. We relate the position-dependent correlation function to
its harmonic counterpart, i.e., the position-dependent power spectrum or equivalently the integrated
bispectrum (IB). We use a recently proposed improved fitting function, BiHalofit, for the bispectrum to
compute the theoretical predictions as a function of source redshifts. In addition to low redshift results
(zy = 1.0-2.0) we also provide results for maps inferred from lensing of the cosmic microwave background
(CMB), i.e., z; = 1100. We include a Euclid-type realistic survey mask and noise. In agreement with the
recent studies on the position-dependent power spectrum, we find that the results from simulations are
consistent with the theoretical expectations when appropriate corrections are included. Performing a rough
estimate, we find that the signal-to-noise (S/N) for the detection of position-dependent correlation function
from Euclid-type mask with f, = 0.35, can range between 6-12 depending on the value of the intrinsic
ellipticity distribution parameter ¢, = 0.3—1.0. For reconstructed x maps using an ideal CMB survey the
S/N = 1.8. We also found that a 10% deviation in og can be detected using IB for the optimistic case of

o. = 0.3 with a S/N ~ 5. The S/N for such detection in case of Q,; is lower.

DOI: 10.1103/PhysRevD.107.043516

I. INTRODUCTION

Recently completed Cosmic Microwave Background
(CMB) experiments, such as the Planck Surveyor [1],]
have established a standard model of cosmology.
Answers to many outstanding questions however remain
unclear. These include, the nature of dark matter (DM) and
dark energy (DE), and possible modifications of General
Relativity (GR) on cosmological scales [2,3]. In addition
the sum of the neutrino masses [4] remains unknown. It is
expected that the operational weak-lensing surveys, includ-
ing the Subaru Hypersuprimecam survey (HSC) [5],> Dark
Energy Survey (DES) [6],3 KiDS [7], and near-future
Stage-IV large-scale structure (LSS) surveys such as
Euclid [8],4 Rubin Observatory [9],5 and Roman Space

'Planck.

2http://www.naoj .org/Projects/HSC/index.html.
3https:// www.darkenergysurvey.org/.
4http://sci.esa.int/euclid/ .
5http://www.lsst.org/llst home.shtml.
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Telescope [10], will provide answers to many of the
questions that cosmology is facing by directly probing
the large-scale structure and extracting information about
clustering of the intervening mass distribution in the
Universe [11]. In contrast, spectroscopic galaxy redshift
surveys such as BOSS® [12] or WiggleZ [13]7 [also see
Prime Focus Spectrograph® which is currently under
development and the Dark Energy Spectroscopic
Instruments (DESI)’ currently taking data] probe the
distribution of galaxies as tracers and generally provide
a biased picture [14].

One challenge for weak lensing is that observations are
sensitive to smaller scales where clustering is nonlinear and
non-Gaussian [11], and are therefore difficult to model. A
second challenge is that the statistical estimates of cosmo-
logical parameters based on power spectrum analysis are

6http://www. sdss3.org/surveys/boss.php.
7http://wiggle:z.swin.edu.au/.
8http://pfs.ipmu.jp.

*http://desi.Ibl.gov.
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typically degenerate in particular cosmological parameter
combinations, e.g. og and Qy;. To overcome these degen-
eracies external data sets (e.g. CMB), and the addition of
tomographic or 3D [15] information are typically used.
However, to address both of these challenges an alternative
procedure is to use higher-order statistics that probe the
nonlinear regime [16-21].

Gravitational clustering induces mode coupling that
results in a secondary non-Gaussianity that is more
pronounced on smaller scales. This has led to develop-
ment of many estimators for the gravity-induced (secon-
dary) non-Gaussianity from weak-lensing surveys. These
statistics include the lower-order cumulants [22] and their
correlators [23], the multispectra including the skew-
spectrum [24], binned estimators [25-27], kurtosis spec-
tra [28], Minkowski Functionals [29] as well as the entire
PDF [30]. Many of these estimators were initially
developed in the context of probing primordial non-
Gaussianity [31]. With a large fraction of sky coverage,
and the ability to detect a high number density of
galaxies, surveys such as Euclid will be able to detect
gravity-induced non-Gaussianity with a very high signal-
to-noise (S/N). In addition to lifting the degeneracy in
cosmological parameters, higher-order statistics are also
important for a better understanding of the covariance of
lower-order estimators [32]. The additional information
content of the bispectrum, when added to that of the
power spectrum, can significantly reduce the errors in
parameters [33-38] as well as provide a better handle on
systematics [39]. In addition to the summary statistics
and their estimators described above other approaches of
incorporating information regarding non-Gaussianity
include likelihood based forward modeling [40] and
likelihood-free techniques [41]. In contrast to the derived
statistics, these methods directly deal with the field
variables but often rely on expensive simulations or
approximations to model gravitational dynamics.

A complete characterization and estimation of bispec-
trum as well as its covariance can be demanding. As a
result, a subset of specific shapes of triangle that
represent the bispectrum are usually considered. Many
recent papers have focused on estimators that are par-
ticularly sensitive to the squeezed configuration of the
bispectrum known also as the infegrated bispectrum (IB)
[42]. These estimators are particularly interesting because
of their simplicity, as well as their ease of implementation
[43,44]. In previous works such estimators have been
used in 3D for quantifying galaxy clustering [12], 21 cm
studies [45], the CMB in 2D [46], as well as in 1D to
probe Lyman-a absorption features [47,48]. The IB
estimator has also been applied to weak lensing [49].
Our aim here is to develop these estimators for probing
future 2D projected weak-lensing surveys, and in par-
ticular Euclid [8]. Instead of focusing on the harmonic
domain [49] we concentrate on the angular domain.
Working in configuration space has the advantage that

the observational mask can be dealt with more easily than
in harmonic space. In this paper we will concentrate on
the position-dependent two-point correlation function
(2PCF) which probes the squeezed three-point correlation
function (sq3PCF). This is complementary to its Fourier
counterpart, the position-dependent power spectrum,
which on the other hand probes the squeezed configu-
ration of the bispectrum.

This paper is organized as follows. The introductory
discussion on weak lensing is presented in Sec. II. Some
key results on position-dependent power spectrum are
reviewed in Sec. III. Section IV introduces some of our
key results. The results of comparison against simulations
are presented in Sec. V. Finally the conclusions are drawn
in Sec. VL.

II. WEAK-LENSING THREE-POINT
CORRELATION FUNCTION

The weak-lensing convergence field x represents a line-
of-sight integral of the underlying matter density contrast §
between the source plane at comoving distance r; (or
redshift z,) and the observer,

x(0,r,) = / “dro(r, )80, r). (2.1)
0

In our notation, throughout, @ will represent the angular

position on the surface of the sky, and r denotes the

comoving distance. The weight w(r, r,) appearing in the

integral in Eq. (2.1) is given by

_3Qy Hyda(r)da(r =)
2 2 alnda(ry)

(2.2)

o(r, ry)

where d,(r) denotes the comoving angular diameter
distance, a(r) is the scale factor, and Q,;, H,, ¢ represent
the cosmological matter density parameter, the Hubble
constant and the speed of light, respectively. We have
assumed a flat cosmology. For reviews of weak lensing, see
for example [50].

We are mainly interested in the three-point correlator of
the convergence field and are thus concerned with the
angle-averaged bispectrum denoted as By .., which can
be constructed using the multipoles of x in the harmonic
domain, kg,

Bf1f2f3 = hflfzfs

Z1 O O
X Z <Kf1m1Kf2m2Kzf’2m2>( )

Iy Mg my mp  mj

(2.3)

where the matrix is a Wigner 3 j-symbol, and the geomet-
rical factor hy ¢, ., is defined by
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O+ D)2, + )25+ 1) (6 &y £
hf,fzt’3: 471, 0 0 0 .

(2.4)

The power spectrum of « is defined as C, = (k/,,k},,). The
reduced bispectrum, used in the literature is defined as
follows: by z,r, = Bz z,e,/ hfﬂl R the Limber approxi-
mation, the bispectrum By ,,,, can be written in terms of
the matter bispectrum Bg(k;, k,, k3), where k; are comov-
ing wave numbers, as

3
— 2 oo @ (rr)
By gy, = hf1f2f3/0 dr dj(r)s
N

w6
Bs (dm YACRACE ) (23)

Finally, to compute this, we use the fitting function
developed in [51]. We also incorporate the post-Born
correction [52] which introduces a significant contribution
at high redshift but has a negligible effect at low redshift
[53]. We will discuss these issues in Sec. V.

III. POSITION-DEPENDENT
POWER SPECTRUM

The integrated bispectrum represents the correlation of
average of local convergence «, estimated from a survey
patch labeled by the index p and the local power spectrum
estimated from the same patch given by C, , (also called
position-dependent power spectrum),

A 1
Bf - N_kacf'p' (31)
P p

Here, N, represents the total number of patches and by
construction (C,) =C, and (k,) =0. Note that the
patches can be localized in real space or in the Fourier
domain. To take into account the survey mask an elaborate
procedure involving Monte Carlo (MC) realizations
exists in the literature [46,49]. One of the advantages of
working in the real space, however, is that this can be
circumvented. For the patches we have considered a nonlocal
mask with bandlimited multipoles w,, =Y3, (0,); for
Oy <€ < O Unlike local patches, which are typically
used, our mask is nonzero for the entire sky. We have chosen
Cin = 0 and £, = 10 for our study. The centers of our
patches 6, are chosen to be the centers of the pixels at a
HEALPix resolution of N4, = 4. Hence, for a given map we
have a collection of 192 patches. We have chosen this to
demonstrate the power of our method which can not be
analyzed with Limber-type approximation.

The following expression relates the integrated bispectrum
B, with the bispectrum By ,, ., introduced before [46,49]:

111
© T Nydngi 20 +1

» ZBf1f2f3 Z (fl £ f3)
f]fzfghflf2f3 mymymy N1 My M3

xZ(—l)’"(f ¢ f4><f £ f5>

Mgiism —nm my my m mp Mms

E P *,0P P
X (Wf3m3) Wf4m4wf5m5‘
P

(3.2)

Here, gq, represents the fraction of sky coverage by
individual patches. In contrast, the sky coverage of the entire
survey is denoted by f . The coefficients w,,, denotes the
harmonic multipoles of a given patch and N , is the number of
patches considered. The above expression can be simplified
for the type of patch we are using,

O fmax
] ] + w w

Bf e
Gy 20+ 1 S s g ol i

¢t,¢,
Broye,Fepts-

(3.3)

The following notation will be useful in simplifying
expressions:

Fl, = (12204 + 1285 +1)
<fl 2 ﬁ)(f 2 f4>
X
0O 0 O 0 0 O
C ¢, Cs <f3 ly s
X
0o 0 O 0O 0 O
{f 1 L 3}
X .
Cs €4 ¢
The matrix in curly bracket denotes a 6j symbol. The
analytical expression for the covariance of IB, denoted as

Cyp, can be expressed in terms of the bispectrum covari-
ance as follows:

Cer = (0B,6By)

1
= > (6Br,4,0,0Br )
6 4 < 66,0 O
(471’) (gsky) €12345C) 5545 v b

ot

£6\£,
X F et o100 (3.4)

For a noise-dominated case the bispectrum covariance can
be approximated by the following Gaussian expression:

(6Bs,£,,0Brp10,) = h?ﬂfzﬁ Cr,Cr,Cp,

X (5,/&1/1 5g2fr25g3f% + Ccyc. per.). (35)
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The C, in this case takes contributions from both signal and
noise,

1 £+, max

o, oS

Isky £, 220 yax €345~ it £, .= yin

Cpp =~

CO\ly |l 2658,
h,0,Ce.Co.CoF b (Fono + For)-
(3.6)

We have focused on a nonlocal patch of a sky. This requires
the all-sky formalism presented above.

IV. POSITION-DEPENDENT CORRELATION
FUNCTION

The implementation of the position-dependent power
spectrum, or equivalently the integrated bispectrum, was
presented recently in an accompanying paper [49].
However, for smaller sky coverage, the real space analog
of the position-dependent power spectrum, namely the
position-dependent correlation function, defined in real
space can be equally useful. Our aim in this paper is to
express the squeezed limit of the three-point correlation
function or 3PCF, in terms of the position-dependent
correlation function (see Ref. [12] for equivalent derivation
in 3D for galaxy-clustering statistics). We will show how
this can be related to the response function approach. We
will also relate these results in the position space with the
ones found in harmonic domain. We will show how the
squeezed 3PCF and the squeezed bispectrum are related in
2D. To this aim, we will start by defining the global
correlation function £(6,). Though the results are pri-
marily derived keeping the projected weak-lensing con-
vergence maps in mind they are of generic nature and will
be valid for any projected field. The global correlation
function £(0;,) in a 2D projected sky covering area A, for
convergence k is defined through the following expression:

§(012) = (k(0)x(0 + 012));

_ /d%z/dza

Here, ¢, denotes the polar angle associated with the
vector 0,. The assumption of isotropy and homogeneity
allows us to write £(6,) as a function of separation 6, and
not its orientation. Notice for the global correlation the
points @ and @ + 6, are both assumed to be within the
survey patch. The local estimate is estimated within a patch
of the sky of area A,

k(0 +01)). (4.1)

0,,) = / 491 / 200 + 0,,)x(0).  (4.2)

Using a 2D window function W the local correlation
function £(6;,) can be expressed as

20,,) = / dony / PO +0,,)(0))

Indeed, it can be easily shown from Eq. (4.2) that £(0,,) is
not an unbiased estimator of the global &£(6;,). We
introduce the multiplicative bias factor s(6,) to relate
the two, i.e., (£(01,)) = 5(61,)&(6,,) which depends on the
survey geometry. The multiplicative factor s(6;,), which
originates from the finite-volume correction, is as follows:

<§(912)> = 5(012)6(012);
/ A1z / COW(0 +0,,)W(B). (4.4)

By cross-correlating the local estimates of 2PCF & and the
mean k from the same patch we arrive at the following
estimate for the sq3PCF denoted as (6,),

6’12 =

£(0n) = <2(‘912)’_<>
1 d
:14—% %/dQO]/d202§(01 +0|2,01,02)

An unbiased estimator independent of survey geometry can
be constructed using the following expression:

20) = %

In the response function approach we expand the esti-
mated two-point correlation function as a function of «:
E(0) = £(0)|r—g + d&/dR|z_gk + - - -. On cross-correlating
with k, at the lowest order we get the squeezed limit of the
3PCF introduced above, {(0) = (R &(0)) = dE/di]|,_y(R?).
The integrated bispectrum and the integrated 3PCF are
related through the following expression:

£(9). (4.6)

¢(012) (4.7)

1
= E;(ZK + l)Pl/ﬂ(COS 912)8/.

Here P, is the Legendre polynomial of order #. The new
observable introduced above is easy to interpret and can be
estimated using tools developed for estimation of two-point
statistics &, thus sidestepping the complexity involved in
estimation of three-point statistics. Evaluation of two-point
correlation function from cosmological data sets has a rich
history and many different estimators exist which can be
exploited to compute the sq3PCF.

V. COMPARISON AGAINST SIMULATIONS

The computation of the sq3PCF { relies on estimation of
the 2PCF ¢. Thus its implementation is rather simple and
computationally inexpensive. The computation of { is done

043516-4
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zs=0.5

== = Theory

10—11 . "
100 101 102
01> (in arcminutes)

FIG. 1. The sq3PCF {(0,,) defined in Eq. (4.6) for the
convergence map k for z; = 0.5 is shown as a function of 6,.
The dashed line corresponds to the theoretical prediction. The
thin solid lines correspond to the estimates from individual
simulated convergence maps computed using 192 nonlocal
patches described in Sec. III. The thick solid line represents
the ensemble average of estimates from all maps. A total of 40
maps were used.

by dividing the maps into many different patches. We have
focused on nonlocal patches that are nonzero on the entire
celestial sphere and can only be analyzed using an all-sky
approach as this approach is based on spherical harmonics.
The two-point correlation function for the convergence
maps « is sensitive to small scale modes, when correlated
with the average k estimated from the same patch can give
an estimate of the 3PCF in the squeezed limit, i.e., . The
resulting estimator corresponds to the estimator described
in Eq. (4.5). The choice of patches can have a high impact
on the signal-to-noise of the estimated sq3PCF. In addition
to patches that we considered here, other filtering functions
or nonlocal patches can be considered.

Unlike the position-dependent power spectrum, where
spurious bispectral modes are induced by the mask,
requiring an elaborate Monte Carlo-based subtraction
procedure [46,49], the position-dependent two-point cor-
relation function is free from such complications. We have
used two different techniques in our estimation of . First
we have used the position-dependent power spectra from
[49] and used it to reconstruct the {. We have also used a
publicly available software TreeCorr'° [54] to directly esti-
mate the two-point correlation function to check the results
though the results from TreeCorr are not shown.

The state-of-the art simulations that we use are presented
in [53].11 We use the convergence maps at HEALPix [55]12
resolution N4, = 4096 and downgrade their resolution to
Ngge = 2048 and use £, = 2000 for all the analyses
presented here.

10https ://github.com/rmjarvis/TreeCorr.

! ]http://cosmo.phys.hirosaki—u.ac.jp/takahasi/allsky_raytracing/
nres12.html.

Phttp://healpix.sourceforge.net.

zs=1.0

== = Theory
— Sims

107° 3

{(612)

10—10 p

10—11 . A |
100 101! 102
01> (in arcminutes)

FIG. 2. Same as Fig. 1 but for z;, = 1.0.

Traditionally patches that are localized in real space are
considered by dividing the map in smaller patches. In this
approach a Limber approximation can be used to simplify
the analytical results. In this study, we have considered
patches that are localized in the harmonic domain. The
estimates from individual maps are the averages of all
patches constructed from that map. We have used a total 40
maps and from each of these maps we constructed 192
patches (see Sec. III for more details on construction of
these nonlocal patches).

Our theoretical and numerical results are presented in
Figs. 1-4 respectively for redshifts z, = 0.5, 1.0, 1.5, and
2.0. The thick solid lines in each of these panels corres-
pond to the ensemble average of all maps and the thin
solid lines for individual maps. The results for an individual
map represent the average of all the patches constructed
from that map. The theoretical expectation are shown as
dashed lines.

We have also considered realizations of x maps inferred
from CMB observations. Our results for all redshifts
include the post-Born corrections [52]. The post-Born
corrections to the 3PCF are included in our modelling of
£(0), although such corrections do not contribute signifi-
cantly at lower redshifts [29,56]. The lensing signal for
z, = 1100 is rather weak, but we get reasonable results for
small angular scales. For large angular scales the recovered

zs=1.5
== = Theory.
107°
)
N 10-10]
10—11 . \
10° 10t 102
01> (in arcminutes)
FIG. 3. Same as Fig. 1 but for z, = 1.5.

043516-5
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107°
810710,
)
AL

10—11 J

== = Theory
107124
100 10! 102

01> (in arcminutes)

FIG. 4. Same as Fig. 1 but for z;, = 2.0.

zs=1100
10—7, —_— Sims
1078
N 19-9
) 10
>

10~ 12 |
10°
01> (in arcminutes)
FIG. 5. Same as Fig. 1 but for z; = 1100.

¢ shows large fluctuations.
in Fig. 5.

In addition to the noise-free all-sky simulations we have
also considered maps at source redshift z, = 1.0 and

The results are presented

0.=0.3
== Theory
109 — Sims
)
N 10-10.
10—11,

61> (in arcminutes)

FIG. 6. Same as Fig. 1 but with an Euclid-like mask and noise
included. We use a pseudo-Euclid mask which removes both the
galactic and elliptic planes. The resulting fraction of sky coverage
is fay = 0.35 (see Ref. [29] for more details). We also assumed
Gaussian noise, with a noise power spectrum amplitude given by
n, = o2/N. We have taken N = 30 arcmi as expected for Euclid.
We have also taken o = 0.3. The sources are placed at a
redshift z; = 1.

o:.=1.0

{(612)

10—11 A

101 102
01> (in arcminutes)

FIG. 7. Same as Fig. 6 but for ¢, = 1.0.

applied the pseudo-Euclid mask (see Refs. [29,56] for a
detailed description). This mask removes both the galactic
and elliptic planes thus leaving roughly fg, = 0.35 for
science exploitation. We also add two different levels of
Gaussian noise. The noise power spectrum denoted as n,
for the noise is given by n, = ¢2/N. For Euclid we have
taken i = 30 arcmin~2. We have considered two values for
o.. The results for o, = 0.3 are shown in Fig. 6 and for
o. = 1.0 in Fig. 7. As expected the results of comparison of
theoretical and numerical results are in agreement with
noise free case. The addition of noise only increases the
scatter.

VI. CONCLUSION

Using an estimator designed to probe sq3PCF and state-
of-the-art simulations we found that the analytical results
can be very accurately recovered from numerical simula-
tion. Our estimator probes the squeezed configuration of
the bispectrum.

In previous studies, using a different but related estima-
tor, known also as the binned estimator, it was found [49]
that, for other shapes, including e.g. the equilateral shape,
the fitting function we have used, provides rather accurate
description of the numerical estimates from simulations.
However, for squeezed configurations this was not the case.
We have presented the corresponding results of analysis in
the configuration space in this paper.

For cosmological parameter inference using the position-
dependent correlation function or IB, if we make the further
assumption that the likelihood has Gaussian form, we still
require an accurate covariance matrix, and this is a far from
trivial issue. Most formalism borrowed from CMB studies
use a Gaussian likelihood or its variants. We notice that
recently it was shown that a Gaussian approximation is
sufficient for the power spectrum [57] and one-point third-
order moment [58] for the aperture mass (M;,). However,
similar study for two-point third-order statistics, i.e., {(6;,)
or equivalently B, in the harmonic domain, is currently
lacking in the literature.
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TABLE L. The {/o({) is presented for various separation
angles. The top row corresponds to o. = 0.3 and the bottom
row corresponds to o, = 1.0. The resulting total S/N is also
presented.

3 10 30 100/ S/N
c.=03 5.12 3.61 2.10 0.73 11.578
c.=1.0 3.27 1.73 0.79 0.43 6.241
TABLE II. Same as Table I, but for z; = 1100.
3 10/ 30/ 100/ S/N
0.944 0.432 0.251 0.145 1.772

While the diagonal entries in the covariance matrix can
be modeled numerically using relatively few simulations,
accurate numerical estimates for the off-diagonal elements
require many more realizations than we have currently
available.

We have computed the scatter in { represented as ¢ and
tabulated ¢/o(¢) in Tables I and II as a function of the
separation angle 6,. Two values of 6, = 0.3 and 1.0 are
considered which correspond to the S/N of 11.6 and 6.24
respectively. A Euclid-type mask with fg, =0.3 was
considered and sourced were placed at z, = 1.0. For z, =
1100 we get S/N = 1.8.

We have also studied the sensitivity of { to cosmological
parameters. We have computed |6¢|/o(¢). This is done by
constructing |5¢| = (o, —Cq and 6| =Cq- —(q as a
function of 6y, and o.. Here, o, and {o_ correspond
respectively to 10% higher and lower value of €;,. The
results are presented in Table III for Q,,. Corresponding
results for og are shown in Table IV The top row

TABLE III.  The |6¢|/0(¢) is presented for various separation
angles. The top row corresponds to ¢, = 0.3 and the bottom row
corresponds to o, = 1.0. The resulting total S/N is also presented.
Two entries for a given 6}, and o, correspond to 6§ = (o, —{q
and 6§_ = {q_ — {q. The quantities {o, and {o_ are computed
using 10% higher and lower values of €,,.

3 10/ 30’ 100’ S/N

6. = 1.0 0.14/0.12 0.08/0.01 0.05/0.07 0.04/0.06 0.24/0.26
6. = 0.3 0.09/0.08 0.00/0.01 0.01/0.03 0.02/0.03 0.013/0.14

TABLE IV. Same as Table III but the entries correspond to 10%
higher and lower values of the parameter og.

3 10/ 30/ 100’ S/N

6. = 1.0 0.09/0.08 0.00/0.00 0.02/0.03 0.02/0.03 0.02/0.62
6. =0.3 2.57/1.19 1.75/1.31 0.09/0.71 0.31/0.84 5.57/4.77

corresponds to intrinsic ellipticity distribution parameter
0. = 1.0 whereas the bottom row corresponds to ¢, = 0.3.
The total S/N, for 10% deviation in can be as high as 5.5
for og.

At the time of writing this paper, we found a similar
study [59] in which the authors consider the squeezed
3PCF for shear using compensated filter and compare the
results from simulation against analytic prediction using an
older fitting function for the matter bispectrum.
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