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A perturbation on the background inflaton potential can lead inflation into the ultraslow-roll stage and
can thus remarkably enhance the power spectrum PRðkÞ of the primordial curvature perturbation on small
scales. Such an enhanced PRðkÞ will result in primordial black holes (PBHs), contributing a significant
fraction of dark matter, and will simultaneously generate sizable scalar-induced gravitational waves
(SIGWs) as a second-order effect. In this work, we calculate the PBH abundances fPBHðMÞ and SIGW
spectra ΩGWðfÞ in peak theory. We obtain the PBHs with desirable abundances in one or two typical
mass windows at 10−17M⊙, 10−13M⊙, and 30M⊙, respectively. At the same time, the relevant SIGWs are
expected to be observed by the next-generation gravitational wave detectors, without spoiling the current
constraint. Especially, the SIGWassociated with the PBH of 30M⊙ can also interpret the potential isotropic
stochastic gravitational wave background from the NANOGrav 12.5-year dataset.
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I. INTRODUCTION

The detection of gravitational waves (GWs) from the
merger of binary black holes revealed the dawn of the era of
multimessenger astronomy [1]. The GWs propagate almost
freely in the Universe once produced, carrying a wealth
of information, and thus provide a powerful tool to explore
the early Universe. Meanwhile, there are also other possible
sources of GWs, such as phase transitions [2,3], reheating
after inflation [4–6], topological defects [7,8], etc.
Furthermore, the GWs from different sources are uncorre-
lated and thus generate a stochastic GW background
together. The detection of such a stochastic GW back-
ground will give us important insight into astrophysics and
cosmology, so various GW detectors have been designed
with different sensitive frequencies [9–18]. In recent years,
the scalar-induced GWs (SIGWs) are receiving increasing
research interest, with the source being the second-order
effect from the first-order scalar perturbations generated
during cosmic inflation [19,20]. More importantly, if these
scalar perturbations are large enough on small scales,
they will also produce abundant primordial black holes
(PBHs) simultaneously, which can form binary black holes,
be the seeds of the supermassive black holes in the galactic
centers, and behave as a promising candidate of dark
matter (DM) [21,22].
In the radiation-dominated (RD) era of the early Universe,

if the density contrast of the radiation field is sufficiently
large at the horizon reentry, the overdense region can
collapse to PBHs. Because of the Hawking radiation, the

PBHs with mass M < 5 × 10−19M⊙ have already evapo-
rated, and the PBHs with mass M > 5 × 10−19M⊙ can still
stably exist today [23]. The PBH abundance fPBH is defined
as its proportion in DM at present. If fPBH ∼ 0.1, the PBHs
can be considered as an effective candidate of DM; if
fPBH ≪ 10−3, its possibility as DM can be safely excluded
from the relevant mass range. Albeit various experiments
have constrained the upper bounds of fPBH strictly in
different mass ranges, there remains an open mass window
at 10−17–10−13M⊙, where PBHs are possible to compose all
DM (with the lower bound 10−17M⊙ in the asteroid mass
range and the upper bound 10−13M⊙ in the sublunar mass
range) [24]. Moreover, although it has been confirmed that
the PBH in the intermediate mass range (10–103M⊙) cannot
contribute a significant fraction of DM [24], its relevant
SIGW is still of cosmological interest. Therefore, in this
paper, we will consider the PBHs in the three mass windows
at 10−17M⊙, 10−13M⊙, and 30M⊙, respectively.
In cosmological perturbation theory, the scalar and

tensor perturbations are decoupled at first order, and there
is no source term in the equation of motion for the tensor
perturbations. However, the scalar perturbations can alter
the quadrupole moment of the radiation field, acting as
the source of the second-order tensor perturbations, and
thus generate SIGWs in the RD era [25]. Therefore, the
SIGWs are present inevitably, accompanying the possible
formation of PBHs on small scales and providing a
powerful tool to constrain the PBH abundance. Usually,
a single-field slow-roll (SR) inflation model leads to a
nearly scale-invariant power spectrum of the scalar pertur-
bations (around 10−9), which has been confirmed by the*linan@mail.neu.edu.cn
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measurement of the cosmic microwave background (CMB)
anisotropies on large scales (< 1 Mpc−1) [26]. However,
such a power spectrum cannot result in a large enough PBH
abundance, and the corresponding SIGWs are so weak that
they are negligible compared with the first-order GWs.
Nevertheless, if the SR conditions are violated on small
scales (105–1015 Mpc−1), which can be realized in the so-
called ultraslow-roll (USR) stage in inflation, the situation
will become rather different. During this stage, the power
spectrum of the scalar perturbations can be significantly
enhanced up to 10−2 on small scales, generating the PBHs
with desirable masses and abundances. At the same time,
the SIGWs are also amplified and can be sizable or even
larger than the first-order GWs [27,28]. Consequently, the
question reduces to the design of the specific inflation
models with the USR stage, which can increase the power
spectrum dramatically on small scales, without spoiling the
CMB constraints on large scales.
There are many ways to realize the USR conditions,

such as inflection-point inflation [29,30], critical Higgs
inflation [31], nonminimal coupling R2 inflation [32],
Higgs-R2 inflation [33], etc. In this paper, we consider
the situation with one or two perturbations δV on the
background inflaton potential Vb. By this means, inflation
can be studied on small and large scales separately, without
the intractable interference in between [34–38]. Previously,
δV were commonly adopted to be symmetric (e.g., with the
Gaussian form), but in Refs. [39,40], the authors chose the
antisymmetric δV [i.e., a linear function times the Gaussian
form, see Eq. (18) in Sec. IV for more detail]. There are
several advantages for this choice. First, such a δV can be
connected to Vb very smoothly on both sides of the USR
region, so the inflaton can definitely surmount the pertur-
bation, without the worry of eternal inflation [37]. Second,
there is no modulated oscillation in the power spectrum,
naturally avoiding the overproduction of tiny PBHs [41].
Third, the fine-tuning problem in PBH physics can be
greatly relieved [35]. The present work is a succession of
Refs. [39,40], and we also utilize the antisymmetric δV.
The introduction of such a δV can cause a plateau flat
enough on Vb, making the duration of the USR stage
sufficiently long. As a result, the PBH abundance can be
greatly enhanced, and the relevant SIGW is also expected to
be observed by the next-generation GW detectors.
This paper is organized as follows. In Sec. II, we study

the power spectrum of the primordial curvature perturba-
tion and calculate the PBH mass and abundance in peak
theory. In Sec. III, the SIGW spectrum in the RD era is
briefly reviewed. Then, in Secs. IV and V, we study the
power spectra PRðkÞ, PBH abundances fPBHðMÞ, and
SIGW spectra ΩGWðfÞ in the USR inflation models, with
one or two perturbations on the background inflaton
potential, so that there can be PBHs with masses in one
or two typical mass windows at 10−17M⊙, 10−13M⊙,
and 30M⊙, with desirable abundances. We conclude in

Sec. VI. We work in the natural system of units and
set c ¼ ℏ ¼ kB ¼ 1.

II. POWER SPECTRUM AND PBH ABUNDANCE

In this section, we show the power spectrum PRðkÞ
of the primordial curvature perturbation R, calculate the
PBH massM, and discuss the PBH abundance fPBHðMÞ in
peak theory.

A. Basic equations

We start from the single-field inflation model, with the
corresponding action as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

P

2
R −

1

2
∂μϕ∂

μϕ − VðϕÞ
�
;

where ϕ is the inflaton field, VðϕÞ is its potential, R is the
Ricci scalar, and mP ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck

mass. The evolution of the inflaton field obeys the Klein-
Gordon equation, which can be written as

ϕ;NN þ ð3 − εÞϕ;N þ 1

H2
V;ϕ ¼ 0: ð1Þ

Above, the number of e-folds N is defined as dN ¼
HðtÞdt ¼ d ln a, where t is the cosmic time, a ¼ eN is
the scale factor, andH ¼ _a=a is the Hubble expansion rate.
To characterize the motion of the inflaton field, two
parameters are introduced for convenience,

ε ¼ −
_H

H2
¼ ϕ2

;N

2m2
P
; η ¼ −

ϕ̈

H _ϕ
¼ ϕ2

;N

2m2
P
−
ϕ;NN

ϕ;N
: ð2Þ

In the usual SR inflation, ε and jηj are much smaller than 1
and are thus called the SR parameters. However, in the USR
stage, their values may even approach Oð1Þ, which have
important influences on the PBH abundance and SIGW
spectrum. Furthermore, the Friedmann equation can also be
expressed as

H2 ¼ V
ð3 − εÞm2

P
: ð3Þ

Now, we move on to the perturbations on the background
spacetime. In the conformal Newtonian gauge, the per-
turbed metric reads

ds2 ¼ a2ðτÞ
�
−ð1þ 2ΨÞdτ2

þ
�
ð1 − 2ΨÞδij þ

1

2
hij

�
dxidxj

�
; ð4Þ

where τ ¼ R
dt̃=aðt̃Þ is the conformal time, Ψ is the

scalar perturbation, and hij is the tensor perturbation.
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(Here, we neglect the vector perturbation and anisotropic
stress.) A more convenient gauge-invariant scalar pertur-
bation is the primordial curvature perturbation,

R ¼ ΨþH
_ϕ
δϕ;

and the equation of motion of its Fourier mode Rk is the
Mukhanov-Sasaki equation [42,43],

Rk;NN þ ð3þ ε − 2ηÞRk;N þ k2

H2e2N
Rk ¼ 0: ð5Þ

B. Power spectrum

The primordial curvature perturbation Rk can be
obtained by numerically solving Eqs. (1)–(3), and (5).
We are more interested in the dimensionless power spec-
trum PRðkÞ, which is defined at the end of inflation as

PRðkÞ ¼
k3

2π2
jRkj2

����
k≪aH

:

In the RD era, on the comoving slices, the density contrast δ
can be related to R at linear order by [44]

δ ¼ 4

9

�
k
aH

	
2

R;

so its dimensionless power spectrum PδðkÞ is

PδðkÞ ¼
16

81

�
k
aH

	
4

PRðkÞ:

The PBH abundance can be calculated via PδðkÞ. For
this purpose, we first need to smooth the perturbation over
some physical scale, usually taken as R ¼ 1=ðaHÞ, in order
to avoid the nondifferentiability and the divergence in the
large-k limit of the radiation field. This can be realized by
introducing a window function W̃ðk; RÞ in the Fourier
space [45–47]. Below, we choose Gaussian window func-
tion W̃ðk; RÞ ¼ e−k

2R2=2, and the variance of the smoothed
density contrast on the scale R is

σ2δðRÞ ¼ hδ2ðx; RÞi ¼
Z

∞

0

dk
k
W̃2ðk; RÞPδðkÞ;

where h� � �i denotes the ensemble average, and we have
used the fact hδðx; RÞi ¼ 0 for Gaussian random field. The
homogeneity and isotropy of the background Universe
guarantee that σ2δðRÞ is independent of a special position x.
Furthermore, the ith spectral moment of the smoothed
density contrast is defined as

σ2i ðRÞ ¼
Z

∞

0

dk
k
k2iW̃2ðk; RÞPδðkÞ

¼ 16

81

Z
∞

0

dk
k
k2iW̃2ðk; RÞðkRÞ4PRðkÞ;

where i ¼ 0; 1; 2;…, and σ0 ¼ σδ naturally.

C. PBH mass and abundance

Now, we calculate the PBH mass M and its abundance
fPBHðMÞ. In the Carr-Hawking collapse model [48], M is
related to the horizon mass at the time of its formation,

M ¼ κMH ¼ κ

2GH
;

where MH ¼ 1=ð2GHÞ is the horizon mass, and κ is
the efficiency of collapse. In the RD era, H ¼ 1=ð2tÞ,
so M ¼ κt=G.
Utilizing the conservation of entropy in the adiabatic

cosmic expansion, we obtain [49]

M
M⊙

¼ 1.13 × 1015
�

κ

0.2

	�
g�

106.75

	
−1=6

�
k�

kPBH

	
2

: ð6Þ

where M⊙ ¼ 1.99 × 1030 kg is the solar mass [50], g� is
the effective number of relativistic degrees of freedom of
energy density, k� ¼ 0.05 Mpc−1 is the CMB pivot scale
for the Planck satellite experiment [26], and kPBH ¼ 1=R is
the wave number of the PBH that exits the horizon. In the
RD era, we have κ ¼ 0.2 and g� ¼ 106.75 [51]. From
Eq. (6), all spectral moments σiðRÞ can be reexpressed in
terms of the PBH mass as σiðMÞ.
Furthermore, the PBH mass fraction βPBHðMÞ at the time

of its formation is defined as

βPBHðMÞ ¼ ρPBHðMÞ
ρR

����
formation

;

where ρPBHðMÞ and ρR are the energy densities of PBH and
radiation, respectively. The PBH abundance at present is
defined as

fPBHðMÞ ¼ ρPBHðMÞ
ρDM

����
today

;

where ρDM is the energy density of DM. Ignoring the
evolution of PBHs (e.g., radiation, accretion, and merger),
we can finally relate fPBHðMÞ to βPBHðMÞ as [49]

fPBHðMÞ ¼ 1.68 × 108
�

M
M⊙

	
−1=2

βPBHðMÞ:
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D. Peak theory

The concrete method to calculate the PBH mass fraction
βPBH has long been a controversial issue, and different
methods usually lead to great difference in the final results
[52]. The most general method is peak theory [53], with the
peak value being the relative density contrast ν, which is
defined as ν ¼ δ=σδ, and νc ¼ δc=σδ is its threshold. The
specific value of δc depends on the equation of state of the
cosmic media and many other ingredients [54–64], and it is
the most influential factor in calculating βPBH. In this paper,
we follow Ref. [54] and set δc ¼ 0.414. However, νc is not
a constant, as σδ depends on the smoothing scale R.
In peak theory, the number density of peaks is

nðrÞ ¼ P
p δDðr − rpÞ, where δD is the Dirac function,

and rp is the position where the density contrast δ has a
local maximum. This maximum condition needs us to deal
with a ten-dimensional joint probability distribution func-
tion (PDF) PðfyigÞ of the Gaussian variables,

PðfyigÞ ¼
expð1

2

P
ijΔyiM−1

ij ΔyjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ10 detM

p ;

where M is the covariance matrix, and Δyi ¼ yi − hyii,
with y1 ¼ δ; y2 ¼ ∂1δ;…; y5 ¼ ∂1∂1δ;…; andy10 ¼ ∂2∂3δ,
respectively. As shown in Ref. [53], a series of dimensional
reductions can finally reduce the ten-dimensional joint PDF
PðfyigÞ to the one-dimensional conditional PDF PðνÞ.
By means of PðνÞ, the number density of peaks nðνcÞ with
ν > νc can be written as an integral,

nðνcÞ ¼
1

ð2πÞ2
�

σ2ffiffiffi
3

p
σ1

	
3
Z

∞

νc

Gðγ; νÞe−ν2=2dν;

where γ ¼ σ21=ðσδσ2Þ in the Gðγ; νÞ function contains the
information of the profile of δ. Therefore, the PBH mass
fraction βPBH ¼ nðνcÞVðRÞ can be obtained as

βPBH ¼ 1ffiffiffiffiffiffi
2π

p
�

Rσ2ffiffiffi
3

p
σ1

	
3
Z

∞

νc

Gðγ; νÞe−ν2=2 dν:

As the Gðγ; νÞ function is formally rather complicated,
various approximations have been introduced. In Ref. [44],
Green, Liddle, Malik, and Sasaki (GLMS) suggested a very
convenient approximation, ν ≫ 1 and γ ≈ 1, meaning that
there remain only two independent spectral moments σδ
and σ1 in βPBH. In this approximation, βPBH can be
analytically obtained as

βPBH ¼ 1ffiffiffiffiffiffi
2π

p
�

Rσ1ffiffiffi
3

p
σδ

	
3

ðν2c − 1Þe−ν2c=2:

In this paper, we follow the GLMS approximation. For
more details about the differences among peak theory, the
Press-Schechter theory [65], and other approximations of

peak theory and their influences on the PBH abundance,
see Refs. [40,66–68].

III. SIGW SPECTRUM

In this section, the SIGW produced in the RD era is
reviewed, and the SIGW spectrum at present ΩGWðfÞ is
also discussed in detail.

A. Basic equations

First, for the tensor perturbation hijðτ;xÞ in Eq. (4), its
Fourier modes hþk ðτÞ and h×kðτÞ are introduced as

hijðτ;xÞ ¼
Z

d3k

ð2πÞ3=2 e
ik·x½hþk ðτÞeþijðkÞ þ h×kðτÞe×ijðkÞ�;

where eþijðkÞ and e×ijðkÞ are two orthonormal polarization
tensors. Below, we omit the polarization indices þ and ×,
due to the orthonormal relation

P
i;j e

α
ijðkÞeβijð−kÞ ¼ δαβ,

where i; j ¼ 1; 2; 3, and α; β ¼ þ;×.
The equation of motion of hk can be derived from the

perturbed Einstein equations up to second order,

h00k þ 2Hh0k þ k2hk ¼ Sðτ;kÞ; ð7Þ

whereH ¼ a0=a ¼ aH is the comoving Hubble expansion
rate, 0 denotes the derivative with respect to the conformal
time τ, and Sðτ;kÞ is the Fourier transform of the source
term Sijðτ;xÞ [69],

Sijðτ;xÞ ¼ 4Ψ∂i∂jΨþ 2∂iΨ∂jΨ

−
1

H2
∂iðΨ0 þHΨÞ∂jðΨ0 þHΨÞ:

Therefore, the tensor perturbation hij is induced by the
scalar perturbation Ψ as a second-order effect.
Following Ref. [69], we decompose the Fourier mode

of Ψ as ΨkðτÞ ¼ ΨðkτÞψk, where ψk is the primordial
value, and ΨðkτÞ is the transfer function. In the RD era,
we have [70]

ΨðkτÞ ¼ 9

ðkτÞ2
�
sinðkτ= ffiffiffi

3
p Þ

kτ=
ffiffiffi
3

p − cosðkτ=
ffiffiffi
3

p
Þ
�
:

By this means, the source term Sðτ;kÞ in Eq. (7) can be
rewritten as

Sðτ;kÞ ¼
Z

d3p

ð2πÞ3=2 eðk;pÞfðτ;k;pÞψkψk−p; ð8Þ

where eðk;pÞ ¼ eijðkÞpipj is the projection operator, and
fðτ;k;pÞ is the source function,
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fðτ;k;pÞ ¼ 12ΨðjpjτÞΨðjk − pjτÞ
þ 4τ2Ψ0ðjpjτÞΨ0ðjk − pjτÞ
þ 4τ½Ψ0ðjpjτÞΨðjk − pjτÞ
þ ΨðjpjτÞΨ0ðjk − pjτÞ�:

Finally, by the Green function method, we can obtain the
solution of Eq. (7) in the RD era [71],

hkðτÞ ¼
1

aðτÞ
Z

Gkðτ; τ̃Þaðτ̃ÞSðτ̃;kÞdτ̃; ð9Þ

where the Green function is Gkðτ; τ̃Þ ¼ sin½kðτ − τ̃Þ�=k.

B. GW spectrum

The GW spectrum ΩGWðτ; kÞ is defined as the GW
energy density fraction per logarithmic wave number,

ΩGWðτ; kÞ ¼
1

ρc

dρGWðτ; kÞ
d ln k

; ð10Þ

where ρGW is the GW energy density, and ρc is the critical
energy density of the Universe. In the transverse-traceless
gauge, ΩGWðτ; kÞ can be reexpressed as [25,72]

ΩGWðτ; kÞ ¼
1

24

�
k
H

	
2

Phðτ; kÞ; ð11Þ

where ð� � �Þ denotes the oscillation average, and Phðτ; kÞ
is the dimensionless power spectrum of the tensor
perturbation hk,

Phðτ; kÞ ¼
k3

2π2
δðkþ pÞhhkðτÞhpðτÞi:

From Eqs. (8) and (9), we are able to obtain the two-
point correlation function of hk,

hhkðτÞhpðτÞi ¼
Z

d3qd3q̃
ð2πÞ3 eðk;qÞeðp; q̃ÞIðτ;k;qÞ

× Iðτ;p; q̃Þhψqψk−qψ q̃ψp−q̃i; ð12Þ

where Iðτ;k;pÞ is the kernel function,

Iðτ;k;pÞ ¼
Z

dτ̃
aðτ̃Þ
aðτÞGkðτ; τ̃Þfðτ̃;k;pÞ:

According to the Wick theorem, the four-point correlation
function hψqψk−qψ q̃ψp−q̃i in Eq. (12) can be decomposed
into the sum of the products of the two-point correlation
functions [or equivalently, the power spectra PRðkÞ of the
scalar perturbations] [73]. For convenience, introducing
three dimensionless variables u ¼ jk − pj=k, v ¼ jpj=k,
and x ¼ kτ, we obtain [74,75]

Phðτ; kÞ ¼ 4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

× I2ðx; u; vÞPRðkuÞPRðkvÞ; ð13Þ

where Iðx; u; vÞ ¼ Iðτ;k;pÞk2 is the kernel function in
terms of the dimensionless variables.
In the RD era, the oscillation average of I2ðx; u; vÞ in the

late-time limit of x → ∞ is [70]

I2ðx → ∞; u; vÞ ¼ 1

2

�
3ðu2 þ v2 − 3Þ

4u3v3x

�
2
��

ðu2 þ v2 − 3Þ ln
���� ðuþ vÞ2 − 3

ðu − vÞ2 − 3

���� − 4uv

�
2

þ ½πðu2 þ v2 − 3Þθðuþ v −
ffiffiffi
3

p
Þ�2

�
;

ð14Þ

where θ is the Heaviside step function. It is more convenient to introduce two new variables t ¼ uþ v − 1 and s ¼ u − v for
the integral in Eq. (13). From Eqs. (10), (13), and (14), taking into account H ¼ 1=τ in the RD era, we finally arrive at [70]

ΩGWðτ; kÞ ¼
1

12

Z
∞

0

dt
Z

1

−1
ds

�
tðtþ 2Þð1 − s2Þ

ðtþ sþ 1Þðt − sþ 1Þ
�
2

PR

�
tþ sþ 1

2
k

	
PR

�
t − sþ 1

2
k

	

×
288½tðtþ 2Þ þ s2 − 5�2
½ðtþ sþ 1Þðt − sþ 1Þ�6

�
π2

4
½tðtþ 2Þ þ s2 − 5�2θðt −

ffiffiffi
3

p
þ 1Þ

þ
�
1

2
½tðtþ 2Þ þ s2 − 5� ln

���� tðtþ 2Þ − 2

3 − s2

���� − ðtþ sþ 1Þðt − sþ 1Þ
�
2
�
: ð15Þ

Although we have obtained the SIGW spectrum
ΩGWðτ; kÞ in the early Universe, it will evolve in the
cosmic evolution at late times. Well after the horizon
reentry, the SIGW produced in the RD era redshifts as

radiation, so ρGW ∝ a−4. Hence, from Eq. (10), ΩGW is
constant during the RD era, but is diluted as a−1 in the
subsequent matter-dominated era. Therefore, the SIGW
spectrum at present should be [70]
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ΩGWðτ0; kÞ ¼ Ω0
rΩGWðτc; kÞ; ð16Þ

where Ω0
r is the current value of the energy density fraction

of radiation, and τc is some time after ΩGWðτ; kÞ has
become constant, so ΩGWðτc; kÞ is an asymptotic constant
during the RD era.
To compare with the sensitivity curves of various GW

detectors and to understand the relevant physical implica-
tions in Secs. IV and V, we emphasize an important
relation between the wave number k and the GW frequency
f as [76]

f ≈ 1.5 × 10−9
k

pc−1
Hz: ð17Þ

Combining Eqs. (11)–(17), we can eventually achieve the
present SIGW spectrum ΩGWðfÞ.

IV. PBHs AND SIGWs FROM ONE
PERTURBATION ON THE INFLATON

POTENTIAL

In this section, we construct one antisymmetric pertur-
bation δVðϕÞ on the background inflaton potential VbðϕÞ,
in order to achieve the relevant PBH abundances in the
GLMS approximation in the three typical mass windows at
10−17M⊙, 10−13M⊙, and 30M⊙, respectively. At the same
time, we expect the corresponding SIGWs to be observed
by the next-generation GW detectors. Furthermore, we
also wish to explain the potential isotropic stochastic
GW background from the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav)
12.5-year dataset [77]. Here, we should stress that we
do so mainly to check our inflation model. We do not
mean that the NANOGrav signal is the spin-2 SIGW
definitely, as it is also consistent with a spin-0 or spin-1
explanation [78].
In general, the specific form of δVðϕÞ is not unique, as

long as it can smooth VbðϕÞ at some position ϕ0. In this
way, a plateau appears around ϕ0, leading inflation into
the USR stage, during which the inflaton field evolves
extremely slowly, dramatically enhancing the power spec-
trum PRðkÞ, PBH abundance fPBHðMÞ, and SIGW spec-
trum ΩGWðfÞ simultaneously. Below, the background
inflaton potential VbðϕÞ is chosen as the Kachru-
Kallosh-Linde-Trivedi potential [79],

VbðϕÞ ¼ V0

ϕ2

ϕ2 þ ðmP=2Þ2
:

Furthermore, we follow Refs. [39,40] and parametrize the
antisymmetric perturbation δVðϕÞ as

δVðϕÞ ¼ −Aðϕ − ϕ0Þ exp
�
−
ðϕ − ϕ0Þ2

2σ2

�
: ð18Þ

Thus, the inflaton potential reads VðϕÞ ¼ VbðϕÞ þ δVðϕÞ.
As δVðϕÞ is antisymmetric, it can be connected to VbðϕÞ
very smoothly on both sides of ϕ0.
Altogether, there are three parameters in our model:

A, ϕ0, and σ, characterizing the slope, position, and width
of δVðϕÞ, respectively. For convenience, we reparametrize
A as

A ¼ Vb;ϕðϕ0Þð1þ A0Þ;

where A0 describes the deviation of VðϕÞ from a perfect
plateau at ϕ0. We set V0=m4

P ¼ 10−10, ϕ=mP ¼ 3.30, and
ϕ;N=mP ¼ −0.0137 as the initial conditions for inflation,
such that there can be a nearly scale-invariant power spectrum
PRðkÞ on large scales and a relatively small tensor-to-scalar
ratio r, favored by the CMB observations [80].
Now, we calculate the power spectra PRðkÞ, PBH

abundances fPBHðMÞ, and SIGW spectra ΩGWðfÞ, respec-
tively. The basic aims of the parameter adjustments in our
model are threefold: to compose DM via PBHs, to generate
sizable SIGW spectra, and to interpret the NANOGrav
signal from the SIGW. Below, we explain these three
aspects in more detail.
(1) For the PBHs in the two small-mass windows at

10−17M⊙ or 10−13M⊙, we demand the PBH abun-
dance fPBHðMÞ to be 1, so as to compose all DM.
However, if we wish to understand the NANOGrav
signal via the SIGW that corresponds to the PBH of
30M⊙, its abundance will be much smaller.

(2) We expect that the SIGW spectra ΩGWðfÞ are
intense enough to reach the sensitivity curves of
several next-generation GW detectors, such as
square kilometer array (SKA) [81], international
pulsar timing array (IPTA) [82], laser interferometer
space antenna (LISA) [83], and big bang observer
(BBO) [84]. However, at the same time, ΩGWðfÞ
must avoid the constraints from the detectors on
the run, such as advanced laser interferometer
gravitational-wave observatory (aLIGO) [85], since
it has not observed GWs yet.

(3) Wewish to interpret the potential isotropic stochastic
GW background observed by the NANOGrav data-
set via the SIGW. In Ref. [77], its latest 12.5-year
analysis found strong evidence of a stochastic
process, modeled as a power law, with common
amplitude and spectral slope across pulsars. For
every process, it indicates the slope and amplitude at
1σ confidence level for the GW spectrum as

ΩGWBðfÞ ¼ AGWB

�
f
fyr

	
α

; ð19Þ

where fyr ¼ 1 yr−1 is the reference frequency, AGWB

is the amplitude at fyr, and α ∈ ð−1.5; 0.5Þ is the
range of the slope of the potential isotropic stochastic
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GW background [86] (illustrated as a blue parallelo-
gram in Fig. 3). In this paper, we fix α to be its
minimum −1.5 (i.e., the lowest slope) and demand
the SIGW spectra ΩGWðfÞ to coincide with the top

edge of the blue parallelogram. There are two basic
reasons for this choice. First, the lowest slope
provides the highest peak in ΩGWðfÞ, making the
SIGW most intense. Second, a higher ΩGWðfÞ
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FIG. 2. Same as Fig. 1, but with the PBH mass M in the typical mass window at 10−13M⊙. The PBH can still have fPBHðMÞ ∼ 1 and
thus compose all DM. Meanwhile, the peak of PRðkÞ moves to larger scale, and the peak of ΩGWðfÞ moves to lower frequency.
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FIG. 1. The power spectrum PRðkÞ, PBH abundance fPBHðMÞ, and SIGW spectrum ΩGWðfÞ with the PBH mass M in the typical
mass window at 10−17M⊙ (different sensitivity curves of various next-generation GW detectors are also presented in the right panel).
The peak of PRðkÞ approaches around 10−2 in the USR inflation, remarkably enhancing fPBHðMÞ and ΩGWðfÞ at certain mass and
frequency. The PBH may have abundance fPBHðMÞ ∼ 1 and thus compose all DM. The relevant SIGW is expected to reach the
sensitivity curves of LISA and BBO, without touching the current constraint from aLIGO. Moreover, at low frequencies, the SIGW
spectrum shows the ΩGWðfÞ ∝ f3 scaling behavior.
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FIG. 3. Same as Fig. 2, but with the PBH massM in the typical mass window at 30M⊙. The peak of PRðkÞmoves to even larger scale,
and the peak of ΩGWðfÞ moves to even lower frequency. The SIGW spectrum is expected to reach the sensitivity curves of the next-
generation GW detectors like SKA and IPTA. In this case, there are two notable characters, quite different from those in Figs. 1 and 2.
First, the SIGW can interpret the potential isotropic stochastic GW background from the NANOGrav 12.5-year dataset at 1σ confidence
level (blue parallelogram in the right panel). The slope α in Eq. (19) is set to be −1.5 (i.e., the lowest slope), and the SIGW spectrum is
tangent to the top edge of the blue parallelogram, so as to provide the highest peak of ΩGWðfÞ. Second, the PBH abundance fPBHðMÞ is
merely 10−7, meaning that even if the PBH of 30M⊙ is definitely excluded as a candidate of DM, its relevant SIGW can still explain the
NANOGrav signal.
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corresponds to a higher PBH abundance, which will
lead to stringent constraint on fPBHðMÞ, especially
for the PBH of 30M⊙.

Bearing the above three requirements in mind, we plot
the power spectra PRðkÞ, PBH abundances fPBHðMÞ, and
SIGW spectra ΩGWðfÞ in Figs. 1–3. The model parameters
A0, ϕ0, and σ are summarized in Table I.
From Figs. 1–3 and Table I, our basic results can be

drawn as follows.
(1) In the USR inflation, if the peak of the power

spectrum PRðkÞ reaches 10−2 on small scales, the
PBH abundance fPBHðMÞ is significantly enhanced,
and the PBH can be considered as an effective
candidate of DM. Simultaneously, the relevant
SIGW spectrum ΩGWðfÞ is also enhanced at the
corresponding frequency band and can be observed
by different GW detectors in the future.

(2) With the peak of PRðkÞ moving to larger scales, the
PBH mass M increases, and the peak of ΩGWðfÞ
moves to lower frequencies, as Eqs. (6) and (17)
indicate that a smaller kPBH corresponds to a larger
M and a lower f. Also, a smaller kPBH means an
earlier USR stage, so the parameter ϕ0 increases
with M, as shown in Table I.

(3) As shown in Figs. 1 and 2, the PBHs of 10−17M⊙ or
10−13M⊙ can compose all DM with fPBHðMÞ ∼ 1,

and their relevant SIGW spectra ΩGWðfÞ are intense
enough to reach the sensitivity curves of the next-
generation GW detectors like LISA [87–90] and
BBO [91,92], without touching the current constraint
from aLIGO. Moreover, for the PBH of 30M⊙, from
the middle and right panels in Fig. 3, even if its
abundance is strongly constrained to be merely 10−7

(the possibility as a stable candidate of DM is strictly
excluded), its SIGW spectrum can still explain the
potential isotropic stochastic GW background ob-
served by the NANOGrav 12.5-year dataset [93–97].
In addition, in Figs. 1–3, the SIGW spectra show the
universal infrared scaling behavior as ΩGWðfÞ ∝ f3,
in agreement with Refs. [98–101].

Last, we discuss some details in the adjustments of the
three parameters A0, ϕ0, and σ in our model. As shown in
Refs. [39,40], if we only focus on the PBH abundance
fPBHðMÞ, two parameters ϕ0 and σ are already sufficient.
However, in the present work, we also pay attention to the
SIGW spectrum ΩGWðfÞ, so the third parameter A0 is
indispensable. Amongst them, the width σ is the most
influential factor, as it strongly affects the profile of
ΩGWðfÞ. For instance, for the PBHs of 10−17M⊙ or
10−13M⊙, we demand a steeper ΩGWðfÞ, so that it does
not contradict the current constraint from aLIGO, and
for the PBH of 30M⊙, we need ΩGWðfÞ to possess the
lowest slope −1.5 in its decreasing region to interpret the
NANOGrav signal in the right panel in Fig. 3. Moreover,
A0 plays a similar role as σ in calculating fPBHðMÞ, so it
helps to break the parameter degeneracy. Nevertheless, due
to the antisymmetric form of the perturbation δV, the fine-
tuning problem frequently met in the USR inflation has
already been relieved greatly.

V. PBHs AND SIGWs FROM TWO
PERTURBATIONS ON THE
INFLATON POTENTIAL

In this section, we further investigate the cases with two
perturbations on the background inflaton potential, so that

TABLE I. The parameters A0, ϕ0, and σ for the PBH abun-
dances fPBHðMÞ ∼ 1 in the two small-mass windows at 10−17M⊙
or 10−13M⊙, and fPBHðMÞ ∼ 10−7 in the mass window at 30M⊙.
The SIGW spectra ΩGWðfÞ with these parameters can be
observed by the next-generation GW detectors and avoid the
current constraint. For the PBH of 30M⊙, its relevant SIGW can
interpret the potential isotropic stochastic GW background from
the NANOGrav 12.5-year dataset.

M=M⊙ A0 ϕ0=mP σ=mP

10−17 0.00264134 1.34 0.0944876
10−13 0.003025 1.83 0.0451306
30 0.00924 2.53 0.0172
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FIG. 4. The power spectrum PRðkÞ, PBH abundance fPBHðMÞ, and SIGW spectrum ΩGWðfÞ with the PBH masses in two typical
mass windows at 10−17M⊙ and 10−13M⊙. Both PBH abundances are set to be 0.5, so that the PBHs can compose all DM. The relevant
SIGW is expected to be observed by LISA and BBO, without touching the current constraint from aLIGO. Some distortions appear in
PRðkÞ and ΩGWðfÞ, because there is inevitable interference between the two USR stages.

JI-XIANG ZHAO, XIAO-HUI LIU, and NAN LI PHYS. REV. D 107, 043515 (2023)

043515-8



there can be PBHs of different masses with appropriate
abundances in two of the three typical mass windows at
10−17M⊙, 10−13M⊙, and 30M⊙ simultaneously. Moreover,
the relevant SIGW spectra are also explored in detail.
Now, the inflaton potential reads VðϕÞ ¼ VbðϕÞ þ

δV1ðϕÞ þ δV2ðϕÞ, and the two perturbations possess the
same form as that in Eq. (18). Hence, there are six model

parameters at present: Að1Þ
0 , ϕð1Þ

0 , σð1Þ, Að2Þ
0 , ϕð2Þ

0 , and σð2Þ

(the superscripts 1 and 2 stand for small and large PBH
masses). According to the separation between the two
PBH masses, the power spectra PRðkÞ, PBH abundances

fPBHðMÞ, and SIGW spectra ΩGWðfÞ are plotted in
Figs. 4–6, and the corresponding model parameters are
summarized in Table II. The initial conditions for inflation
are kept the same as those in Sec. IV.
From Figs. 4–6 and Table II, we arrive at the following

results.
(1) Because of the two perturbations on the background

inflaton potential, there appear two peaks in PRðkÞ,
fPBHðMÞ, and ΩGWðfÞ simultaneously. Analogous
to the cases with one perturbation, the PBHs can
compose all DM, and the SIGWs are expected to be
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FIG. 5. Same as Fig. 4, but with the PBH masses in two typical mass windows at 10−13M⊙ and 30M⊙. The SIGW is expected to be
observed by IPTA, SKA, LISA, and BBO, but not by aLIGO. Moreover, the NANOGrav signal is shown as a blue parallelogram in the
right panel (as explained in Fig. 3), and the SIGW spectrum is tangent to its top edge. This condition strictly constrains the abundance of
the PBH of 30M⊙ to be merely 10−9 and thus excludes its possibility as a candidate of DM. Meanwhile, the abundance of the PBH of
10−13M⊙ is set to be 1, so that it can compose all DM alone.
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FIG. 6. Same as Fig. 5, but with the PBH masses in two typical mass windows at 10−17M⊙ and 30M⊙. The abundance of the PBH of
10−17M⊙ is set to be 1 to compose all DM, and the abundance of the PBH of 30M⊙ is only 10−9, but is already sufficient to explain the
NANOGrav signal.

TABLE II. The parameters Að1Þ
0 , ϕð1Þ

0 , σð1Þ, Að2Þ
0 , ϕð2Þ

0 , and σð2Þ (superscripts 1 and 2 stand for small and large PBHmasses) for the PBHs
with the appropriate abundances in two of the three typical mass windows at 10−17M⊙, 10−13M⊙, and 30M⊙. The SIGW spectra with
these parameters are expected to be observed by the next-generation GW detectors and to avoid the current constraint. For the cases
involving the PBH of 30M⊙, the relevant SIGWs can also explain the potential isotropic stochastic GW background from the
NANOGrav 12.5-year dataset.

M=M⊙ Að1Þ
0 ϕð1Þ

0 =mP σð1Þ=mP Að2Þ
0 ϕð2Þ

0 =mP σð2Þ=mP ðϕð2Þ
0 − ϕð1Þ

0 Þ=mP

10−17 and 10−13 0.3477753 1.720 0.029705 0.2726004 1.810 0.0290004 0.090
10−13 and 30 0.0788911 2.450 0.0146459 0.0093681 2.527 0.0172428 0.077
10−17 and 30 0.0797032 2.280 0.0166578 0.0093281 2.527 0.0172428 0.247
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observed by the next-generation GW detectors or to
interpret the NANOGrav signal, as long as the power
spectra PRðkÞ are enhanced up to 10−2 on the
relevant scales.

(2) In Fig. 4, for the PBHs of 10−17M⊙ and 10−13M⊙,
their abundances are both set to be 0.5, in order to
compose all DM. However, in Fig. 5, for the PBHs
of 10−13M⊙ and 30M⊙, only the abundance of the
former is set to be 1, as the abundance of the latter is
negligibly small (around 10−9), but this is already
enough to explain the potential isotropic stochastic
GW background from the NANOGrav 12.5-year
dataset. The situation is similar for the case with the
PBHs of 10−17M⊙ and 30M⊙.

(3) In Table II, one may naively expect that the separation

between the two perturbations ϕð2Þ
0 − ϕð1Þ

0 increases
with the mass difference between the two mass
windows, but this is not always the case. There are
two basic reasons for this point. First, the two
perturbations cannot be too close. Otherwise, there
will be strong parameter degeneracy. Second, they
cannot be too far away, either. Otherwise, the inflaton
will spend much time on the first plateau and will
pass the second one at much later times, making the
relevant PBH mass extremely small. Therefore, the
two perturbations should be placed at a moderate
distance, and this will lead to inevitable interference
between them accordingly. As a result, some dis-
tortions appear in PRðkÞ and ΩGWðfÞ, as shown in
Figs. 4–6. This is a natural consequence from the
overlap between the decaying and growing regions of
PRðkÞ on different scales or ΩGWðfÞ on different
frequencies. Hence, merely adjusting the parameters

σð1Þ and σð2Þ is not enough, and the parameters Að1Þ
0

and Að2Þ
0 are indispensable to alleviate the parameter

degeneracy.

VI. CONCLUSION

Since the discovery of the merging GWs from binary
black holes in recent years, PBHs and SIGWs have aroused
continuously growing research enthusiasm. One of the
basic motivations is to compose DM via PBHs, and their
relevant SIGWs are expected to be observed by the next-
generation GW detectors. Hence, the aim of this paper is to
study the PBH abundance and SIGW spectrum phenom-
enologically, by introducing the perturbations δV on the
background inflaton potential VbðϕÞ. We systematically
calculate the power spectra PRðkÞ, PBH abundances
fPBHðMÞ, and SIGW spectra ΩGWðfÞ via the GLMS
approximation of peak theory. We also wish to explain
the potential isotropic stochastic GW background detected
by the NANOGrav 12.5-year dataset. Our basic conclu-
sions are summarized as follows.

(1) We choose the antisymmetric perturbation with
three model parameters A0, ϕ0, and σ, so as to
construct a plateau flat enough on VbðϕÞ, leading
inflation into the USR stage. The perturbation of this
form can be connected to Vb very smoothly, not only
relieving the fine-tuning problems that usually
appear in the parameter adjustments, but also mak-
ing fPBHðMÞ spikelike and avoiding the overpro-
duction of the PBHs of tiny masses, which
circumvents the constraint from the extragalactic
gamma-ray bursts [49].

(2) The USR inflation can dramatically enhance PRðkÞ,
fPBHðMÞ, and ΩGWðfÞ simultaneously. In the case
of one perturbation, the PBHs with fPBHðMÞ ∼ 1 in
the two small-mass windows at 10−17M⊙ or
10−13M⊙ can be achieved to compose all DM,
and the relevant SIGWs are expected to be observed
by the next-generation GW detectors, such as SKA,
IPTA, LISA, and BBO, without touching the current
constraint from aLIGO. As for the PBH of 30M⊙,
although its abundance is restricted to be merely
10−7 (more stringent than other constraints available
in this mass window), it may still interpret the
potential isotropic stochastic GW background from
the NANOGrav 12.5-year dataset.

(3) In the parameter adjustments, with ϕ0 increasing, the
peak of PRðkÞmoves to larger scales, the PBH mass
M increases, and the peak of ΩGWðfÞ moves to
lower frequencies. Meanwhile, the most influential
ingredient is the width σ of the perturbation. On the
one hand, a larger σ corresponds to a longer duration
of the USR stage and a larger PBH abundance, with
fPBHðMÞ being exponentially dependent on σ. On
the other hand, the slope of the decreasing region of
ΩGWðfÞ is also significantly affected by σ. As σ
decreases, the duration of the USR stage shortens, so
the decreasing stage of ΩGWðfÞ becomes steeper.
Because σ influences both fPBHðMÞ and ΩGWðfÞ, to
break the parameter degeneracy, the third parameter
A0 is indispensable in the model.

(4) In the case of two perturbations, the situations are
similar. For the PBHs of 10−17M⊙ and 10−13M⊙,
both of their abundances can be set to be 0.5, so that
fPBH ∼ 1 in total. For the PBHs of 10−13M⊙ and
30M⊙, the former alone is able to compose all DM.
On the contrary, the abundance of the latter is strictly
restricted to be around 10−9, so its possibility as a
candidate of DM is safely excluded, but even such
low abundance is already enough to interpret the
NANOGrav signal. The situation is similar for the
PBHs of 10−17M⊙ and 30M⊙.

(5) Because of the interference between the two per-
turbations, some features appear in Figs. 4–6. For
instance, there is an overlap between the decreasing
region of PRðkÞ on larger scales and the increasing
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region of PRðkÞ on smaller scales. Consequently,
there are distortions in PRðkÞ and ΩGWðfÞ.

In conclusion, by appropriately constructing the antisym-
metric perturbations on the background inflaton potential,
we are able to achieve the PBHs with desirable abundances
via the GLMS approximation of peak theory in the three
typical mass window at 10−17M⊙, 10−13M⊙, and 30M⊙,
respectively. At the same time, the corresponding SIGWs are
expected to be observed by the next-generation GW detec-
tors, without spoiling the current constraint. Moreover, the
potential isotropic stochastic GW background from the
NANOGrav 12.5-year dataset may also be interpreted from
the SIGW accompanying the PBH of 30M⊙, albeit the

relevant abundance is too small to explain DM. Altogether,
our work is a phenomenological exploration of the inflaton
potential with suitable features and will be helpful to further
model building of cosmic inflation.
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[58] A. Escrivà, C. Germani, and R. K. Sheth, Phys. Rev. D 101,

044022 (2020).
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