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The applications of artificial neural networks in the cosmological field have shone successfully during
the past decade, this is due to their great ability of modeling large amounts of datasets and complex
nonlinear functions. However, in some cases, their use still remains controversial because their ease of
producing inaccurate results when the hyperparameters are not carefully selected. In this paper, to find the
optimal combination of hyperparameters to artificial neural networks, we propose to take advantage of
the genetic algorithms. As a proof of the concept, we analyze three different cosmological cases to test the
performance of the architectures achieved with the genetic algorithms and compare them with the standard
process, consisting of a grid with all possible configurations. First, we carry out a model-independent
reconstruction of the distance modulus using a type Ia supernovae compilation. Second, the neural
networks learn to infer the equation of state for the quintessence model, and finally with the data from a
combined redshift catalog the neural networks predict the photometric redshift given six photometric bands
(urgizy). We found that the genetic algorithms improve considerably the generation of the neural network
architectures, which can ensure more confidence in their physical results because of the better performance
in the metrics with respect to the grid method.
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I. INTRODUCTION

Throughout cosmology there exists a variety of numeri-
cal and statistical techniques that allow to study complex
theoretical models and to process large amounts of obser-
vational measurements. However, despite the increasing
amount of observational evidence, there are still several
tensions with unknown physical explanations which
encourage the search for new analysis tools to extract
valuable information from the data, and to use the computa-
tional resources more efficiently. During the past decades,
machine learning incorporated effective alternatives into
the data analysis field, in particular the deep learning.
For instance, the artificial neural networks (ANNs) have been
successfully used to carry out a broad diversity of different
tasks such as regression, classification, image processing and
time series, amongmany others [1]. In cosmology, they have

achieved great results in performing model-independent
reconstructions (nonlinear regression) [2–6], in the process
of speeding up numerical calculations [7–11] or in the
classification of different objects [11–14]. Neverthe-
less, in most of these studies the architecture of the
network is built up by generating a grid with a large
number of possible combinations of hyperparameter values
in order to select the best one, which could be computa-
tionally expensive; and in other scenarios the architecture
is constructed on an empirical way, which may lead to
inaccurate results.
Despite their great advantages, ANNs have two main

drawbacks. First, the fact that artificial networks have
thousands or millions of parameters (called weights)
generates a hard interpretation of them. Second, ANNs
have also several hyperparameters that must be picked out
carefully (e.g., number of layers, nodes, activation function,
batch size, etc.) in order to have acceptable predictions and
therefore the results depend on their selection. That is,
even though several combinations are able to generate a
good neural network model, there are even more bad
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combinations that will achieve incorrect predictions and, in
cosmology, a spurious and imprecise physical interpreta-
tion. If the hyperparameters configuration is adequate, there
is a good balance between the bias and variance of the
neural model which implies the network is neither over-
fitted nor underfitted [15], therefore the predictions should
be reliable and thus underestimate the weak interpretation
of the multiple weights.
There are several strategies for finding the appropriate

values of the hyperparameters in a neural network [16–19].
The standard approach is to propose a multidimensional
grid form of several values of the hyperparameters [16],
evaluate all possible combinations and determine, by
comparison, which combination has the best performance.
Newer approaches are based in mathematical optimiza-
tion or metaheuristic algorithms, both of which consist in
specialized algorithms to find the optimal value for a
given function. Therefore, the search for the best combi-
nation of hyperparameters of neural networks is posed as
an optimization problem. Genetic algorithms, by them-
selves, have been investigated in cosmology for quasar
parametrization [20], nonparametric reconstructions
[21,22], and string theory analysis [23], to name just a
few. In other research areas, there are various cases in
which artificial neural networks and genetic algorithms
have been applied together; for example, in medicine
[24–26], seismology [27] and in string theory [28],
among others.
In several fields it is still uncommon to pay particular

attention to the hyperparameter tuning during the con-
struction of the neural network model. Regularly, an usual
strategy is the hyperparameter grid and in several cases may
be a good enough option, however there are better ways to
optimize this selection. In this paper, we explore the use of
the genetic algorithms (GAs), the most popular metaheur-
istic algorithm, and compare their performance with the
standard grid of hyperparameters. In this context, the goal
of the genetic algorithm is to find the best combination of
neural network hyperparameters that minimizes the target
function.
This paper is structured as follows. In the next section

we provide a brief overview about neural networks, genetic
algorithms and the hyperparameter tuning approaches. In
Sec. III we explain the technical details about our imple-
mentation. Section IV, as a proof of the concept, contains
three cosmological study cases, in the first one we made a
model-independent reconstruction of the distance modulus
using a type Ia supernovae compilation; in the second, we
train neural networkmodels using the analytical results of the
equation of state of the quintessence model; and last, a
prediction of the photometric redshift given some features
from the catalog of Ref. [29]. In Sec. V we describe our final
remarks about this research. In addition, in the Appendix
we consider some randomness effects in the case study of
Sec. IVA to verify the robustness of the genetic algorithms in
the context of this work.

II. MACHINE LEARNING BACKGROUND

Machine learning is the field of artificial intelligence
focused on the mathematical modeling of the data; it
extracts the intrinsic properties of datasets by minimizing
an objective function through many iterations until an
acceptable combination of model parameters is found. In
recent years, the most successful types of machine learning
models are artificial neural networks, which have thousands
or millions of parameters, called weights, which allow
modeling any nonlinear function [30]. Finding the correct
combination of hyperparameters, or in other words the best
neural network architecture, is a hard task. The classic
method for this is to generate several combinations of
hyperparameters and evaluate all of them until the best one
is found. In recent years, by taking advantage of the
existing computing power, various optimization and param-
eter estimation techniques have been applied to find these
hyperparameters more efficiently; in particular, the meta-
heuristic optimization algorithms (i.e., the genetic algo-
rithm), which allow finding the best solution to an
optimization problem without using derivatives.
In this section we describe very briefly artificial neural

networks, genetic algorithms and the hyperparameter
tuning.

A. Artificial neural networks

Artificial neural networks have been applied in various
scientific fields because of their ability to model large and
complex datasets. The universal approximation theorem
guarantees that ANNs can model any nonlinear function
[30], making them a powerful tool in modeling datasets
where the intrinsic relationships of their variables are
unknown and most of the time multidimensional. A
complete review of neural networks is beyond the scope
of this article; there are great references in the literature to
delve into this topic in a formal way [1,31,32]; for a basic
introduction, their main algorithms and a cosmological
context, see [11].
Inspired by nature, an artificial neural network (ANN)

consists of a computational model that aims to emulate
the synapse through interconnected layers of units called
neurons or nodes, which make up its basic information
processing elements. In the simplest type of network, the
feedforward neural network, there are three types of layers:
an input layer that receives the initial information, hidden
layers responsible for extracting patterns and producing
nonlinearity effects, and finally the output layer that
presents the results of the prediction.
The intrinsic parameters of ANNs are known as hyper-

parameters, which, unlike the weights, are not adjusted
during the training and must be configured in advance.
Examples of hyperparameters are the number of layers, the
number of nodes per layer, the number of epochs and
the activation function. In addition, since ANNs use a
gradient descent and a backpropagation algorithm [33],
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the parameters of these algorithms can also be hyper-
parameters of the ANN model, e.g., batch size and learning
rate, among others. In practice, some hyperparameters are
fixed and others remain as free parameters that are found by
a tuning strategy.

B. Genetic algorithms

Genetic algorithms are inspired by genetic populations
which consider any possible solution of an optimization
problem as an individual, or chromosome. They are
popular for their ability to solve large-scale nonlinear
and nonconvex optimization problems [34] and for
difficult search situations [35]. It is beyond the scope
of this article for a full background of genetic algorithms,
but for interested readers we recommend the following
references [36–38].
Inspired by genetic populations, the first step of the

algorithm is to generate several individuals, within the
search space, and define them as a population. Then,
through operations such as crossover, mutation and selec-
tion over several iterations (called generations) the pop-
ulation gets closer to the optimum of a target function.
In any problem approached with genetic algorithms, it is
necessary to select the fitness, or target function to
optimize, to define the search space and to set the genetic
operators (selection, crossover and mutation).
Selection operation is the criterion used to determine

which individuals, at given generation, will survive or
reproduce in the next generation. There are several types of
selection methods such as roulette wheel, stochastic uni-
versal sampling, ranking or tournament. In this paper, we
use the tournament selection, for which, in each round two
or more individuals, randomly selected, are confronted and
the one with the highest fitness, or target function, wins and
survives.
The crossover operation, also called recombination,

interchanges the genes of two individuals generating an
offspring, i.e., a new individual. Usually, the probability of
crossover is high; but zero means that the two parents pass
to the next generation without doing anything else. There
are several crossover types, however in this work we
focused in the uniform crossover: for each gene of the
new individual it chooses randomly one of the parents.
On the other hand, mutation refers to a random change in

one or more gene values in an individual. We use the bit flip
mutation [39], which consists in the random selection of
one gene to be flipped, i.e., to be switched to different
value, for example 0 to 1 or vice versa. We need to avoid
high values for the mutation probability, because it can
become a random walk instead of an effective exploration
of the search space.
At the beginning, it is necessary to assign probability

values to the crossover, to the mutation operators and
for each iteration two individuals can have a crossover
or a single individual a mutation with these probabilities.

The value of elitism indicates how many individuals are
bound to pass to the next generation, so it is a positive
integer value. Thus, in a few words the genetic algorithm
works as follows: it generates an initial population within
the search space and, generation by generation, the indi-
viduals are modified by the operators, and by evaluating the
objective function the individuals are approaching the
optimum of the target function.

C. Neural network hyperparameter tuning

To find a good combination of the neural network
hyperparameters, we focus on two approaches: the classic
grid of hyperparameters and the genetic algorithms. Here
are some highlights of both.

1. Conventional grid

The typical approach to finding a correct combination of
hyperparameters in the ANN is to go through an array of
possible hyperparameter values and evaluate each combi-
nation to choose the best that minimizes the neural network
loss function [16]. This involves training as many times as
there are combinations, and it is very computationally
expensive. Another technique that attempts to reduce this
cost is a random search, in which hyperparameter combi-
nations are randomly sampled; however, it still has the
same problems and depends on the size of the search space
for its efficiency. In both approaches the best solution is
always within the initial set of combinations and, however,
a lot of configurations have to be evaluated.

2. Using genetic algorithms

The search for the hyperparameters of an ANN can be
considered an optimization problem. Because of the
increased number of hyperparameters, the search space
is likely to be complex and high dimensional. Classical
optimization methods involving derivatives can be very
difficult to implement in this kind of scenario, therefore
genetic algorithms are a very interesting way to solve this
problem.
The crucial step in using genetic algorithms in hyper-

parameter fitting is to define the fitness function, or target
function. For the case of neural networks, the loss function
can be used as a fitness. The loss function during neural
network training aims to be minimized, therefore the task
of genetic algorithms is to find the best combination of
hyperparameters that minimizes the target function.
Several research works, unrelated to cosmology, have
already combined these two powerful tools and in most
cases have promising results [40–43].

III. METHODOLOGY

We use TENSORFLOW [44] to program the ANN models
and the DEAP library [45–47] to implement the genetic
algorithms, both in PYTHON. We developed a PYTHON
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library called NNOGADA
1 in which a simple genetic algo-

rithm searches the best hyperparameters for a neural
network.
In this framework, the target function of the genetic

algorithm must be some metric of the artificial neural
network; typically it would be the loss function, but for
classification problems it could be accuracy, precision or
something similar. In the case of the loss function, the
problem would be a minimization and in the case of a
classification metric, a maximization. Throughout all cases
in our study, we use the loss function and therefore have
minimization problems.
The first step is to define the hyperparameters of the

neural network model to be found. In practice, there are
some hyperparameters that have values recommended by
the literature or by experienced users on certain types of
problems. In this work, as variable hyperparameters we
choose the number of layers, the number of nodes, the
learning rate and the batch size. With these we define the
search space of the optimization problem. The gradient
descent algorithm in our neural network models is ADAM

[48], and its hyperparameter that we tune is precisely the
learning rate. Second, it is necessary to define the possible
values for each hyperparameter, where the hyperparameter
grid algorithm will search for the best combination, and
those that the genetic algorithm will use to generate the first
population.
In the case of the genetic algorithm, the possible values of

the free hyperparameters must be encoded in a way that the
genetic algorithmcan understand them (binary, hexadecimal,
etc.). Next, it is necessary to define the population size and
the number of generations; also the probability of mutation,
crossover and elitism. Once this configuration of the genetic

algorithm is established, we can use the neural model as a
function to optimize. To have a fair comparison, we chose
these parameters of the genetic algorithms to have a number
of neural network evaluations similar to the hyperparameter
grid cases; the formal selection of the parameters of the
genetic algorithm is out of the scope of this paper.
For the genetic algorithms, in all of the following case

studies in Sec. IV, we set the tournament method [49] for
selection with size 2, binary coding, using elitism with a
hall of fame size equal to 1. We use the uniform crossover
operator and bit flip mutation operator. We varied and
tested different values of crossover and mutation proba-
bilities, population size and number of generations with the
goal to analyze their effect in the performance of the genetic
algorithms. Figure 1 summarizes the implementation of the
hyperparameter tuning with genetic algorithms.
In all cases, we split the datasets into training, validation

and test sets. The first is used to adjust the weights during
training, the validation set is used to evaluate the perfor-
mance of each neural network model during training and,
finally, the test set contains information not used in training
but useful to measure the generalization capability of the
neural networks. For the neural networks of the same
example, we fix the number of epochs and report the lowest
loss function for each case.
Once the neural networks were trained, to evaluate the

performance of the models, we use the mean squared error
(MSE), a measurement of the difference between the neural
networks prediction and the real values. It is defined as
follows:

MSE ¼ 1

n

Xn
i

ðYi − ŶiÞ2; ð1Þ

where Yi is a vector with predictions of the ANN, Ŷi a
vector with the expected values, and n is the number of
predictions (or the length of Yi and Ŷi). Using the same

FIG. 1. Diagram of neural network hyperparameter tuning with a genetic algorithm.

1Repository for NNOGADA (Neural Networks Optimized by
Genetic Algorithms for Data Analysis) available at: https://github
.com/igomezv/nnogada.
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notation, we also use the mean absolute error (MAE) as a
metric:

1

n

Xn
i

jðYi − ŶiÞj: ð2Þ

The last metric we use for our regression cases of study is
the coefficient of determination, also called R2, which
provides information about the goodness of fit of a model
and it is defined as

R2 ¼ 1 −
P

n
i ðYi − ŶiÞ2P
n
i ðYi − ȲÞ2 ; ð3Þ

where Ȳ is the mean of the observed data.

IV. CASES OF STUDY

We have chosen three different cosmological problems
to test the hyperparameter tuning with genetic algorithms
and in all of them we use the type of neural networks
known as feedforward networks (also called multilayer
perceptrons); however, the method can be easily imple-
mented in other cosmological scenarios and with more
complex neural network architectures such as convolu-
tional or recurrent. In the following examples, we compare
the performance of a hyperparameter grid and the genetic
algorithms for finding an acceptable combination of hyper-
parameters in neural network models. We test these two
strategies in three different cosmological contexts, similar
to the problems presented in [11]. Table I shows our choice
of possible hyperparameter values for each of the following
subsections; we use these hyperparameters to construct the
grids and the initial populations for the genetic algorithms.

A. Reconstruction of distance modulus

Model-independent cosmological reconstructions refer
to the use of statistical or computational techniques to gen-
erate a model of a cosmological observable without
assuming an underlying theory. In cosmology, several
techniques have been used such as histogram density
estimators [50], principal component analysis [51,52],
smoothed step functions [53], Gaussian processes [54–57],
extrapolation methods [58], Bayesian nodal free-form
methods [59,60], evolutionary algorithms [21,22,61] and,
recently, neural networks [2–4,6].

In this example, we perform a reconstruction of the
distance modulus μðzÞ, using data from the joint lightcurve
analysis (JLA), with 740 type Ia supernovae [62], which
already have been approached with this type of computa-
tional models [2–4], sometimes with a grid of hyper-
parameters for tuning the neural network architecture
and others without any criterion. We assume a spatially
flat universe, for which the relationship between the
luminosity distance dL and the comoving distance DðzÞ
is given by

dLðzÞ ¼
1

H0

ð1þ zÞDðzÞ; with DðzÞ ¼ H0

Z
dz

HðzÞ :

ð4Þ

Thus, the observable quantity is computed by the distance
modulus μðzÞ ¼ 5 log dLðzÞ þ 25.
The JLA SNeIa compilation attributes are the redshift of

the measurement, the distance modulus and its statistical
error; in addition, it has a covariance matrix with the
systematic errors. We employ the diagonal of the covari-
ance matrix, and with associate errors we add them to the
statistical error. Then our neural network should have only
one node in the input layer, corresponding to the redshift z
and two nodes in the output layer, for the distance modulus
and the error (statistical plus systematic).
The hyperparameters have been searched by training

several architectures using the SNIa from the JLA compi-
lation, varying the number of layers, number of nodes,
batch size and learning rate, for the values shown in the
second column of Table I. Then, the grid of hyperpara-
meters evaluates 128 different neural network architectures
to determine the best. For the genetic algorithms, as can be
seen in Table II, cases A, B and C are configurations with
different values for the mutation probability, crossover
probability, population size and number of generations.
In all cases the models were trained along 200 epochs,

considering the rectifier linear unit (ReLU) activation
function in all the hidden layers and the linear function
in the last one. In Table II can be noticed the result for
the hyperparameter tuning using a grid and the genetic
algorithms (cases A, B and C). For the test set, we use the
mean squared error (MSE), the mean absolute error (MAE)
and the R2 test to evaluate the performance of the neural
network models. We can notice an improvement on the
performance for the results of the genetic algorithms, even

TABLE I. Hyperparameters for the three cases of Sec. IV.

Section IVA Section IV B Section IV C

Number of layers [1, 2, 3, 4] [1, 2, 3, 4] [3, 4]
Number of nodes [50, 100, 150, 200] [50, 100, 150, 200] [100, 200]
Learning rate [10−4, 10−3] [10−4, 10−3] [10−4, 10−3]
Batch size [2, 4, 8, 16] [8, 16] [8, 16, 32, 64]
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when it required less evaluations of neural network
architectures. Because in this problem the numerical
precision is relevant, we can see in Fig. 2 that indeed
the genetic algorithms obtain better reconstructions for the
distance modulus, particularly in the lower redshifts values.
In the Appendix we validate these results through more
repetitions of the algorithms.
Our results suggest that, in previous cosmological works

in which the reconstructions are performed with neural
networks, there is a possibility that a better architecture
could be found using genetic algorithms instead of the use
of the hyperparameter grid, and evidently for cases where
no strategy is employed to find the correct architecture.

B. Quintessence equation of state

In this case, we test the capability of neural networks to
modeling the equation of state (EOS) of an scalar field ϕ for
the quintessence model, which is computed from a set of
differential equations. This is a common and nontrivial
problem because it involves a shooting method to find the

right initial conditions (see an example in [63]). In
particular, the EOS of the quintessence model is defined
as follows:

wðzÞ ¼
_ϕ2 − 2VðϕÞ
_ϕ2 þ 2VðϕÞ ; ð5Þ

with a potential V and the derivative of the field _ϕ, that,
in a Friedman-Robertson-Walker background, satisfy the
Klein-Gordon equation:

ϕ̈þ 3H _ϕþ ∂VðϕÞ
∂ϕ

¼ 0; ð6Þ

where H is the Hubble parameter,

H2 ¼ 1

3

�
1

2
_ϕ2 þ VðϕÞ þ ρM

�
: ð7Þ

For simplicity, we use the scalar field potential
V ¼ 1

2
m2

ϕϕ
2, with mϕ as the mass of the field in units of

[3H0], and ρM being the matter content (baryons, dark
matter) that satisfies the continuity equation.
We compute the EOS for several redshifts, fixing H0 ¼

68.2 and Ωm ¼ 0.3 and varying values for the mass of the
field mϕ, to generate a dataset of 2800 combinations. We
use a modified version of the SIMPLEMC code [64,65] to
calculate the EOS, including the method to search the initial
conditions of the dynamical system [63]. Therefore, we
train the neural networks to predict the EOS of the
quintessence model given the redshift and the mass of
the field.
Varying the hyperparameters shown in Table I (batch

size, learning rate, number of layers and number of nodes),
the combinations found with the grid method and the
genetic algorithms are included in Table III.
All neural network models were trained with 100 epochs

and using the ReLU activation function for all the hidden
layers, and a linear function for the last layer. In Table III,

TABLE II. Results of neural nets training with JLA compilation.

Grid Genetic A Genetic B Genetic C

Population size � � � 5 5 5
Max generations � � � 10 10 15
Crossover � � � 0.5 0.5 0.5
Mutation � � � 0.5 0.2 0.4

Hyperparameter results
Layers 4 2 4 4
Nodes 200 100 100 000
Learning rate 0.0001 0.0001 0.0001 0.0001
Batch size 16 2 4 4

Metrics
MSE 0.0371 0.0311 0.0314 0.0336
MAE 0.1165 0.09978 0.0985 0.1059
R2 0.4968 0.6735 0.6797 0.7251
Evaluations 128 41 34 50

FIG. 2. Left: loss function behavior for the training of the neural networks using the JLA dataset. Right: distance modulus
reconstruction.
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we can see the results of the hyperparameter grid and a
genetic algorithm. We can notice that the neural network
obtained from the genetic algorithm search has a better
performance in the MSE, MAE and R2 metrics; in the case
of MSE and MAE it improves with an order of magnitude,
which is very significant. In addition, the genetic algo-
rithms only used 34 neural networks to find the best, while
the grid method evaluated 64 different architectures.
Figure 3 shows the behavior of the loss function for

both methods and the ANN predictions of the EOS in
comparison with the theoretical values. It is noticeable
that the neural network based on the genetic algorithm
performs better and their results are closer to the analytical
predictions.

C. Photometric redshift prediction

In Ref. [29], the authors use a random forest regression
to test a catalog that combines photometry from

Canada-France-Hawaii Telescope Legacy Survey
(CFHTLS), Y-band photometry from the Subaru
Suprime camera, and spectroscopic redshifts from
DEEP2, DEEP3 [66] and 3D-HST surveys [67]. In this
study case, we use the same catalog, see details therein, to
test the analysis with neural networks instead of random
forest. We generate the six same variables used in [29]
based on u,g,r,i,z and Y (see Table IV). Therefore, the
input of the neural networks is these six variables and the
output is the photometric redshift.
To find the best architecture of the network we use a grid

of hyperparameters and genetic algorithms with the com-
binations shown in Table I. In this case, we vary three
hyperparameters: number of layers, number of nodes by
layer (the same for all the layers) and the learning rate, such
as shown in Table I. The number of epochs is 200. The loss
function fixed is the mean squared error, rectifier linear unit
(ReLU) as an activation function in the hidden layers and
the linear function in the last layer.
For this case, the neural network model has six nodes

in the input layer (the attributes of Table IV) and one
node in the output layer, corresponding to the photo-
metric redshift. Using the hyperparameter grid varying
the number of layers, number of nodes, batch size and
learning rate (with the values shown in Table I), we have
a total of 32 combinations. We choose three different
configurations for the genetic algorithms regarding to the
crossover and mutation probabilities, population size and
generations.
Table V contains the results of the hyperparameter

tuning with the grid and different configurations of
genetic algorithms (cases A and B). We found that the
genetic algorithms A and B, considering the values of the
MSE, MAE and R2, are better than the grid method. In
both cases, the MSE and MAE are around half of the
values obtained by the grid; and the R2 score is also
significantly higher.

TABLE III. Results of ANN training for the quintessence EOS.

Grid Genetic

Population size � � � 8
Max generations � � � 5
Crossover � � � 0.8
Mutation � � � 0.2

Hyperparameter results
Layers 4 4
Nodes 200 200
Learning rate 0.001 0.001
Batch size 16 8

Metrics
MSE 0.0008 1.0953 × 10−5

MAE 0.0174 0.0020
R2 0.9873 0.9998
Evaluations 64 34

FIG. 3. Left: loss function behavior for the neural networks learning the equation of state for the quintessence model. Right:
comparison of the analytical EOS for the quintessence model using different mass values and the predictions with the neural networks.
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During the training, in the two cases, the genetic
algorithms have a lower value in the loss function; we
plot them in Fig. 4. The second panel of Fig. 4 shows the
predicted redshift versus the true redshift and the three
results are visually similar to those presented in Ref. [29],
and the predictions of the neural networks proposed by the
genetic algorithms have less dispersion than that corre-
sponding to the grid method.

V. DISCUSSION

Throughout the three cases in this work, we conclude
that the use of the genetic algorithms is an interesting
strategy to find a correct neural network architecture in a
cosmological context.
It is noteworthy that when genetic algorithms use higher

mutation probability values, fewer neural network archi-
tectures are evaluated, more variance is induced in indi-
viduals between subsequent generations and this may
allow a good combination of hyperparameters to be found
more quickly. We can notice the effect of the mutation
probability in the number of evaluations, smaller mutation
probability leads to more neural network evaluations.
However, we must remember that higher values of the
mutation probability can become a random walk and
should be avoided.
We have observed that the hyperparameter grid evaluates

each combination just once, regardless of its proximity to
the optimal value. In contrast, the genetic algorithms
evaluate more times the configurations that are within a
region of the search space where the optimum is likely to
be, they may even evaluate the same point more than once;
for example, the mutation or crossover of two different
individuals could generate the same new point. This
behavior makes the solution found by the genetic algo-
rithms more reliable because the individuals of the last
population have been tested better than the configurations

TABLE IV. Attributes of the combined catalog of Ref. [29].

Attribute Description

u, g, r, i, z UV, green, red, near-infrared, far-infrared filters from CFHTLS [68].
Y Y-band photometry from the SuprimeCam at the Subaru telescope [69]
Redshift Photometric redshift

TABLE V. Results of ANN training for photometric redshift.

Grid Genetic A Genetic B

Population size � � � 5 8
Max generations � � � 10 5
Crossover � � � 0.5 0.5
Mutation � � � 0.2 0.4

Hyperparameter results
Layers 4 4 4
Nodes 200 200 100
Learning rate 0.001 0.001 0.001
Batch size 64 16 16

Metrics
MSE 0.0356 0.0154 0.0193
MAE 0.1074 0.0583 0.0571
R2 0.7057 0.8608 0.8192
Evaluations 32 31 25

FIG. 4. Left: behavior of the loss functions. Right: predicted photometric redshifts by the ANNs in comparison with the true
spectroscopic redshifts.
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evaluated within the hyperparameter grid framework.
In general, as can be noticed in the more extensive
exploration of Table VI, the genetic algorithms found
better solutions than the grid method.
We tested the genetic algorithms with a relatively small

population size and number of generations and, in the
majority of the analyzed cases, their performances were
very competitive and even better than the traditional grid;
we validate this observation with the complementary
analysis in the Appendix. In this paper we have tested
the hyperparameter tuning with genetic algorithms only
with feedforward neural networks and in three very specific
examples; nevertheless, this same methodology can be used
in other cosmological applications and with any other types
of neural networks. Moreover, in cosmological scenarios
where more numerical precision, more complex architec-
tures or larger search space size (i.e., more number of
hyperparameters) are required, then the genetic algorithms
are still expected to perform very well.

Another remark is that the process of running a genetic
algorithm to find the hyperparameters of a neural network
can be slow, if we increase the initial population and
decrease the mutation probability, it can be similar to the
hyperparameter grid method (see Table VII). However, in
the current times of precision cosmology we believe it is a
necessary cost to obtain better neural network models for
the observational evidence.
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TABLE VI. Ten tests for each method using the JLA SNe-Ia dataset.

Test Number Layers Nodes Learning rate Batch size Evaluations MSE MAE R2

Grid

1 4 200 0.00010 16 128 0.0371 0.1165 0.4968
2 2 50 0.00100 16 128 0.0370 0.1141 0.6914
3 4 150 0.00010 16 128 0.0361 0.1133 0.5394
4 3 200 0.00100 16 128 0.0350 0.1093 0.4285
5 4 100 0.00100 16 128 0.0448 0.1222 0.4994
6 3 200 0.00100 16 128 0.0807 0.1714 0.4531
7 4 150 0.00010 16 128 0.0409 0.1189 0.6572
8 3 200 0.00100 16 128 0.0678 0.1478 0.6657
9 3 200 0.00100 16 128 0.0369 0.1101 0.4174
10 4 100 0.00100 16 128 0.0340 0.1035 0.6679

Average� standard deviation 128� 0.0 0.0450� 0.016 0.1227� 0.021 0.5517� 0.109

Genetic A

1 2 100 0.00010 2 41 0.0311 0.0998 0.6735
2 4 50 0.00010 2 41 0.0363 0.1069 0.5894
3 2 200 0.00010 2 36 0.0315 0.0996 0.6893
4 2 100 0.00010 2 36 0.0313 0.0997 0.6866
5 4 150 0.00010 4 39 0.0340 0.1049 0.7091
6 3 100 0.00010 2 33 0.0363 0.1070 0.6357
7 2 100 0.00010 2 38 0.0316 0.0998 0.6515
8 1 50 0.00100 2 37 0.0323 0.1023 0.4249
9 2 200 0.00010 2 37 0.0316 0.0997 0.6787
10 2 200 0.00100 8 31 0.0411 0.1157 0.6956

Average� standard deviation 37� 3 0.0337� 0.003 0.104� 0.005 0.6434� 0.084

Genetic B

1 2 200 0.00010 2 34 0.0314 0.0985 0.6797
2 4 200 0.00010 2 36 0.0470 0.1285 0.7054
3 4 150 0.00010 2 36 0.0407 0.1177 0.6659

(Table continued)
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APPENDIX: NOTE ABOUT THE RANDOMNESS

The reader may have noticed that the performance of the
genetic algorithms, in the above three examples, is always
better than the hyperparameter grid. Avalid question may be
why; if the grid considers all combinations of a proposed set
of hyperparameters and hence the individuals considered in
the genetic algorithms are a subset of the grid. The cause of
this apparent problem is the randomness of all the processes
involved; even fixing the random seed, the values of the
weights in the neural networks and the value of the mean
square error at the end of training are very similar, but not
exactly the same due to their random nature and the way

computers generate the pseudorandomnumbers.On the other
hand, the hyperparameter grid only evaluates each combi-
nation once, while the genetic algorithm can evaluate the
same individual several times over generations, so the genetic
algorithmobtains the best solution even considering the small
fluctuations related to the randomness of the process.
In order to validate the previous statement, we have

performed 10 times the example of Sec. IVA. Genetic
algorithms A, B and C refer to the values of Table II, in
which all of them have a crossover probability of 0.5 and
a mutation probability of 0.5, 0.2 and 0.4, respectively.
Results are shown in Table VI. In general, we can notice

TABLE VI. (Continued)

Genetic B

4 3 100 0.00010 4 32 0.0333 0.1009 0.6912
5 4 100 0.00100 4 31 0.0515 0.1449 0.0920
6 4 100 0.00010 4 28 0.0342 0.1075 0.6933
7 3 100 0.00010 4 35 0.0343 0.1029 0.6792
8 3 200 0.00100 16 31 0.0386 0.1102 0.6795
9 4 50 0.00010 4 29 0.0333 0.1021 0.7204
10 2 100 0.00010 2 22 0.0305 0.0982 0.6779

Average� standard deviation 31� 4 0.0375� 0.007 0.1111� 0.015 0.6285� 0.189

Genetic C

1 4 100 0.00010 4 50 0.0336 0.1059 0.7251
2 1 200 0.00100 4 38 0.0339 0.1043 0.3435
3 4 50 0.00010 4 51 0.0330 0.1021 0.4566
4 2 100 0.00010 2 48 0.0314 0.0980 0.6970
5 2 200 0.00100 8 52 0.0357 0.1120 0.5074
6 1 200 0.00100 4 55 0.0319 0.1015 0.3628
7 4 100 0.00010 4 52 0.0328 0.1039 0.6673
8 2 150 0.00010 2 48 0.0317 0.0989 0.6083
9 3 100 0.00010 4 40 0.0329 0.1022 0.6479
10 2 100 0.00010 2 49 0.0338 0.1006 0.6747

Average� standard deviation 48� 5 0.0331� 0.001 0.1029� 0.004 0.5691� 0.141

TABLE VII. Tests for a genetic algorithm with 15 individuals as population, mutation 0.2, crossover 0.5 and with ten maximum
number of generations.

Run Number Layers Nodes Learning rate Batch size Evaluations MSE MAE R2

1 3 200 0.0001 4 108 0.0313 0.0996 0.6414
2 4 50 0.0001 4 110 0.0320 0.0997 0.6893
3 1 100 0.001 4 106 0.0331 0.1016 0.606
4 1 100 0.001 4 95 0.0328 0.1028 0.4797
5 3 100 0.0001 4 112 0.0330 0.1027 0.6823
6 1 100 0.001 4 92 0.0322 0.1021 0.4873
7 3 100 0.0001 4 99 0.0318 0.1000 0.6242
8 3 100 0.0001 4 103 0.0338 0.1024 0.6372
9 1 100 0.001 4 83 0.0347 0.1027 0.6965
10 4 100 0.0001 4 92 0.0326 0.1047 0.6929

Average� standard deviation 100� 9 0.0327� 0.001 0.1018� 0.002 0.6237� 0.080
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that the performance of the genetic algorithms is better than
the grid method and with less variance in their metrics.
A remarkable fact is the decrease in the number of

evaluations for neural network architectures. However,
because of the randomness, in a few cases the grid
method can be better than the genetic algorithm. This
issue can be tackled with more generations and a higher
population in the genetic algorithm; for this purpose, see

Table VII, the test uses the configuration of genetic
algorithm B for Sec. IVA but with a population size of
15 and 10 as maximum number of generations. We can
notice that the standard deviation decreases and in all
ten runs the genetic algorithm is better than the grid
method, shown in Table VI, and yet this genetic
algorithm executes less evaluation of neural network
architectures.
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