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We study the homogeneous and anisotropic dynamics of pseudoscalar inflation coupled to an SUðNÞ
gauge field. To see how the initially anisotropic universe is isotropized in such an inflation model, we
derive the equations to obtain axisymmetric SUðNÞ gauge field configurations in Bianchi type-I geometry
and discuss a method to identify their isotropic subsets which are the candidates of their late-time attractor.
Each isotropic solution is characterized by the corresponding SU(2) subalgebra of the SUðNÞ algebra. It is
shown numerically that the isotropic universe is a universal late-time attractor in the case of the SU(3)
gauge field. Interestingly, we find that a transition between the two distinct gauge-field configurations
characterized by different SU(2) subalgebras can occur during inflation. We clarify the conditions for this
to occur. This transition could leave an observable imprint on the cosmic microwave background and the
primordial gravitational wave background.
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I. INTRODUCTION

It is widely believed that inflation [1–3], a prolonged
phase of the quasi–de Sitter expansion, occurred in the
early Universe. The inflationary mechanism solves the
problems concerning the initial conditions of the standard
big bang model, i.e., the flatness and horizon problems, and
thus naturally explains the homogeneity and isotropy of the
Universe. Inflation can also generate primordial density
fluctuations that are consistent with observations such as
the cosmic microwave background (CMB) anisotropies.
For a given inflationary model to be successful, it is

required that no particular fine-tuned initial conditions
are imposed at the beginning of inflation. For example,
inflation would be spoiled if initial anisotropies were not
diluted away in the early Universe. Fortunately, according
to Wald’s cosmic no-hair theorem [4], all Bianchi models
except type IX isotropize toward de Sitter in the presence of
a positive cosmological constant. However, one has to be
careful when applying this theorem to models of inflation,
because the actual inflationary expansion is caused not by
a cosmological constant but by a potential energy of a
dynamical scalar field. In the case of power-law inflation,
this point was addressed in Refs. [5–7]. The inflationary
isotropization process is particularly nontrivial in the
presence of vector fields. In fact, it is possible to construct
an inflationary model with a U(1) gauge field coupled to a

scalar field through a particular coupling function that
violates the cosmic no-hair theorem, though the amount of
remaining anisotropies is slow-roll suppressed [8] [see
Ref. [9] for the extension of multiple U(1) gauge fields].
This anisotropic inflationary model has been extended to
the cases of a SU(2) gauge field [10] and a SU(3) gauge
field [11] coupled to a scalar field. These examples show
that an inflationary universe does not always isotropize in
the presence of a vector field [12,13].
The chromo-natural inflation (CNI) model [14] is a model

of inflation well motivated by particle physics in which a
pseudoscalar axion and an SU(2) gauge field are coupled
through the Chern-Simons coupling (see Ref. [15] for a
review). It has been shown in Refs. [16–18] that the Bianchi
type-I metric in the CNI model generically isotropize and the
isotropic solution is an attractor in favor of the cosmic no-
hair theorem. Although the CNI model is an interesting class
of inflationary models, the model was already excluded
according to observations [19] (see, however, some extended
models compatible with observations [20,21]).
The CNI model has been extended to the case with a

general SUðNÞ gauge field in Ref. [22]. It has been shown
that this SUðNÞ-natural inflation model admits an isotropic
configuration of the gauge field forming an SU(2) sub-
algebra in SUðNÞ on a homogeneous and isotropic space-
time [22]. The amplitude and energy density of the gauge
field depend on the gauge coupling gA and a parameter λ,
which characterizes the embedding of an SU(2) subalgebra
through the combination of gAλ. Linear perturbations
of SUðNÞ-natural inflation have been investigated in
Ref. [23], showing that the perturbation dynamics and
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linear predictions depend on λ only through the same
combination gAλ. As the dynamics of SUðNÞ-natural
inflation is thus obtained simply by replacing gA of CNI
with gAλ, the former model cannot be distinguished
observationally from the latter unless, for instance, a
gauge-field configuration of one of the SU(2) subalgebras
is unstable and transits to another isotropic configuration
during inflation.
In this paper, we study the homogeneous dynamics

of SUðNÞ-natural inflation in more detail, improving the
previous analysis of [22] in two respects. First, we inves-
tigate whether or not the isotropic solution is the late-time
attractor when starting from anisotropic initial configura-
tions. Our analysis is more rigorous than that of Ref. [22]
because we solve the Einstein equations and the equations
of motion for the gauge fields and the scalar field
consistently. Second, we clarify the conditions for the
transition from an isotropic gauge-field configuration of
one of the SU(2) subalgebras to another to occur.
This paper is organized as follows. In the next section,

we review the isotropic solution of the SUðNÞ-natural
inflation model. We then derive the conditions for a
configuration of SUðNÞ gauge fields to be axisymmetric,
and consider the isotropic limit as a candidate for the late-
time attractor in Sec. III. We also show that the spacetime
metric is istropized once the x, y, and z components of the
gauge fields have the same norm. In Sec. IV, by restricting
ourselves to the case of SU(3), we provide several examples
of axisymmetric gauge field configurations. In Sec. V,
we present the results of our numerical analysis on the
dynamics of the axisymmetric SU(3)-natural inflation. On
the basis of our numerical results, we draw our conclusions
in Sec. VI.

II. REVIEW OF SUðNÞ-NATURAL INFLATION

In this section, we review the SUðNÞ-natural inflation
model and introduce its homogeneous and isotropic cos-
mological solution [22]. The SUðNÞ-natural inflation
model is described by the Lagrangian

L ¼ −
1

4
Fa
μνF

μν
a −

1

2
ð∂ϕÞ2 − VðϕÞ − ϕ

4f
Fa
μνF̃

μν
a ; ð1Þ

where ϕ is the inflaton scalar field, VðϕÞ is its potential, and
f is a constant parameter. The field strength Fa

μν of the
SUðNÞ gauge field Aa

μ and its dual F̃μν
a are defined by

Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gAfabcAb

μAc
ν; ð2Þ

F̃μν
a ¼ 1

2
εμνρλFa

ρλ; ð3Þ

where fabc is the structure constant of the SUðNÞ algebra,
gA is the gauge coupling constant, and εμνρλ ¼ ϵμνρλ=

ffiffiffiffiffiffi−gp
is the Levi-Cività tensor with ϵ0123 ¼ 1.

Let us consider homogeneous and isotropic cosmology
in this model. The Friedmann-Lemaître-Robertson-Walker
metric is given by

ds2 ¼ −dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ; ð4Þ

where aðtÞ is the scale factor. Here we assume the spatial
flatness. It is nontrivial to include the spatial curvature in
the Universe with a similar gauge-field configuration [24].
Throughout the paper, we use the temporal gauge, Aa

0 ¼ 0.
It has been shown in Ref. [22] that the SU(2) subalgebra of
the SUðNÞ algebra allows for an isotropic solution. The
isotropic gauge field configuration can be expressed as

A0ðtÞ ¼ 0; AiðtÞ ¼ aðtÞψðtÞT i; ð5Þ

where T i is the generator of the SU(2) subalgebra. The
SU(2) generators can be expressed as a linear combination
of the SUðNÞ generators Ta: T i ¼ nai T

a. The SU(2)
generators satisfy the commutation relation and the nor-
malization condition,

½T i; T j� ¼ iλϵijkT k; TrðT iT jÞ ¼
1

2
δij; ð6Þ

where λ is a number that is different depending on the
choice of the SU(2) subalgebra of SUðNÞ.
Using the ansatz (5), we obtain the equations of motion

for ϕ and ψ as

ϕ̈þ 3H _ϕþ V;ϕ ¼ −
3gAλ
f

ψ2ð _ψ þHψÞ; ð7Þ

ψ̈ þ 3H _ψ þ ð2H2 þ _HÞψ þ 2g2Aλ
2ψ3 ¼ gAλ

f
_ϕψ2; ð8Þ

where the dot represents differentiation with respect to t and
H ≔ _a=a is the Hubble parameter. The same equations can
be obtained just by replacing gA with gAλ in the inflaton and
gauge-field equations of motion in original SU(2) chromo-
natural inflation [14]. Therefore, one would expect qualita-
tively the same dynamics of homogeneous and isotropic
cosmology as that in the previous chromonatural model.
Assuming slow roll, one obtains a solution for the gauge
field staying at the minimum of its effective potential [14],

ψ3
min ¼ −

fV;ϕ

3gAλH
: ð9Þ

The solution can also be derived by dropping all the time
derivatives in Eq. (7).
To simplify the following analysis, we use the linear

potential,

VðϕÞ ¼ −
μ4

f
ϕ; ð10Þ
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where μ is a constant having the dimension of mass. In
this simplified setup, we would expect that the isotropic
solution for the gauge field in the slow-roll approximation
reduces to

H1=3ψmin ¼
�

μ4

3gAλ

�
1=3

¼ const: ð11Þ

Since μ and gA are constant model parameters, the slow-roll
value of H1=3ψ depends only on λ as H1=3ψmin ∝ λ−1=3.
Having introduced the SUðNÞ-natural inflation model

and reviewed the isotropic solution, let us move to discuss
axisymmetric cosmological solutions in that model.

III. AXISYMMETRIC CONFIGURATIONS OF
SUðNÞ GAUGE FIELDS

One of the purposes of this paper is to discuss the
robustness of the isotropic solution in SUðNÞ-natural
inflation to initial anisotropies. This point was studied in
Ref. [22] for randomly oriented initial gauge field con-
figurations with the fixed scalar-field evolution on a fixed
de Sitter background. In this paper, we improve the
previous analysis by consistently solving all the relevant
equations, i.e., the Einstein equations and the equations of
motion for the gauge fields and the inflaton. To handle this
generalization, we focus on an axisymmetric setup. In this
section, we rigorously derive the equations to obtain
axisymmetric SUðNÞ gauge field configurations and dis-
cuss a method to identify their isotropic subsets which are
the candidates of their late-time attractor.

A. Conditions for axisymmetric SUðNÞ gauge fields

Following Refs. [11,25], let us consider axisymmetric
gauge-field configurations in the axisymmetric Bianchi
type-I geometry,

ds2 ¼ −dt2 þ a2ðtÞ½e−4σðtÞdx2 þ e2σðtÞðdy2 þ dz2Þ�; ð12Þ

where σðtÞ characterizes the deviation from the isotropic
space. Note that the metric (12) is isotropic when _σ ¼ 0,
because constant σ can always be absorbed into a rescaling
of the spatial coordinates.
Since we consider homogeneous SU(3) gauge fields

in the temporal gauge (Aa
0 ¼ 0), the gauge fields can be

written as

A ¼ AxðtÞdxþ AyðtÞdyþ AzðtÞdz: ð13Þ

We assume that the principal axes of metric and gauge-field
anisotropies point to the same direction. An infinitesimal
rotational transformation around this axis is generated by
the Killing vector ξ ¼ −z∂y þ y∂z. Under this rotational
transformation, the gauge field transforms as

Aa ↦ Aa þ ϵL ξAa; L ξAa ¼ Aa
zdy − Aa

ydz; ð14Þ

where ϵ is an infinitesimal parameter. Even if the
gauge field configuration is not invariant under the above
transformation, the configuration is regarded to be axisym-
metric as long as there exists a gauge transformation that
cancels the effect of the rotational transformation. There
is a residual global gauge symmetry, A → UAU†, and in
the case of an infinitesimal transformation with U ¼
1þ iϵuaTa the gauge field transforms as

Aa ↦ Aa þ ϵδgAa; δgAa ¼ −fabcubAc; ð15Þ
where ua is a constant vector. To maintain the rotational
invariance, we require that the two transformations are
compensated:

L ξAa þ δgAa ¼ 0: ð16Þ
We thus obtain the conditions for the axisymmetric
configuration as

fabcubAc
x¼0; fabcubAc

y¼Aa
z ; fabcubAc

z ¼−Aa
y: ð17Þ

For given ua, the above equations can be used to determine
the possible configurations of A. We see that Aa

x is
determined independently. Eliminating Aa

z , we get the
equation solely for Aa

y :

Aa
y ¼ MabAb

y; Mab ≔ facefbdeucud: ð18Þ
The explicit form of the ðN2 − 1Þ × ðN2 − 1Þ matrix Mab

depends on ua. This equation may be considered as an
eigenvalue equation, and then Aa

y must be an eigenvector
with eigenvalue one. We shall solve the above equations
explicitly in the case of SU(3) gauge fields in the next
section.

B. Conditions for isotropic subsets

In the previous subsection, we derived the conditions for
axisymmetric configurations of the SUðNÞ gauge field. In
this subsection, we further discuss conditions for the
isotropic configurations, which are included in the axisym-
metric SUðNÞ configurations as subsets. In the isotropic
solution (5), the gauge field takes the form of Ai ¼

ffiffiffi
2

p
RT i

with the common norm
ffiffiffi
2

p
R ≔ aψ and the generators T i

of the SU(2) subalgebra. Multiplying the commutation
relation (6) of the SU(2) generators by the squared norm
2R2, we find the condition satisfied by the isotropic solution,

½Ai; Aj� ¼
ffiffiffi
2

p
iλϵijkRAk: ð19Þ

This condition enables us to remove anisotropic components
and identify the isotropic configuration in the axisymmetric
configurations. In the next section, we will use Eq. (19) in
some cases of axisymmetric SU(3) gauge field configura-
tions to identify their isotropic subsets.
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C. Isotropization of the metric

We now show that the spatial metric is isotropized
when the norms of the gauge field are equal in the
following sense. In an axisymmetric Bianchi type-I
universe, we decompose the gauge field in the temporal
gauge ðAa

0 ¼ 0Þ as

Aa
i dx

i ¼ ψa
xðtÞ½aðtÞe−2σðtÞ�dxþ ψa

yðtÞ½aðtÞeσðtÞ�dy
þ ψa

zðtÞ½aðtÞeσðtÞ�dz; ð20Þ

where i ¼ 1, 2, 3 and a ¼ 1;…; N2 − 1. Note that ψa
i does

not include the metric variables (i.e., a and σ). The above

equation can be understood as a redefinition of the gauge
field Aa

i into ψa
i , and its benefit will be seen below. We

define the norm of the gauge field for each i as

RiðtÞ ≔
�
1

2

XN2−1

a¼1

ðψa
i Þ2

�1=2
ðno sum over iÞ: ð21Þ

This expression implies that
ffiffiffi
2

p
Ri corresponds to the radial

coordinate in the ðN2 − 1Þ-dimensional spherical coordi-
nate system when ψa

i is viewed as the Cartesian coordinate.
One can thus parametrize the components of the SUðNÞ
gauge field using the spherical coordinates for each i as

ψa
i ¼

ffiffiffi
2

p
RiðtÞnai ðtÞ; nai ¼

8>>>>><
>>>>>:

cos θai
Ya−1
b¼1

sin θbi ða ¼ 1;…; N2 − 2Þ

YN2−2

b¼1

sin θbi ða ¼ N2 − 1Þ
ðno sum over iÞ; ð22Þ

where 0 ≤ θai ðtÞ ≤ π (a ¼ 1;…; N2 − 3) and 0 ≤
θN

2−2
i ðtÞ < 2π. Furthermore, it is convenient to decompose
Ri into the geometric mean and the anisotropic part as

Ri¼ R̄ðtÞeβiðtÞ; R̄≔ ½RxRyRz�1=3;
X3
i

βi¼0: ð23Þ
From the symmetry, we assume that Ry ¼ Rz. To summa-
rize, we can express the component of the gauge field as

Aa
i ¼ ψa

i ae
Σi ¼

ffiffiffi
2

p
aR̄eβiþΣinai ðno sum over iÞ; ð24Þ

where we introduced the vector Σi ¼ ð−2σ; σ; σÞ that
represents the anisotropic part of the spatial metric. Thanks
to the redefinition (20), we now easily extract the terms
involving the anisotropic part of the spatial metric σ from
our Lagrangian to get

Lσ ¼ 3M2
Pl _σ

2 − 2_σ∂tðR2
x − R2

yÞ − 4H _σðR2
x − R2

yÞ
þ _σ2ð4R2

x þ 2R2
yÞ: ð25Þ

Since there is a symmetry under a constant shift of the
anisotropic part of the spatial metric, σ → σ þ const, we
have a conserved quantity (denoted as D). One can thus
integrate the equation of motion for σ to obtain

_σ ¼ D=a3 þ ∂tðR2
x − R2

yÞ þ 2HðR2
x − R2

yÞ
3M2

Pl þ 4R2
x þ 2R2

y
: ð26Þ

If the anisotropic part of the gauge field decays away,
βi → 0, then one has Ri → R̄, and hence _σ → 0 at late
times. The spatial metric is therefore isotropized if the
norm of the gauge field defined by Eq. (21) settles down to

Rx ¼ Ry ¼ Rz regardless of nai . We can extend this result to
the general Bianchi type-I case (see Appendix B).
In Sec. III B, we discussed the condition for the isotropic

solution forming the SU(2) subgroup. That condition not
only requires that the three norms are equal Ri ¼ R̄ but also
determines the internal configuration of the gauge field nai
such that T i ¼ nai T

a. However, we have seen above that
requiring only the former condition leads to the isotropic
space. Therefore, the condition of the SU(2) subgroup (19)
is in fact a sufficient condition for the metric isotropization.
Here we stress that σ can be disregarded in some cases.

One can always find a coordinate system in which σðtÞ ¼ 0
once σ stops evolving, since we have the freedom to shift
the value of σ by a coordinate rescaling. In this convenient
coordinate system, we can easily study some conditions for
the isotropic gauge field in the isotropized universe without
having σ. In what follows, therefore, when we discuss
the isotropic configuration of the gauge field, we work in
such a coordinate system where σ vanishes, given that the
Universe has been isotropized. In such cases, we simply
have Aa

i ¼ aψa
i . In contrast, when we discuss axisymmetric

configurations of the gauge field, we cannot eliminate σ
and will take it into account. This is because axisymmetric
configurations will be used as an initial condition of our
numerical calculations in which the Universe is still
anisotropic, and then Aa

i contains nonzero σ as in Eq. (20).

IV. EXAMPLES OF AXISYMMETRIC
CONFIGURATIONS OF SU(3) GAUGE FIELD

AND THEIR ISOROPIC SUBSETS

In this section, we compute axisymmetric configurations
and their isotropic subsets of the SU(3) gauge field by
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solving the conditions derived in Sec. III. In principle, by
solving Eq. (18) for generic ua one can find the general
axisymmetric configuration of the SUðNÞ gauge field.
However, it is difficult to analytically find the general
solution to Eq. (18). For this reason, we consider the SU(3)
case with some simple choices of ua. See Appendix A for a
brief summary of the SU(3) algebra.
In the next section, we will perform numerical calcu-

lations to clarify whether and how the Universe is iso-
tropized in SU(3)-natural inflation by using axisymmetric
configurations as the initial conditions. It is known that
the SU(2) subgroups in SU(3) are classified into two types
characterized respectively by λ ¼ 1 and λ ¼ 1=2. The
axisymmetric configurations desirable for our purpose
contain the isotropic solutions with both λ ¼ 1 and 1=2
as the subsets, and we therefore seek such configurations
that have a parameter allowing us to switch between the
two possible types. Fortunately, we can find such a case
with a simple choice of ua, as we will see below.

A. Example 1: u1 = 2 and others= 0

Let us consider the case where u1 is nonvanishing, but
the other uas are zero, namely,

ua ¼ ðk; 0; 0; 0; 0; 0; 0; 0Þ; ð27Þ

with k being a real number. Then, the matrix M appearing
in Eq. (18) has only its diagonal components as

Mab ¼ diag

�
0; k2; k2;

k2

4
;
k2

4
;
k2

4
;
k2

4
; 0

�
: ð28Þ

As discussed below Eq. (18), the solution Aa
y of Eq. (18)

may be regarded as an eigenvector whose eigenvalue is
unity. Therefore, we have two branches of the solutions:
k ¼ �1 and k ¼ �2. Note that the cases with a minus sign
only invert the sign of Az, and hence it suffices to focus on
the cases with a plus sign.
It is pedagogical to describe the calculation for u1 ¼

k ¼ 2 in detail. In this case, since the fourth, fifth, sixth, and
seventh diagonal components of the matric M are unity,
only A4

y; A5
y; A6

y; A7
y are nonzero and the other components

of Ay vanish. Then, Ax and Az can be easily obtained by
solving Eq. (17). One finds the axisymmetric configuration
of the SU(3) gauge field for u1 ¼ k ¼ 2 as

Ax ¼ A1
xT1 þ A8

xT8; Ay ¼ A4
yT4 þ A5

yT5 þ A6
yT6 þ A7

yT7;

Az ¼ −A7
yT4 þ A6

yT5 − A5
yT6 þ A4

yT7; ð29Þ

where the six coefficients, A1
x; A8

x; A4
y; A5

y; A6
y; A7

y, are arbi-
trary. We have thus obtained an example of the axisym-
metric configurations of the SU(3) gauge field.
To determine the isotropic solutions within the axisym-

metric configuration (29), we substitute Eq. (29) into the

commutation relation (19). Two branches of the solution
are found. One branch has A8

x ≠ 0 and the other has A8
x ¼ 0:

λ2R2 ¼ 2ðA1
xÞ2 ¼ ðA4

yÞ2 þ ðA5
yÞ2; A8

x ¼ �
ffiffiffi
3

p
A1
x;

A6
y ¼ �A4

y; A7
y ¼ �A5

y; ðA8
x ≠ 0Þ; ð30Þ

λ2R2 ¼ 1

8
ðA1

xÞ2 ¼
1

8
½ðA4

yÞ2 þ ðA5
yÞ2 þ ðA6

yÞ2 þ ðA7
yÞ2�;

A4
yA6

y þ A5
yA7

y ¼ 0; ðA8
x ¼ 0Þ; ð31Þ

where the common norm of Ai is given by

R2 ¼ R2
i ¼

1

2

X8
a¼1

ðAa
i Þ2 ðno sum over iÞ: ð32Þ

Using this expression for R, one finds that Eqs. (30)
and (31) correspond to λ ¼ 1 and λ ¼ 1=2, respectively.
Specializing the axisymmetric configuration (29) to the

case of Eq. (30) (λ ¼ 1), we obtain

Ax ¼ A1
xðT1 þ

ffiffiffi
3

p
T8Þ; ð33Þ

Ay ¼ A4
yðT4 þ T6Þ þ A5

yðT5 þ T7Þ; ð34Þ

Az ¼ −A5
yðT4 þ T6Þ þ A4

yðT5 þ T7Þ: ð35Þ

To rewrite the above expression in the manifestly isotropic
form, Ai ¼

ffiffiffi
2

p
RT i, we define the SU(2) generators T i as

T 1 ¼
T1 þ ffiffiffi

3
p

T8

2
; ð36Þ

T 2 ¼ cos θ
T4 þ T6ffiffiffi

2
p þ sin θ

T5 þ T7ffiffiffi
2

p ; ð37Þ

T 3 ¼ − sin θ
T4 þ T6ffiffiffi

2
p þ cos θ

T5 þ T7ffiffiffi
2

p ; ð38Þ

where we introduced spherical coordinates A4
y ¼ R cos θ;

A5
y ¼ R sin θ, with R ¼ ffiffiffi

2
p

A1
x. It is easy to see that T i

satisfies the properties of the SU(2) generators, Eq. (6),
with λ ¼ 1.
We repeat the same procedure in the case of Eq. (31)

(λ ¼ 1=2) and find that the gauge field can be written in the
form Ai ¼

ffiffiffi
2

p
RT i with

A1
x ¼

ffiffiffi
2

p
R; A4

y ¼ A1
x cos θ cosφ; A5

y ¼ A1
x cos θ sinφ;

A6
y ¼ −A1

x sin θ sinφ; A7
y ¼ A1

x sin θ cosφ: ð39Þ

The SU(2) generators here are given by

T 1 ¼ T1; ð40Þ
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T 2 ¼ cos θ cosφT4 þ cos θ sinφT5

− sin θ sinφT6 þ sin θ cosφT7; ð41Þ

T 3 ¼ − sin θ cosφT4 − sin θ sinφT5

− cos θ sinφT6 þ cos θ cosφT7: ð42Þ
These generators satisfy the SU(2) subalgebra (6)
with λ ¼ 1=2.
As we have seen, the present example admits the two

SU(2) subgroups, which is exactly what we want.

B. Example 2: u1 = 1 and others= 0

Let us consider again the case where ua is of the form
of Eq. (27) and hence the matrix is given by Eq. (28), but
now k ¼ 1. The calculation can be done in a similar way to
the case with k ¼ 2. The axisymmetric configuration for
u1 ¼ k ¼ 1 reads

Ax ¼ A1
xT1 þ A8

xT8; Ay ¼ A2
yT2 þ A3

yT3;

Az ¼ −A3
yT2 þ A2

yT3: ð43Þ
Having thus obtained the axisymmetric configuration,

we further impose the conditions (19) for the isotropic
subsets, we obtain

ðA1
xÞ2 ¼ ðA2

yÞ2 þ ðA3
yÞ2; A8

x ¼ 0; ð44Þ

and then the isotropic solution of the form Ai ¼
ffiffiffi
2

p
RT i

can be obtained with the SU(2) generators

T 1 ¼ T1; T 2 ¼ cos θT2 þ sin θT3;

T 3 ¼ − sin θT2 þ cos θT3: ð45Þ
These SU(2) generators satisfy the commutation relation (6)
with λ ¼ 1, and no other isotropic solution is available in
the u1 ¼ 1 case. Thus, the axisymmetric configuration for
u1 ¼ 1 does not include the isotropic solution with λ ¼ 1=2.

C. Comments on the other cases

In the previous two subsections, we consider ua with the
single nonvanishing component, u1 ≠ 0. Let us comment
on the other cases. In the case where only a single
component of ua other than u1 and u8 is nonvanishing,
we have essentially the same results as in the above two
examples. Therefore, for ua ¼ 2 (a ¼ 2;…; 7) there is an
axisymmetric configuration that involves both λ ¼ 1 and
λ ¼ 1=2 isotropic solutions. In contrast, in the case where
only u8 is nonvanishing, we have an isotropic configuration
forming only the λ ¼ 1 SU(2) subalgebra. One could also
consider more general cases where multiple components of
ua are nonvanishing. There are some (rather simpler) cases
that are analytically tractable, but in general the analysis
would be so complicated that an exhaustive investigation is

hindered. It should be emphasized, however, that we have
already obtained the physically interesting axisymmetric
configuration that admits both λ ¼ 1 and λ ¼ 1=2 isotropic
limits in the case of u1 ¼ 2.

V. NUMERICAL RESULTS

In the previous section, we obtained the axisymmetric
configurations and the associated isotropic configurations
of the SU(3) gauge field. We are interested in whether or
not the SU(3) gauge field in an axisymmetric configuration
at some initial moment evolves into the isotropic solution
associated with that. To address this question, we run
numerical calculations. Interestingly, there exists a non-
trivial variety of the ways how the SU(3) gauge field
isotropizes the Universe, as we will see below.
The parameters used in our numerical calculations are

listed in Table I. In the following numerical calculations we
use the units in which MPl ¼ 1. First, we consider the case
with u1 ¼ 1 discussed in Sec. IV B. We rewrite the gauge
field as

A1
x ¼ ae−2σψ1; A2

y ¼ aeσψ2;

A3
y ¼ aeσψ3; A8

x ¼ ae−2σψ8: ð46Þ

Note that the energy density of the gauge field remains
constant if ψa ¼const (a ¼ 1, 2, 3, 8) as well as H ¼ const
and _σ ¼ const. We solve the equation of motion for the
inflaton ϕ, gauge fields ψa, and the metric variables a
and σ, which are given by Eqs. (C1)–(C7) in Appendix C 1.
The initial condition for the scalar field at t ¼ 0 is set as
ðϕð0Þ; _ϕð0ÞÞ ¼ ð−3MPl; 0Þ, and the velocity of the gauge
field is set as _ψað0Þ ¼ 0 so that the gauge constraints
Eq. (C15) are satisfied. We set the initial amplitudes of the
gauge fields so that all of them are of the same order.
The scale factor at t ¼ 0 is set as að0Þ ¼ 1. The initial
conditions are thus placed in the slow-roll regime, with the
energy density of the gauge field being much smaller than
that of the scalar field. We therefore choose to use the initial
value of the Hubble parameter that is of the same order as
its slow-roll value, Hi ≔ Hð0Þ ¼ ffiffiffi

3
p

μ2=
ffiffiffi
f

p ¼ 10−6MPl.
We then determine the initial metric anisotropy _σð0Þ by
using the Friedmann equation (C8). From these initial
conditions and Eq. (C13), the integration constant D is
determined. In our numerical calculations, we confirm that
the Friedmann equation and Eq. (C13) are satisfied with
sufficiently high accuracy at each time step.
In Fig. 1, we present an example of our numerical

results for the time evolution of the gauge field in terms

TABLE I. Parameters.

f μ gA

3 × 10−4MPl 10−4MPl 2 × 10−6
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of ψ1, ψ2, ψ3, and ψ8. The initial configuration is given
by Eq. (43) with ðψ1;ψ2;ψ3;ψ8Þ ¼ ð0.09MPl; 0.08MPl;
0.05MPl; 0.1MPlÞ. One can see from Fig. 1 that ψ1, ψ2,
and ψ3 settle down to constant values within several
e-foldings, while ψ8 continues to decay. Indeed, we can
analytically argue that A8

x should decay in this case of the
initial configuration (43). The Chern-Simons term reads

Fa
μνF̃

μν
a ¼ 2

3

gAffiffiffiffiffiffi−gp ∂t½ϵijkfabcAa
i A

b
jA

c
k�: ð47Þ

Since the structure constants of SU(3) satisfy f81� ¼f82� ¼
f83� ¼0, A8

x does not appear in this term or in the self-
coupling terms between the gauge fields [see Eq. (C5)].
Therefore, A8

x cannot be sourced and is diluted with the
cosmic expansion. It is easy to see analytically the late-time
behavior of ψ8. Ignoring _H, σ̈, and _σ at late times, the
solution of Eq. (C5) is given by

ψ8 ∝
1

a
; ð48Þ

where we discarded another independent solution that
decays more quickly. One can see from the right panel

of Fig. 1 that our numerical solution reproduces this
behavior at late times. In the left panel of Fig. 2, we show
the difference between the norm of Ax and that of Ay in
terms of 2ðR2

x − R2
yÞ ¼ ψ2

1 − ðψ2
2 þ ψ2

3Þ, from which we
see that R2

x − R2
y → 0 within several e-foldings. In the right

panel of Fig. 2, we plot the time evolution of the metric
anisotropy _σ, which is seen to decrease to zero, indicating
that the metric is isotropized. We have confirmed that the
same behavior can be seen in all our numerical runs with
different initial values of the gauge field. We thus conclude
that this initially anisotropic configuration is attracted to
the isotropic solution. The result matches the associated
isotropic configuration with the SU(2) subalgebra predicted
in Eq. (45). Therefore, we confirm that the axisymmetric
configuration of the SU(3) gauge field evolves into the
isotropic one forming the SU(2) subgroup.1

FIG. 1. The evolution of the gauge field amplitudes, ψ1 (blue), ψ2 (orange), ψ3 (green), and ψ8 (red) defined in Eq. (46), in linear scale
(left) and in log scale (right). The black dashed line shows the late-time behavior ψ8 ∝ 1=a [Eq. (48)]. The initial condition is the u1 ¼ 1
axisymmetric configuration (43) with its four components being of the same order. After some transient evolution for a few e-folds, ψ1,
ψ2, and ψ3 stay constant, forming the isotropic solution. However, ψ8, which is not compatible with the SU(2) subalgebra for this initial
configuration, quickly decays.

FIG. 2. The left panel shows ψ2
1 − ψ2

2 − ψ2
3. The right panel presents the evolution of the metric anisotropy _σ. These results indicate the

Universe is isotropized in a few e-folds. The initial condition is the same as that taken in Fig. 1.

1Note that our numerical solution at late times does not satisfy
ðA1

xÞ2 − ðA2
yÞ2 − ðA3

zÞ2 ¼ 0 [Eq. (44)] in general. This is because,
while the spatial part of the isotropic metric is assumed to be of the
form a2ðdx2 þ dy2 þ dz2Þ when writing Eq. (44), in the actual
numerical calculation we have a2½e−4σdx2 þ e2σðdy2 þ dz2Þ� with
σ ¼ const at late times. After rescaling the spatial coordinates
appropriately, our numerical solution does satisfy Eq. (44).
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Next, let us consider the case with u1 ¼ 2. We solve the
equations of motion (C17)–(C25) given in Appendix C 2.
The parameters and the initial conditions are the same as
those in the numerical calculations for the u1 ¼ 1 case
except for the initial amplitudes of the gauge fields as
explained below. It is convenient to introduce the normal-
ized mean amplitude of the gauge field as

ΨðtÞ ≔
�
3gAHðtÞ

μ4

�
1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a;i

½ψa
i ðtÞ�2
3

s
: ð49Þ

The normalization factor here is chosen so that we expect
Ψ → λ−1=3 as the solution approaches to either of the
isotropic ones [see Eq. (11)]. This quantity is therefore

useful for discriminating between the isotropic solutions
with different λ. The initial conditions range over Ψð0Þ ∈
½0.5; 5� with positive random amplitudes of the gauge field
components.
In Fig. 3, we display 50 realizations of the mean

amplitude of the gauge field (49). Each line represents
the time evolution of ΨðtÞ and the colors denote the initial
values of the gauge field: the solutions with the initial
conditions A5

y ¼ A6
y ¼ A8

x ¼ 0 are colored in blue and the
solutions for which at least one of A5

y, A6
y, and A8

x is
nonvanishing initially are colored in red. Aside from these
restrictions, we randomly distribute the initial values of the
gauge field components that are included in the u1 ¼ 2
axisymmetric configuration (29). We can see that all the
lines converge into either of the two isotropic attractor
solutions inferred in Sec. IVA. The branching of the
solutions is determined by the initial conditions of the
gauge fields. We find that the solution with λ ¼ 1=2 is
realized when setting A5

y ¼ A6
y ¼ A8

x ¼ 0 at the initial
moment. The condition A5

y ¼ A6
y ¼ A8

x ¼ 0 then continues
to hold for t > 0. Indeed, by inspecting Eqs. (C20), (C21),
and (C23) in Appendix C 2, we see that ψ5ðtÞ ¼ ψ6ðtÞ ¼
ψ8ðtÞ ¼ 0 is the solution of the system with the initial
conditions ψ5 ¼ ψ6 ¼ ψ8 ¼ _ψ5 ¼ _ψ6 ¼ _ψ8 ¼ 0. This sol-
ution satisfies Eq. (31), and hence in the isotropic limit the
system settles down to the λ ¼ 1=2 solution. Our numerical
calculations imply that other generic initial conditions
result in the λ ¼ 1 isotropic solution.
The left panel of Fig. 4 shows an example of the mean

amplitude of the gauge field with a tiny initial value of ψ8

(the blue and red lines). The system temporarily approaches
the λ ¼ 1=2 isotropic solution with negligibly small ψ5, ψ6,
and ψ8, but eventually these components become non-
negligible, forcing the system to evolve into the λ ¼ 1
isotropic solution. The system thus exhibits a transition
from an approximate isotropic state with λ ¼ 1=2 to the
λ ¼ 1 isotropic final state. The moment at which the
transition occurs depends on the initial conditions, and

FIG. 3. The evolution of the mean amplitude ΨðtÞ of the gauge
field defined in Eq. (49). The initial conditions of Ψ are chosen in
the range Ψð0Þ ∈ ½0.5; 5� with positive random amplitudes of the
gauge field. The additional initial condition ψ5 ¼ ψ6 ¼ ψ8 ¼ 0 is
imposed only for the blue lines. The black dashed horizontal lines
represent the isotropic solutions in Eq. (11); the upper and lower
line shows the λ ¼ 1=2 and λ ¼ 1 solutions, respectively. All the
cases with ψ5 ¼ ψ6 ¼ ψ8 ¼ 0 (blue lines) converge into the
λ ¼ 1=2 solution, while the λ ¼ 1 solution is the attractor for
generic initial conditions.

FIG. 4. The mean amplitude of the gauge field ΨðtÞ exhibiting the transitions from the λ ¼ 1=2 solution to the λ ¼ 1 one (left). For the
blue and red lines, we impose the additional initial condition ψ5ð0Þ ¼ ψ6ð0Þ ¼ 0 and employ a tiny but nonzero value of ψ8ð0Þ. For the
green line, we have nonzero initial values of ψ5ð0Þ, ψ6ð0Þ, and ψ8ð0Þ, and they are comparable to the other components, i.e., the initial
amplitudes are not small. However, the values of ψ4ψ6 þ ψ5ψ7 and ψ8 become very small for 5≲Hit ≲ 10. The black dashed
horizontal lines are the same as those in Fig. 3. We also plot the time evolution of _ϕ (center) and ϕ (right). The initial condition is the
same as that used for plotting the red line in the left panel.
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during the transition the anisotropies in the metric and the
gauge field temporarily grow. In the central and right panels
in Fig. 4, we show the time evolution of _ϕ and ϕ at around
the transition, respectively. The evolution is not trivial (in the
sense that they do not stay the same) but can be understood
simply as follows. We can see that _ϕ becomes smaller after
the transition, and this is because _ϕ is proportional to λ2=3.
The evolution of ϕ tracks that ofH, because in the slow-roll
regimeH is determined by the potential, which in the present
model is equal to ϕ multiplied by the constant −μ4=f. In the
above discussion, we considered the case with a tiny initial
value of ψ8. However, we can develop the following
comprehensive argument including tiny initial values of
ψ5 and ψ6 altogether.
Now, we use linear analysis to investigate that the

solution of λ ¼ 1=2 can be unstable and a transition can
occur in the axisymmetric case. We consider the λ ¼ 1=2
isotropic solution where ψ1, ψ4, ψ7 form the SU(2)
subalgebra. Then, at leading order in the slow-roll approxi-
mation, ψ1, ψ4, ψ7, and _ϕ are given in the form

ψ1 ¼
2H
gA

mψ ; ψ4 ¼ ψ7 ¼
ffiffiffi
2

p
H

gA
mψ ; ð50Þ

_ϕ

2fH
¼ mψ þ 1

mψ
; ð51Þ

where mψ is a dimensionless gauge field amplitude and
the amplitude of the gauge field is chosen to satisfy
ψ2
1 ¼ ψ2

4 þ ψ2
7. Equation (51) is determined from the

background of Eq. (C18) with ψ̈1; _ψ1; _σ; _H ¼ 0 and
ψ2
1 ¼ ψ2

4 þ ψ2
7. On the top of the above background

solution, we introduce nonzero ψ5, ψ6, and ψ8 as small
perturbations. The linearized equations of motion for ψ5,
ψ6, and ψ8 are written as

V00 þ 3V0 þMV ¼ 0; V ¼

0
B@

ψ5

ψ6

ψ8

1
CA;

M ¼

0
BB@

3m2
ψ 3m2

ψ −
ffiffiffi
6

p

3m2
ψ 3m2

ψ −
ffiffiffi
6

p

−2
ffiffiffi
6

p
−2

ffiffiffi
6

p
2þ 6m2

ψ

1
CCA; ð52Þ

where a prime ( 0) denotes a derivative with respect to the
e-folding number N ≔ ln a. The matrix M can be dia-
gonalized by some matrix P, and three eigenvalues are
found to be 0; 6m2

ψ þ 6, and 6m2
ψ − 4. The third eigenvalue

can be negative when the normalized gauge field amplitude
mψ satisfies

−
ffiffiffi
2

3

r
< mψ <

ffiffiffi
2

3

r
: ð53Þ

Then the equation of motion for a certain linear combina-
tion of ψ5, ψ6, and ψ8 associated to this negative eigenvalue
reads

ṽ00 þ 3ṽ0 − ð4 − 6m2
ψÞṽ ¼ 0; ð54Þ

where ṽ is the third component of the vector P−1V. The
general solution of the above equation is

ṽ ¼ c1a
−3
2
þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25−24m2

ψ

p
þ c2a

−3
2
−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25−24m2

ψ

p
; ð55Þ

where c1 and c2 are integration constants. The first term
grows under the condition (53), and hence the λ ¼ 1=2
solution is unstable.
Figure 5 shows an example of our numerical results for

the evolution of the gauge field components with tiny ψ8

and ψ5 ¼ ψ6 ¼ 0 at the initial time. In this case, when the
background components settle at the λ ¼ 1=2 isotropic
solution, we have ψ1 ≃ 0.038MPl, H ≃ 5.73 × 10−7MPl,
and gA ¼ 2 × 10−6, which leads to mψ ≃ 0.067. Using
Eq. (55), we present our analytic estimate of the growth
rate of these perturbations as the black line in Fig. 5. It is
clear that the analytically obtained slope matches the
numerical result very well. Therefore, we confirm that
the λ ¼ 1=2 solution is unstable for −

ffiffiffiffiffiffiffiffi
2=3

p
< mψ <ffiffiffiffiffiffiffiffi

2=3
p

and it exhibits a transition to the λ ¼ 1 solution.
It is interesting to note that although the transient λ ¼ 1=2

FIG. 5. The evolution of the gauge field amplitudes as com-
pared to the analytic estimate of the growth rate. The background
value of the gauge field are ψ1 (blue), ψ4 (orange), and ψ7

(green). The perturbations of the gauge field are ψ5 (dashed
cyan), ψ6 (dashed purple), and ψ8=

ffiffiffi
3

p
(dashed red). The initial

conditions of the background gauge field ψ1, ψ4, ψ7 are a few
times 0.01, and for the perturbations of the gauge field we set the
initial conditions ψ5 ¼ ψ6 ¼ 0 and ψ8 ∼ 10−7. The black line
shows the analytic estimate of the growth rate in Eq. (55). One
can see that the small perturbations grow and cause the transition.
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solution and the final λ ¼ 1 solution are both isotropic, a
small anisotropy appears during the transition.
In Fig. 6, we display 200 realizations of the mean

amplitude of the gauge field (49) generated in the same
way as the red lines in Fig. 3. Here, we use the larger value
for the coupling parameter, gA ¼ 7 × 10−5, to make mψ a
marginal value satisfying Eq. (53), that is, mψ is slightly

smaller than
ffiffiffiffiffiffiffiffi
2=3

p
. Then, the perturbations around the

λ ¼ 1=2 solution have a small growth rate, and the gauge
fields are expected to stay there for a longer time compared
to the red line in Fig. 3. Indeed, the transient stay at the
λ ¼ 1=2 solution and the subsequent transition to the λ ¼ 1
solution are prominent in Fig. 6. We also expect that some

solutions can be stabilized at the λ ¼ 1=2 solution if
Eq. (53) is violated, e.g., for an even larger coupling
constant gA. Therefore, the evolution of the gauge fields
depends on the value of gA, despite the Universe being
eventually isotropized in any case.
In Fig. 7, we show the initial value of logðψ2

5 þ ψ2
6 þ ψ2

8Þ
vs the “time spent close to λ ¼ 1=2” with the initial
conditions for ψ1, ψ4, and ψ7 being fixed. Here, we defined
the “time spent close to λ ¼ 1=2” as the duration that the
solution is in the range 21=3 � 0.01. It can be seen that
the smaller ψ2

5 þ ψ2
6 þ ψ2

8 is, the longer the solution stays
at λ ¼ 1=2.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the homogeneous and
anisotropic dynamics of SUðNÞ-natural inflation. We have
focused mainly on axisymmetric gauge-field configura-
tions in the axisymmetric Bianchi type-I geometry to see
whether and how the anisotropies dilute in SUðNÞ-natural
inflation. This simplified axisymmetric setup allows us to
solve the Einstein equations and the equations of motion
for the inflaton and gauge fields consistently instead of
relying on the test field approximation in the fixed
cosmological background, thus improving the earlier
analysis of Ref. [22].
We have derived the equations to obtain axisymmetric

configurations of the SUðNÞ gauge field and discussed
the conditions under which they are isotropic, and thus
identified the candidates of their late-time attractor. On the
basis of this argument, we have presented an interesting
explicit example of axisymmetric configurations of the
SU(3) gauge field admitting two different SU(2) subalge-
bras characterized by a number λ appearing in the com-
mutation relation of the SU(2) generators. (In this case, we
have λ ¼ 1 and λ ¼ 1=2.) We have performed numerical
calculations to see the dynamics of this system in detail.
First, we have confirmed that SUðNÞ natural inflation does
indeed isotropize the Universe. Second, and more interest-
ingly, we have found that under certain conditions the
isotropic solution with the λ ¼ 1=2 SU(2) subalgebra
exhibits a transition to the isotropic λ ¼ 1 solution which
is therefore more stable. This feature was not seen in the
numerical study of the previous work [22], essentially
because of a simplifying assumption _ϕ ¼const there. By
performing a linear stability analysis, we found the con-
dition for the transition (53) and the growth rate of the
instability (55).
The study of cosmological perturbations in SUðNÞ-

natural inflation has shown that the linear predictions
depend on λ through λgA, where gA is the gauge coupling
constant, implying that one cannot tell which isotropic
solution is realized at the level of linear perturbations [23].
This degeneracy, however, is broken if the transition occurs
and λ changes its value during the observable period of

FIG. 6. The evolution of the gauge-field mean amplitude ΨðtÞ.
The initial conditions are chosen in the rangeΨð0Þ ∈ ½0.5; 5�with
positive random amplitudes of the gauge field. The parameter gA
is set as gA ¼ 7 × 10−5. The colors show the initial value of Ψ.
The black horizontal lines represent the isotropic solution (11),
with the upper and lower lines corresponding to λ ¼ 1=2 and
λ ¼ 1, respectively.

FIG. 7. The initial value of logðψ2
5 þ ψ2

6 þ ψ2
8Þ vs. the “time

spent close to λ ¼ 1=2”, which is defined as the duration that the
solution is in the range 21=3 � 0.01. The initial conditions for ψ1,
ψ4, and ψ7 are fixed as ðψ1;ψ4;ψ7Þ ¼ ð1.3 × 10−2; 9.1 × 10−3;
9.1 × 10−3Þ, which leads to logðψ2

1 þ ψ2
4 þ ψ2

7Þ ≈ −8.

MURATA, FUJITA, and KOBAYASHI PHYS. REV. D 107, 043508 (2023)

043508-10



inflation. Since the amplitude of gravitational waves
sourced by a SUðNÞ gauge field is exponentially sensitive
to the background gauge field amplitude [23] and the
different isotropic solutions, such as λ ¼ 1 and λ ¼ 1=2 in
the SU(3) case, have different amplitudes, the transition of
the background solutions would lead to a step-like feature
in the spectrum of the sourced gravitational waves.
Therefore, the transition could leave a detectable signature
on the B-mode polarization of the cosmic microwave
background radiation or the stochastic gravitational wave
background at the interferometer frequency range depend-
ing on when it occurs. It would be interesting to further
study these potential observable imprints of SUðNÞ-natural
inflation and we leave it for future work.
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APPENDIX A: A QUICK RECAP OF SU(3)

In this appendix, we very briefly summarize the SU(3)
algebra. The generators Ta of SU(3) can be chosen as
Ta ¼ λa=2 with the Gell-Mann matrices

λ1 ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA; λ2 ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA;

λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA; λ4 ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA; ðA1Þ

λ5 ¼

0
B@

0 0 −i
0 0 0

i 0 0

1
CA; λ6 ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA;

λ7 ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA; λ8 ¼

1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA: ðA2Þ

These generators satisfy the commutation relation

½Ta; Tb� ¼ ifabcTc; ðA3Þ

where fabc is the structure constant that is completely
antisymmetric. The structure constant is summarized in
Table II.

APPENDIX B: THE CONDITIONS FOR
ISOTROPIZATION IN GENERAL BIANCHI

TYPE-I GEOMETRY

We extend the result of Sec. III C to the general Bianchi
type-I universe. The general Bianchi type-I metric is
given by

ds2 ¼ −dt2 þ a2ðtÞ½e−4σþðtÞdx2 þ e2σþðtÞþ2
ffiffi
3

p
σ−ðtÞdy2

þ e2σþðtÞ−2
ffiffi
3

p
σ−ðtÞdz2�: ðB1Þ

In general Bianchi type-I universe, we decompose the
SUðNÞ gauge field in the temporal gauge ðAa

0 ¼ 0Þ as

Aa
i dx

i ¼ ψa
xðtÞ½aðtÞe−2σþðtÞ�dxþψa

yðtÞ½aðtÞeσþðtÞþ
ffiffi
3

p
σ−ðtÞ�dy

þψa
z ðtÞ½aðtÞeσþðtÞ−

ffiffi
3

p
σ−ðtÞ�dz; ðB2Þ

where i ¼ 1, 2, 3 and a ¼ 1;…; N2 − 1. We define the
norm of the gauge field for each i as

RiðtÞ ≔
�
1

2

XN2−1

a¼1

ðψa
i Þ2

�1=2
ðno sum over iÞ: ðB3Þ

This expression implies that
ffiffiffi
2

p
Ri corresponds to the radial

coordinate in the ðN2 − 1Þ-dimensional spherical coordi-
nate system when ψa

i is viewed as the Cartesian coordinate.
One can thus parametrize the components of the SUðNÞ
gauge field using the spherical coordinates for each i as

ψa
i ¼

ffiffiffi
2

p
RiðtÞnai ðtÞ; nai ¼

8>>>>><
>>>>>:

cos θai
Ya−1
b¼1

sin θbi ða ¼ 1;…; N2 − 2Þ

YN2−2

b¼1

sin θbi ða ¼ N2 − 1Þ
; ðno sum over iÞ; ðB4Þ

TABLE II. The nonvanishing structure constant of SU(3).

abc 123 147 156 246 257 345 367 458 678

fabc 1 1=2 −1=2 1=2 1=2 1=2 −1=2
ffiffiffi
3

p
=2

ffiffiffi
3

p
=2
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where 0≤θai ðtÞ≤π (a ¼ 1;…; N2 − 3) and 0 ≤ θN
2−2

i ðtÞ <
2π. Furthermore, it is convenient to decompose Ri into the
geometric mean and the anisotropic part as

Ri ¼ R̄ðtÞeβiðtÞ; R̄ ≔ ½RxRyRz�1=3;
X3
i

βi ¼ 0: ðB5Þ

From the symmetry we assume that Ry ¼ Rz. To summa-
rize, we can express the component of the gauge field as

Aa
i ¼ ψa

i ae
Σi ¼

ffiffiffi
2

p
aR̄eβiþΣinai ; ðno sum over iÞ; ðB6Þ

where we introduce the vector as Σi ¼ ð−2σþ; σþ þ ffiffiffi
3

p
σ−;

σþ −
ffiffiffi
3

p
σ−Þ that represents the metric anisotropy.

The Chern-Simons term in the action can then be
written as

Fa
μνF̃

μν
a ¼ 2

3

gAffiffiffiffiffiffi−gp ∂tðϵijkfabcAa
i A

b
jA

c
kÞ;

¼ 8
ffiffiffi
2

p
gAffiffiffiffiffiffi−gp ∂t½ðaR̄Þ3fabcnaxnbyncz �; ðB7Þ

from which we see that, while R̄ðtÞ and the directions in the
internal space, nai ðtÞ, come into play, the anisotropic part βi
of the gauge field does not make any contributions to the
Chern-Simons term. The anisotropic part of the gauge field

βi is not sourced by this term. It implies that the inflaton’s
energy is not directly transferred to the anisotropic part and
one naively expects that the anisotropic part simply decays
as the Universe expands in the same way as free gauge
fields. Nevertheless, there is a possibility that the isotropic
part of the gauge field sources it through self-interaction.
To check this possibility we performed numerical calcu-
lations in the axisymmetric cases. As shown in the bulk of
this paper (see Fig. 2), our numerical results indicate the
anisotropic part is not sourced but quickly decays in the
axisymmetric cases. Therefore, we can also conjecture that
the norm of the gauge field is isotropized Ri → R̄ in the
general Bianchi type-I geometry.
We now extract the terms involving the metric anisotropy

σ� from our Lagrangian to get

Lσþ ¼ 3M2
Plð _σ2þ þ _σ2−Þ − _σþ∂tð2R2

x − R2
y − R2

zÞ
þ

ffiffiffi
3

p
_σ−∂tðR2

y − R2
zÞ − 2H _σþð2R2

x − R2
y − R2

zÞ
þ 2

ffiffiffi
3

p
_σ−ðH þ _σþÞðR2

y − R2
zÞ

þ _σ2þð4R2
x þ R2

y þ R2
zÞ þ 3_σ2−ðR2

y þ R2
zÞ: ðB8Þ

Since there is a symmetry under a constant shift of the
metric anisotropy, σ� → σ� þ const, we have a conserved
quantity (denoted as D�). One can thus integrate the
equation of motion for σ� to obtain

_σþ ¼ Dþ=a3 þ ∂tð2R2
x − R2

y − R2
zÞ=2þHð2R2

x − R2
y − R2

zÞ −
ffiffiffi
3

p
σ−ðR2

y − R2
zÞ

3M2
Pl þ 4R2

x þ R2
y þ R2

z
; ðB9Þ

_σ− ¼ D−=a3 þ
ffiffiffi
3

p
∂tðR2

y − R2
zÞ=2þ

ffiffiffi
3

p ðH þ _σþÞðR2
y − R2

zÞ
3ðM2

Pl þ R2
y þ R2

zÞ
: ðB10Þ

If the anisotropic part of the gauge field decays away, βi → 0, then one has Ri → R̄, and hence _σ� → 0 at late times. The
spatial metric is therefore isotropized if the norm of the gauge field defined by Eq. (21) settles down to Rx ¼ Ry ¼ Rz

regardless of nai .

APPENDIX C: THE FIELD EQUATIONS

In this appendix, we present the field equations for the inflaton, the gauge field, and the metric. As discussed in Sec. IV,
we investigate the gauge-field configurations characterized by the conditions u1 ≠ 0 and others ¼ 0, and we have two
cases: u1 ¼ 1 and u1 ¼ 2.

1. Field equations for u1 = 1

The scalar-field and gauge-field equations of motion are given by

ϕ̈þ 3H _ϕ −
μ4

f
sin

ϕ

f
¼ −

gAλ
f

½ð _ψ1 þ 3Hψ1Þðψ2
2 þ ψ2

3Þ þ 2ψ1ð _ψ2ψ2 þ _ψ3ψ3Þ�; ðC1Þ

ψ̈1 þ 3H _ψ1 þ ψ1½2ðH þ _σÞðH − 2_σÞ þ _H − 2σ̈ þ 2g2Aðψ2
2 þ ψ2

3Þ� ¼
gAλ
f

_ϕðψ2
2 þ ψ2

3Þ; ðC2Þ
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ψ̈2 þ 3H _ψ2 þ ψ2½ðH þ _σÞð2H − _σÞ þ _H þ σ̈ þ g2Aðψ2
1 þ ψ2

2 þ ψ2
3Þ� ¼

gAλ
f

_ϕψ1ψ2; ðC3Þ

ψ̈3 þ 3H _ψ3 þ ψ3½ðH þ _σÞð2H − _σÞ þ _H þ σ̈ þ g2Aðψ2
1 þ ψ2

2 þ ψ2
3Þ� ¼

gAλ
f

_ϕψ1ψ3; ðC4Þ

ψ̈8 þ 3H _ψ8 þ ψ8½2ðH þ _σÞðH − 2_σÞ þ _H − 2σ̈� ¼ 0: ðC5Þ

The Einstein equations read

M2
Plð2 _H þ 3H2 þ 3_σ2Þ ¼ −pϕ − p1; ðC6Þ

3M2
Plðσ̈ þ 3H _σÞ ¼

X
a¼1;8

½ _ψa þ ψaðH − 2_σÞ�2

−
X
a¼2;3

½ _ψa þ ψaðH þ _σÞ�2

− g2Aðψ2
1 − ψ2

2 − ψ2
3Þðψ2

2 þ ψ2
3Þ; ðC7Þ

3M2
PlðH2 − _σ2Þ ¼ ρϕ þ ρ1; ðC8Þ

where

ρϕ ¼ 1

2
_ϕ2 −

μ4

f
ϕ; ðC9Þ

pϕ ¼ 1

2
_ϕ2 þ μ4

f
ϕ; ðC10Þ

ρ1 ¼
1

2

X
a¼1;8

½ _ψa þ ψaðH − 2_σÞ�2

þ
X
a¼2;3

½ _ψa þ ψaðH þ _σÞ�2

þ g2A
2
ðψ2

2 þ ψ2
3Þð2ψ2

1 þ ψ2
2 þ ψ2

3Þ; ðC11Þ

p1 ¼
ρ1
3
: ðC12Þ

The equation of motion for the metric anisotropy can be
integrated once to give

_σ ¼ D=a3 þ _ψ1ψ1 − _ψ2ψ2 − _ψ3ψ3 þ _ψ8ψ8 þHðψ2
1 − ψ2

2 − ψ2
3 þ ψ2

8Þ
3M2

Pl þ 2ψ2
1 þ ψ2

2 þ ψ2
3 þ 2ψ2

8

; ðC13Þ

where D is an integration constant. We see that if

ψ2
1ðtÞ þ ψ2

8ðtÞ ¼ ψ2
2ðtÞ þ ψ2

3ðtÞ; ðC14Þ

then _σ → 0 at late times (D=a3 → 0) and we have the
isotropic universe. In this configuration, the gauge con-
straint is obtained as

e4σa4ðψ2 _ψ3 − ψ3 _ψ2Þ ¼ 0: ðC15Þ

Therefore, the gauge constraint is automatically satisfied if
_ψ2 ¼ _ψ3 ¼ 0 holds.

2. Field equations for u1 = 2

We write the gauge field as

A1
x ¼ ae−2σψ1; A4

y ¼ aeσψ4; A5
y ¼ aeσψ5;

A6
y ¼ aeσψ6; A7

y ¼ aeσψ7; A8
x ¼ ae−2σψ8: ðC16Þ

Then, the scalar-field and gauge-field equations of motion
are

ϕ̈þ 3H _ϕ −
μ4

f
sin

ϕ

f
¼ −

gAλ
2f

X7
a¼4

ψ1ψ
2
a

�
3H þ

�
_ψ1

ψ1

þ 2
_ψa

ψa

��

−
ffiffiffi
3

p
gAλ
f

ψ8

�
ðψ4ψ6 þ ψ5ψ7Þ

�
3H þ _ψ8

ψ8

�
þ ψ4ψ6

�
_ψ4

ψ4

þ _ψ6

ψ6

�
þ ψ5ψ7

�
_ψ5

ψ5

þ _ψ7

ψ7

��
; ðC17Þ
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ψ̈1 þ 3H _ψ1 þ ψ1½2ðH þ _σÞðH − 2_σÞ þ _H − 2σ̈�

þ g2A
2
½ψ1ðψ2

4 þ ψ2
5 þ ψ2

6 þ ψ2
7Þ þ 2

ffiffiffi
3

p
ψ8ðψ4ψ6 þ ψ5ψ7Þ� ¼

gAλ
2f

_ϕðψ2
4 þ ψ2

5 þ ψ2
6 þ ψ2

7Þ; ðC18Þ

ψ̈4 þ 3H _ψ4 þ ψ4½ðH þ _σÞð2H − _σÞ þ _H þ σ̈�

þ g2A
4
½ψ4ðψ2

1 þ ψ2
4 þ ψ2

5 þ 7ψ2
6 þ ψ2

7 þ 3ψ2
8Þ þ 2ψ6ð3ψ5ψ7 þ

ffiffiffi
3

p
ψ1ψ8Þ� ¼

gAλ
2f

_ϕðψ1ψ4 þ
ffiffiffi
3

p
ψ6ψ8Þ; ðC19Þ

ψ̈5 þ 3H _ψ5 þ ψ5½ðH þ _σÞð2H − _σÞ þ _H þ σ̈�

þ g2A
4
½ψ5ðψ2

1 þ ψ2
4 þ ψ2

5 þ ψ2
6 þ 7ψ2

7 þ 3ψ2
8Þ þ 2ψ7ð3ψ4ψ6 þ

ffiffiffi
3

p
ψ1ψ8Þ� ¼

gAλ
2f

_ϕðψ1ψ5 þ
ffiffiffi
3

p
ψ7ψ8Þ; ðC20Þ

ψ̈6 þ 3H _ψ6 þ ψ6½ðH þ _σÞð2H − _σÞ þ _H þ σ̈�

þ g2A
4
½ψ6ðψ2

1 þ 7ψ2
4 þ ψ2

5 þ ψ2
6 þ ψ2

7 þ 3ψ2
8Þ þ 2ψ4ð3ψ5ψ7 þ

ffiffiffi
3

p
ψ1ψ8Þ� ¼

gAλ
2f

_ϕðψ1ψ6 þ
ffiffiffi
3

p
ψ4ψ8Þ; ðC21Þ

ψ̈7 þ 3H _ψ7 þ ψ7½ðH þ _σÞð2H − _σÞ þ _H þ σ̈�

þ g2A
4
½ψ7ðψ2

1 þ ψ2
4 þ 7ψ2

5 þ ψ2
6 þ ψ2

7 þ 3ψ2
8Þ þ 2ψ5ð3ψ4ψ6 þ

ffiffiffi
3

p
ψ1ψ8Þ� ¼

gAλ
2f

_ϕðψ1ψ7 þ
ffiffiffi
3

p
ψ5ψ8Þ; ðC22Þ

ψ̈8 þ 3H _ψ8 þ ψ8½2ðH þ _σÞðH − 2_σÞ þ _H − 2σ̈�

þ g2A
2
½3ψ8ðψ2

4 þ ψ2
5 þ ψ2

6 þ ψ2
7Þ þ 2

ffiffiffi
3

p
ψ1ðψ4ψ6 þ ψ5ψ7Þ� ¼

ffiffiffi
3

p
gAλ
f

_ϕðψ4ψ6 þ ψ5ψ7Þ: ðC23Þ

The Einstein equations read

M2
Plð2 _H þ 3H2 þ 3_σ2Þ ¼ −pϕ − p2; ðC24Þ

3M2
Plðσ̈ þ 3H _σÞ ¼

X
a¼1;8

½ _ψa þ ψaðH − 2_σÞ�2 −
X7
a¼4

½ _ψa þ ψaðH þ _σÞ�2 − g2A
4
ðψ2

1 þ 3ψ2
8Þðψ2

4 þ ψ2
5 þ ψ2

6 þ ψ2
7Þ

þ g2A
4
ðψ2

4 þ ψ2
7Þ2 þ

g2A
4
ðψ2

5 þ ψ2
6Þ2 þ g2Aðψ2

4ψ
2
6 þ ψ2

5ψ
2
7Þ −

g2A
2
ðψ4ψ5 þ ψ6ψ7Þ2

þ 5

2
g2Aðψ4ψ6 þ ψ5ψ7Þ2 −

ffiffiffi
3

p
g2Aψ1ψ8ðψ4ψ6 þ ψ5ψ7Þ; ðC25Þ

3M2
PlðH2 − _σ2Þ ¼ ρϕ þ ρ2; ðC26Þ

where

ρ2 ¼
1

2

X
a¼1;8

½ _ψa þ ψaðH − 2_σÞ�2 þ
X7
a¼4

½ _ψa þ ψaðH þ _σÞ�2 þ g2A
4
ðψ2

1 þ 3ψ2
8Þðψ2

4 þ ψ2
5 þ ψ2

6 þ ψ2
7Þ

þ g2A
8
ðψ2

4 þ ψ2
7Þ2 þ

g2A
8
ðψ2

5 þ ψ2
6Þ2 −

g2A
4
ðψ4ψ5 − ψ6ψ7Þ2 þ

7

4
g2Aðψ4ψ6 þ ψ5ψ7Þ2 þ

ffiffiffi
3

p
g2Aψ1ψ8ðψ4ψ6 þ ψ5ψ7Þ;

ðC27Þ

p2 ¼
ρ2
3
: ðC28Þ
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The equation of motion for the metric anisotropy, σ, can be integrated once to give

_σ ¼ D0=a3 þ _ψ1ψ1 þ _ψ8ψ8 − _ψ4ψ4 − _ψ5ψ5 − _ψ6ψ6 − _ψ7ψ7 þHðψ2
1 þ ψ2

8 − ψ2
4 − ψ2

5 − ψ2
6 − ψ2

7Þ
3M2

Pl þ 2ψ2
1 þ ψ2

4 þ ψ2
5 þ ψ2

6 þ ψ2
7 þ 2ψ2

8

; ðC29Þ

where D0 is an integration constant. We see that if

ψ2
1ðtÞ þ ψ2

8ðtÞ ¼ ψ2
4ðtÞ þ ψ2

5ðtÞ þ ψ2
6ðtÞ þ ψ2

7ðtÞ; ðC30Þ

then we have _σ → 0 at late times (D0=a3 → 0) and thus the
Universe becomes isotropic. We need to consider gauge
constraints, i.e.,

∂iFi0
a þ gAfabcAb

i F
i0
c ¼ 0: ðC31Þ

In our configuration, these components are obtained as

e4σa4ðψ4 _ψ7 − ψ7 _ψ4 þ ψ6 _ψ5 − ψ5 _ψ6Þ ¼ 0; ðC32Þ

e4σa4ðψ4 _ψ5 − ψ5 _ψ4 þ ψ6 _ψ7 − ψ7 _ψ6Þ ¼ 0: ðC33Þ

Thus, the gauge constraints are automatically satisfied if the
initial condition is taken as _ψa ¼ 0 for a ¼ 4;…; 7.
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