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We implement adaptive mesh refinement (AMR) simulations of global topological strings using the
public code, GRChombo. We perform a quantitative investigation of massive radiation from single
sinusoidally displaced string configurations, studying a range of string widths defined by the coupling
parameter λ over two orders of magnitude, effectively varying the mass of radiated particles mH ∼

ffiffiffi
λ

p
. We

perform an in-depth investigation into the effects of AMR on massive radiation emission, including
radiation trapping and the refinement required to resolve high frequency modes. We use quantitative
diagnostic tools to determine the eigenmode decomposition, showing a complex superposition of high
frequency propagating modes with different phase and group velocities. We conclude that massive
radiation is generally strongly suppressed relative to the preferred massless channel, with suppression
increasing at lower amplitudes and higher λ. Only in extreme nonlinear regimes (e.g., with relative
amplitude ε ∼ 1.5 and λ < 1) do we observe massive and massless radiation to be emitted at comparable
magnitude. We find that massive radiation is emitted in distinct high harmonics of the fundamental
frequency of the string, and we demonstrate that, for the sinusoidal configurations studied, massive

radiation is exponentially suppressed with
ffiffiffi
λ

p
(i.e., the particle mass). Finally, we place these results in the

context of axions and gravitational waves produced by cosmological cosmic string networks, and note that
AMR provides a significant opportunity to explore higher λ (thin string) regimes while using fewer
computational resources.
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I. INTRODUCTION

Topological or “cosmic” strings are predicted by many
physically motivated field theories [1], including grand-
unified models and superstring theory. Usually arising as a
result of a symmetry-breaking phase transition, they can
lead to a wide variety of cosmological consequences [2].
So-called “global” strings, which have a long-range
Goldstone boson or axion field, are created from the
breaking of a Uð1Þ-symmetry with a single complex scalar
field φ. A key physical motivation for this scenario comes
from the Peccei-Quinn UPQð1Þ symmetry, introduced to
solve the strong CP problem of QCD [3]. When UPQð1Þ is
broken, axion strings are formed and become a potential
source of dark matter axions [4]. Both global and “local”
gauged strings are a potential source of gravitational waves,
with the potential for detection by LIGO-Virgo-KAGRA
[5], LISA [6,7], NANOGrav [8] or future gravitational
wave experiments. Detection of cosmic strings would allow

us to probe the symmetry breaking scale of the underlying
high energy physics model.
Global cosmic strings have three potential radiative decay

channels: massless axion (Goldstone) radiation, massive
particle radiation and gravitational radiation. The balance
between the massive and massless channels is determined
partially by the symmetry-breaking potential VðφÞ. In this
work, we use VðφÞ ¼ λ

4
ðφ̄φ − η2Þ2, where λ is a positive

constant and we set η ¼ 1. In numerical simulations, it is
necessary to accurately resolve the small-scale dynamics of
the string core in order to determine the relative significance
of each of these channels. This is particularly important for
massive particle radiation, as we expect this decay channel to
be suppressed as the width of the string δ ∼ 1=

ffiffiffi
λ

p
decreases

and the massive particle mass mH ∼
ffiffiffi
λ

p
increases. The

spectrum of the propagating massive radiation will affect
the relative magnitude of the massless (and gravitational)
radiation channels for global strings, with knock-on effects
e.g., for predictions of the QCD axion mass. The same issue
arises in simulations of local cosmic strings but without the
Goldstone boson decay channel, where any massive particle
radiation will affect predictions of the gravitational wave
spectrum.

*a.drew@damtp.cam.ac.uk
†epss@damtp.cam.ac.uk

PHYSICAL REVIEW D 107, 043507 (2023)

2470-0010=2023=107(4)=043507(24) 043507-1 © 2023 American Physical Society

https://orcid.org/0000-0001-8252-602X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.043507&domain=pdf&date_stamp=2023-02-07
https://doi.org/10.1103/PhysRevD.107.043507
https://doi.org/10.1103/PhysRevD.107.043507
https://doi.org/10.1103/PhysRevD.107.043507
https://doi.org/10.1103/PhysRevD.107.043507


Historically, cosmic string evolution has been modelled
using the Nambu-Goto model (or the Kalb-Ramond model
for global strings), which approximates strings as having an
infinitely thin width. By construction, this approach does
not model the massive decay mechanism as it integrates out
internal degrees of freedom of the string. Massive particles
are assumed to be too heavy to radiate, and are often quoted
as being exponentially suppressed, for example in [9,10].
In contrast, it has been argued in other work, primarily from
field theory simulations, that the massive decay channel
may have a power law spectrum [11], which could be
significant for nonlinear string configurations. This has
been a source of significant debate for both the estimation
of the axion mass emitted from axion string networks
[12–16] and the prediction of gravitational wave signatures
from local cosmic strings [5,9,17–23].
Resolution of realistic cosmic string widths in field

theory simulations poses a very significant computational
challenge. The ratio between the string width δ and the
Hubble radius Λ≲H−1 is characterized by ln Λ=δ ∼ 70

and ln Λ=δ ∼ 100 for QCD axion and grand unified theory
(GUT) scale strings respectively. However, typical field
theory simulations using a fixed grid can only reach
ln R=δ ∼ 8, and must often employ numerical “tricks” in
order to resolve the string core accurately as the back-
ground expands. The lack of dynamic range afforded by
fixed grid simulations means that it is especially chal-
lenging to determine the massive radiation spectrum for
realistic δ. The lack of consensus on whether field theory
simulations with low λ can be reliably extrapolated to
cosmological scenarios further complicates the above
discussion. Adaptive mesh refinement (AMR) is a com-
putational method that may allow us to probe a higher
dynamic range using fewer computational resources,
potentially providing the ability to make more concrete
measurements of the λ-dependence of the massive radi-
ation for string configurations of closer relevance for
cosmological scenarios. AMR simulations of cosmic
string loop collapse in full numerical relativity have been
performed by other authors [24–26].
In this paper, we present a detailed analysis of the

massive radiation from adaptive mesh refinement simula-
tions of global cosmic strings. Section II outlines the theory
of global string formation and Sec. III gives details of the
numerical implementation. Section IV presents several
convergence tests and detailed analysis of the reliability
of AMR as a method for simulating massive radiation from
global strings. Section V presents analytic models and
numerical results for the relative amplitude of massive
radiation when compared to massless radiation, as well as
its power spectrum and λ-dependence. We conclude and
discuss the implications of this work in Sec. VI. We use
natural units throughout, setting ℏ ¼ c ¼ kB ¼ 1 such
that ½E� ¼ ½M� ¼ ½L�−1 ¼ ½T�−1.

II. GLOBAL STRING THEORY AND RADIATION

In this section, we provide a brief outline of the model
for global cosmic strings and the radiation diagnostics used
in this paper. Further information can be found in [2,27].
The Goldstone model has a Lagrangian density L

given by

L ¼ ð∂μφ̄Þð∂μφÞ − VðφÞ; ð1Þ

with the potential

VðφÞ ¼ 1

4
λðφ̄φ − η2Þ2: ð2Þ

The constant η sets the symmetry breaking scale and,
together with λ, the mass of the Higgs particle in the broken
symmetry state, i.e., mH ¼ ffiffiffi

λ
p

η, which emerges alongside
the massless Goldstone boson. If we decompose the
complex scalar field φ into real and imaginary parts

φ ¼ ϕ1 þ iϕ2; ð3Þ

the Euler-Lagrange equations for the numerical evolution
are given by

∂
2ϕ1;2

∂t2
−∇2ϕ1;2 þ

λ

2
ϕ1;2ðjφj2 − η2Þ ¼ 0: ð4Þ

There exist vortex solutions to these equations in two
dimensions, which extend to line-like global string solu-
tions in three dimensions. A static ansatz solution to (4) is
given by

φðr; θÞ ¼ ϕðrÞeinwθ; ð5Þ

where ϕ ¼ jφj and nw is the topological winding number,
which we set to nw ¼ 1. Substituting into the static part of
the Euler-Lagrange equations (4), this yields an ordinary
differential equation which can be solved numerically to
find the radial cross section ϕðrÞ (see [27]). This two-
dimensional cross section describes a defect with higher
energy than the surrounding vacuumwhich, when extended
to three dimensions, is known as a global cosmic string.
As discussed in [27], an oscillating global string will

emit both massless (Goldstone) and massive (Higgs)
radiation, for which there are significantly different analytic
expectations. In order to analyse these separate modes, we
must not only separate these from each other, but also
disentangle the radiative modes from the string self-fields.
We can rewrite the complex scalar field φ, defined by (5), as

φðxμÞ ¼ ϕðxμÞeiϑðxμÞ; ð6Þ

where both the magnitude ϕðxμÞ ¼ jφðxμÞj and the phase
ϑðxμÞ are real scalar fields. From this, it can be shown [27]
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that direct numerical diagnostics for the distinct massive
and massless components of the string energy-momentum
tensor Tμν can be defined using the real momenta and
spatial gradients:

Πϕ ≡ _ϕ ¼ ϕ1
_ϕ1 þ ϕ2

_ϕ2

ϕ
;

Diϕ≡∇iϕ ¼ ϕ1∇iϕ1 þ ϕ2∇iϕ2

ϕ
; ð7Þ

Πϑ ≡ ϕ _ϑ ¼ ϕ1
_ϕ2 − ϕ2

_ϕ1

ϕ
;

Diϑ≡ ϕ∇iϑ ¼ ϕ1∇iϕ2 − ϕ2∇iϕ1

ϕ
: ð8Þ

Here, Π denotes a “momentumlike” quantity composed
using time derivatives, where subscript ϕ denotes the
massive radiation contribution and subscript ϑ denotes
the massless radiation contribution. Similarly,Diϕ andDiϑ
represent the ith components of vectors composed using
spatial-gradientlike quantities, where ϕ ¼ ϕðxμÞ and ϑ ¼
ϑðxμÞ as defined by (6). These can be used to express the
energy density in terms of massive and massless compo-
nents in the following form:

T00 ¼ Π2
ϕ þ ðDϕÞ2 þ Π2

ϑ þ ðDϑÞ2 þ λ

4
ðϕ2 − η2Þ2: ð9Þ

We can also explicitly split the momentum component T0i

of the stress tensor into massive and massless components,
given by

Pi ≡ T0i ¼ 2ðΠϕDiϕþ ΠϑDiϑÞ; ð10Þ

where the two terms represent the massive and massless
radiation energy fluxes respectively. This is analogous to
the Poynting vector which describes radiation energy flux
in electromagnetism. Choosing an outgoing radial direction
in our cylindrical geometry, we can integrate the two
components of P · r̂ on a distant surface to determine
the energy flow out of an enclosed volume for each mode.
The massive component is given by

Pmassive ∝
Z

ðΠϕDϕÞ · r̂dSdt; ð11Þ

and the massless component by

Pmassless ∝
Z

ðΠϑDϑÞ · r̂dSdt: ð12Þ

Finally and importantly, we note that the approximate
width of the string core defined by the profile (5) is given by

δ ≈m−1
H ≡ ð

ffiffiffi
λ

p
ηÞ−1; ð13Þ

wheremH is the mass of the Higgs particle ϕ. For simplicity,
we shall set η ¼ 1, and rescale the mass mH and the string
width using only the parameter λ. Exploring radiation of a
wide range of masses obtained by varying λ will form the
basis for the analysis in this paper.

III. NUMERICAL IMPLEMENTATION

The simulations in this paper are performed using the
adaptive mesh code, GRChombo [28]. By using AMR, we are
able to save computational time and resources compared to
equivalent fixed grid simulations by resolving the string
core at a higher refinement than parts of the simulation box
at large distances from the string. This is particularly
important for thin strings with high λ≳ 10, where running
accurate simulations in an appropriate amount of time (less
than approximately a week) becomes unfeasible.
Initial conditions are obtained in the same way as in [27],

using dissipative evolution of a sinusoidal initial configu-
ration

XðzÞ ¼ ðA sinΩzz; 0; zÞ ð14Þ

from an initial amplitude A that is 50% larger than the
target amplitude A0. Here, Ωz ¼ 2π=L is the fundamental
frequency at small amplitude and L is the wavelength of
the string, equivalent to the z-dimension of the box.
Radiation from the string is extracted on a cylinder at
R ¼ 64 which is accurate to fourth order. This is a
different method to that used in the analysis in [27],
but the same as used in the convergence tests in the same
paper. The evolution scheme is fourth-order Runge-Kutta,
with fourth-order spatial discretization. Further specific
details about the AMR implementation and wave extrac-
tion are discussed in [29].
Production simulations with AMR are carried out using a

coarse simulation box size of 256 × 256 × 32 or 256 ×
256 × 16 (N1 × N2 × N3), with periodic boundary condi-
tions in the z-direction and Sommerfeld (outgoing radia-
tion) boundary conditions in the x- and y- directions.
A base grid of resolution Δx0 ¼ 1 is used with a base
timestep Δt0 ¼ Δx0=4. Each refinement level reduces both
Δt and Δx by a refinement ratio of 2.
It is necessary to define a regridding threshold to

determine where the adaptive mesh will refine within the
simulation box. We define our regridding criterion to be

Δx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∇ϕ1Þ2 þ ð∇ϕ2Þ2

q
> jϕthresholdj; ð15Þ

where jϕthresholdj is a custom threshold input by the user
and Δx is the grid spacing on a specific refinement level.
We choose jϕthresholdj ¼ 0.25, with no enforced maximum
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level unless otherwise specified (for example, for conver-
gence tests).
Finally, an important factor to consider in our simula-

tions when analysing high frequency massive radiation is
the use of Kreiss-Oliger dissipation. This is a numerical
technique that is used to damp high frequency modes that
can be generated when using finite difference methods [30].
It is often added to numerical simulations to ensure
stability, as nonphysical, high frequency modes can cause
simulations to crash at late times. In our case, we must
ensure that any dissipation applied does not interfere with
physical high frequency radiation emitted from the string.
GRChombo implements Kreiss-Oliger dissipation by adding
the following term to the right side of the evolution
equations:

σ

64Δx
ðFi−3 − 6Fi−2 þ 15Fi−1 − 20Fi þ 15Fiþ1

−6Fiþ2 þ Fiþ3Þ; ð16Þ

where F is the relevant evolution variable, i is the index for
the grid point and σ is the damping parameter set by the
user [29]. The parameter σ must satisfy

0 ≤ σ ≤
2

αC
ð17Þ

for the evolution to be stable, where αC ¼ Δt=Δx is the
Courant-Friedrichs-Lewy factor on a given refinement level.
As outlined above, we set αC ¼ 1=4 in our simulations.

IV. CONVERGENCE TESTING AND FIXED
GRID COMPARISON

In this section, we investigate the convergence of our
simulations, and the effects of AMR on the massive radiation
emitted by oscillating strings when compared to fixed grid
simulations. We choose to investigate λ ¼ 1 and λ ¼ 2
strings with A0 ¼ 4, an amplitude which is in the mildly
nonlinear regime. We choose these two λ because, as we will
discuss in later sections, the mass dependence of the energy
emitted via massive radiation around λ ¼ 1 remains con-
sistent with analytic predictions, but we observe a change
from the expected behavior for λ≳ 1.5. It is therefore
important to characterize the radiation and any unphysical
numerical effects in both regimes. We also investigate
convergence for λ ¼ 10, an example which is investigated
in detail in this paper and well into the regime where AMR
effects are found to be significant.
We know from previous work [27] that, unlike massless

radiation, massive radiation shows some sensitivity to the
detail of the implementation of AMR regridding. Although
the underlying reason is not entirely clear, it could be due
to the averaging scheme used in GRChombo to pass data from
finer to coarser refinement levels. This introduces some
small numerical errors which, although negligible in

magnitude, are sufficient to affect measurements of the
highly suppressed massive radiation from the string. We
note that spatial averaging will introduce a small first order
contribution, which may slightly degrade the convergence
of the fourth-order Runge-Kutta scheme and spatial deriva-
tive stencils used for the evolution. The boundaries between
refinement levels can also potentially be a further source
of numerical inaccuracy through reflection or resonance
effects. For this reason, we investigate convergence both
for simulations that use AMR and those that use a fixed
resolution grid. We use the grid configurations presented
in Table I.

A. Kreiss-Oliger dissipation

It is important to consider the effects of Kreiss-Oliger
damping in our simulations. Any numerical effects intro-
duced by the mesh refinement are of the order of the grid
spacing Δx, and will be damped by any Kreiss-Oliger
scheme. However, in our physical setup, we expect to
observe physical high frequency massive radiation, includ-
ing some modes that approach the ∼1=Δx frequency
targeted by the damping. It will therefore become impos-
sible at a certain frequency to distinguish noise introduced
by the refinement algorithm from physical radiation emit-
ted from the string. This becomes more problematic as Δx
increases, as the dissipation will be applied to increasingly
lower frequencies. We must therefore take care when
applying Kreiss-Oliger dissipation to ensure that it inter-
feres as little as possible with the physical radiation.

TABLE I. Grid parameters for the convergence tests for the
massive radiation Pmassive. We perform tests both with a fixed grid
and with AMR. For the fixed grid test (FG), the grid dimension
Lmax remains constant and the base grid resolution Δx0 is
changed. For the AMR test (AMR), the maximum refinement
level lmax is changed andΔx0 remains constant. The base grid box
resolution is given by N1 × N2 × N3, with ðlmax þ 1Þ total
refinement levels including the coarsest base level, and grid
spacings on the finest level given by Δxlmax

. The grid parameters
for the corresponding damping stages are identical, except that
lmax ¼ 1 for the AMR runs and lmax ¼ 0 for the fixed grid.

Test N1 × N2 × N3 lmax Lmax Δx0 Δxlmax

FG

256 × 256 × 32 � � � 256 1 � � �
512 × 512 × 64 � � � 256 0.5 � � �

1024 × 1024 × 128 � � � 256 0.25 � � �
1536 × 1536 × 192 � � � 256 0.167 � � �
2048 × 2048 × 256 � � � 256 0.125 � � �
4096 × 4096 × 512 � � � 256 0.0625 � � �

AMR

256 × 256 × 32 0 256 1 1
256 × 256 × 32 1 256 1 0.5
256 × 256 × 32 2 256 1 0.25
256 × 256 × 32 3 256 1 0.125
256 × 256 × 32 4 256 1 0.0625
256 × 256 × 32 5 256 1 0.03125
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For a fixed grid and a string with low λ, we expect a low
proportion of the signal to be emitted in high frequency
modes. Therefore, for a base resolution on which the string
is properly resolved, we expect to measure approximately
the same Pmassive independent of the σ coefficient. This is
exactly what we observe for λ ¼ 1, where we see ∼0.6%
difference between σ ¼ 0 and σ ¼ 1 for Δx ¼ 0.25, and for
λ ¼ 2, where we see a difference of ∼3% for the same
parameters. As Δx increases, we observe in both cases
higher frequency physical modes being damped away, with
increasingly lower frequencies affected as Δx increases.
For AMR simulations, this interpretation becomes more

difficult. We know that the AMR algorithm will introduce
numerical noise, hence it is more important than for the
fixed grid case to use damping. However, for Δx ¼ 1, the
base grid resolution used for most of our AMR simulations,
we observe that Kreiss-Oliger dissipation directly damps all
but the lowest frequencies of propagating modes. We
therefore must decide carefully whether applying dissipa-
tion is appropriate. For λ≲ 1.5, we observe from the
radiation spectrum that dissipation does not mitigate
significantly against numerical effects from the mesh
refinement, nor have any noticeable affect on Pmassive.
This will be discussed further in Sec. IV B. For this case,
we therefore decide not to employ dissipation, setting
σ ¼ 0. For λ≳ 1.5, numerical effects from the regridding
begin to affect the radiation signal. In this case, it is
appropriate to implement damping, and we set σ ¼ 1.
However, we note in practice that, even in these cases, the
application of damping has a very minimal effect on the
final result.

B. Convergence tests

Figure 1 shows the results of the convergence test for
λ ¼ 1 using a fixed grid with the parameters in Table I
(test FG) and σ ¼ 0. We test the cumulative massive
component Pmassive of the Poynting-like vector P, deter-
mined using Eq. (11). We observe that Pmassive converges to
a stable value by approximately Δx ¼ 0.25, with approx-
imately fourth order convergence. By fourth order
Richardson extrapolation of the finest two simulations,
we estimate the discretization error at t ∼ 250 to be
ΔPmassive=Pmassive ∼ 0.1%.
Figure 2 shows a convergence test for the same physical

setup, but using mesh refinement. We set jϕthresholdj ¼ 0.25,
as used in the subsequent λ ¼ 1 simulations in this paper.
We see again that Pmassive converges to a stable value by
Δxlmax

¼ 0.25, where Δxlmax
is the grid spacing on the finest

refinement level. This time, we observe approximately
third-order convergence. As discussed at the start of the
section, we note that this lower order is likely due to the
mesh refinement averaging scheme beginning to affect
the convergence. Although the frequency profile of the
massive radiation is largely unaffected, there appears to be
a small effective damping which reduces the overall

magnitude of the convergent radiation amplitude by about
∼14%, relative to that from the fixed grid. Naively, we
might assume that this is due to the coarser base grid being
unable to resolve the high harmonics excited for massive
radiation. However, the Nyquist frequency FN (highest
frequency that can be recovered) for the base resolution
Δx0 ¼ 1 is given by FN ¼1=2Δx¼0.5 in code units. As
we will see in Sec. VA, the spatial frequency of the massive
radiation for this configuration is given by kr=2π, defined
by Eq. (26). This allows harmonics of the fundamental

FIG. 1. Absolute value (top) and convergence (bottom) of the
energy emitted by massive radiation Pmassive from a λ ¼ 1 string
with initial amplitude A0 ¼ 4 and σ ¼ 0, measured on a cylinder
at R ¼ 64 on a fixed grid for different refinements Δx (test FG in
Table I). The convergence plot shows the difference in the
magnitude of Pmassive between different resolutions, with the
higher resolution results also plotted rescaled according to third-
and fourth-order convergence.
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frequency of the string up to p≲ 16 to be resolved, which
is more than enough to accurately resolve the dominant
propagating signal for λ ¼ 1. This therefore indicates that
the reduction in Pmassive measured is due to refinement level
boundaries trapping some of the radiation that would
otherwise propagate outwards.
For comparison, we run another convergence test for

λ ¼ 1 with a lower regridding threshold jϕthresholdj ¼ 0.05,
which leads to larger areas being covered by each refine-
ment level. We obtain results that are similar to
jϕthresholdj ¼ 0.25, but find that decreasing the regridding

threshold increases the overall magnitude of the massive
radiation, so that it is only ∼12% lower than the fixed grid
simulation. This demonstrates that increasing the size of the
refinement areas around the string can ameliorate some of
the effects of radiation trapping, allowing more of the
massive radiation to propagate outwards.
The equivalent convergence tests performed for λ ¼ 2

with σ ¼ 1 demonstrate similar behavior. For a fixed grid,
we observe again that Pmassive converges to a stable value
by approximately Δx ¼ 0.125, with approximately fourth
order convergence. When using mesh refinement, Pmassive
again converges by Δxlmax

¼ 0.125, this time with between
second- and third-order convergence. Here, the overall
magnitude of the energy is approximately equal to the fixed
grid (see Figs. 18 and 19 in Appendix).
Finally, Figs. 20 and 21 in Appendix show a convergence

test for λ ¼ 10 with σ ¼ 1. Figure 20 shows the fixed
grid case, where Pmassive converges to a stable value by
approximately Δx ¼ 0.0625, with approximately fifth
order convergence. By fifth-order Richardson extrapola-
tion, the discretization error at t ∼ 200 is approximately
ΔPmassive=Pmassive ∼ 0.1%. Importantly, the final Pmassive is
<0.1% of that emitted for λ ¼ 1, orOð103Þ × smaller. This
will be discussed further in Sec. V C 2. Figure 21 shows a
λ ¼ 10 convergence test with mesh refinement, again using
jϕthresholdj ¼ 0.25. Pmassive again converges to a stable value
by Δxlmax

¼ 0.0625, and the overall magnitude of the
radiation is ∼40% lower than for the fixed grid, and with
less than first-order convergence.1 We note that the con-
vergence order is still increasing at the end of the
simulation, so this may improve at later time. However,
this demonstrates that, at high λ, the convergence is affected
by numerical artefacts.

V. MASSIVE RADIATION

A. Analytic radiation expectations

In this section, we determine the analytically predicted
mode decomposition of massive radiation from global
strings. We outline the properties of massive radiation,
particularly the thresholds in λ that determine whether
certain modes are able to propagate and their dependence
on the string amplitude. We also describe its complex wave
packet structure and outline a method to analytically
separate propagating radiation from self-field modes.

1. Massive thresholds

The presence of massive modes radiated from global
strings can be demonstrated by linear expansion of the field
equations (4) around the vacuum state jφj ¼ η ¼ 1. We first
define the general form of the Argand representation

FIG. 2. Absolute value of the energy emitted by massive
radiation Pmassive from a λ ¼ 1 string with initial amplitude
A0 ¼ 4, measured on a cylinder at R ¼ 64 using adaptive mesh
refinement (test AMR in Table I). The convergence plot shows the
difference in the magnitude of Pmassive between different reso-
lutions, with the higher resolution results also plotted rescaled
according to third- and fourth-order convergence.

1Note that the increase in radiation around t ∼ 200 comes from
radiation from the string, not the boundaries of the simulation.
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φðxμÞ ¼ ϕðxμÞeiϑðxμÞ; ð18Þ

where both the magnitude ϕðxμÞ ¼ jφðxμÞj and the phase
ϑðxμÞ are real scalar fields. Substituting into (4), the real
part of the field equations is given by

∂
2ϕ

∂t2
−∇2ϕ ¼ ϕ

��
∂ϑ

∂t

�
2

− ð∇ϑÞ2 þ λ

2
ð1 − ϕ2Þ

�
: ð19Þ

Assuming that ϑ is nearly constant far from any strings,
(19) becomes

∂
2ϕ

∂t2
−∇2ϕ −

λ

2
ϕð1 − ϕ2Þ ¼ 0: ð20Þ

Expanding around the vacuum state jφj ¼ η (where we
have taken η ¼ 1) using ϕ ¼ 1þ χ, it can be demonstrated
that massive radiation obeys the Klein-Gordon equation

∂
2χ

∂t2
−∇2χ þm2

Hχ ¼ 0; ð21Þ

with mH ¼ ffiffiffi
λ

p
η.

As discussed in [27], the massless radiation component
can be decomposed into separable eigenmodes denoted by
eigenvalues fpmng, where p,m and n are positive integers
used to denote the harmonics in t, θ and z respectively. The
radial wave number κpn for each mode can be calculated as
a function of the fractional increased path length α ¼ T=L,
defined to be the path length of the string T (which also
determines its period of oscillation) relative to its perio-
dicity L. The wave number can then be used to determine
whether or not a certain mode of radiation will propagate.
The radiation of massive modes from an oscillating global
string is qualitatively different to massless radiation, due to
the presence of the mass threshold mH ¼ ffiffiffi

λ
p

η. A sinus-
oidal string solution radiates into the lowest massless
quadrupole mode f220g for any initial amplitude. In
contrast, massive modes must be sufficiently energetic to
become propagating radiation with the lowest available
mode depending on the mass threshold. This can be
demonstrated similarly by deriving an expression for the
massive radial wave number. Equation (21) can be rewritten
in cylindrical coordinates as with the massless case,
obtaining

∂
2χ

∂t2
−
∂
2χ

∂r2
−
1

r
∂χ

∂r
−

1

r2
∂
2χ

∂θ2
−
∂
2χ

∂z2
þm2

Hχ ¼ 0: ð22Þ

This is soluble using separable methods with the ansatz
χðt; r;φ; zÞ ¼ TðtÞRðrÞΘðθÞZðzÞ to find asymptotic mas-
sive radiation modes. Substituting into (22), we obtain

T 00ðtÞ
TðtÞ −

R00ðrÞ þ R0ðrÞ=r
RðrÞ −

1

r2
Θ00ðθÞ
ΘðθÞ −

Z00ðzÞ
ZðzÞ þm2

H ¼ 0:

ð23Þ

Rearranging and substituting appropriate separation con-
stants, we obtain

R00ðrÞ þ R0ðrÞ=r
RðrÞ −

m2

r2
¼ −ω2

p þ k2z þm2
H ¼ −k2r : ð24Þ

where ωp ¼ 2πp=αL ¼ Ωzp=α represents the pth har-
monic of the oscillating string, kz ¼ Ωzn is the wave
number in the z-direction and kr is the radial wave number.
From this, we deduce that the massive modes obey the
dispersion relation

ω2
p ¼ k2r þ k2z þm2

H; ð25Þ

which implies

kr ≡Ωzκpn ¼ Ωz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=αÞ2 − n2 −m2

H=Ω2
z

q
: ð26Þ

Radiation can radially propagate only if kr is real, so from
(26), we obtain the expression for the lowest propagating
harmonic

pmin > α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H=Ω2
z þ n2

q
≈mH=Ωz; ð27Þ

where in the last expression we have assumed that L ≫
m−1

H and that α is close to unity.2 As λ increases and for a
fixed L, a higher pmin is required to overcome the mass
threshold and allow massive radiation to propagate. This
effectively cuts off modes at lower frequencies, as they
become evanescent. In order to determine the exact
dependence of the massive spectrum on λ, Eq. (26) can
be rearranged as follows:

λ < λpn ¼
�
2π

L

�
2
�
p2

α2
− n2

�
; ð28Þ

where λpn is the threshold that λ must (perhaps counter-
intuitively) be below for a given mode fpng to propagate.

2. Calculating α

In order to calculate the values of λpn, it is necessary to
calculate the fractional increase in path length α of the
displaced string relative to the periodicity in the z-direction
L. As outlined in the previous section, this is simply

2We note that, in principle, the quadrupole fpmng ¼
fpmin20g is the lowest massive harmonic available at a given
order p. However, we shall see in practice that the dipole
fpmin11g is favored when also above threshold.
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defined by α ¼ T=L where T is the path length, which
also determines the period of oscillation of the string. To
contextualize this calculation, we first recall from [31,32]
that the solution for a displaced string in the Nambu-Goto
model is given by the expression

Xðs; εÞ ¼
�
ε cos s; 0;

Z
s

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2sin2θ

p
dθ

�
; ð29Þ

where we have set Ω ¼ 2π=T ¼ 1, the invariant amplitude
ε ¼ 2πA=T with 0 ≤ ε ≤ 1 and 0 ≤ s ≤ 2π is a parameter
along the string over a single period. However, as we are
evolving the full field equations, it is not a given that this
analytic Nambu-Goto solution is correct. For this reason
and for computational convenience, we use sinusoidal
initial conditions which are damped to an appropriate
intermediate configuration, which may or may not corre-
spond to either a sinusoidal or Nambu-Goto model. We
note in any case that a sinusoidal model is approximately
equivalent to the Nambu-Goto model at low amplitudes
ε ≪ 1. However, it is useful to calculate α directly for both
models, which we expect to provide upper and lower
bounds for the damped solution.
We begin by calculating α for the simpler case of a

sinusoidal string. The string displacement in the x-direction
is given by

XðzÞ ¼ ðA sinΩzz; 0; zÞ: ð30Þ

We can determine the total path length T for one period of
the sinusoidal string from the simple integral

Tsin ¼
Z

L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
∂x
∂z

�
2

s
dz; ð31Þ

where we integrate from 0 ≤ z ≤ L. Substituting the
configuration (30), the increased path length αsin is then
calculated simply as

αsin ¼
1

L

Z
L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω2

zA2 cos2 Ωzz
q

dz: ð32Þ

The path length Tsin ¼ TsinðAÞ is a function of amplitude,
with the z-periodicity being fixed at a constant L. We also
note that, in this model, it is possible to create initial
conditions that have an effective εeff > 1, which we use to
probe extreme nonlinear regimes in Sec. V C 2.
In the Nambu-Goto case (29), the calculation is less

obvious due to the parametrization by s. The path length is
calculated using the integral

TNG ¼
Z

2π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
∂x
∂s

�
2

þ
�
∂z
∂s

�
2

s
ds ¼ 2π; ð33Þ

where we integrate over 0 ≤ s ≤ 2π for a single period.
In this case, the string is fixed to be of parametric length 2π,
so when the amplitude of the string is increased, the
periodicity in z decreases accordingly. We therefore have
the opposite situation to the sinusoidal case, which has
a variable parametric path length that depends on the
amplitude and fixed periodicity in z. Importantly, in the
sinusoidal model, A can be chosen to have any value
without changing the z-periodicity L, whereas for Nambu-
Goto strings, L ¼ zð2π; εÞ is analytically determined by the
model via the fixed path length. This is demonstrated by
Fig. 3, which shows a parametric plot for four different
invariant amplitudes ε ¼ 0.25, 0.5, 0.75 and 1.0, demon-
strating the decrease in zð2π; εÞ with increasing amplitude.
From Eq. (29), the periodicity L in z is given by

zð2π; εÞ ¼
Z

2π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2 sin2 θ

p
dθ; ð34Þ

where 0 ≤ ε ≤ 1. The increase in path length αNG is given
by the ratio of the path length TNG to the periodicity in the
z-direction as

αNG ¼ TNG

zð2π; εÞ ¼
2πR

2π
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2 sin2 θ

p
dθ

: ð35Þ

To compare these two models in the context of our
simulations, we need to compute α for different amplitudes
A and a fixed z-periodicity L. Fixing L in the above
Nambu-Goto model necessarily means that ε is determined
by the model for a given A. We define Arel, the amplitude
relative to the z-periodicity, as

Arel ¼
4A

zð2π; εÞ ¼
4A
L

; ð36Þ

so that in the limit A ¼ L=4, we have Arel ¼ ε ¼ 1. This
equation is implicit in ε and must be solved numerically to
find the desired ε such that zð2π; εÞ ¼ L.
Comparing values of α for different Arel, we observe

from Table II that there is an additional path length
contribution from the Nambu-Goto model compared to
the sinusoidal approximation, which increases as Arel

1 2 3 4 5 6
z

�1.0

�0.5

0.5

1.0

FIG. 3. Parametric plot of accurate Nambu-Goto string initial
conditions for amplitudes ε ¼ 0.25 (blue), ε ¼ 0.5 (yellow), ε ¼
0.75 (green) and ε ¼ 1 (red).
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increases. We will see in Sec. V C that this difference is
significant when calculating the harmonic thresholds λpn
for the massive radiation.

B. Radiation properties

Having derived an expression for the lowest propagating
harmonic pmin for a given amplitude and λ (27), in this
section we explore the properties of the different modes of
massive radiation. Unlike massless radiation, it can be shown
from the dispersion relation (25) that massive radiation has a
separate phase velocity vph and group velocity vg,

vph ¼
ω

k
; vg ¼

dω
dk

; ð37Þ

with the latter representing the speed of energy transfer
(focusing primarily on the radial component). The radial
propagation velocity of the dominant massive modes is
generically well below the speed of light, depending on how
close the pmin harmonic is to the mass threshold. For
example, for a string of unit mass (λ ¼ 1) and oscillation
periodicity L ¼ 32 (Ωz ¼ 0.2), the lowest propagating
harmonic is pmin ¼ 6 with the quadrupole f 6 2 0 g having
vg ¼ 0.51, and the dipole f 6 1 1 g about 5% slower at vg ¼
0.48 (i.e., both at approximately half the speed of light). In
principle, lower massive harmonics p < pmin will oscillate
as evanescent waves, representing a “self-field” (bound
modes) moving with the string but not propagating away.
However, these asymptotic evanescent modes predicted
by (26) are exponentially suppressed over short lengthscales,
so any massive self-field modes present at large radius are
better understood as a response to the long-range massless
self-field (see Sec. V B 1).
Given that massive string radiation is typically a high

harmonic of the driving frequency Ωz, we expect its
generation mechanism to be highly nonlinear and depen-
dent on self-interaction terms. The fundamental frequency
for our sinusoidal string solution is generically well below
the mass threshold Ωz ≲mH required for propagation,

so any radiation modes will be strongly suppressed, given
the high-order interactions required for their creation. For
small oscillations ε ≪ 1, we expect the radiation amplitude
to be suppressed as an exponential of the radiating
harmonic p or, alternatively, the string curvature scale R
(see Sec. V C 4).3 For this reason, we can anticipate that any
massive radiation present will be dominated by the lowest
time harmonic available pmin.

1. Separation from self-field

In addition to the propagating modes discussed above,
we can identify the presence of massive self-field modes as
a solution to the massive mode equation (19). This requires
us also to understand the form of the self-field of the
massless radiation, ϑsf .
As discussed in [27], at small amplitude (ε ≪ 1), the

sinusoidal string initial conditions (30) with the string field
ansatz (5) yields an approximate massless self-field
ϑsfðt;xÞ of the following form:

ϑsfðt;xÞ ≈ tan−1ðy=Xðt;xÞÞ;
Xðt;xÞ ¼ x − A cosΩzt sinΩzz; ð38Þ

valid in the region A ≪ r≲Oðfew × LÞ, where Xðt;xÞ is
the x-coordinate relative to the string core. We can sub-
stitute derivatives of ϑsf in the time-varying source term
_ϑ2 − ð∇ϑÞ2 on the right-hand side of (19), copied again
below for ease of reference:

∂
2ϕ

∂t2
−∇2ϕ ¼ ϕ

��
∂ϑ

∂t

�
2

− ð∇ϑÞ2 þ λ

2
ð1 − ϕ2Þ

�
: ð39Þ

When measured on a distant cylinder at fixed radius R,
the self-field dipole from the time derivative term _ϑ2sf is
considerably larger than from the radial derivative
ð∂ϑsf=∂rÞ. However, we must include contributions from
the angular derivative ∂ϑsf=∂θ and from the z-direction
∂ϑsf=∂z. The leading source contribution is the static term
ðð1=rÞj∂φ=∂θjÞ2 ¼ ðnwϕ=rÞ2, arising from the angular
derivative. This means that ϕ approaches the vacuum state
with an asymptotic power law ϕ ∼ 1 − r−2, rather than
exponentially as would be expected for a massive field. The
leading-order time-varying source contributions to the
massive field equation (39) are then, using ϕ ¼ 1þ χ:

∂
2χ

∂t2
−∇2χ ¼ −

A2Ω2

4r2
ð1 − cos 2θÞ cos 2Ωzt

þ 2A
r3

cos θ sinΩzz cosΩzt: ð40Þ

The first source term arises directly from the square of
the dipole term, so the time periodicity is that of the

TABLE II. Fractional path length increase α for the Nambu-
Goto (αNG) and sinusoidal (αsin) models for a range of relative
amplitudes Arel.

Arel

α model

Sinusoidal αsin Nambu-Goto αNG

0 1 1
0.1 1.00614 1.00616
0.25 1.0375 1.0382
0.5 1.13984 1.14909
0.75 1.28729 1.32541
0.875 1.37264 1.43739
0.95 1.42666 1.51362
1.0 1.4637 1.5708

3Here, R is not to be confused with the extraction radius.
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second harmonic, while ðsin θÞ2 splits into monopole and
quadrupole contributions, with no z-dependence after
adding ð∂ϑ=∂zÞ2. The second line has a dipole cross
term from ð∂ϑ=∂θÞ2 which has the original time, angle,
and z-dependence of the string source. Given the sim-
plicity of the linearized wave equation (40), the solutions
[and first derivatives, likeΠϕ in (7)] will inherit the same t,
θ and z-dependence as the right-hand side, whatever
the resulting radial profile. This means that in any FFT
analysis we can expect a nonpropagating massive self-
field to be present, contributing to the monopole f 2 0 0 g,
quadrupole f 2 2 0 g, and dipole f 1 1 1 g eigenmodes. We
also note that there are well-known radial oscillation
modes in the string width which can, in principle, create
a small monopole mode.

C. Massive radiation analysis

In this section, we present a quantitative analysis of
the massive radiation from oscillating string configurations.
Simulations are set up as outlined in Sec. III, and we
bear in mind the convergence tests and discussion in
Sec. IV.
We begin by presenting a detailed investigation of the

massive radiation from λ ¼ 1 and λ ¼ 10 strings with small
amplitude A0 ¼ 1 (ε ¼ 0.20) and larger amplitudes A0 ¼ 4
and A0 ¼ 8 (ε ¼ 0.68 and 1). We perform quantitative
analysis by extracting and Fourier decomposing the mas-
sive radiation field Πϕ, defined by Eq. (7), on a diagnostic
cylinder at fixed radius R ¼ 64.
We also perform a more detailed scan over 0.3 ≤ λ ≤ 2,

for λ spaced by Δλ ¼ 0.1. We determine the λ-dependence
of the massive spectrum, including the primary radiation
modes and energy loss. For this finely spaced scan, we
concentrate primarily on two relative amplitudes; Arel ¼
0.5 using A0 ¼ 4 with L ¼ 32 (ε ¼ 0.68) and Arel ¼ 0.875
using A0 ¼ 3.5 with L ¼ 16 (ε ¼ 0.96), where Arel is
defined by (36).
To clearly demonstrate the qualitatively different nature

of massive radiation from massless radiation, we first
visualize the massive diagnostic Πϕ in three dimensions.
Taking λ ¼ 1 and the intermediate amplitude A0 ¼ 4 as a
representative example, the signal is illustrated in Fig. 4.
Although the radiation is predominantly dipole, the spec-
trum is significantly more complex than the massless
quadrupole radiation from the same configuration (see
[27]). This is particularly evident in animations. We also
observe that the different phase and group velocities lead to
short wavelength modes traveling rapidly forward within
larger, slower-moving outgoing wave packets.

1. Mode decomposition

Here, we undertake a Fourier analysis of the massive
radiation signal Πϕ on the diagnostic cylinder at R ¼ 64 to
quantify the effects described above. The time evolution of

the largest amplitude eigenmodes is plotted in Fig. 5 for
λ ¼ 1 and A0 ¼ 4, where the individual modes are obtained
using a 2D fast Fourier transform (FFT). We recall from
Sec. VA that the p (time) eigenvalue determines whether or
not a certain mode will propagate. Measuring the time-
dependence of the signal, we identify the massive propa-
gating modes f 6 0 0 g, f6 1 1g, f 6 2 0 g, f 6 3 1 g, and
f 6 4 0 g. This p ¼ 6 time-dependence is consistent with
the requirement that the frequency be above the (27)
mass threshold, given approximately by p > pmin ≈ffiffiffi
λ

p
=ð2π=LÞ ≈ 5.1 for L ¼ 32. We also identify the long-

range self-field excitations f 1 1 1 g, f 2 0 0 g and f 2 2 0 g
sourced by the massless self-field (i.e., before the propa-
gating modes reach the analysis cylinder), as discussed in
Sec. V B 1. This means that, despite having the appearance
of a simple dipole in Fig. 4, the radiation signal is in fact
more complex, with monopole and quadrupole modes also
present at comparable magnitude. One explanation for this
apparent difference is that the radiation pattern is somewhat
beamed, requiring a combination of modes to achieve
angular localization in comparison with the pure f 1 1 1 g
dipole. Finally, we observe that the radiation propagation
velocity vg ≈ 0.5, measured from the first arrival of the

FIG. 4. Volume rendering in 3D space ðx; y; zÞ of the massive
radiation Πϕ from a λ ¼ 1 string with initial amplitude A0 ¼ 4.
The radiation is emitted from a string at the centre of the grid. The
lowest propagating dipole eigenmode fpmng ¼ f 6 1 1 g is
dominant, but the different phase and group velocities give rise
to a more complex structure of outgoing wave packets.
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propagating signal at the cylinder, agrees with the pre-
dicted vg ¼ 0.48.
Having investigated the radiation from A0 ¼ 4, we

further analyse A0 ¼ 1 and A0 ¼ 8 for λ ¼ 1 to determine
the dependence on amplitude of high-order harmonics.
Figure 6 shows the time-averaged magnitude of all mea-
sured eigenmodes for A0 ¼ 1, 4 and 8 extracted on the
cylinder at t ¼ 160. The time-average is calculated by
extracting each separate Fourier mode FΠϕ

ðkθ; kzÞ and
averaging over time, using

F av;Πϕ
ðkθ; kzÞ ¼

Xt¼Δt=4

t¼−Δt=4
2FΠϕ

ðkθ; kzÞ=Δt; ð41Þ

where Δt is approximately one period of oscillation. We
observe that, at small amplitude, primarily dipole and
quadrupole radiation and self-field modes are measured.
As the configurations probe higher (nonlinear) amplitudes
as ε → 1, higher frequency modes become activated and a
checkerboard pattern emerges. An mþ n even selection
rule applies as for the massless radiation modes [27],
although the distribution of massive modes is more con-
strained in the z-direction. There is also a more nonlinear
dependence of the total magnitude on the initial amplitude
A0, as can be observed from the different logarithmic scales
required to plot each case.

FIG. 5. Absolute value of the fmng ¼ f0 0g; f1 1g; f2 0g;
f3 1g, and f4 0g Fourier modes of the massive radiation Πϕ

from a λ ¼ 1 string with initial amplitude A0 ¼ 4, measured on a
cylinder at R ¼ 64. The propagating radiation modes are
fpmng ¼ f 6 0 0 g, f 6 1 1 g, f 6 2 0 g, f 6 3 1 g, and f 6 4 0 g.
We note also the initial presence of oscillating self-fields,
f111g, f 2 0 0 g and f220g.

FIG. 6. 2D Fourier eigenmodes of the massive radiation Πϕ

from a λ ¼ 1 string at late time t ¼ 160, measured on a cylinder at
R ¼ 64 with σ ¼ 0 and time averaged over approximate half-
period Δt=2 ¼ 66=4. The horizontal axis is the angular eigen-
value m, while the vertical is the z-dependent wave number n.
The top figure is for an initial amplitude A0 ¼ 1, the middle is for
intermediate A0 ¼ 4 and the bottom is large A0 ¼ 8, showing an
increasing trend of higher harmonics and a significant increase in
amplitude, highlighted by the changing scales.
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The additional complexity and challenge of higher order
massive radiation is further illustrated by considering the
spectrum for larger λ. The radiation pattern shown in Fig. 7
is emitted by low amplitude A0 ¼ 1 for λ ¼ 10. Overall, the
signal has a significantly smaller magnitude and a higher
pmin than both the massless radiation and the massive
radiation for λ ¼ 1. This is because, unlike massless
radiation which is independent of λ to leading order,
massive radiation becomes more strongly suppressed as
λ increases. This will be discussed in detail in Sec. V C 4.
The signal begins as an isolated dipole with a f 17 1 1 g
mode contribution (pmin ≈ 16.1). At late time, we begin to
observe resonant effects introducing higher angular har-
monics including m ¼ 2, 3, and 4, which interchange
amplitudes and generally increase during the simulation,
with the quadrupole mode f 17 2 0 g becoming comparable
in magnitude to the dipole. Not only does the signal evolve
between harmonics, the varying amplitude offers indica-
tions of stimulated emission through string-radiation inter-
actions. An important caveat here at this low amplitude and
high λ, however, is that this massive radiation signal
becomes more susceptible to numerical effects, especially
those discussed previously for AMR in Sec. IV. For this
reason, Fig. 7 should be interpreted as a qualitative insight
into the complexity of massive radiation, rather than an
accurate physical solution.

2. Relative energy loss to massive and massless modes

In this subsection, we make a quantitative comparison
between the magnitude of the dominant massive and
massless modes for different values of λ and A0. We first
compare the magnitude of energy emitted via massive

radiation for λ ¼ 1 and λ ¼ 10. Figures 8 and 9 show the
time-average for the eight strongest massive modes for
λ ¼ 1 and λ ¼ 10 strings, with initial amplitudes A0 ¼ 4
and A0 ¼ 8 respectively. (The λ ¼ 1 results plot the time
dependence of the modes plotted in the lower two panels of
Fig. 6.) We observe for each amplitude that there is a
difference in scale of ∼104× between the magnitude of the
most dominant modes for λ ¼ 1 and λ ¼ 10. The λ ¼ 10
radiation is therefore heavily suppressed, as predicted by
the significant increase in mass threshold.
Comparing to the massless radiation in Fig. 20 of [27],

the magnitude of the massive modes for λ ¼ 1 and A0 ¼ 4
is also ∼1000× smaller than the massless modes, meaning
that radiation via massive radiation can effectively be taken
to be negligible. This agrees with observations made in
[27], where for λ ¼ 1 and A0 ¼ 4, the massive radiation
was so negligible as not to be noticeable as a contribution

FIG. 7. Volume rendering in spacetime ðt; θ; zÞ of the massive
radiation Πϕ from a λ ¼ 10 string with initial amplitude A0 ¼ 1

over time, measured on a cylinder at R ¼ 64. The time axis runs
left to right, the azimuthal angle θ from bottom to top and the
z-axis out of the page. Complex resonant patterns characterize the
radiation.

FIG. 8. Dominant 2D Fourier modes of the massive radiation
Πϕ from a λ ¼ 1 (top) and λ ¼ 10 (bottom) string with initial
amplitude A0 ¼ 4, measured on a cylinder at R ¼ 64 and time
averaged over approximate half-period Δt=2 ¼ 66=4.
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to the total energy loss. This ratio is even more extreme
for λ ¼ 10, where we observe massive radiation to be
∼107× smaller in magnitude than massless radiation.4 This
comparison for A0 ¼ 8 is less extreme, where we have a
factor of only ∼100× between the massless and massive
modes for λ ¼ 1. This is due to the fact that the higher
initial amplitude corresponds to more relativistic string
oscillations and larger accelerations, allowing massive
modes to be activated more easily.
Although the massive radiation is typically negligible as

an energy loss mechanism for the configurations described
above, it is possible for energy loss from massive modes
to compete with massless modes for very relativistic

configurations with curvature comparable to the string
width, i.e., in the limit with low λ and high ε. This makes
it easier to activate massive modes, due to the lower mass
threshold and more relativistic motion. Figure 10 shows the
massive and massless components of the Poynting diag-
nostic, Pmassive (11) and Pmassless (12), integrated over the
diagnostic cylinder for a highly relativistic λ ¼ 0.8 string
with A0 ¼ 6 and z-dimension L ¼ 16. We observe that the
energy emitted via massive radiation is of a comparable
magnitude to the massless channel, particularly after the
initial burst. This string configuration has such a large
amplitude (εeff > 1), that extended regions of the string
contract and coalesce as they approach the speed of light for
a protracted time (so-called relativistic string lumps, unlike
momentary pointlike cusps). These highly relativistic and
degenerate string regions disintegrate (essentially self-
annihilate) into beamed radiation into all the available
massless and massive channels. However, this only occurs
on the first large amplitude (εeff > 1) oscillation, after
which massless radiation once again strongly dominates for
subsequent (ε < 1) oscillations. This nonlinear phenome-
non is likely to be relevant for high curvature regions in
network simulations, particularly those using fixed comov-
ing width which have a small effective λ.

3. Radiation harmonics and λ-dependence

In this subsection, we scan over a range of 0.3 ≤ λ ≤ 2
to determine the more detailed λ-dependence of the
massive spectrum. We concentrate primarily on two ampli-
tudes; Arel ¼ 0.5 (A0 ¼ 4 with L ¼ 32) and Arel ¼ 0.875
(A0 ¼ 3.5 with L ¼ 16).
Using the relationship derived in Eq. (28), we calculate

the λpn threshold values at which the lowest p harmonic,
pmin, that can be activated for a certain amplitude changes.
These values are presented in Table III for Arel ¼ 0.5 and
Arel ¼ 0.875. We consider two models for the fractional
increased path length α; the Nambu-Goto model αNG
calculated numerically using Eq. (35) and the sinusoidal
model αsin using Eq. (32). For each model, we obtain
different λpn values for each pmin and for different values of
n. Taking a λ ¼ 1.8 string with Arel ¼ 0.875 as an example,
from the Nambu-Goto model we obtain αNG ¼ 1.437,
which gives for the dipole (n ¼ 1) mode pmin ¼ 6, but
pmin ¼ 5 for the quadrupole (n ¼ 0) mode. For the same
configuration using the sinusoidal model, we obtain
αsin ¼ 1.373, which gives pmin ¼ 5 for both the n ¼ 1
and n ¼ 0 modes. This means that in practice, there are a
range of potential λpn for each pmin due both to the
theoretical uncertainty about the appropriate α model
and the range of available n modes. An example of a
change of the dominant radiative mode is presented in
Fig. 11, which shows the Fourier mode decomposition for
λ ¼ 0.8 and 2.0, again for Arel ¼ 0.875. We clearly observe
that the Fourier decomposition of the radiation changes
depending on λ; λ ¼ 0.8 radiates primarily in the f1 1g

FIG. 9. Dominant 2D Fourier modes of the massive radiation
Πϕ from a λ ¼ 1 (top) and λ ¼ 10 (bottom) string with initial
amplitude A0 ¼ 8, measured on a cylinder at R ¼ 64 and time
averaged over approximate half-period Δt=2 ¼ 66=4.

4We recall from the discussion in [27] that the massless
radiation spectrum for λ ¼ 10 is very similar to the spectrum
for λ ¼ 1.
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dipole mode, but λ ¼ 2 primarily in the f0 0g zero mode
and f2 0g quadrupole mode. This corresponds with the
thresholds in Table III; λ ¼ 0.8 lies below the dipole
threshold values for pmin for all models, whereas λ ¼ 2
lies between the dipole and quadrupole thresholds for the
sinusoidal model for pmin ¼ 5. We note that the use of the
string wavelength L ¼ 16 for Arel ¼ 0.875 in Table III
provides easier access to lower pmin compared with
L ¼ 32, as well as a larger difference in λpn between the
dipole and quadrupole thresholds. We also observe, as
expected, that the frequency of the modes increases and the
magnitude of the radiation decreases as λ increases.
In order to test the accuracy of the λpn threshold

predictions, we qualitatively analyse the emitted massive
spectra from the Arel ¼ 0.5 and Arel ¼ 0.875 configura-
tions. Figure 12 shows results obtained for Arel ¼ 0.5,
where the λ values plotted have been chosen to lie between
the pmin threshold values λpn in Table III; λ ¼ 0.4, 0.6, 0.9
and 1.2. We perform Fourier transforms on the extracted
signals, Pmassive (11) and, for comparison, Pmassless (12),

TABLE III. λ-dependence of pmin for the dipole (n ¼ 1) and
quadrupole (n ¼ 0) Fourier modes for strings with initial am-
plitude A0 ¼ 4 and wavelength L ¼ 32, characterized by
Arel ¼ 0.5, and initial amplitude A0 ¼ 3.5 and wavelength
L ¼ 16 with Arel ¼ 0.875. Two models for α are considered,
the Nambu-Goto model αNG calculated using Eq. (35) and the
sinusoidal model αsin using Eq. (32). Strings radiate primarily
into the Fourier mode pmin when λ < λpn, its corresponding
threshold. As λ is increased, the value of pmin also increases, so
lower frequency modes become unavailable.

Arel ¼ 0.5
pmin λpn

αNG ¼ 1.15 αsin ¼ 1.14

n ¼ 1 n ¼ 0 n ¼ 1 n ¼ 0

3 0.224 0.262 0.228 0.267
4 0.428 0.466 0.436 0.475
5 0.690 0.729 0.703 0.742
6 1.011 1.049 1.029 1.068
7 1.390 1.428 1.415 1.454
8 1.827 1.866 1.860 1.899
9 2.323 2.361 2.364 2.403

Arel ¼ 0.875
pmin λpn

αNG ¼ 1.437 αsin ¼ 1.373

n ¼ 1 n ¼ 0 n ¼ 1 n ¼ 0

2 0.145 0.299 0.173 0.327
3 0.518 0.672 0.582 0.736
4 1.041 1.195 1.155 1.309
5 1.713 1.867 1.891 2.045
6 2.534 2.688 2.791 2.945
7 3.505 3.659 3.854 4.008

FIG. 10. Massive and massless radiation emitted from a λ ¼ 0.8
string with amplitude A0 ¼ 6 and L ¼ 16, giving the effective
relative amplitude Arelð∼εeffÞ ¼ 1.5, a highly relativistic con-
figuration. The top graph shows the cumulative integrated
massive and massless components of the Poynting vector,
Pmassive (11) and Pmassless (12), on the diagnostic cylinder at R ¼
64 over time. The middle and bottom graphs show the massive
and massless components respectively integrated over the diag-
nostic cylinder and plotted over time.
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choosing to integrate from 90 ≤ t ≤ 228. This is not a
straightforward choice as, observing the massive diagnostic
over time, we see that the length of the initial signal varies
significantly and in some cases unpredictably between λ.
We judge by the extracted signals that integrating from
90 ≤ t ≤ 228 is sufficient to capture the initial burst of
radiation. We also note that this is equivalent to approx-
imately four periods of oscillation of the strings.
The Fourier transforms in Fig. 12 provide a very clear

picture of the mode decomposition of the massive signal for

Arel ¼ 0.5 and L ¼ 32. We first note that, as expected, the
overall magnitude of the massive radiation component
decreases by orders of magnitude as λ increases, while
the massless signal increases slightly due to reduced
radiation backreaction.5 The massless signal in each case
radiates primarily into the p ¼ 2 harmonic, as determined
in [27], along with a smaller p ¼ 1 signal. This provides a
very clear benchmark against which the massive signals
can be compared. We clearly observe the increase in the
massive pmin as λ increases, and can deduce the values by
comparison with the massless peak. In order to be con-
sistent with the model outlined in Sec. V, we expect pmin to
take integer values, increasing stepwise as the minimum
radiative mode increases with λ. We observe pmin ¼ 4, 5, 6
and 7 for λ ¼ 0.4, 0.6, 0.9, and 1.2 respectively, agreeing
with the predicted λpn presented in Table III. We further
note that the massive peak for the lowest massive harmonic
is not always a clean signal, sometimes comprising of a
double peak. This is consistent with the different λpn
predicted for different n harmonics.
The top panel of Fig. 13 shows the measured dominant

massive harmonic pmin normalized against the quadrupole
p ¼ 2 massless harmonic for 0.3 ≤ λ ≤ 2 spaced by
Δλ ≈ 0.1, for Arel ¼ 0.5. Measured pmin values are obtained
by numerically extracting the position of the peak of the
Fourier transform of the massive signal from Fig. 12. We
indicate the predicted thresholds λpn from Table III using
cyan shaded regions to encompass the dependence on the α
model and n harmonic. We observe the presence of distinct
harmonic thresholds as predicted in Sec. V corresponding
to the predicted integer values of pmin as expected until
λ≳ 1.5, where the levels become less distinct and merge
together. This provides strong evidence for the underlying
mechanism for radiation into massive modes being via
higher harmonic excitations of the fundamental mode of
string oscillation for low λ. We also note that the thresholds
correspond more closely with the sinusoidal model of the
path length than the Nambu-Goto model.
The bottom panel of Fig. 13 shows pmin plotted againstffiffiffi
λ

p
, determined using the same method as above, for the

highly non-linear regime with Arel ¼ 0.875. We observe
qualitatively the same behavior as for Arel ¼ 0.5, namely
that distinct thresholds are present, in this case for the full
range of λ values plotted. Again, these thresholds corre-
spond well with the integer values of pmin predicted in
Table III. This demonstrates that, although the λpn model is
derived for low relative amplitude, the mode predictions
still apply as ε → 1. Furthermore, the higher magnitude of
radiation emitted by this more relativistic configuration
results in clear harmonics being radiated up to higher λ than

FIG. 11. Absolute value of the fmng ¼ f0 0g; f1 1g; f2 0g;
f3 1g, and f4 0g Fourier modes of the massive radiation Πϕ from
strings with ε ¼ 0.875, measured on a cylinder at R ¼ 64 for
λ ¼ 0.8 (top) and λ ¼ 2 (bottom). Although dipole radiation
usually dominates, as in the λ ¼ 0.8 case, the mass threshold λp0
for the zero-mode and quadrupole radiation for a given p is
higher than for dipole modes (i.e., easier to satisfy λ < λpn),
as shown in Table III. The zero and quadrupole modes can
therefore be dominant in some tuned cases, as shown for
λ ¼ 2.

5Some additional Kreiss-Oliger damping has been applied to
the higher frequency modes to make the lowest propagating mode
clearer. This does not change the p value of the modes.
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for Arel ¼ 0.5, as numerical effects are not yet large enough
to interfere with the physical radiation.

4. λ-dependence of massive radiation spectrum

In this subsection, we investigate the overall λ-dependence
of the massive radiation spectrum. We again concentrate
primarily on two relative amplitudes; Arel ¼ 0.5 (A0 ¼ 4
with L ¼ 32) and Arel ¼ 0.875 (A0 ¼ 3.5 with L ¼ 16).
We have shown in the previous subsection that, for Arel ¼

0.5 with λ≲ 1.5 and for all λ studied for Arel ¼ 0.875,
massive radiation is only emitted in harmonic frequenciesωp

of the oscillatory sourceω0 above the frequency given by the
mass threshold ωp ∼mH ∼

ffiffiffi
λ

p
. This imposes a cutoff

frequency, such that massive radiation is suppressed with
increasing mass. The presence of these harmonics (with
reducing amplitude) indicates that the radiation generation
mechanism in the cases investigated is perturbative.
In order to model the λ-dependence of the massive

radiation from our sinusoidal string configurations, we
must first examine the power spectrum of the radiation.
This is given in Fig. 14, which shows the spectrum of

Pmassive for a range of 0.6 ≤ λ ≤ 2. We observe two key
features; first, we identify that the radiation is emitted in
distinct harmonics, shown by the peaks in the spectrum
evenly distributed in frequency ∼

ffiffiffi
λ

p
. Second, we observe

that, to leading order, the magnitude of the radiation falls
off exponentially with

ffiffiffi
λ

p
. This is perhaps unsurprising due

to the perturbative nature of the source and expectations for
massive radiation. We therefore introduce an exponential
power of

ffiffiffi
λ

p
in any mass-dependent analytic model of the

propagating radiation, for these and similar configurations.
To model the λ-dependence of our radiating string

configurations, we build on the simple phenomenological
model proposed in [9]. This model describes radiation from
sinusoidal Abelian-Higgs strings in terms of the local
radius of curvature of the string R at its maximum
amplitude. This model and the corresponding simulations
in [9] consider an infinitely long string (i.e., with periodic
boundary conditions in the z direction) with a fixed relative
amplitude A ¼ L=2, for sinusoidal perturbations with
varying L. It is postulated that an element dl of momen-
tarily stationary curved string emits an element of energy

FIG. 12. Fourier mode decomposition of Pmassive (11) and Pmassless (12) for ε ¼ 0.5. We plot λ ¼ 0.4 (top left), λ ¼ 0.6 (top right),
λ ¼ 0.9 (bottom left) and λ ¼ 1.2 (bottom right). The massive signal has been integrated from t ¼ 90 to 228 to capture the initial burst of
radiation, while minimizing effects of radiation reflected from the boundaries. Note the change in scale of the massive radiation for each
λ by a ratio indicated in the legend.
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dE ∝ e−αCRdl, where αC is a constant.6 The energy radiated
per period Erad is then given by

EradðLÞ ∝
Z

L

0

e−αCR dl: ð42Þ

This can be simplified by considering only the string
elements with the highest curvature, which contribute
the most to the integral. For a sinusoidal curve in the
regions of highest curvature,

R ≈
L2

Að2πÞ2 þ
�
6Aπ2

L2
þ 1

2A

�
z2; ð43Þ

which for convenience we take to be around z ¼ 0.
Substituting and performing the integral for A ¼ L=2,
we obtain

EradðLÞ ∝
ffiffiffiffi
L

p
exp

�
−αC

L
2π2

�
; ð44Þ

where the approximation dl ≈ dz has been used. The factor
of R in the exponent captures the decrease in radiation
suppression with increasing string curvature (decreasing
radius of curvature).
We adapt this model by incorporating a variable amplitude,

using the relative amplitude Arel ¼ 4A=L (i.e., transforming
L → 4L=Arel), and introducing the mass dependence mH ¼ffiffiffi
λ

p
observed in Fig. 14 into the exponent. We obtain the

energy loss per period

EðL; Arel; λÞ ∝ fðL; ArelÞ exp
�
−γ

ffiffiffi
λ

p L
Arel

�
; ð45Þ

where fðL; ArelÞ is a function of L and Arel and γ is a constant
to be determined. This can be compared directly with our
measurements of Pmassive.
Figure 15 shows the massive radiation Pmassive integrated

over a diagnostic cylinder at R ¼ 64 over time from 90 ≤
t ≤ 228 for Arel ¼ 0.5 and L ¼ 32. We first observe that,
for λ≳ 1.5, numerical effects have clearly become domi-
nant, overtaking the physical energy loss.7 We therefore
exclude these points from our analysis. We also exclude
points with λ≲ 0.6, as we observe from the evolution of
the string amplitude that, at this point, internal mode
oscillations of the string begin to interfere with the macro-
scopic oscillation of the string, such that the amplitude of
oscillation no longer decays faster with decreasing λ (i.e.,
lower than expected radiative decay). Finally and impor-
tantly, we note that, for the range of λ analyzed here, the
measured ∼15% decrease in Pmassive measured for similar λ
by AMR simulations compared to fixed grid simulations,

FIG. 13. Measured pmin as a function of
ffiffiffi
λ

p
for massive

radiation from string configurations with Arel ¼ 0.5 (top) and
Arel ¼ 0.875 (bottom). The graphs each summarize data from
approximately twenty simulations. Shaded regions in cyan show
the predicted thresholds λpn from Table III, where the shading
encompasses the dependence on α and n; the solid cyan line
represents the highest predicted λpn, coming from the αsin model
with n ¼ 0 for each p and the dashed cyan line is the lowest
reasonable λpn, coming from αNG with n ¼ 1. In the top plot, we
observe four clear harmonic suppression thresholds before the
radiation becomes so weak that it becomes dominated by
numerical effects (gray shaded region). In the bottom plot, we
observe three clear thresholds.

6This model for the Abelian-Higgs string is justified in [9]
using the exponential radial fall-off of the string profile. However,
we observe from our results that it is also appropriate for global
strings, whose profile has a 1=r2 fall-off. This is likely because
radiated energy is not related to the string profile itself, but to the
dynamics of the source. This concept has been studied in the
context of gravitational wave source modeling, such as [33,34].

7We note that these numerical effects at λ≳ 1.5 are not
significant when compared to the massless radiation, as the relative
magnitude is small; for example, as discussed in Sec. V C 2, for
Arel ¼ 0.5 and λ ≈ 1, the massive radiation is over 1000× smaller
than massless radiation. This means these numerical artefacts
should not have a significant effect on the string evolution overall.
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although slightly affecting the magnitude of the radiation,
does not affect the gradient of the plot.
From Fig. 15, we observe a clear exponential decay withffiffiffi
λ

p
from 0.7≲ λ≲ 1.5, consistent with (45). We perform a

least-squares regression, also plotted in Fig. 15, to obtain γ
from the gradient,

γ ¼ 0.190ð�0.003Þ: ð46Þ

The root mean square error, quoted in brackets, is calcu-
lated from the accuracy of the fit and does not take into
account the choice of points or other numerical uncertain-
ties. We also note that an exponential model with a λ

FIG. 14. Spectrum of the massive radiation Pmassive emitted from a range of λ for Arel ¼ 0.5. The top spectrum is obtained using fixed
grid simulations and no Kreiss-Oliger damping, and the bottom using AMR with σ ¼ 1. We observe a clear exponential decay in the
spectrum, particularly in the fixed grid case. In the AMR simulations, higher modes tail off slightly, due either to radiation trapping by
the refinement levels or the use of Kreiss-Oliger damping. Modes up to p ∼ 16 can be distinguished in the fixed grid simulation, with a
maximum p ∼ 12 for the AMR simulation. The lowest plotted λ ¼ 0.6 emits primarily in the p ¼ 5 mode.
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dependence also provides a good (although less good) fit
to the data, giving a root mean square error of 2.0% relative
to the measured gradient, compared to 1.4% for the

ffiffiffi
λ

p
model. However, this λ-dependence would require a
dependence on the radius of curvature of R2 in the exponent
to be dimensionally consistent.
Figure 16 shows the extracted massive signal Pmassive

for the configuration Arel ¼ 0.875 and L ¼ 16. In this case,
we integrate from 90 ≤ t ≤ 360, as the radiated signal is

longer, so a longer integration is required to provide an
accurate picture of the decay. In this non-linear regime,
finite width effects affect the evolution up to λ≲ 1.3, higher
than for Arel ¼ 0.5, so these points are excluded. However,
the higher overall magnitude of the radiation means that
higher λ can be investigated without being affected by
numerical artefacts. We again calculate the gradient of the
decay using a least-squares best fit to an exponential model,
obtaining

γ ¼ 0.177ð�0.012Þ; ð47Þ

with a relative error of 7%. The parameter γ is consistent
between the two datasets within two standard errors.
This offers further evidence that an exponential decay
model is consistent between these two rescaled string
configurations.
We also note that both of these γ values are consistent

with the investigation into energy decay from Abelian-
Higgs strings presented in [9] (within three standard
deviations for Arel ¼ 0.5 and one standard deviation for
Arel ¼ 0.875). For their setup, these authors obtain an
equivalent of γ ¼ 0.183. A priori, we may not expect
the decay constant for global and Abelian-Higgs strings to
agree, as local strings have both scalar and gauge channels
available for massive radiative decay at low λ, while the
global strings have backreaction from massless radiation.
This may suggest that of these two, scalar massive radiation
could be the dominant radiative channel for their specific
local string configuration, though would require further
investigation.
Some contrasting alternative models, such as that pro-

posed in [11], predict a power law decay of string radiation
via a primary radiation channel of massive particles. To
provide a comparison, we therefore fit a power law

EðL; Arel; λÞ ∝ gðL; ArelÞð
ffiffiffi
λ

p
Þ−γpow ð48Þ

to the same data. The fitting for Arel ¼ 0.5 and L ¼ 32 is
given in Fig. 17, from which we obtain the decay
coefficient

γpow ¼ 6.2ð�0.2Þ: ð49Þ

We note that the root mean square error is 2.9% relative to
the measured gradient, demonstrating a somewhat less
consistent fit than the previous exponential decay model
(42). Nevertheless, this large power law suppression means
that, for this configuration, particle radiation will not be a
significant decay channel when extrapolating to high λ.
The power law fit at higher amplitude Arel ¼ 0.875 and

L ¼ 16 yields the decay coefficient

γpow ¼ 2.1ð�0.1Þ; ð50Þ

FIG. 15. Massive radiation Pmassive integrated over a diagnostic
cylinder at R ¼ 64 from 90 ≤ t ≤ 228 for Arel ¼ 0.5 and a range
of 0.7 ≤ λ ≤ 2. The black line indicates an exponential fit to the
data for 0.7 ≤ λ ≤ 1.5. The grayed-out area has not been included
in the fit as it has been affected by numerical artefacts from the
mesh refinement.

FIG. 16. Massive radiation Pmassive integrated over a diagnostic
cylinder at R ¼ 64 from 90 ≤ t ≤ 360 for Arel ¼ 0.875 and a
range of 0.8 ≤ λ ≤ 2. The black line indicates an exponential fit
to the data for 1.6 ≤ λ ≤ 2. The grayed-out area has not been
included in the fit as it is significantly affected by nonlinear
excitations, including internal mode oscillations and large am-
plitude higher harmonics.
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with a relative error of 6%. In contrast to the exponential
model (42) which provides a consistent exponent across the
two regimes, here we identify a different power law in this
more nonlinear regime. It may be possible to introduce
further modeling to improve the fit of the power law model
(48), but the simple exponential model (42) remains
physically well motivated and consistent with prior expect-
ations about massive radiation. A power law suppression
model to describe the massive radiation decay is not
excluded by this work and may be appropriate in some
regimes (e.g., for the extreme case Arel ∼ εeff > 1).

VI. CONCLUSION AND FUTURE WORK

We have presented an in-depth investigation of the
massive radiation from sinusoidal configurations of global
cosmic strings using the adaptive mesh refinement code,
GRChombo. We have investigated strings with 0.3 ≤ λ ≤ 10
primarily with two relative amplitudes, Arel ¼ 0.5
(ε ¼ 0.68) and Arel ¼ 0.875 (ε ¼ 0.96).
We first presented convergence tests for strings with

λ ¼ 1, λ ¼ 2, and λ ¼ 10, both using AMR and a fixed grid
to facilitate a comparison. Both numerical approaches
converge when the string core δ ∼ 1=

ffiffiffi
λ

p
is resolved by

≳4 grid points. The resolution required for convergence
of a fixed grid simulation is therefore the same as the
resolution required on the finest refinement level of the
AMR simulations. For the configurations studied, we find
that the total massive radiation emitted Pmassive can some-
times be lower in AMR simulations than in the fixed grid
case. This is likely due to trapping of some radiation by the
refinement level boundaries, as well as implicit damping
from the averaging scheme between grid levels. This

conclusion is supported by the fact that the order of
convergence decreases as λ increases, indicating that
numerical effects are becoming significant. The decom-
position of modes is largely unaffected by this trapping,
aside potentially from those at very high frequencies, which
have a very small amplitude.
We have determined the Fourier decomposition of the

massive modes, focusing primarily on two scenarios. First,
we have examined the mode decomposition of λ ¼ 1 and
λ ¼ 10 strings for different amplitudes. We have found that
the massive radiation emitted from global strings is con-
siderably more complex than the massless radiation, con-
sisting of low magnitude, high frequency modes with
comparable amplitude. We have found that for configura-
tions up to Arel ∼ ε ∼ 1, massive radiation is significantly
suppressed compared to the massless channel, making up at
most 1% of the total radiation, even for low λ. For extreme
nonlinear amplitudes Arel ∼ εeff ∼ 1.5 and λ < 1, it was
possible to have massive radiation at a comparable magni-
tude to massless radiation (on the first oscillation).
Second, we have performed a finely-spaced scan of

Δλ ¼ 0.1 to determine the λ-dependence of the massive
radiation. We have observed for the configurations studied
that massive radiation is emitted in distinct harmonics of
the fundamental frequency of the string. This is predicted
analytically by solving the massive Klein-Gordon equation,
which also predicts the presence of a mass-dependent
cutoff frequency ωp ¼ 2πpmin=αL below which massive
modes cannot propagate. The lowest propagating harmonic
is defined by pmin ≳mH=Ωz ≈

ffiffiffi
λ

p
=Ωz. We have confirmed

the presence of this cutoff frequency by performing Fourier
analyses of the massive spectrum for 0.3 ≤ λ ≤ 2, for
both Arel ¼ 0.5 and Arel ¼ 0.875, and have demonstrated
the presence of several distinct harmonics in the power
spectrum for Arel ¼ 0.5.
Finally, we have used this finely-spaced scan to estimate

the λ-dependence of the massive radiation spectrum. For
Arel ¼ 0.5, we have demonstrated that the spectrum is
characterized by an exponential falloff Pmassive ∝ e−γ

ffiffi
λ

p
,

and is not as well described by a simple power law model.
In either case, this means that, for similar configurations,
massive radiation will not be an important decay mechanism
for oscillating strings. For Arel ¼ 0.875 (ε ∼ 1), we observe
that the mass-dependence of the spectrum again fits well with
the original exponential model (45) with the same falloff.
However, the power law model requires a different exponent
Pmassive ∝ ð ffiffiffi

λ
p Þ−2 in this regime. Further investigation is

required to determine whether or not a viable massive
radiation channel is available in realistic cosmological net-
works. This will prove to be important for future numerical
relativistic simulations of string evolution and predictions of
their gravitational wave spectra, as well as estimates of the
axion mass using simulations of axion string networks.
One of the key conclusions from this work is that, as long

as careful consideration is given to the initial conditions

FIG. 17. Massive radiation Pmassive integrated over a diagnostic
cylinder at R ¼ 64 from 90 ≤ t ≤ 228 for Arel ¼ 0.5 and a range
of 0.7 ≤ λ ≤ 2. The black line indicates a power law fit to the data
for 0.7 ≤ λ ≤ 1.5. The grayed-out area has not been included in
the fit as it has been affected by numerical artefacts from the mesh
refinement.
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and other numerical parameters, AMR is very useful for
studying cosmic strings. As long as the string core is
appropriately resolved, we are able to resolve even high
harmonics of the massive propagating radiation. As the
wavelength of the lowest propagating mode is offset by the
particle mass, this should also be true for even higher λ
(until the resolution in time of the base grid becomes the
limiting factor). The impact of numerical effects on the
magnitude of the massive radiation is relatively small,
especially when compared to the dominant massless
radiation, and the potential causes of these are currently
being addressed by the GRChombo collaboration.
Further to this, we also observe a significant saving in

computational time and resources when using AMR
compared to a fixed grid, particularly for high λ. For
example, for the λ ¼ 10 convergence test presented, the
Δx ¼ 0.0625 fixed grid simulation took a few days to run
on 4096 CPUs, not including time spent in job queues,
whereas the AMR run with Δxlmax

¼ 0.0625 took a few
hours on 128 CPUs. This means that accurate simulations
of cosmic string networks with higher λ than current fixed
grid simulations, for example λ ¼ 10, can be performed up
to 1000× faster with AMR than using a fixed grid. We plan
to exploit this capability in future work.
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APPENDIX: λ = 2 AND λ= 10 CONVERGENCE
TEST PLOTS

Here we present the convergence test plots for λ ¼ 2 and
λ ¼ 10 used in the analysis of Sec. IV B. Figures 18 and 19
show the λ ¼ 2 tests for a fixed grid and AMR respectively.
Figures 20 and 21 show the fixed grid and AMR tests for
λ ¼ 10.

FIG. 18. Absolute value (top) and convergence (bottom) of the
energy emitted by massive radiation Pmassive from a λ ¼ 2 string
with initial amplitude A0 ¼ 4, measured on a cylinder at R ¼ 64
on a fixed grid for different refinements Δx (test FG in Table I).
The convergence plot shows the difference in the magnitude of
Pmassive between different resolutions, with the higher resolution
results also plotted rescaled according to third- and fourth-order
convergence.
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FIG. 19. Absolute value of the energy emitted by massive
radiation Pmassive from a λ ¼ 2 string with initial amplitude
A0 ¼ 4, measured on a cylinder at R ¼ 64 using adaptive mesh
refinement (test AMR in Table I). The convergence plot shows the
difference in the magnitude of Pmassive between different reso-
lutions, with the higher resolution results also plotted rescaled
according to second-, third- and fourth-order convergence. FIG. 20. Absolute value (top) and convergence (bottom) of the

energy emitted by massive radiation Pmassive from a λ ¼ 10 string
with initial amplitude A0 ¼ 4, measured on a cylinder at R ¼ 64
on a fixed grid for different refinements Δx (test FG in Table I).
The convergence plot shows the difference in the magnitude of
Pmassive between different resolutions, with the higher resolution
results also plotted rescaled according to fifth- and sixth-order
convergence.
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