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Compensated isocurvature perturbations (CIPs) are relative density perturbations in which a baryon-
density fluctuation is accompanied by a dark matter density fluctuation such that the total-matter density is
unperturbed. These fluctuations can be produced primordially if multiple fields are present during inflation,
and therefore they can be used to differentiate between different models for the early Universe. Kinetic
Sunyaev-Zeldovich tomography allows for the reconstruction of the radial-velocity field of matter as a
function of redshift. This technique can be used to reconstruct the total-matter-overdensity field, independent
of the galaxy-density field obtained from large-scale galaxy surveys. We leverage the ability to measure the
galaxy, and matter, overdensity fields independently to construct a minimum-variance estimator for the
primordial compensated isocurvature perturbation (CIP) amplitude, based on a mode-by-mode comparison
of the two measurements. We forecast that a configuration corresponding to CMB-S4 and VRO will be able
to detect (at 2σ) a CIP amplitude A (for a scale-invariant power spectrum) as small as A ≃ 5 × 10−9.
Similarly, a configuration corresponding to SO and DESI will be sensitive to a CIP amplitude A ≃ 1 × 10−7.
These values are to be compared to current constraints A ≤ Oð0.01Þ.
DOI: 10.1103/PhysRevD.107.043504

I. INTRODUCTION

Improving our understanding of the statistical character-
istics of the primordial density fluctuations of our Universe
is one of the primary goals of upcoming large-scale
structure surveys and cosmic microwave background
(CMB) experiments. The current observations of the
small-amplitude ½Oð10−5Þ� temperature and polarization
fluctuations in the CMB are consistent with Gaussian
adiabatic fluctuations, as predicted by single-field models
of inflation. Nevertheless, the search for small deviations
from adiabaticity or Gaussianity remains a promising
direction of research that can allow us to effectively
distinguish between different models of inflation and
determine the number of degrees of freedom governing
the dynamics of the early Universe (e.g., [1–14]).
One such deviation that is particularly difficult to probe

with CMB data alone is the class of isocurvature perturba-
tions that leave the total-matter density unchanged [15–17].
These compensated isocurvature perturbations (CIPs)
may arise in various models of inflation with multiple
fields [15,16,18–22] and also during baryogenesis [23].
In the multifield models, the CIP fluctuations may be fully
correlated with the adiabatic perturbation, completely
uncorrelated, or (most generally) somewhere in between.

Specifically, uncorrelated CIPs are a characteristic of the
baryogenesis model [23].
Because CIPs leave the total matter distribution

unchanged, they give rise to no CMB fluctuations at linear
order. Instead, they induce higher-order effects on the CMB
power spectrum [24–28], and the CMB trispectrum [29–31].
On small-distance scales, the effects of CIPs may be
manifest in CMB spectral distortions [32,33] or the recom-
bination history [34]. Because these higher-order effects are
harder to measure, CIPs are rather poorly constrained by the
CMB data, with the recent constraints allowing for fairly
large-amplitude perturbations. However, there are various
other prospects to probe different models of CIPs. For
example, the effects of CIPs on baryon acoustic oscillations
have been studied in Ref. [35–37]. The effects of CIPs on
21-cm fluctuations were considered in Ref. [16], and their
implications for the velocity acoustic oscillations [38,39] in
the 21-cm power spectrum are discussed in Ref. [40].
Finally, Refs. [41,42] assessed the sensitivity of galaxy
clustering to the amplitude of CIPs through the measurement
of the scale-dependent galaxy bias induced due to CIPs.
Here, we study the prospects to use kinetic Sunyaev-

Zeldovich (kSZ) tomography to seek uncorrelated CIPs.
kSZ tomography [43–49] allows for the reconstruction of
the line-of-sight component of the peculiar-velocity field in
a 3-dimensional volume. This is accomplished by cross-
correlating the peculiar velocity-induced temperature fluc-
tuation (the kSZ effect [50–54]), in a CMB map, with a*nanilku1@jhu.edu
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large-scale galaxy survey, allowing for a measurement
of the kSZ contribution as a function of redshift. Given
that the total-matter field can be reconstructed from the
velocity field, kSZ tomography provides the ideal arena
for testing models, like those with CIPs, in which baryons
and dark matter may be set apart from each other. In recent
works [55,56], the improvement coming from the addition
of this independent tracer was explored for models of
correlated CIPs in which the CIP is fully correlated with
the adiabatic perturbation.
The above methodology allows us to compare the kSZ

tomography-based matter reconstruction field to galaxy
survey data to obtain excellent constraints on the amplitude
of the CIP power spectrum. In fact, because these two
tracers of the large-scale matter distribution are obtained
independently, we can construct an estimator that compares
the amplitude of the galaxy-density fluctuation with that of
the matter-density fluctuation for each Fourier amplitude.
This estimator is thus not cosmic-variance limited and can,
in principle (in the limit of perfect measurements), probe an
arbitrarily small CIP amplitude. Given that the estimator
works on a mode-by-mode basis, it also works for correlated
CIPs, although it does not capitalize upon additional effects
induced by the correlation [55].
In this paper, we explain the construction of this

estimator and make forecasts on the sensitivity of kSZ
tomography to the CIP power-spectrum amplitude A. We
construct the estimator assuming that the CIP is a pri-
mordial perturbation field. We note that the CIP amplitude
is, strictly speaking, degenerate with a CIP bias that relates
the CIP perturbation to the galaxy-density perturbation it
induces. This CIP bias is, however, expected to be of order
unity and can be obtained from simulations [41,42].
Furthermore, in the event that the effects of CIPs are
detected in the CMB, their effects in kinetic Sunyaev-
Zeldovich tomography can then be used to establish the
CIP bias.
In our forecasts, we consider two baseline experiment

configurations: “baseline 1” matching the expected spec-
ifications of the Vera Rubin Observatory (VRO) [57] and
CMB-S4 [58], and “baseline 2” corresponding to the Dark
Energy Spectroscopic Instrument (DESI) [59] and Simons
Observatory (SO) [60,61]. We find that baseline 1 results in
a sensitivity of σÂ ≈ 2.3 × 10−9, where the errors represent
the root variance with which the CIP power spectrum
amplitude A can be determined. Similarly, we forecast that
the expected sensitivity of baseline 2, based on our
minimum variance estimator, is σÂ ≈ 5.4 × 10−8. These
results indicate that it may be possible to probe CIP
perturbations with an amplitude comparable to the ampli-
tude of the primordial power spectrum As. More specifi-
cally, we find a relative uncertainty of σÂ=As ≈ 1.0 and
σÂ=As ≈ 25 for each of the baselines, respectively, where
we use the value of As quoted by the Planck 2018 CMB
analysis [28].

This paper is organized as follows: In Sec. II, we
introduce our parametrization of the CIP model, and in
Sec. III, we derive the minimum-variance estimator for the
CIP amplitude. We detail the relevant models for the noise
and power spectra used in our analysis in Sec. IV. We then
present our results in Sec. V. For all our analysis we adopt
the ΛCDM Cosmology as the fiducial model with the
following parameter values, taken from Planck 2018 [28]:
reduced Hubble constant h ¼ 0.67, baryon density param-
eter Ωb ¼ 0.049, cold dark matter density parameter
Ωcdm ¼ 0.264, spectral index ns ¼ 0.965 and amplitude
of the primordial scalar power spectrum As ¼ 2.2 × 10−9.
These forecasts represent a considerable improvement over
current constraints A≲ 0.01 from the CMB [28,31] and
galaxy clusters [17,31], although should be viewed as
complementary to the cluster constraint which probes wave
numbers primarily around k ∼ 0.1 Mpc−1 as opposed to
Hubble scales k ∼ 10−4 Mpc−1.

II. COMPENSATED ISOCURVATURE
PERTURBATIONS

A. Definitions and conventions

We define the CIP field Δðx⃗Þ to be the primordial
fractional baryon overdensity through

ρbðx⃗; zÞ ¼ ρ̄bðzÞ½1þ Δðx⃗Þ�; ð1Þ

which is then accompanied by a compensating dark-matter
underdensity,

ρcðx⃗; zÞ ¼ ρ̄cðzÞ½1 − fbΔðx⃗Þ�: ð2Þ

Here ρ̄bðzÞ and ρ̄cðzÞ are respectively the mean baryon and
dark matter densities at redshift z, and fb is the ratioΩb=Ωc
today. These defining relations are understood to be valid
at sufficiently early times, such that the dark matter and
baryons have not moved significantly, either due to non-
linear evolution at late times or before recombination due to
the tight coupling of baryons to photons. Therefore, this
setup leads to a modulation of the relative fraction of
baryons and dark matter on large scales, while keeping the
total matter density fixed.
The CIP perturbation Δðx⃗Þ is a realization of a random

field with power spectrum PΔΔðkÞ ¼ AFðkÞ, which we
have written in terms of an amplitude A and fiducial k
dependence FðkÞ. Under the assumption of Gaussian, slow-
roll inflation, the canonical choice for the k dependence is
the scale-invariant power spectrum FðkÞ ¼ 1=k3 (see, for
example, Ref. [62]). This choice is also consistent with the
latest Planck satellite CMB analysis presented in Ref. [28].
In this case, the CIP variance, smoothed in spheres of radius
R, is [26]
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Δ2
rmsðRÞ ¼

1

2π2

Z
k2dk½3j1ðkRÞ=ðkRÞ�2PΔΔðkÞ; ð3Þ

where j1ðxÞ is the spherical Bessel function. If we take
R to be the CMB scale considered in Ref. [26], then
Δ2

rms ≃ A=4. The current constraints to this amplitude
(for uncorrelated CIPs) are Δ2

rms ¼ 0.0037þ0.0016
−0.0021 from

Planck [28], Δ2
rms ≲ 0.012 (95% C.L.) from the WMAP

trispectrum [31], and Δ2
rms ≲ 0.006 from baryon fractions

in galaxy clusters [17,31].

B. CIPs and the galaxy perturbation

Following Ref. [42], the linear-order expression for the
fractional galaxy-density perturbation at comoving position
x and redshift z can be written

δgðx; zÞ ¼ bgðzÞδmðx; zÞ þ bCIPðzÞΔðxÞ; ð4Þ

where bgðzÞ is the usual linear galaxy bias, and bCIPðzÞ is a
CIP bias that parametrizes the contribution of the CIP to the
galaxy-density perturbation. The fractional matter-density
perturbation δmðx; zÞ is taken to be the large-scale matter
perturbation which grows proportional to the linear-theory
growth factor. Given that the CIP generates no gravita-
tional-potential perturbation, ΔðxÞ will remain approxi-
mately constant on large-distance scales and so has no
redshift dependence.
The relation between ΔðxÞ and δgðx; zÞ, parametrized by

the CIP bias bCIPðzÞ, can be obtained through simulations.
This bias is determined by two competing effects: (1) the
effect on the halo mass function, which decreases with
increasing Δ; and (2) the ratio of the stellar mass to the halo
mass, which increases with Δ. Simulation results for bCIP
depend on whether the galaxies are selected by halo mass or
stellar mass. Further details can be found in Refs. [41,42].
Given Eq. (4), the galaxy power spectrum for uncorre-

lated CIPs will be

Pggðk; zÞ ¼ b2gðzÞPmmðk; zÞ þ b2CIPðzÞPΔΔðkÞ: ð5Þ

Thus, the CIPs show up as an additional contribution to the
galaxy power spectrum. In principle (and in practice), the
CIP contribution b2CIPðzÞPΔΔðkÞ to the galaxy power
spectrum can be inferred by comparing the observed galaxy
power spectrum to the matter power spectrum obtained
from the peculiar velocity field determined from kSZ
tomography. However, the measurements of both of the
power spectra, PggðkÞ and PmmðkÞ, are cosmic-variance
limited i.e., they are both independently limited by the
number of Fourier modes of the galaxy and velocity fields
that can be obtained with high signal to noise. Therefore,
using the above model to constrain the CIP amplitude will
be limited by the effects of cosmic variance on each of the
measured power spectra.

III. MINIMUM-VARIANCE ESTIMATOR

With kSZ tomography, the CIP perturbation amplitude
can be obtained on a mode-by-mode basis, under (relative)
cosmic-variance cancellation. In Fourier space, the estima-
tor for the amplitude Δk is then

cΔk ¼ ðcδg;k − bgdδm;kÞ=bCIP; ð6Þ

where the overhat denotes an estimator, and we have
dropped any redshift dependence for ease of notation.
This estimator has a variance (under the null hypothesis
Δ ¼ 0),

PN
ΔΔðkÞ ¼ ½hjΔkj2i� ¼ b−2CIP½NggðkÞ þ b2gNmmðkÞ�; ð7Þ

where NggðkÞ and NmmðkÞ are the noise contributions to the
galaxy and matter power spectra, respectively.
The detectability of CIPs can be assessed by determining

the error σÂ with which the amplitude A for the CIP power
spectrum can be measured. The minimum-variance esti-
mator Â for the amplitude is then obtained by adding the
estimators from each Fourier mode with inverse-variance
weighting,

Â ¼ b2CIPσ
2
Â

X
k

jcδg;k − bgdδm;kj2=FðkÞ
2½NΔΔðkÞ=FðkÞ�2

: ð8Þ

Here,

σ2
Â
¼ b−4CIP

�
1

2

X
k

½FðkÞ=NΔΔðkÞ�2
�
−1
; ð9Þ

is the variance with which the CIP amplitude A can be
determined, and we have defined NΔΔðkÞ≡ NggðkÞ þ
b2gNmmðkÞ to make explicit the bCIP dependence of the

estimator. Since this method relies on measurements of cδg;k
and dδm;k, we no longer have two independent terms carrying
the cosmic-variance limitations. Therefore, using this esti-
mator method, we can decrease the effects of sample
variance and increase sensitivity to the CIP amplitude, in
comparison to the methodology presented below Eq. (5).

IV. NOISE MODELS

We model the noise in the galaxy autopower spectrum
assuming that the primary contribution comes from galaxy
shot noise along with photo-z errors. Photo-z errors can be
implemented by a convolution of the galaxy density field
with a Gaussian kernel in the radial direction. The galaxy
noise power spectrum is then given by

Nggðk; μÞ ¼
1

W2ðk; μÞngal
; ð10Þ
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where ngal is the average galaxy number density of the
specific survey, and Gaussian kernel Wðk; μÞ is defined as

W2ðk; μÞ ¼ e−k
2μ2σ2ðzÞ=H2ðzÞ; ð11Þ

with redshift scattering σðzÞ.
The noise in the independently-calculated matter-

overdensity field is derived from the kSZ velocity
reconstruction noise. As shown in Ref. [48], the noise in
the kSZ-tomography-based reconstruction of the velocity
field is given by

NvvðkL;μLÞ ¼ μ−2L
2πχ2�
K2�

�Z
dkS

kSPNL
ge ðkSÞ2

PNL
gg ðkSÞCtot

l¼kSχ�

�
−1
; ð12Þ

where χ� refers to the comoving distance to the redshift of
consideration z�, kL refers to the long-wavelength mode, kS
refers to the short-wavelength mode, and μL refers to the
angle of the large-scale mode with respect to the line of
sight, i.e., μL ¼ k̂L · n̂. Furthermore, PNL

gg ðkS; μSÞ refers to
the small-scale galaxy-galaxy autopower spectrum and
PNL
ge ðkS; μSÞ is the small-scale galaxy-electron power spec-

trum. Finally, in the above equation we use the radial
weight function K� given by

K� ≡ −TCMBσTne;0e−τðχ�Þð1þ z�Þ2; ð13Þ

where n̄e;0 is the mean electron density today, and τ is the
optical depth. It is important to note that the velocity
reconstruction noise is independent of the magnitude of kL.
Using the late-time, linearized, continuity-equation-

based relation between the peculiar-velocity field and
matter-overdensity field, we can write the noise in the
matter reconstruction as

NmmðkL; μÞ ¼
k2L

ðfaHÞ2�
NvvðkL; μÞ; ð14Þ

where f refers to the linear growth rate d lnG=d lna, H is
the Hubble parameter, and a is the scale factor at the redshift
of interest. SinceNvv is independent of the magnitude of kL,
the above relation implies that the noise in the reconstructed
matter power spectrum is proportional to kL; i.e., the noise is
lowest on the largest scales.
The small-scale galaxy-galaxy and galaxy-electron

power spectra appearing in Eq. (12) are calculated within
the halo model including the halo occupation distribution
(HOD) [63,64]. The specific modeling assumptions and
parameter values used to construct the small-scale spectra
can be found in Appendix A of Ref. [65]. To ensure that
the computed small-scale spectra under the HOD model
are consistent with the assumed experiment specifications,
we use the following prescription. In the HOD model,
the galaxy sample is specified by imposing a particular

threshold stellar mass mthresh⋆ of observable galaxies. For
each configuration, we choose an mthresh⋆ such that the total
predicted number density of observed galaxies matches the
number density for the given experiment.
Finally, in order to complete the model of the velocity-

reconstruction noise, we define the CMB contribution as
follows. The total CMB contribution Ctot

l , appearing in
Eq. (12), is assumed to be

Ctot
l ¼ CTT

l þ CkSZ-late-time
l þ Nl; ð15Þ

whereCTT
l is the lensed CMB temperature power spectrum,

CkSZ-late-time
l is the low-redshift contribution to kSZ, and

finally, Nl is the instrumental-noise power spectrum of the
CMB map, which is modeled as

NðlÞ ¼ s2 exp
�
lðlþ 1Þθ2FWHM

8 ln 2

�
: ð16Þ

Here, s labels the sensitivity of the instrument, and θFWHM
is the resolution. We do not include a contribution from
atmospheric noise since it is expected to be subdominant to
the instrument and kSZ contributions at the relevant high
multipoles of l > 3000.

V. RESULTS

In this section, we provide forecasts for two different
experimental configurations, choosing a fixed, fiducial set
of values for the survey parameters to model the noise
expected in each case. We then present the dependence of
σÂ on the survey parameters by varying each independ-
ently, to better establish the direction for improvements to
future surveys.

A. Baseline forecasts

We forecast future sensitivity to the amplitude of the CIP
by evaluating Eq. (9) for two experimental configurations:
(1) a high galaxy number density, photometric survey
similar to VRO [57] along with a CMB experiment with
specifications that match CMB-S4 [58], and (2) a low
galaxy-number density, spectroscopic survey like DESI [59]
with a CMB experiment like SO [60]. The set of exper-
imental survey parameters used in our calculation have been
taken from Ref. [65], and are summarized in Table I.
It is important to note that the CIP bias bCIP is

degenerate with the CIP amplitude. Despite this degen-
eracy, in our constructed estimator Â, and the associated
variance σÂ, we continue to treat A and bCIP as separate
parameters to clearly establish the dependence of σÂ on the
chosen value of the bias. The exact value bCIP can be
computed using simulations, and is expected to be of order
unity, as presented in Refs. [41,42]. To remain consistent
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with our previous definitions, for these forecasts, we fix
the value of bCIP, assuming that the galaxy samples are
selected by a threshold stellar mass mthresh⋆ . The mthresh⋆
values are chosen to match the predicted galaxy number
density of each survey and are consistent with the small-
scale galaxy power spectra used to compute the velocity
reconstruction noise for each experimental configuration.
The assumed value of mthresh⋆ for each survey along with
the corresponding value of bCIP, estimated from the results
in [41,42], have also been included in Table I.
Instead of discretely summing over the Fourier modes, to

compute σÂ, we evaluate Eq. (9) in the continuous limit as
follows:

σ2
Â
¼ b−4CIP

�
V
2

Z
dk3

ð2πÞ3
�

FðkÞ
NΔΔðkÞ

�
2
�−1

;

¼ b−4CIP

�
V
2

Z
kmax

kmin

Z
1

−1

k2dkdμ
ð2πÞ2

�
FðkÞ

NΔΔðkÞ
�

2
�−1

; ð17Þ

where we have accounted for the fact that the variance
NΔΔ is only dependent on k and μ, with the latter being
induced by the kSZ-based velocity reconstruction and the
inclusion of photo-z errors. The value of bg is completely
defined by our choices for ngal and halo bias bh, given the
HOD model specifications from Ref. [65]. Furthermore,
on large scales, where we expect the signal to be
dominant, we can approximate bg ≈ bh. For our forecasts,
we adopt the canonical choice FðkÞ ¼ 1=k3. The integral
over Fourier modes is performed from a lower limit
kmin ≡ π=V1=3, restricted by the survey volume V, to an
upper limit kmax ≈ 10−1 Mpc−1.
Through our analysis, we find that for the configuration

of VRO and CMB-S4, σÂ ≈ 2.3 × 10−9 which corresponds
to a relative sensitivity of σÂ=As ≈ 1.0, where As is the
amplitude of the primordial power spectrum. Similarly, for
the configuration of DESI and an SO-like CMB experiment,
we find that σÂ ≈ 5.4 × 10−8 with a relative uncertainty of
σÂ=As ≈ 25. For these relative uncertainty estimates, we use
the value As ¼ 2.2 × 10−9 determined by the most recent
Planck 2018 CMB analysis [28].

B. Experiment parameter variations

In order to assess which experimental limitations have
the most significant impact on our ability to measure the
CIP power spectrum amplitude, we isolate the effects of
certain experimental parameters from Table I by varying

FIG. 1. Left: σÂ as a function of kmin for each of the baselines. The lower cutoff for kmin, on the left, is defined by the survey volume V.
For lower kmin baseline 1 performs better due to VROs higher ngal. For larger values of kmin, photo-z errors dominate the noise in baseline
1, and baseline 2 performs better, in comparison. Right: σÂ as a function of ngal for each of the baselines. The significant increase in

sensitivity to the CIP power-spectrum amplitude Âwith increasing galaxy number density occurs to the lowered shot noise which allows
for a better reconstruction of the large-scale galaxy and matter overdensity modes. Baseline 2 performs better at lower ngal due to
spectroscopic redshift measurements, however, the increased CMB noise for this configuration causes results to plateau at larger ngal.

TABLE I. Baseline configurations for the cross-correlated CMB
and LSS experiments. Values for baseline 1 match the specifica-
tions of the VRO survey and CMB-S4. The values for baseline 2
are similar to those expected for DESI and SO. The chosen values
for the CIP bias are taken from Table 1 of Ref. [42]. The survey
volumes are the same across the two configurations to emphasize
the dependence of the results on galaxy number density and
photo-z errors.

Baseline 1 Baseline 2

Redshift z 1.0 1.0
Survey volume V 100 Gpc3 100 Gpc3

Halo bias bh 1.6 1.6
Galaxy density ngal 10−2 Mpc−3 2 × 10−4 Mpc−3

Photo-z error σz 0.06 � � �
Threshold mass mthresh⋆ 109.5M⊙ 1011M⊙
CIP bias bCIP 0.32 0.40
CMB resolution θFWHM 1.5 arcmin 1.5 arcmin
CMB sensitivity s 1 μK − arcmin 5 μK − arcmin
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each individually and holding all other elements of the
configuration constant. The results of these variations are
discussed below.
First, to highlight the scales that most prominently

contribute to the signal, we plot the value of σÂ as a
function of the smallest measurable Fourier mode kmin. This
variation corresponds to changing the largest recoverable
wave number from (fixed) survey volume V, and directly
impacts the lower limit of “summation” evaluated via
Eq. (17). The results for both baselines have been presented
in Fig. 1 (left). The displayed results indicate that the
inclusion of larger scales increases survey sensitivity to the
CIP power spectrum amplitude. This is an expected result,
not only because the CIP signal is largest at small k [since
we have chosen FðkÞ ∼ 1=k3 for this analysis], but also
because the noise in the reconstructed matter overdensity
field is smallest on largest scales [see Eq. (14)]. At lower
values of kmin, baseline 1 performs better than baseline 2,
likely due to the lowered shot noise (higher ngal). However,
baseline 2 performs better at higher kmin, where the effects
of shot noise are minimized and the photo-z errors become
dominant in the baseline 1 estimates.
Next, we focus on highlighting the effects of increasing

galaxy number density ngal on the value of σÂ. The results
for this variation for each of the baselines (holding all other
experimental parameters constant, for each individual base-
line) can be seen in Fig. 1 (right). The results displayed show
that an increasing galaxy number density allows for higher
survey sensitivity to the CIP power spectrum amplitude A.
This behavior is a direct result of the fact that a higher galaxy
number density equates to a lower shot noise, which not only
allows for the measurement of the larger-scale galaxy modes
but also decreases the matter reconstruction noise (through
a lower overall Nvv). The two curves are relatively parallel
for 10−4 Mpc−3 < ngal < 10−2 Mpc−3, with baseline 2 per-
forming better in this region due to spectroscopic redshift
measurements. However, baseline 1 (VROþ CMB-S4)
performs better at a higher galaxy number density, while
the results from baseline 2 (DESIþ CMB-SO) plateau,
likely due to the difference in CMB resolutions.
What is more interesting to analyze is the effect of

galaxy number density on the relation between σÂ and
kmin. Figure 2 displays σÂ as a function of kmin for different
values of ngal. For these curves, we assume the baseline 1
configuration for all other survey parameters and keep the
value of bCIP fixed. The displayed results indicate that a
higher galaxy number density results in a steeper decrease
of σÂ with decreasing kmin, i.e., a higher ngal allows for a
greater order-of-magnitude improvement in σÂ with a fixed
increase in survey volume. This effect is particularly
evident for 10−3 Mpc−1 < kmin < 10−2 Mpc−1. The black
dashed line, labeled “No Noise,” portrays the dependence
of σÂ on kmin in the absence of shot noise (ngal → ∞)
and photo-z errors. In this ideal case, we see that σÂ

approximately scales as k3.5min. This behavior is explained by
the chosen model for PΔΔðkÞ [with FðkÞ ¼ 1=k3] along
with the k2 scale dependence of the matter reconstruction
noise [Eq. (14)].
On the contrary, assuming the same baseline configura-

tion as above, we found that varying kmin between
10−3 Mpc−1 and 10−2 Mpc−1 has a minimal impact on
the steepness of the dependence of σÂ on the galaxy
number density. That is, even though a decreased kmin
improves sensitivity to the CIP power-spectrum amplitude,
a fixed increase in the galaxy number density consistently
leads to a fixed order-of-magnitude improvement in σÂ for
10−3 Mpc−1 < kmin < 10−2 Mpc−1. The results only sig-
nificantly diverge for ngal > 10−1.75 Mpc−3, which is likely
due to the shot noise becoming subdominant at these higher
values of galaxy number density.
Finally, to highlight the effects of CMB noise on survey

sensitivity to A, for each of the discussed baseline configu-
rations, we varied the CMB telescope sensitivity s, and
resolution θFWHM individually, holding all other experimen-
tal parameters constant. We found that, once again, the
difference in galaxy number density across the two base-
lines severely impacts the order of magnitude improvement
in σÂ, given a fixed improvement in CMB noise parameters.
We vary the CMB sensitivity from 0.25 μK-arcmin to
10 μK-arcmin and find a steady increase in σÂ by a factor
of 3 for the baseline 1 configuration and a factor of 1.1 for
the baseline 2 configuration. Similarly, we vary CMB
telescope resolution from 0.1 arcmin to 10 arcmin and
find a relatively steady increase in both cases, by a factor of
250 for the baseline 1 configuration and a factor of 40 for
baseline 2. This indicates that, at a higher value of ngal,
surveys are more sensitive to increases in CMB instrument
noise.

FIG. 2. σÂ as a function of kmin for various values of ngal (in
Mpc−3). The results indicate that an increasing galaxy number
density improves the steepness of decrease in σÂ with decreasing
kmin, most evidently for 10−3 Mpc−1 < kmin < 10−2 Mpc−1. The
dashed line displays the “ideal” case in which ngal is infinitely
large, i.e., the shot noise is zero.
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For completeness, we also varied the photo-z error
assumed for baseline 1, holding all other experiment
parameters fixed. Varying the value of σz from 0.0 to
2.0 resulted in an increase in σÂ by a factor of 3.5. This
minimal effect from increasing photo-z is expected, given
that we are primarily reliant on the signal from the largest
scales for the measurement. We also varied the assumed
value of the Gaussian galaxy bias bg for both the baseline
configurations (holding ngal fixed) to conclude that its
effect on survey sensitivity to σÂ is negligible.

VI. DISCUSSION

In this paper, we forecast future survey sensitivity to the
amplitude of the CIP power spectrum A, assuming that
the compensated perturbations are sourced primordially.
The compensated nature of these isocurvature perturba-
tions causes CIPs to contribute only at second order to the
CMB, leading to poor constraints that allow for the CIP
amplitude to be over five orders of magnitude larger than
that of the primordial adiabatic perturbation. In contrast,
the CIP amplitude is expected to contribute at leading
order to the galaxy overdensity field [see Eq. (4)], making
it a valuable statistic to investigate the CIP amplitude.
Therefore, in our work, we construct a minimum variance
estimator that compares the amplitude of the galaxy
density fluctuation to the independently obtained matter
overdensity amplitude, on a mode-by-mode basis. We
show that leveraging the ability to measure the matter
over-density field using kSZ tomography, independently
of the galaxy over-density field, allows one to probe CIP
amplitudes as small as that of the primordial adiabatic
perturbation, under sample variance cancellation.
We use the minimum-variance estimator to forecast that a

survey configuration corresponding to CMB-S4 and VRO
results in a sensitivity of σÂ ≈ 2.3 × 10−9. Similarly, a
configuration corresponding to SO and DESI results in a
sensitivity of σÂ ≈ 5.4 × 10−8. These sensitivities corre-
spond to relative uncertainties of σÂ=As ≈ 1.0 and σÂ=As ≈
25 for each of the combinations, respectively, where As

represents the amplitude of the primordial power spectrum.
For these forecasts, we assume a fixed value for the CIP bias
bCIP for each configuration, drawing from the simulation-
based results presented in Refs. [41,42]. Although the CIP
bias is, strictly speaking, perfectly degenerate with the CIP
perturbation amplitude, we choose not to consolidate these
two parameters into a single amplitude term to make explicit
the dependence of σÂ on the value of bCIP. Furthermore,
since this dependence is just a factor of scale, it is
straightforward to map the sensitivities quoted in this paper
to a different value of bCIP or to a constraint on a
consolidated amplitude parameter b2CIP × A.

The dramatic improvement in sensitivity to CIPs derives
from the possibility, enabled by kSZ tomography, to
measure the galaxy and total-matter fields independently
and thereby circumvent the cosmic-variance limit in many
other probes. Thus, even one very well-measured Fourier
mode allows the CIP to be probed. Our results indicate,
moreover, that the sensitivity comes primarily from mea-
surements at the largest scales, a consequence largely of
the k dependence of the relation between the total-matter
perturbation and the peculiar velocity probed by the kSZ
effect. We thus conclude that in order for the promising
statistical errors forecast here to be achieved, systematic
effects that might affect the measurement of the galaxy-
density field and CMB-temperature perturbations on the
largest distance scales must be well under control. We also
surmise that relativistic effects will need to be included in
the analysis.
The sensitivity to the CIP amplitude we forecast here

compares well (within a factor of ∼4) with Ref. [55], where
authors evaluated the prospects to probe correlated CIP
fluctuations with kSZ tomography. Most recent upper limits
on CIPs amplitude are provided by the scale-dependent
mass-to-light ratio from measurements of BAOs [36,66],
which are comparable to the constraints from the CMB [26],
of the order σA ∼Oð10−4Þ. These constraints also compare
well with forecasted sensitivities on the BAO phase shift,
induced by spatially varying correlated CIP fluctuations,
explored in Ref. [37]. More recently, Ref. [40] proposed
using measurements of the velocity acoustic oscillations
(VAOs) during cosmic dawn [38,39] to probe both corre-
lated and uncorrelated CIPs fluctuations at a sensitivity
reaching σA ∼Oð10−5Þ in the foreseeable future. These
studies find that the sensitivity of the kSZ tomography
studied here and in Ref. [55] will likely remain orders of
magnitude better compared to that of CMB, BAO, and the
VAO signals.
Constraining the CIP amplitude at higher order will not

only allow for a better understanding of whether baryon and
CDM fluctuations trace the matter density but also will help
rule out different, nontrivial models of many-field inflation.
In fact, to accurately probe signatures of deviations from
adiabaticity and Gaussianity of the early Universe, account-
ing for CIPs may be essential. For example, Ref. [42] shows
that, depending on the degree of correlation of the CIP
with the primordial adiabatic perturbation, the CIP signal
may exactly match the scale-dependent signal from the fNL
term when probing scale-dependent bias for signatures of
primordial non-Gaussianity in the single field scenario. In
the curvaton scenario, depending on the correlation coef-
ficient assumed between the CIP and the inflaton or the
curvaton, we would expect similar degeneracies to arise
when using the galaxy bias to simultaneously probe fNL and
τNL. Such degeneracies may also affect the fidelity of
lensing data extracted from the CMB, due to similarities
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between the effects of lensing and CIPs on the CMB two-
point statistics [25].
This emphasizes the importance of considering CIPs

to make unbiased measurements of early Universe char-
acteristics. Although we do not consider the effects of non-
Gaussianities in our current estimator construction and
make a simple set of forecasts under the null hypothesis, we
highlight the effectiveness of kSZ tomography as a probe
for early universe cosmology. When considering more
complicated models including the CIP, we expect cross-
correlation tools such as the kSZ tomography, multitracer
analysis with different populations of galaxies and haloes,

CMB lensing, and many others to be essential in obtaining
tighter constraints under sample variance cancellation and
breaking degeneracies across the varying signatures of the
inflationary Universe.
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Kamionkowski, Baryons do trace dark matter 380,000 years
after the big bang: Search for compensated isocurvature
perturbations with WMAP 9-year data, Phys. Rev. D 89,
023006 (2014).

[32] T. Haga, K. Inomata, A. Ota, and A. Ravenni, Exploring
compensated isocurvature perturbations with CMB spectral
distortion anisotropies, J. Cosmol. Astropart. Phys. 08 (2018)
036.

[33] J. Chluba and D. Grin, CMB spectral distortions from small-
scale isocurvature fluctuations, Mon. Not. R. Astron. Soc.
434, 1619 (2013).

[34] N. Lee and Y. Ali-Haïmoud, Probing small-scale baryon and
dark matter isocurvature perturbations with cosmic micro-
wave background anisotropies, Phys. Rev. D 104, 103509
(2021).

[35] M. T. Soumagnac, R. Barkana, C. G. Sabiu, A. Loeb, A. J.
Ross, F. B. Abdalla, S. T. Balan, and O. Lahav, Large-scale
distribution of total mass versus luminous matter from
baryon acoustic oscillations: First search in the Sloan digital
sky survey III baryon oscillation spectroscopic survey data
release 10, arXiv:1602.01839.

[36] M. T. Soumagnac, C. G. Sabiu, R. Barkana, and J. Yoo,
Large scale distribution of mass versus light from baryon
acoustic oscillations: Measurement in the final SDSS-III
BOSS data release 12, Mon. Not. R. Astron. Soc. 485, 1248
(2019).

[37] C. Heinrich and M. Schmittfull, BAO modulation as a probe
of compensated isocurvature perturbations, Phys. Rev. D
100, 063503 (2019).

[38] J. B. Muñoz, Robust velocity-induced acoustic oscillations
at cosmic dawn, Phys. Rev. D 100, 063538 (2019).

[39] J. B. Muñoz, Standard Ruler at Cosmic Dawn, Phys. Rev.
Lett. 123, 131301 (2019).

[40] S. C. Hotinli, T. Binnie, J. B. Muñoz, B. R. Dinda, and M.
Kamionkowski, Probing compensated isocurvature with the
21-cm signal during cosmic dawn, Phys. Rev. D 104,
063536 (2021).

[41] A. Barreira, G. Cabass, D. Nelson, and F. Schmidt,
Baryon-CDM isocurvature galaxy bias with IllustrisTNG,
J. Cosmol. Astropart. Phys. 02 (2020) 005.

[42] A. Barreira, G. Cabass, K. D. Lozanov, and F. Schmidt,
Compensated isocurvature perturbations in the galaxy
power spectrum, J. Cosmol. Astropart. Phys. 07 (2020)
049.

[43] P.-J. Zhang and U.-L. Pen, Deprojecting Sunyaev-Zeldovich
statistics, Astrophys. J. 549, 18 (2001).

[44] S. Ho, S. Dedeo, and D. Spergel, Finding the missing
baryons using CMB as a backlight, arXiv:0903.2845.

[45] J. Shao and T. Fang, The kinetic Sunyaev-Zel’dovich
tomography II: Probing the circumgalactic medium, Mon.
Not. R. Astron. Soc. 458, 3773 (2016).

[46] P. Zhang and A. Stebbins, Confirmation of the Copernican
Principle at GPC Radial Scale and above from the Kinetic
Sunyaev Zel’dovich Effect Power Spectrum, Phys. Rev.
Lett. 107, 041301 (2011).

[47] D. Munshi, I. T. Iliev, K. L. Dixon, and P. Coles, Extracting
the late-time kinetic Sunyaev–Zel’dovich effect, Mon. Not.
R. Astron. Soc. 463, 2425 (2016).

[48] K. M. Smith, M. S. Madhavacheril, M. Münchmeyer, S.
Ferraro, U. Giri, and M. C. Johnson, KSZ tomography and
the bispectrum, arXiv:1810.13423.

[49] J. Cayuso, R. Bloch, S. C. Hotinli, M. C. Johnson, and F.
McCarthy, Velocity reconstruction with the cosmic micro-
wave background and galaxy surveys, arXiv:2111.11526.

[50] R. A. Sunyaev and Y. B. Zeldovich, The velocity of clusters
of galaxies relative to the microwave background. The
possibility of its measurement, Mon. Not. R. Astron. Soc.
190, 413 (1980).

[51] Y. B. Zeldovich and R. A. Sunyaev, The interaction of
matter and radiation in a hot-model universe, Astrophys.
Space Sci. 4, 301 (1969).

[52] Y. B. Zeldovich, Gravitational instability: An approximate
theory for large density perturbations, Astron. Astrophys. 5,
84 (1970), https://ui.adsabs.harvard.edu/abs/1970A%26A...
..5...84Z/abstract.

[53] R. A. Sunyaev and Y. B. Zeldovich, Microwave background
radiation as a probe of the contemporary structure and
history of the universe, Annu. Rev. Astron. Astrophys. 18,
537 (1980).

[54] S. Y. Sazonov and R. A. Sunyaev, Microwave polarization
in the direction of galaxy clusters induced by the CMB
quadrupole anisotropy, Mon. Not. R. Astron. Soc. 310, 765
(1999).

[55] S. C. Hotinli, J. B. Mertens, M. C. Johnson, and M.
Kamionkowski, Probing correlated compensated isocurva-
ture perturbations using scale-dependent galaxy bias, Phys.
Rev. D 100, 103528 (2019).

[56] G. Sato-Polito, J. L. Bernal, K. K. Boddy, and M.
Kamionkowski, Kinetic Sunyaev-Zel’dovich tomography
with line-intensitymapping,Phys.Rev.D103, 083519 (2021).

[57] P. A. Abell et al. (LSST Science and LSST Project Collab-
orations), arXiv:0912.0201.

[58] K. N. Abazajian et al. (CMB-S4 Collaboration), arXiv:1610
.02743.

[59] A. Aghamousa et al. (DESI Collaboration), arXiv:1611
.00036.

[60] P. Ade et al. (Simons Observatory Collaboration),
The Simons Observatory: Science goals and forecasts,
J. Cosmol. Astropart. Phys. 02 (2019) 056.

[61] M. H. Abitbol et al. (Simons Observatory Collaboration),
The Simons Observatory: Astro2020 decadal project white-
paper, Bull. Am. Astron. Soc. 51, 147 (2019), https://ui
.adsabs.harvard.edu/abs/2019BAAS...51g.147L.

[62] C. T. Byrnes and D. Wands, Curvature and isocurvature
perturbations from two-field inflation in a slow-roll expan-
sion, Phys. Rev. D 74, 043529 (2006).

[63] A. Leauthaud et al., New constraints on the evolution of the
stellar-to-dark matter connection: A combined analysis of
galaxy-galaxy lensing, clustering, and stellar mass functions
from z ¼ 0.2 to z ¼ 1, Astrophys. J. 744, 159 (2012).

UNCORRELATED COMPENSATED ISOCURVATURE … PHYS. REV. D 107, 043504 (2023)

043504-9

https://doi.org/10.1103/PhysRevD.84.123003
https://doi.org/10.1103/PhysRevLett.107.261301
https://doi.org/10.1103/PhysRevLett.107.261301
https://doi.org/10.1103/PhysRevD.89.023006
https://doi.org/10.1103/PhysRevD.89.023006
https://doi.org/10.1088/1475-7516/2018/08/036
https://doi.org/10.1088/1475-7516/2018/08/036
https://doi.org/10.1093/mnras/stt1129
https://doi.org/10.1093/mnras/stt1129
https://doi.org/10.1103/PhysRevD.104.103509
https://doi.org/10.1103/PhysRevD.104.103509
https://arXiv.org/abs/1602.01839
https://doi.org/10.1093/mnras/stz240
https://doi.org/10.1093/mnras/stz240
https://doi.org/10.1103/PhysRevD.100.063503
https://doi.org/10.1103/PhysRevD.100.063503
https://doi.org/10.1103/PhysRevD.100.063538
https://doi.org/10.1103/PhysRevLett.123.131301
https://doi.org/10.1103/PhysRevLett.123.131301
https://doi.org/10.1103/PhysRevD.104.063536
https://doi.org/10.1103/PhysRevD.104.063536
https://doi.org/10.1088/1475-7516/2020/02/005
https://doi.org/10.1088/1475-7516/2020/07/049
https://doi.org/10.1088/1475-7516/2020/07/049
https://doi.org/10.1086/319067
https://arXiv.org/abs/0903.2845
https://doi.org/10.1093/mnras/stw501
https://doi.org/10.1093/mnras/stw501
https://doi.org/10.1103/PhysRevLett.107.041301
https://doi.org/10.1103/PhysRevLett.107.041301
https://doi.org/10.1093/mnras/stw2067
https://doi.org/10.1093/mnras/stw2067
https://arXiv.org/abs/1810.13423
https://arXiv.org/abs/2111.11526
https://doi.org/10.1093/mnras/190.3.413
https://doi.org/10.1093/mnras/190.3.413
https://doi.org/10.1007/BF00661821
https://doi.org/10.1007/BF00661821
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://ui.adsabs.harvard.edu/abs/1970A%26A.....5...84Z/abstract
https://doi.org/10.1146/annurev.aa.18.090180.002541
https://doi.org/10.1146/annurev.aa.18.090180.002541
https://doi.org/10.1046/j.1365-8711.1999.02981.x
https://doi.org/10.1046/j.1365-8711.1999.02981.x
https://doi.org/10.1103/PhysRevD.100.103528
https://doi.org/10.1103/PhysRevD.100.103528
https://doi.org/10.1103/PhysRevD.103.083519
https://arXiv.org/abs/0912.0201
https://arXiv.org/abs/1610.02743
https://arXiv.org/abs/1610.02743
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1611.00036
https://doi.org/10.1088/1475-7516/2019/02/056
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.147L
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.147L
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.147L
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.147L
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.147L
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.147L
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.147L
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.147L
https://doi.org/10.1103/PhysRevD.74.043529
https://doi.org/10.1088/0004-637X/744/2/159


[64] A. Leauthaud, J. Tinker, P. S. Behroozi, M. T. Busha, and R.
Wechsler, A theoretical framework for combining tech-
niques that probe the link between galaxies and dark matter,
Astrophys. J. 738, 45 (2011).

[65] N. Anil Kumar, G. Sato-Polito, M. Kamionkowski, and
S. C. Hotinli, Primordial trispectrum from kSZ tomography,
Phys. Rev. D 106, 063533 (2022).

[66] M. T. Soumagnac, R. Barkana, C. G. Sabiu, A. Loeb, A. J.
Ross, F. B. Abdalla, S. T. Balan, and O. Lahav, Large-Scale
Distribution of Total Mass versus Luminous Matter from
Baryon Acoustic Oscillations: First Search in the Sloan
Digital Sky Survey III Baryon Oscillation Spectroscopic
Survey Data Release 10, Phys. Rev. Lett. 116, 201302
(2016).

KUMAR, HOTINLI, and KAMIONKOWSKI PHYS. REV. D 107, 043504 (2023)

043504-10

https://doi.org/10.1088/0004-637X/738/1/45
https://doi.org/10.1103/PhysRevD.106.063533
https://doi.org/10.1103/PhysRevLett.116.201302
https://doi.org/10.1103/PhysRevLett.116.201302

