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Following inflation, the Universe may pass through an early matter-dominated phase supported by the
oscillating inflaton condensate. Initially small fluctuations in the condensate grow gravitationally on
subhorizon scales and can collapse to form nonlinear “inflaton halos.” Their formation and subsequent tidal
interactions will source gravitational waves, resulting in a stochastic background in the present Universe.
We extend N-body simulations that model the growth and interaction of collapsed structures to compute the
resulting gravitational wave emission. The spectrum of this radiation is well matched by semianalytical
estimates based on the collapse of inflaton halos and their tidal evolution. We use this semianalytic
formalism to infer the spectrum for scenarios where the early matter-dominated phase gives way to a
thermalized universe at temperatures as low as 100 MeV and we discuss the possible experimental
opportunities created by this signal in inflationary models in which thermalization takes place long after
inflation has completed.
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I. INTRODUCTION

Cosmological gravitational wave backgrounds propagate
freely and thus provide direct information about the state of
the universe at the time of their production. Low-frequency
primordial gravitational waves can be detected via the
B-mode of the polarization of the cosmic micro-
wave background. In contrast, higher-frequency gravitational
waves can be observed via direct detection experiments.
In contrast to the gravitational wave spectrum originating

from the quantization of inflationary tensor perturba-
tions [1–6], a gravitational wave background can be
produced classically in scenarios where large and time-
dependent density fluctuations are present in the early
universe. A number of different processes in the postinfla-
tionary universe can generate such inhomogeneities. The
resulting gravitational waves vary widely in strength and
frequency as a function of the specific scenario and would
be observed at the present time via a stochastic gravitational
wave background (SGWB).
Many experiments have been proposed or are already in

operation to search for gravitational waves at frequencies
ranging from 10−9 Hz to 103 Hz. These include the future
space-based interferometers LISA [7], DECIGO [8],

BBO [9] and μAres [10], currently operating terrestrial
interferometers (Advanced) LIGO [11,12], Advanced
Virgo [13] and KAGRA [14] and future proposals such
as the Einstein telescope [15]. Pulsar timing arrays [16]
become sensitive to gravitational waves at even lower
frequencies. It is thus crucial to predict the shape of the
gravitational wave spectra from specific postinflationary
sources in order to assess their observability by present-day
and future experiments.
Inflationary cosmology proposes that the very early uni-

verse undergoes a period of accelerated expansion [17–20].
In simple scenarios, this is driven by a scalar field, or
inflaton, whose potential energy decreases slowly as the
Universe expands. Immediately after inflation ends the
inflaton oscillates around the minimum of its potential.
Depending on the explicit shape of the potential and the
couplings to other fields, inflaton oscillations can reso-
nantly amplify the occupation numbers of certain momen-
tum modes of both coupled fields and their own
fluctuations. These preheating mechanisms [21–23] lead
to strong fluctuations in density fields in the postinfla-
tionary universe and the violent motion associated with
resonance can source gravitational waves [24–32].
Moreover, long-lived oscillons can form in certain para-
metric resonance scenarios [33–37] which would be
accompanied by a characteristic SGWB [38,39].
Conversely, if the Universe does not pass through a

resonant phase the inflaton field oscillations will slowly
damp, while the overall dynamics will resemble those of
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a matter-dominated universe. In this case, the dominant
inflaton interactions are gravitational, and initially small
primordial fluctuations in the inflaton field grow once they
are inside the Hubble horizon [40,41]. The momenta of
typical quanta will be small relative to their rest mass,
so the resulting dynamics of this self-gravitating quantum
matter can be described by the nonrelativistic Schrödinger-
Poisson equations [42]. The initially small overdensities can
easily grow to the point where they collapse to
form gravitationally bound structures prior to thermalization
[42–45].
The Schrödinger-Poisson equations also govern the

evolution of ultralight or fuzzy dark matter (FDM) [46]
in the late-time universe, so computational methods used in
FDM-based cosmological structure formation simulations
can be applied directly to this phase in the very early
universe. This analogy was exploited in Ref. [44] to
perform large N-body simulations of the gravitational
fragmentation of the inflaton field. These showed that
the inflaton field collapses into inflaton halos with a mass
distribution in agreement with the expectations from a
Press-Schechter approach [43]. The N-body simulations
were then extended so that the Schrödinger-Poisson equa-
tions were directly solved at the finest levels of adaptively
refined grids, revealing the formation of solitonic cores—or
inflaton stars—in the center of inflaton halos [45]. If the
matter-dominated era lasts for 30 e-folds of growth the
most massive inflaton stars might collapse to form pri-
mordial black holes (PBHs), a possibility further discussed
in Refs. [47,48].
The dynamics of large, localized overdensities suggest

that this early era of structure formation constitutes a
further potential source of gravitational waves in the

early universe.1 PBH formation is not the only potential
gravitational wave source, as growing density fluctuations
in the early matter-dominated epoch will emit gravitational
waves [54,55]. Analytical estimates of the gravitational
wave signal from the collapse of density fluctuations
into inflaton halos, as well as the contribution of tidal
effects afterwards and the evaporation of inflaton halos at
reheating, were obtained in Ref. [55]. Based on previous
simulations [44,45], we complement the results from
Ref. [55] by computing the SGWB from full numerical
N-body simulations running from 14 to 23 e-folds after the
end of inflation. We find that the numerical spectrum can be
well described by a combination of the signal from
spherical collapse and subsequent tidal interactions. This
allows us to extrapolate the SGWB to reheating temper-
atures as low as 100 MeV where the signal lies within the
sensitivity range of the experimental proposals of BBO and
the Einstein telescope, as illustrated in Fig. 1.
The structure of this paper is as follows. In Sec. II we

briefly review the early matter-dominated epoch and
provide an estimate for the gravitational wave signal from
the collapse of density perturbations into inflaton halos.
The setup of our N-body simulations and the implementa-
tion of the computation of the SGWB are described in
Sec. III, followed by our numerical results. We discuss
observational prospects in Sec. IVand, finally, we conclude
in Sec. V.

FIG. 1. Stochastic gravitational wave background at the present time assuming different reheating temperatures. The sensitivity curves
on the energy density of GWs for the experiments LISA, BBO, advanced LIGO, μAres, and the Einstein telescope (ET) are shown for
comparison. The data of the experimental limits were taken from Ref. [56].

1Other mechanisms apart from the preheating scenarios
mentioned earlier include first-order phase transitions [49–51],
networks of cosmic strings [52] and the Hawking radiation of
gravitons from a decaying population of small PBHs [53].
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II. EARLY MATTER-DOMINATED EPOCH AND
GENERATION OF GRAVITATIONAL WAVES

Depending on the effective potential of the scalar
inflaton field φ, inflation can be followed by an extended
phase of matter-dominated expansion prior to reheating.
Once slow-roll inflation has come to an end, the inflaton
performs oscillations around the minimum of its potential.
The inflaton potential VðφÞ is required to be shallower than
quadratic at field values larger than the reduced Planck
mass MPl ¼ ð8πGÞ−1=2 in order to be consistent with
observations [57]. At field values smaller than MPl the
inflaton potential can often be approximated by a quadratic
potential around its minimum,

VðφÞ ¼ 1

2
m2φ2: ð1Þ

Assuming that the higher-order terms of the full potential
do not support resonance, the inflaton field evolves as
φðtÞ ∼ sinðmtÞ=t after the end of inflation. Averaged over
several oscillations, the scale factor grows as aðtÞ ∼ t2=3

and the Hubble parameter reduces asH ∼ a−3=2 [58]. Thus,
the postinflationary evolution resembles expansion in a
purely matter-dominated universe.
This epoch continues as long as the Hubble parameter is

larger than the decay rate Γ of the inflaton. Provided the
coupling of the inflaton to other fields is small, this era can
last for multiple e-folds of expansion. When H ≃ Γ, the
inflaton decays into radiation, a process known as reheat-
ing. The energy scale of reheating is usually given in terms
of the temperature [23]

Trh ≃ 0.55

�
100

g�

�
1=4

ðΓMPlÞ1=2; ð2Þ

where g� is the number of relativistic degrees of freedom at
reheating.
During the matter-dominated era, subhorizon density

perturbations grow gravitationally and finally collapse to
form inflaton halos and inflaton stars [40–45]. It was shown
in Ref. [55] that this early phase of gravitational structure
formation is associated with the generation of gravitational
waves. They can be sourced, for example, by the formation
and the subsequent tidal interactions of inflaton halos. In
the following, we will estimate the gravitational wave
signal from the formation of inflaton halos.
Gravitational waves are represented by the spatial tensor

perturbations hij of the FLRWmetric, which can be written
to leading order as [59]

ds2 ¼ −dt2 þ a2ðtÞðδij þ hijÞdxidxj: ð3Þ

In this gauge, the tensor perturbations satisfy the conditions
∂ihij ¼ hii ¼ 0 and are thus symmetric, transverse, and
traceless. Switching to conformal time dτ ¼ dt=a, their
evolution is governed by [59]

h00ij þ 2Hh0ij −∇2hij ¼ 16πGa2ΠTT
ij ; ð4Þ

where a prime denotes a derivative with respect to con-
formal time, H ¼ aH, and ΠTT

ij is the traceless and trans-
verse part of the anisotropic stress tensor. The full
anisotropic stress tensor Πij is given by

a2Πij ¼ Tij − p̄a2ðδij þ hijÞ; ð5Þ

where Tij denotes the spatial components of the stress-
energy tensor of the inflaton field and p̄ is the background
pressure. Since the p̄δij term in Eq. (5) is a pure trace, it
does not contribute to ΠTT

ij . The metric perturbation hij,
appearing in the second term on the right-hand side of
Eq. (5), is subdominant on subhorizon scales and can be
neglected [30].
During inflation the inflaton field is homogeneous and

the source term on the right-hand side of Eq. (4) vanishes.
This is not the case in the succeeding matter-dominated era
where the gravitational fragmentation of the inflaton field
results in the generation of gravitational waves. One can
estimate the radiated energy density using the quadrupole
formula where the amplitude h of the gravitational wave
can be approximated as [55,60]

h ≃
G
2

�̈
Iij −

1

3
̈Ikkδij

�
ninj
jxj : ð6Þ

Here, n is the radial unit vector from the origin located in
the center of the source to the point x. The two terms in the
brackets are the second time derivative of the traceless part
of the quadrupole tensor Iij. Assuming the formation of an
inflaton halo with mass Mh, radius Rh and virial velocity
vh ¼ ðGMh=RhÞ1=2, an order-of-magnitude estimate for ̈Iij
is [60]

̈Iij ¼
d2

dt2

Z
ρx2d3x ∼ 2

Z
ρv2hd

3x ∼ 2Mhv2h; ð7Þ

which yields h ∼GMhv2hninj=jxj for the gravitational
wave amplitude. Note that this should be understood as
an upper limit since spherically symmetric motions do not
generate gravitational waves, i.e., the formation of a
perfectly spherical inflaton halo does not generate gravi-
tational radiation.
The energy flux of the gravitational wave is proportional

to _h2 and the related luminosity of the source is [60]

Lcoll
gw ≃

jxj _h2
G

∼
ω2jxj2h2

G
; ð8Þ

where the gravitational wave frequency ω can be approxi-
mated by the natural dynamical frequency, given by the
inverse of the free-fall time tcoll ¼ ð3π=ð16Gρ̄ÞÞ1=2 of the
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collapsing object. Thus, the luminosity of the source can be
estimated as

Lcoll
gw ∼

G4M5
h

R5
hπ

2
; ð9Þ

and the radiated gravitational wave energy isEgw ¼ Lcoll
gw tcoll.

In order to compute the gravitational wave signal not
only from the collapse of a single halo but from the collapse
of halos on separate length scales at different times during
the early structure formation phase, we assume that a
perturbation on the (comoving) scale k forms a halo once it
has become nonlinear. This means that a halo of size Rh ¼
2πacoll=k and mass Mh ¼ 4π=3ρ̄ðacollÞR3

h radiates gravita-
tional waves at a well-defined time and at frequency
f ¼ kacoll=ð2πÞ, where acoll denotes the scale factor at
time of collapse. Taking into account that the energy in
gravitational waves scales as a−4, the energy density of the
gravitational waves at the present time over a wide range of
k can be written as [55]

dρcoll;0gw

d ln k
¼ dnh

d ln k
Lcoll
gw tcoll

�
acoll
a0

�
4

¼ 3ρ̄ðacollÞ
M

Lcoll
gw tcoll

�
acoll
a0

�
4

; ð10Þ

with a0 the present-day scale factor. To obtain this
expression we estimated the halo number density nh as
nh ¼ Nh=V, where Nh denotes the total number of halos,
and the overall volume they cover is V ¼ NhM=ρ̄ðacollÞ.
Hence dnh=d lnM ¼ −ρ̄ðacollÞ=M and an additional factor
of −3 comes from considering d ln k instead of d lnM.
Assuming that thermal equilibrium is established at the

reheating temperature Trh, the Hubble parameter at reheat-
ing is [23]

H2
rh ¼

ρrh
3M2

Pl

¼ g�π2T4
rh

90M2
Pl

: ð11Þ

Since g�a3T3 ¼ const in thermal equilibrium we can
express the scale factor dependence in Eq. (10) as
acoll=a0 ¼ ðacoll=arhÞðarh=a0Þ. The expansion factor from
Trh to T0 ¼ 2.7 K ¼ 2.3 × 10−4 eV is [24]

arh
a0

¼
�
g0
g�

�
1=3 T0

Trh
¼ g1=30

g1=12�

�
π2

90

�
1=4 T0

ðMPlHrhÞ1=2
; ð12Þ

where Eq. (11) was used to replace Trh. We will make use
of Eq. (10) to compare the analytical prediction with the
gravitational wave signal obtained directly from the struc-
ture formation simulations presented in the next section.

III. SIMULATIONS OF EARLY STRUCTURE
FORMATION

We make use of AXIONYX [61], which is based on the
cosmology code NYX [62], to perform N-body simulations
of gravitational structure formation in the postinflationary
universe. Complementing previous simulations [44,45], we
extend AXIONYX to compute the SGWB that is associated
with the formation of inflaton halos and their subsequent
tidal interactions. Assuming chaotic inflation, i.e., the
potential in Eq. (1), the first halos form N ≃ 16.7 e-folds
after the end of inflation, so we start the computation of the
gravitational wave signal N ¼ 14 e-folds after the end of
inflation. To include the generation of gravitational waves
from as many sources as possible, the simulations are
evolved to N ¼ 23 which corresponds to a reheating
temperature of Trh ¼ 7.3 × 107 GeV [cf. Eq. (2)].

A. Initial conditions and simulation setup

Building on the simulations from Refs. [44,45], it is
convenient to work again with the purely quadratic inflaton
potential of Eq. (1) with m ¼ 6.35 × 10−6MPl, φend ≈MPl

and Hend ≈m=
ffiffiffi
6

p
at the end of inflation. Given our

intention to run the N-body simulations from N ¼ 14 to
N ¼ 23 e-folds after the end of inflation we slightly adjust
the unit system relative to the one chosen in Refs. [44,45].
The comoving length unit is lu ¼ e23H−1

end ¼ 3.04 ×
10−19 m and we chose a mass unit of mu ¼ 10−13 kg.
For the time unit tu ¼ 6.50 × 10−22 s the gravitational
constant is G ¼ 10−10l3u=ðmut2uÞ. In this unit system, the
Hubble parameter at N ¼ 23 is H23 ¼ 6.49t−1u and the
corresponding mean density is ρ̄23 ¼ 5.02 × 1010mu=l3u.
We use the same initial density power spectrum as in

Ref. [44], illustrated in Fig. 2 of that paper. The power
spectrum is resolved with a box side length of L ¼ 1200lu
and 2563 particles. This choice allows us to run the

FIG. 2. Spectrum Sk, N ¼ 23 e-folds after the end of inflation.
The box side length is L ¼ 1200lu and the grid size is 2563. The
six lines correspond to the individual k-directions; the black line
shows the averaged spectrum.
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simulations to N ¼ 23 e-folds after the end of inflation
without the k-scale corresponding to the size of the
simulation box becoming nonlinear. Larger box sizes
would allow simulations that run to later times but at the
cost of increasing particle numbers and grid size to ensure
that the peak of the initial power spectrum is resolved. This
computational expense is unnecessary, however, as we will
show in Sec. III C.

B. Computation of SGWB

We compute the SGWB generated from the formation of
inflaton halos and their tidal interactions using the numeri-
cal approach from Ref. [30], originally developed for
preheating simulations. Starting from the gravitational
wave evolution Eq. (4), we work in Fourier space with
the convention that

TijðkÞ ¼
Z

d3x

ð2πÞ3=2 TijðxÞeikx: ð13Þ

Introducing the variable h̃ij ¼ ahij, Eq. (4) can be written
in Fourier space as

h̃00ijðkÞ þ
�
k2 −

a00

a

�
h̃ijðkÞ ¼ 16πGaTTT

ij ðkÞ: ð14Þ

The transverse traceless part of TijðkÞ is obtained from

TTT
ij ðkÞ ¼ OijlmðkÞTlmðkÞ; ð15Þ

where OijlmðkÞ denotes the projection operator [30]

OijlmðkÞ ¼ PilðekÞPjmðekÞ −
1

2
PijðekÞPlmðekÞ; ð16Þ

with

PijðekÞ ¼ δij − ek;iek;j: ð17Þ
Here, ek ¼ k=k is the unit vector in k-direction. In a
matter-dominated universe the a00=a term in Eq. (14)
behaves as a00=a ∼ a2H2 and since a2H2 ≪ k2 on sub-
horizon scales we omit this term. Assuming that gravita-
tional waves are sourced between the initial (τi) and final
time (τf) of the simulations this reduced equation of motion
has the solution [30,55]

h̃ijðkÞ ¼ AijðkÞ sin½kðτ − τfÞ� þ BijðkÞ cos½kðτ − τfÞ�;
ð18Þ

where

AijðkÞ ¼
16πG
k

Z
τf

τi

dτ cos½kðτf − τÞ�aðτÞTTT
ij ðτ;kÞ; ð19Þ

BijðkÞ ¼
16πG
k

Z
τf

τi

dτ sin½kðτf − τÞ�aðτÞTTT
ij ðτ;kÞ: ð20Þ

Defining the energy density ρgw of the generated gravita-
tional waves as an average over the simulation volume
V ¼ L3,

ρgw ¼ 1

32πGa4
1

V

Z
d3kh̃0ijðτ;kÞh̃0�ijðτ;kÞ; ð21Þ

and inserting the derivative of h̃ijðkÞ, the gravitational
wave energy density is [30]

ρgw ¼ 4πG
Va4

Z
d3k

X
i;j

�����
Z

τf

τi

dτ cosðkτÞaðτÞTTT
ij ðτ;kÞ

����
2

þ
����
Z

τf

τi

dτ sinðkτÞaðτÞTTT
ij ðτ;kÞ

����
2
�
: ð22Þ

Expressing d3k ¼ k3dðln kÞdΩk in terms of the solid angle
Ωk in Fourier space and considering instead the energy
density per logarithmic k-interval [30]

�
dρgw
d ln k

�
τ>τf

¼ SkðτfÞ
a4ðτÞ ; ð23Þ

provides a computationally efficient method of obtaining
the gravitational wave signal. Instead of solving the full
three-dimensional k-integral at different times in the
simulation, it is convenient to compute the quantity

SkðτfÞ¼
4πGk3

V

Z
dΩk

X
i;j

�����
Z

τf

τi

dτcosðkτÞaðτÞTTT
ij ðτ;kÞ

����
2

þ
����
Z

τf

τi

dτsinðkτÞaðτÞTTT
ij ðτ;kÞ

����
2
�
: ð24Þ

This is independent of the subsequent cosmological
evolution and we can easily evaluate Sk along different
k-directions in our N-body simulations. We define the
SGWB at a certain time by dividing Eq. (23) by the current
critical density ρc. Assuming that reheating occurs at the
end of our simulations, i.e., af ¼ arh, the fractional con-
tribution of the SGWB per logarithmic wave vector interval
to the critical density at the present time is

Ωgw;0ðkÞ ¼
1

ρc;0
SkðτfÞ

�
arh
a0

�
4

; ð25Þ

where arh=a0 is given by Eq. (12). Furthermore, the
comoving wave numbers k need to be converted to the
physical frequencies at the present time, f0 ¼ karh=ð2πa0Þ.
The crucial steps to computing Sk in our N-body

simulations are the determination of the transverse and
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traceless stress-energy tensor TTT
ij at each time step and the

numerical integration of the oscillatory time integrals in
Eq. (24). When the inflaton oscillates around the bottom of
its potential the universe is effectively matter-dominated, so
we can approximate the stress-energy tensor as that of a
perfect fluid with vanishing pressure [55]. With this
simplification Tij can be expressed in terms of the
comoving matter density field ρ and the peculiar velocity
field v as Tij ¼ ρvivj. These quantities can be directly
obtained from the particle information of our N-body
simulations. This allows us to determine Tij at each time
step; each component of Tij is then transformed to Fourier
space and Eq. (15) is then used to yield TTT

ij . This requires a
specific direction in Fourier space for the projection;
following Ref. [30] we consider unit vectors in the six
different k-directions: (1, 1, 0), (1, 0, 1), (0, 1, 1), ð−1; 1; 0Þ,
ð−1; 0; 1Þ, ð0;−1; 1Þ.
At each step, the two time integrals in Eq. (24) are

summed and Sk is computed along each of the chosen
k-directions. The integral is performed in Fourier space and
we need to resolve the temporal frequency of the smallest
scales in the simulation volume. This requires much smaller
time steps than the underlying N-body simulation, increas-
ing the number of steps from N ¼ 14 to N ¼ 23 by a
factor of ∼500.

C. Numerical results

The spectra found for the six different k-directions at
N ¼ 23 are shown in Fig. 2. Evidently, the gravitational
wave background is isotropic. In what follows we will
show the spectrum obtained from averaging over all six
specified directions in k-space. It is illustrated by the black
curve in Fig. 2.
The evolution of Sk fromN ¼ 17 toN ¼ 23 is shown in

the left panel of Fig. 3. We observe an overall increase in
power on all scales. While the shape of the spectrum on

large scales is subject to only minor variations, a more
pronounced alteration is visible on the smaller scales.
Thanks to the comparatively large number of small inflaton
halos and their formation at early times, the spectrum at
scales k≳ 0.1l−1u is dominated by merger events and tidal
interactions. The gravitational wave signal from larger
scales is less pronounced as the corresponding inflaton
halos form later, are less dense, and have a lower frequency
of tidal interactions. The integral

ρgwðτÞ ¼
Z

SkðτÞd ln k ð26Þ

gives the comoving energy density contained in gravitational
waves inour simulation as a functionof time.The evolutionof
ρgw as a function of scale factor can be seen on the right-hand
side of Fig. 3 and is well described by the single power-law
ρgw ∼ a3.78. This allows us to extrapolate the numerically
obtained gravitational wave spectrum to later times.
Assuming that reheating takes place at the end of

our simulations, i.e., at the reheating temperature
Trh ¼ 7.3 × 107 GeV, we use Eq. (25) to obtain the
SGWB at the present time. As is visible from Fig. 4, the
spectrum peaks at a frequency of 3 × 104 Hz with an
amplitude of Ωmax

gw;0 ≃ 5 × 10−23.
We can compare the numerical SGWB with the signal

associated with the singular emission of gravitational
waves from the spherical collapse of an inflaton halo on
a scale k [see Eq. (10)]. Evolving the initial power spectrum
linearly with the growth factor, it starts to deviate from the
numerical density power spectrum once it crosses the
threshold Δ2ðkÞ ≃ 0.1. We can thus expect that once a
scale crosses this threshold it will collapse into a halo.
The radius of such a collapsing object is given by
Rh ¼ 2πacoll=k and its mass is Mh ¼ 4π=3ρ̄ðacollÞR3

h.
Using Eq. (10) and considering halos forming up to

FIG. 3. Left: evolution of Sk from N ¼ 17 (light green curve) to N ¼ 23 e-folds (dark blue curve) after the end of inflation. Right:
energy density of gravitational waves as a function of the scale factor. The black dashed line shows the power-law fit ρgw ∼ a3.78.
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N ¼ 23, we compute the resulting gravitational wave
signal from spherical collapse at the present time. This
is shown in the left panel of Fig. 4.
Since the gravitational waves originating from the early

collapse of small-scale halos are highly redshifted, the
strongest contribution comes from high-mass objects that
collapse at late times. This appears to differ from the
SGWB obtained numerically—that is a flatter spectrum
with strong contributions on small scales. The signal from
spherical collapse is smaller by several orders of magnitude
at high frequencies, pointing to a significant contribution
originating from mergers and other tidal interactions on
small scales, as these are only captured by the full N-body
solution.
Following Ref. [55], we extend Eq. (10) to take into

account the missing contributions from the postvirialization
rotation/vibration of halos and the occasional tidal inter-
actions among each other. Between the end of spherical
collapse and reheating, the physical background density of
halos decreases as ρ ∼ a−3 introducing an extra factor of
ðacoll=aÞ3 in Eq. (10) for signals emitted after spherical
collapse.On the other hand, the emissionmay occurwell after
collapse, i.e., tcoll → tcollða=acollÞ3=2. Finally, with later
emission the redshift of the gravitational wave energy density
is much reduced, enhancing the signal by ða=acollÞ4.
Assuming a reduced efficiency ξ < 1 for postcollapse emis-
sion, the resulting signal can be estimated as [55]

dρ>coll;0gw

d ln k
¼ ξ

3ρ̄ðacollÞ
M

�
acoll
arh

�
3

Ltcoll

�
arh
acoll

�
3=2

�
arh
a0

�
4

¼ ξ
dρcoll;0gw

d ln k

�
arh
acoll

�
5=2

: ð27Þ

Instead of taking the value of the exponent at face value, we
treat it as a free parameter p such that

dρ>coll;0gw

d ln k
¼ ξ

dρcoll;0gw

d ln k

�
arh
acoll

�
p
; ð28Þ

and fit p together with the efficiency parameter ξ to the
numerical spectrum. The blue dashed curve in Fig. 4 corre-
sponds to the fitted parameters p ¼ 1.84 and ξ ¼ 0.4 and
accurately describes the numerical spectrum atN ¼ 23. It is
not surprising that we find p < 5=2, as one can imagine that
over time tidal interactions and irregularities in halos reduce.
It is noteworthy that the gravitational wave spectra at other
times are reasonably well approximated for fixed p and ξ, as
seen in the right panel of Fig. 4.
Note that the final simulation spectrum at N ¼ 23 was

extrapolated to N ¼ 24 and N ¼ 25, respectively, making
use of our previous result from Fig. 3 that the energy
density of gravitational waves increases with a3.78.
Additionally, the a4rh dependence in Eq. (25) leads to an
increase of a3 in the spectrum Ωgw;0. At the same time, we
also need to take into account that the physical matter
density field, which is involved in the computation of TTT

ij

and enters Eq. (24) quadratically, decreases by a3.
Combining the single contributions, one obtains an overall
increase of a0.78 in Ωgw;0 when reheating takes place at
later times.
It is possible that the calibration of ξ depends on the

specific inflationary model. Also, increasing the spatial
resolution of the simulation could lead to slightly different
parameter choices as better resolution of small-scale objects
would reveal more gravitational wave sources at high

FIG. 4. Comparison between the numerically obtained SGWB at the present time and the SGWB from the spherical collapse model.
Left: spectra assuming reheating at N ¼ 23 e-folds after the end of inflation from simulation, spherical collapse [see Eq. (10)] and
spherical collapse complemented by further gravitational wave emission [see Eq. (28)] with parameters p ¼ 1.84 and ξ ¼ 0.4. Right:
numerical spectra (solid lines) and spherical collapse complemented by further gravitational wave emission [see Eq. (28)] with
unchanged parameters p and ξ (dashed lines) assuming reheating at the respective times. The simulation results from N ¼ 23 were
extrapolated to later times by taking into account an overall power increase of ∼a0.78 (see text for details).
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frequencies. However, this does not affect the signal on
large scales.

IV. OBSERVATIONAL PROSPECTS

Having calibrated Eq. (28) to our simulations we can
extrapolate it to give the SGWB at later times. Figure 1
shows the evolution of the spectrum from N ¼ 23 to
N ¼ 50, corresponding to reheating temperatures of Trh ¼
7.3 × 107 GeV and Trh ¼ 1.2 × 102 MeV respectively.
The latter, very low, temperature is the absolute minimum
value consistent with nucleosynthesis [63–65]. We show
the expected sensitivity of a range of experimental scenar-
ios in Fig. 1 and if Trh ≳ 2.1 × 102 GeV the predicted
signal is out of reach for even the futuristic proposals.
However, for the extremely low reheating temperature of
∼100 MeV, the SGWB sourced by structure formation in
the matter-dominated postinflationary era would be detect-
able by BBO and the Einstein telescope.
The underlying inflationary scenario in this analysis is an

unrealistic toy model from the perspective of current
observations. As a consequence, the initial perturbation
spectrum may differ from that assumed here. This could
change the value of N at the onset of nonlinear collapse,
and modify the form of the resulting SGWB. These
differences need not be dramatic but would be more
significant in models where the amplitude of the primordial
perturbations rises at very short scales.
Restricting ourselves to pure N-body simulations, the

numerically obtained SGWBmisses potential contributions
from the formation of inflaton stars and their mergers.
Solving the Schrödinger-Poisson equations requires resolv-
ing the de Broglie wavelength, as in the simulations in
Refs. [42,45], which limits the spatial extent of the box size
and for how many e-folds after inflation the simulations can
be evolved. Since running Schrödinger-Poisson simula-
tions comparable to our N-body simulations in both the
spatial and temporal extent is an intractable challenge, one
could instead approach the problem by computing the
gravitational wave signal associated with the formation of
inflaton stars and from binary mergers separately. However,
due to their relatively small spatial size, one can expect that
this will have an effect only at frequencies larger than those
covered by the SGWB from our N-body simulations.
In many cases, inflation is followed by parametric

resonance and preheating which produces its own distinc-
tive gravitational wave background [24–32,38,39].
Resonance is not synonymous with thermalization and
the postresonance universe can easily be effectively matter-
dominated [66]. Resonance typically occurs shortly after
inflation ends and it leaves the universe highly inhomo-
geneous. Consequently, the total duration of the nonlinear
phase following resonance could be far longer than in the
scenario considered here, substantially increasing the scope
for gravitational wave production as a result of gravita-
tionally driven nonlinear dynamics. Conversely, a long

matter-dominated phase after resonance would dilute the
SGWB produced during resonance itself since the frac-
tional energy density in gravitational waves, Ωgw, scales as
a−1 during matter-dominated growth.

V. DISCUSSION AND CONCLUSIONS

Using N-body simulations, we have numerically com-
puted the SGWB originating from the formation of inflaton
halos during an epoch of gravitational structure formation
following inflation. In the specific example we consider, the
inflaton field is evolved from N ¼ 14 to N ¼ 23 e-folds
after the end of inflation, at which time complex gravita-
tionally bound structures will have formed. With instanta-
neous thermalization at the end of the simulation, the
universe would reheat to a temperature of Trh ¼ 7.3 ×
107 GeV and the resulting gravitational wave spectrum is
shown in Fig. 1. This signal is far below the sensitivity
curves of proposed experiments.
Comparing the numerically computed spectrum at

N ¼ 23 to the corresponding signal from the collapse of
density fluctuations into inflaton halos calculated with the
quadrupole approximation, we find that other small-scale
contributions dominate the SGWB at high frequencies.
These include merger events and tidal interactions among
the inflaton halos that occur abundantly on small scales at
comparatively early times. We use the approach developed
in Ref. [55] to extend the spherical collapse approximation
by introducing an efficiency parameter ξ for the emission of
gravitational waves between halo collapse and reheating,
and an additional scale factor contribution ðarh=acollÞp.
The free parameters ξ and p can be calibrated against the

numerical gravitational wave spectrum. This process yields
a good fit to the full numerical outcome throughout the
simulations and with this result in hand, we can extrapolate
the gravitational wave spectrum to smaller reheating
temperatures. The present-day amplitude of the spectrum
increases and its frequencies decrease as the matter-
dominated phase continues. This calculation suggests that
the SGWB could be potentially observable by future
experiments (see Fig. 1), although only when thermal-
ization occurs at 100 MeV, a value that is probably
unrealistically low.
That said, the analysis here is based on the simplest

possible inflationary scenario, namely the purely quadratic
potential that is not consistent with cosmological observa-
tions. The precise shape and the overall amplitude of the
computed SGWB will depend on the detailed form of
the model and on the amplitude of the modes that leave the
horizon as inflation ends. To date, there have been no self-
consistent analyses of the nonlinear matter-dominated
phases for inflationary models that are consistent with
astrophysical bounds on the primordial spectra, so this is
clearly a very promising topic for future investigation.
It is well known that resonance can lead to the produc-

tion of large density fluctuations which would accelerate
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the subsequent gravitational formation of structure.
A long matter-dominated phase in the postinflationary
universe following resonance will dilute this gravitational
wave signal. Conversely, the inhomogeneity generated
during resonance will mean that gravitational collapse
can begin a few e-folds after inflation, significantly
enhancing the potential amplitude of the signal studied
here. Understanding this tradeoff in realistic scenarios is an
important line of enquiry.
Additional contributions to the SGWB that cannot be

captured by our simulations originate from the evaporation
of the inflaton halos once reheating takes place [55].
Provided that the matter-dominated era of early structure
formation continues sufficiently long, it is possible that
inflaton halos eventually collapse into a PBH [45,47,48];
see also Ref. [67] for another discussion of PBH formation
prior to reheating. This will likewise involve the emission
of gravitational waves that leave a further characteristic
imprint on the SGWB.
In summary, the analysis here has quantified a largely

unexplored source of a stochastic background of gravita-
tional waves generated in the primordial universe. Its full
properties—along with the detailed nonlinear gravitational
dynamics of the postinflationary matter-dominated phase—
are still unknown. However, our results here make it clear

that this phase might have directly observable conse-
quences in the present-day universe. These have the
potential to open a window into the earliest moments after
the big bang and may also provide further incentives for
the development of highly sensitive gravitational wave
detectors.
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