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Binary neutron-star mergers and heavy-ion collisions are related through the properties of the hot and
dense nuclear matter formed during these extreme events. In particular, low-energy heavy-ion collisions
offer exciting prospects to recreate such extreme conditions in the laboratory. However, it remains
unexplored to what degree those collisions can actually reproduce hot and dense matter formed in binary
neutron star mergers. As a way to understand similarities and differences between these systems, we
discuss their geometry and perform a direct numerical comparison of the thermodynamic conditions probed
in both collisions. To enable a direct comparison, we employ a finite-temperature equation of state able
to describe the entire high-energy phase diagram of quantum chromodynamics. Putting side by side
the evolution of both systems, we find that laboratory heavy-ion collisions at the energy range of
Elab ¼ 0.4–0.6A MeV probe (thermodynamic) states of matter that are very similar to those created in
binary neutron-star mergers. These results can inform future low-energy heavy-ion collisions probing this
regime.

DOI: 10.1103/PhysRevD.107.043034

I. INTRODUCTION

Quantum chromodynamics (QCD), the theory of strong
interactions, predicts that matter at densities and temper-
atures found in binary neutron star mergers (BNSMs) and
relativistic heavy ion collisions (HICs) consists of the same
particles that obey the same interactions despite drastic
differences of system sizes. Although hot dense matter is
predicted to appear in a plethora of different states under
different conditions [1–5], in the laboratory it is only
possible to measure the final hadronic states that are
emitted from the late stages of HICs. This is what we
refer to as nuclear matter, not only protons and neutrons
that at low energy are clustered into nuclei, but also
hyperons (that contain strange quarks), negative parity
states, and mesons. The life-time of HICs is so short, that
full evolution conditions are problematic to reconstruct.
Indirect observations of the quark-gluon plasma (QGP)
were done in high-energy collisions [6–10], though the
details of such a state and the transitions that lead to it from
nuclear matter and vice-versa are not yet known to great
detail. Current state-of-the-art lattice QCD calculations of
thermodynamic properties at vanishing baryon density

(which corresponds to the fireball created in the highest-
energy HICs, with the same number of particles and
antiparticles for zero net-baryon density) suggest that the
deconfinement transition from hadronic matter to the QGP
appears smoothly [11–13], i.e., there is no sharp boundary
between the states. At finite, as well as high baryon
densities, the phase structure is still rather unconstrained,
and the existence of a first order phase transition, i.e., with a
sharp boundary between the phases, is not ruled out.
Verification of such a possibility is one of the top priority
research tasks at several running and upcoming HIC
facilities [14–22].
Since the first gravitational detection of a BNSM in

2017, GW170817 [23], we have already employed the
knowledge gained from mergers to improve our under-
standing of cold and dense nuclear matter by placing strong
constraints on the neutron-star maximum mass [24–27] and
typical radii and tidal deformabilities [28–44]. In a similar
manner, HICs have been suggested to provide comple-
mentary constraints. Using flow studies, Ref. [45] (see also
[46]) has extracted isotropic pressure constraints from low-
energy HICs. These have recently been employed to
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(jointly with multimessenger constraints) derive bounds on
the cold dense matter EoS [47]. More fundamentally, this
raises the question of what complementary information
about hot and dense matter BNSMs can provide compared
with HIC, given that both systems feature non-negligible
temperatures. How similar is stellar nuclear matter to that
produced in a HIC? In particular, future BNSM events
might open up the possibility to complement the exper-
imental investigations of the short-lived microscopic
nuclear matter created in HICs by detecting signals from
the longer-lived macroscopic amount of (hot) nuclear
matter formed in the merger. The main signatures would
potentially be contained in the postmerger gravitational-
wave emission [48–57], making this question a prime target
for next-generation gravitational wave facilities [58–60].
On the HIC side, recent evidence of the formation of hot
matter at several times saturation density in low-energy
HICs was reported by the HADES collaboration [19],
conditions potentially resembling those present in a
BNSM. However, in the absence of a direct and meaningful
comparison between these two systems, it is far from clear
exactly how similar the conditions probed in HICs and
BNSMs really are.
Motivated by these claims, we aim to answer the follow-

ing question: Can experiments such as [19] reproduce
BNSM geometry and thermodynamic conditions, and what
experimental “settings” are necessary? How does gravity
alter the outcome of macroscopic collisions, and what is
actually meant by similar conditions in both cases? To
answer these questions, we perform a systematic and direct
side-by-side comparison of geometry and thermodynamic
properties in HICs and BNSMs. This is done by means of
relativistic hydrodynamics simulations of both systems.
Crucially, we employ the same realistic microphysical
EoS model, describing the entire high-energy QCD phase
diagram, and the similar numerical methods to make the
comparison as meaningful as possible. Introducing a quan-
titative figure of merit—the entropy production during the
collision—to assess the similarity of the matter formed in
both collisions, we derive bounds on the beam energies
needed to probe BNSM-like conditions in laboratory HIC
experiments.

II. METHODS

In this work, we aim to compare nuclear matter in HICs
and BNSMs by means of relativistic hydrodynamics
simulations. To enable a meaningful comparison, we
need to ensure two things. First, the microphysics needs
to be the same in both cases, so that we can map the
thermodynamic conditions present in one system to the
other. Second, the numerical methods needs to be both
reliable and comparable to ensure that effects such as
shock heating are captured to the same degree in both
simulations.

A. Microphysical model

The EoS used to describe both systems should be
derived from a consistent model that is valid across the
entire high-energy QCD phase diagram, covering the
large range of temperatures and densities involved, in
addition to describe different fractions of isospin and
strangeness. Additionally, such a model must be able to
reproduce current constraints for compact stars and
collider conditions (e.g., from Lattice QCD). More pre-
cisely, we consider constraints from cold compact stars
(e.g., [61–68]), properties of symmetric nuclear matter
[47,69–81], and high-temperature QCD constraints at
vanishing and low density, including a consistent descrip-
tion for chiral-symmetry restoration and quark deconfine-
ment reproducing data from lattice QCD [11–13,82],
perturbative QCD [83,84], and high-energy collider
experiments [85].
Addressing all of the above, we make use of the chiral

mean field (CMF) model, which is based on the three-
flavor chiral Lagrangian for hadronic matter first intro-
duced in [86] and extended to describe neutron stars in [87].
Our version of the CMFmodel [88] uniquely incorporates a
full list of QCD degrees of freedom, including, besides
protons and neutrons, hyperons, their parity partners,
and the full list of hadronic resonances (strange and
nonstrange baryons and mesons) as found in the particle
data book [89]. In addition, the thermal contribution of
deconfined quarks and gluons is added as in the Polyakov-
Nambu-Jona-Lasino approach [90–94]. Together with the
electrons this corresponds to the most complete set of QCD
degrees of freedom available for the high density equation
of state. A more detailed description on the CMF model
and its contents can be found in e.g., [95]. In addition, a
low density model that includes the description of nuclei
was gradually matched to the CMF-EoS, for the BNSM
simulations, below 10−2nsat. See Ref. [96] for details on the
matching and the low-density EoS.
Our version of the CMF model reproduces a crossover

transition for deconfinement at finite and zero density (as
determined by lattice QCD) [95,97], and providing a good
description for hadrons in medium, nuclei, nuclear matter
and neutron stars [88,98]. The latter includes reproducing
M > 2M⊙ stars and stars with radii within LIGO-Virgo
and NICER allowed regions. The model produces a
nuclear ground state with realistic properties: saturation
at (baryon number) density nsat ¼ 0.15 fm−3, binding
energy per nucleon E0=B ¼ −15.2 MeV, symmetry energy
S0 ¼ 31.9 MeV, symmetry energy slope L ¼ 57 MeV,
and incompressibilityK0 ¼ 267 MeV. This comprehensive
approach allows to calculate the EoS of nuclear matter
created in HICs and in BNSMs, without introducing
additional ambiguities due to the use of (potentially
inconsistent) different EoS in the two regimes. In addition,
for BNSMs we include a free gas of electrons to the EoS to
maintain electric charge neutrality. We calculate numerical
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tables of the temperature and density, as well as isospin
dependence (e.g., difference between the amount of neu-
trons and protons) of the CMF-EoS, which are then
implemented in the hydrodynamical models.
In order to put the following simulation results into

context of the EoS and to justify our assumption that HICs
and BNSMs can be used complementary to study the QCD
EoS, the speed of sound from the CMF model is presented
in Fig. 1 (see also Refs. [42,99,100] for recent studies on
the general properties of the sound speed in neutron stars).
In particular, we show the isothermal speed of sound, cs,
as function of the baryon density at some relevant fixed
temperatures of T ¼ 0 MeV and T ¼ 40 MeV. In both
scenarios, we also compare the CMF results for either
neutron star matter, including electrons in beta-equilibrium,
as well as HIC matter which is isospin symmetric and
where strangeness is conserved (number of strange par-
ticles matches the number of strange antiparticles). The last
two conditions are a consequence of the very short lived
character of HICs. Noticeably, the overall structure of the
EoS is very similar for these two extreme cases: a clear
maximum in the speed of sound is observed for 4-6 times
saturation density (see also Ref. [101] for a more general
discussion on the maximum of the sound speed in neutron
stars). Both the decrease from the maximum at high
densities and the oscillations are linked to the appearance
of new degrees of freedom.
While the details of the curves show clear differences

due to the different chemical compositions of the systems,
it is important that only the similarities allow us to study the
properties of the QCD EoS in these very different micro-
scopic vs macroscopic scenarios.

B. Numerical methods

The other critical component of our study is the
dynamical description of both BNSMs and HICs using
relativistic hydrodynamics, which essentially provides
conservation laws for the baryon current and the stress-
energy tensor (see, e.g., [102] for a review). More specifi-
cally, we assume that the systems are (to lowest order)
described as compressible perfect fluids. Although other
hydrodynamic implementations, incorporating viscous
effects or even a microscopic transport description of
HICs are possible, it was shown that, if the same EoS is
used, the HIC system dynamics and entropy production, as
calculated with the hydrodynamical approach, are quite
similar to the complementary predictions of nonequili-
brium transport models [103,104], see also [105–113]).
Similarly, in the case of BNSM, viscous effects largely
arise from modified Urca interactions [114,115]. While
these can lead to small changes in the gravitational wave
emission, their impact on the thermodynamics is subdomi-
nant. However, they might play a fundamental role in
adjusting the isospin fraction of dense matter [114], which
we ignore in the comparison presented here. In spite of that,
perfect hydrodynamics is perfectly able to capture entropy
production in the compressional regime of the flow by
means of local Rankine-Hugoniot shock junction condi-
tions [116]. In fact, a recent study [114] has shown that
(microphysical) viscous entropy production in BNSMs is
of the order of 0.1=baryon (in natural units).
The dynamical description of the evolution of both

BNSMs and HICs is kept on the same footing by evolving
in time the equations of relativistic hydrodynamics on a
three-dimensional grid for both scenarios, but employing
different numerical implementations. In the case of HICs,
we use the Frankfurt SHASTA code [117,118] with a
uniform grid spacing Δx ¼ 0.2 fm and time step
Δt ¼ 0.08 fm=c. Our HIC initial state consists of two
drops of cold zero temperature nuclear matter colliding
head-on with Lorentz-contracted Woods-Saxon density
distributions, propagating toward each other with relativ-
istic speed in the center-of-mass frame of the collision. For
each energy, a near central collision of two gold nuclei (Au)
is computed at fixed offset “impact parameter” b ¼ 2 fm at
lab energies of Elab ¼ 450 and 600A MeV per nucleon,
corresponding to those available to the HADES collabo-
ration for low-energy HICs at GSI [19]. For our BNSM
simulations, in addition to the equations of general-
relativistic hydrodynamics [116], we need to solve
Einstein’s equations in the conformal Z4 formulation
[119–122]. The full set of equations is evolved using the
Frankfurt/IllinoisGRMHD (FIL) code [123–125]. Making use of
nested box-in-box mesh refinement [126], our simulations
use 7 levels of refinement with the highest resolution of
Δx ¼ 250 m and outer box size of 1500 km. The adopted
resolution has been shown to be sufficient within the
context of this work [50,124]. The initial conditions are

FIG. 1. Isothermal sound speed, cs, in the CMF equation of
state for different scenarios. Black lines: Neutron star matter,
including electrons in beta equilibrium and fulfilling charge
neutrality. Red lines: Heavy ion collision matter with zero isospin
and strangeness conservation. The solid lines correspond to the
speed of sound at T ¼ 0 MeV and the dashed lines to
T ¼ 40 MeV. A maximum in the speed of sound is clearly
visible for all scenarios despite differences in the details due to
the varying chemical composition.
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two equal-mass with total masses of 2.6 and 2.8M⊙ [127].
We neglect spins in line with the assumption that most
systems are essentially irrotational at merger [128].

III. RESULTS

In the following, we provide a comparison of low-energy
HICs with BNSMs. Specifically, we focus on the geometry
and thermodynamic properties of the matter probed in each
system. That is, because a full comparison of the flow
structure for both systems is complicated by the fact that
BNSMs have net angular momentum and are gravitation-
ally bound. However, thermodynamic quantities in the
local rest-frame of each fluid element in the collision
remain meaningful. Since in the absence of physical
viscosity the flow is isentropic, the entropies S per baryon
A can serve as a meaningful tool to compare the flows in
both cases. Following along those lines, we proceed in
three stages. First, we provide an overview of the collision
dynamics in Sec. III A. Second, in Sec. III B we perform a
detailed assessment of the entropy per baryon evolution in
both cases. Finally, we perform a direct comparison of the
phase-diagram coverage for different beam energies and
BNS masses in Sec. III C, establishing in which cases low-
energy HICs can reproduce BNSM-like conditions.

A. Overview of collision dynamics

In the following, we give an overview of the collision
dynamics of both systems. For a HIC, the two gold nuclei
approach each other head-on along the z-direction, with
relative velocities v≳ 0.5c and only a small offset b along
the transverse x-axis. This produces dense hot matter with
the longest lifetime and highest compression (highest
density) at a given beam energy. Once the two nuclei
make contact, the cold nuclear matter in the center is
rapidly heated and entropy is generated [103,129]. Once
both incoming nuclei are compressed into a single fireball,
matter starts to rapidly expand along an isentropic trajec-
tory until diluting so much that the hydrodynamic picture is
no longer valid and freeze out occurs. In our simulations,
this corresponds to cells at roughly n ∼ 1

2
nsat ≈ 0.08 fm−3.

At this point in the emitted nuclear matter will start to form
clusters with important consequences for experimental
studies of the EoS. Recent work has shown, that the
maximum compression and entropy production from shock
heating are rather insensitive to viscous corrections, when
adopting relatively low beam energies as considered in this
work [130]. This allows us to safely neglect such correc-
tions in the present comparison.
In the case of BNSs, the two stars are initially on a

quasicircular orbit, but the emission of gravitational waves
causes the two stars to collide (see, e.g., [131] for a review).
Differently from a HIC, the collision is not head-on. First,
the merger remnant retains a significant fraction of angular
momentum [132]. Second, tidal forces deform the neutron

stars prior to merger, with small-scale turbulence induced in
the shearing interface between them (see, e.g., [133]).
During the merger, the two stars are compressed to a
few times nsat and heated considerably, leading to super-
sonic velocities and the formation of shocks. This causes a
steep increase in temperature and a local production of
entropy, similar to a HIC.
The differences in the dynamics between BNSMs and

HICs are shown in Fig. 2, where we report the temperature
T (lower colormaps), the entropy per baryon S=A (upper
colormaps), and the density (isocontours) for a BNS
collision (top panels) and a Auþ Au collision (bottom
panels). Note in the top row that, in spite of similar
geometry, the entropy production in BNSMs is limited
to a narrow spatial range at the interface of the two stars,
where the densities probed are below 2nsat. The precise
structure of the merger remnant and, hence, the compres-
sion of layers, is governed by the strong gravitational fields
present. Even some time into the collision, the heating and
production of entropy is confined to the original collision
interface.
This is qualitatively different behavior from what hap-

pens in HICs, where, in the early phase of the collision,
entropy production is also confined to a very thin ellipsoid
in the narrow initial overlap of the two nuclei. However, in
the course of the reaction, the compression causes the entire
gold nucleus (show as the contour with n≳ 1

2
nsat) to heat

up. Another important difference is that, after the BNSM,
most of the resulting object is gravitationally bound, while
in the HIC case, the resulting remnant is an evanescent
fireball of matter expanding isentropically at relativistic
speeds. Finally, whereas in a BNSM, the overall rotation
of the system and the conservation of the Bernoulli
constant [134] leads to a redistribution of hot parts of
the fluid, which ultimately settles down in a ring-like
structure [134,135], the hot fireball produced in a HIC
cools rapidly, during the fast, isentropic expansion, with the
central region always being at the highest temperature.
To summarize, even though the details of the dynamical

evolution of both systems appear dramatically different,
and the description of these can be rather technical, it is
important to note that the bulk properties of the hot systems
created are actually very similar. We discuss them in more
detail in the following.

B. Entropy evolution on micro- and macroscales

To exploit the similarities between BNSMs and HICs,
we compare the collision dynamics of the two systems by
identifying the most important initial properties that lead to
the same bulk entropy per baryon in the collision, namely,
the beam energy in the case of HICs and the total stellar
gravitational mass in BNSMs. To illustrate this behavior,
we directly contrast the evolution of the entropy per baryon
in the two different systems. The detailed comparison is
shown in Fig. 3 in terms of 1þ 1 spacetime diagrams. To

ELIAS R. MOST et al. PHYS. REV. D 107, 043034 (2023)

043034-4



reduce the dimensionality of the collisions, we restrict to
the equatorial ðx; yÞ plane for the BNSM and average out
the azimuthal dependence, so that r ≔ ðx2 þ y2Þ12. In the
case of the HIC, the whole transverse dependence in the
ðx; yÞ plane is averaged out.
The left panel of Fig. 3 illustrates that before the collision

the temperatures and entropies of the stars are low. Tidal
interactions during the inspiral can lead to a mild heating
of the outer layers of the stars, but this is negligible as

compared to the shock temperatures reached in the merger
[136]. At the time of the merger, i.e., t ≃ −3 ms,1 regions of
very high temperature and entropy per baryon are formed
around r ≃ 3 km. Note that the merger remnant undergoes
a significant thermodynamical evolution. The presence of

FIG. 3. Dimensionally reduced spacetime diagrams for the evolution of the temperature and entropy per baryon relative to the same
BNSM (left panel) and HIC (right panel) presented in Fig. 2. The green contours correspond to lines of constant entropy per baryon S=A;
only regions with density above freeze-out, n > 1

2
nsat, are shown for the HIC.

FIG. 2. Distributions of entropy per baryon S=A (upper color maps) and temperature T (lower color maps) for a BNSM (NSþ NS)
with total mass Mtot ¼ 2.8M⊙ (top panels) and a Auþ Au HIC at Elab ¼ 450AMeV (bottom panels). Colored lines mark density
contours in units of nsat. The snapshots in different rows refer to t ¼ −2; 0;þ3 ms before and after merger for the BNSM, respectively,
and to t ¼ −5; 0;þ5; fm=c before and after the full overlap for the HIC.

1The merger time is set when the gravitational-wave amplitude
has its first maximum [137] a few milliseconds after the stellar
surfaces have touched [138].
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high angular momentum generates high shear flows despite
of the fact that the two stars were initially assumed
irrotational. These shear flows transport outward the
temperature and the entropy, leaving a comparatively cold
and dense core (see regions with r≲ 3 km) surrounded by
a much hotter ringlike structure that remains stationary in
time [139] (4.0≲ r≲ 7 km). The temperature and density
further decrease when moving to the outer regions of the
remnant (r≳ 8 km). A similar behavior is shown by the
evolution of the entropy distribution, which exhibits a
dense core with low entropy per baryon, surrounded by a
hot ring with S=A ≃ 1–2. We caution that the precise values
of temperatures and entropies being probed might critically
depend on physics around saturation [140]. A detailed
investigation with a broader set of currently unavailable
EoS will be necessary to more precisely estimate this error
budget in both systems.
The spacetime diagram for a HIC (right panel of Fig. 3)

shows an ever increasing central-shock zone of high
entropy per baryon and high-temperature dense matter
produced from the initial collision, starting from t ≃
−15 fm=c and up to the moment of full overlap of the
two nuclei. Subsequently, the interpenetration stage of the
two nuclei is over. Hence, the ellipsoid of arrested, hot,
shock-heated, and compressed matter can expand freely

forward and backward along the collision axes at
jzj > 4 fm. The expansion of matter is essentially isen-
tropic, with average entropies of S=A ≈ 2.5.
When comparing the two panels in Fig. 3, it is

important to note that there are striking analogies in the
thermodynamics properties of the postcollision dynamics,
but also that these are confined mostly to the merger
phase. This is because the postcollision in a BNS is
intrinsically different from that in a HIC: in the former
case, strong gravitational fields lead to a remnant that is
gravitationally bound and in a metastable equilibrium
[133]. By contrast, the hot and dense matter produced in
HICs is unbound and quickly expands into the surround-
ing vacuum.

C. Comparison in the QCD phase diagram

Figure 4 shows the spatial and temporal evolution of
these systems in the QCD phase diagram in terms of the
temperature and density of the various fluid cells. This is
obtained by binning into the variable N, across the whole
evolution and for both BNSMs and HICs, all fluid elements
according to their temperature and density. This means that
a higher N represents more regions that for longer timer
have a given temperature and density. As a simplification,
for BNS mergers we assume the equatorial plane dynamics

FIG. 4. Regions of the QCD phase-diagram probed by two BNSMs with different masses (left panels) and by two HICs with different
beam energies (right panels). The color code reports the number of cells N in the various spacetimes having a given value of temperature
and density. The green lines show contours of constant entropy per baryon. Only cells with density above freeze-out, n > 1

2
nsat, are

shown for the HICs. In the BNSM case, we only consider the equatorial plane and normalize to arbitrary units.

ELIAS R. MOST et al. PHYS. REV. D 107, 043034 (2023)

043034-6



to be representative of the overall dynamics, thus perform-
ing a 2þ 1 binning; for the HIC, the full 3þ 1 dynamics is
used. For BNSs, we normalize to arbitrary units, since we
are only interested in relative differences between popula-
tions of points in the phase diagram. We show the results of
two distinct merger simulations differing in their total
respective masses, namely, for a binary with Mtot ¼
2.6M⊙ (top left panel) and 2.8M⊙ (bottom left panel).
For HICs, instead, we show the results at two different
beam (kinetic) energies, namely at Elab ¼ 450A MeV (top
right panel) and at 600A MeV (bottom right panel).
The left panel of Fig. 4 shows a broad range of densities,

n≲ 3.4nsat and temperatures, T ≲ 40 MeV covered by
BNSMs. Two distinct regions appear in the phase diagram
during and after the merger: the first is at high densities,
n > 2nsat, and low temperatures, T ≲ 10 MeV. This region
corresponds to the central regions of the initial stars and the
core of the postmerger remnant. As we have seen in Fig. 3,
the neutron-star matter in this region does not undergo
shock heating, but remains cold and with low entropies.
Indeed, the oscillations seen at the lowest temperatures
correspond to quadrupolar postmerger oscillations of the
gravitationally bound rotating remnant [141]. This kind of
matter is similar to cold stable neutron stars. The second
region spanned by BNSMs in the phase diagram corre-
sponds, instead, to hot matter with T ≳ 10 MeV and
isentropes of S=A ¼ ½1.8; 2.2�, which were previously
identified with the hot ring in the discussion of colli-
sion-shock dynamics (Fig. 3).
The distributions in the left panels of Fig. 4 clearly

indicate that the lower mass binary populates regions with
lower densities and temperatures (n≲ nsat, T ≲ 10 MeV),
which are essentially void in the case of the high-mass binary
(see dark region around n ∼ 1

2
nsat). On the other hand, low-

density, high-temperature regions (n≲ nsat, T ≲ 30 MeV)
are highly populated for the case of the high-mass binary
(see bright region around n≲ 0.2nsat). Although the BNM
evolution cannot be described as isentropic, interestingly,
for both BNS masses, the regions corresponding to similar
isentropes of S=A ≈ 2 are populated. This range of entropies
can be considered as characteristic for the hot matter probed
inBNSsmergers and low-energyHICs.Because in ourCMF
model a significant quark fraction can only build up at
densities nb ≳ 3nsat for the low temperatures reached in both
BNSs and HICs, T ≲ 80 MeV, no deconfined matter is
expected in these.
The right panels of Fig. 4 show the same as in the left but

for two HICs whose beam energies have been selected to
provide a distribution in phase diagram comparable to that
of a BNSM, namely, Elab ¼ 450A MeV and 600A MeV.
Differently from the BNSMs, the evolution of HIC rem-
nants after the initial collision is an almost isentropic
expansion that populates the isentropes at S=A ∼ 2.
Clearly, different beam energies populate isentropes at
lower/higher values of S=A (top/bottom panels). The rapid

expansion from right to left along the isentrope continues
until matter becomes too dilute to maintain local equilib-
rium and freezes out at n ≈ 1

2
nsat.

The quite similar trajectories of the BNSM and the HICs
in theQCDphase diagram (concerning temperature, density,
and entropy per baryon) may appear surprising at first sight.
We recall that the nuclei used in HICs consist of an almost
equal number of neutrons and protons (and among their
parity partners), corresponding to nearly isospin-symmetric
matter, i.e., Y iso ≃ −0.1. Neutron-star matter is charge-
neutral before the merger, consisting mainly of neutrons
with a small admixture of protons, hyperons, parity partners,
electrons, and muons in beta-equilibrium, i.e., ½−0.5≲
Y iso ≲ −0.4� (see, e.g., [52,140,142,143] for a more detailed
discussion in theBNS-merger case). Nevertheless, these two
different regimes are connected, and their relation is con-
strained at and around saturation density by the measure-
ment of the (isospin) symmetry energy and its slope [144]. It
should be made clear that the knowledge on how the EoS
changes with isospin is an essential ingredient for the
comparison for the two systems and is exactly the reason
why a consistent comparison can only be made on the basis
of a single model.

IV. CONCLUSIONS

In this work, we have set out to understand how well
low-energy HICs are able to produce BNSM-like condi-
tions [19]. To this end, we have performed a set of
numerical simulations modeling both low-energy HICs
and BNSMs, so that we can directly compare the geometry
and thermodynamic conditions present in each system.
We have carefully designed the study to use the same
microphysics, i.e., the same EoS, and comparable numeri-
cal methods to solve the relativistic hydrodynamics prob-
lem in flat and dynamically curved spacetime. In order to
mitigate a comparison of the very different flow structures
in the presence of high net-angular momentum and strong
gravity (for BNSMs), we have considered the local
thermodynamic conditions probed. In particular, we have
used the entropy production from shock heating at the
initial impact as the figure of merit to meaningfully
compare the two systems. The main result of this com-
parison, is the use of S=A ¼ ½1.8; 2.2� isentropes to con-
struct a mapping between gravitational masses of BNSs,
i.e., Mtot ¼ 2.6–2.8M⊙, and the beam energies of heavy-
ion experiments conducted in laboratories, i.e., Elab=A ¼
½450; 600� MeV [17]. HICs at these beam energies are
currently being investigated by the HADES experiment at
the SIS18 accelerator of GSI.
This analysis can be extended in several ways. While the

overall error of neglecting viscous effects is likely be small
in terms of the entropy production due to shock heating,
a consistent study incorporating microphysical viscosity in
the HIC [106,145–150] and BNSM [114,115,151] case
would be desirable. In order to clarify uncertainties of the

PROBING NEUTRON-STAR MATTER IN THE LAB: … PHYS. REV. D 107, 043034 (2023)

043034-7



cold EoS on the entropy production in both systems, further
studies will be required, once more EoSs covering the
relevant phase space, such as ours, become widely
available. Our results present a significant step forward
in the understanding of how well low-energy HICs can
probe BNSM-like conditions. We expect these to be
particularly useful for the interpretation of hot-dense matter
reported to be formed in low-energy HICs [19], even more
so, should future gravitational wave detectors be able to
provide independent constraints on the hot dense matter
EoS [58–60].
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