
Adaptive analytical ray tracing of black hole photon rings

Alejandro Cárdenas-Avendaño ,1,2,* Alexandru Lupsasca ,1,3 and Hengrui Zhu 1

1Princeton Gravity Initiative, Princeton University, Princeton, New Jersey 08544, USA
2Programa de Matemática, Fundación Universitaria Konrad Lorenz, 110231 Bogotá, Colombia
3Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37212, USA

(Received 18 November 2022; accepted 18 January 2023; published 22 February 2023)

Recent interferometric observations by the Event Horizon Telescope have resolved the horizon-scale
emission from sources in the vicinity of nearby supermassive black holes. Future space-based
interferometers promise to measure the “photon ring”—a narrow, ring-shaped, lensed feature predicted
by general relativity, but not yet observed—and thereby open a new window into strong gravity. Here we
present AART: an adaptive analytical ray-tracing code that exploits the integrability of light propagation in
the Kerr spacetime to rapidly compute high-resolution simulated black hole images, together with the
corresponding radio visibility accessible on very long space-ground baselines. The code samples images on
a nonuniform adaptive grid that is specially tailored to the lensing behavior of the Kerr geometry and is
therefore particularly well-suited to studying photon rings. This numerical approach guarantees that
interferometric signatures are correctly computed on long baselines, and the modularity of the code allows
for detailed studies of equatorial sources with complex emission profiles and time variability. To
demonstrate its capabilities, we use AART to simulate a black hole movie of a stochastic, nonstationary,
nonaxisymmetric equatorial source; by time-averaging the visibility amplitude of each snapshot, we are
able to extract the projected diameter of the photon ring and recover the shape predicted by general
relativity.
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I. INTRODUCTION

According to general relativity, black holes display
unique lensing behavior: for instance, any two spatial
points outside the event horizon are connected by
infinitely many light rays, each of which executes a
different number of orbits around the black hole under its
extreme gravitational pull [1–5]. As a result, images of a
black hole surrounded by a nonspherical, optically thin
emission region decompose into a sequence of superimposed
layers indexed by photon half-orbit number n, with each
layer consisting of a full lensed image of the main emission
[5–11]. The direct (n ¼ 0) layer typically displays a central
dark area—the black hole—encircled by the weakly lensed,
primary image of the accretion flow onto the hole, whose
details depend sensitively on astrophysical conditions. On
the other hand, the higher-n layers arise from photons on
highly bent trajectories that are strongly lensed to form a
series of narrow “photon rings.”1 These rings are usually
stacked on top of the broader n ¼ 0 emission and their
shape rapidly converges (exponentially fast in n) to that of

the “Kerr critical curve”2 [15]: a theoretical curve in the
observer sky corresponding to the apparent image of asymp-
totically bound photon orbits. In contrast to the astrophysics-
dependent n ¼ 0 image, this “n → ∞ photon ring” is
completely determined by the Kerr black hole—depending
only on its mass, spin, and inclination—and delineates its
cross-sectional area in the sky.
Recently, 1.3 mm interferometric observations by the

Event Horizon Telescope have resolved the horizon-scale
emission from sources in the immediate vicinity of two
nearby supermassive black holes: M87* [16], the central
compact object at the core of our neighboring galaxy
Messier 87, and Sgr A* [17], our own black hole at the
center of the Milky Way. Their reconstructed images
display a central brightness depression within a thick ring
consistent with theoretical expectations for the direct image
of the surrounding accretion flow [18–22].
However, these observations have thus far not provided

any evidence for the presence of a lensed photon ring [23].
They are instead dominated by n ¼ 0 photons [6,7], which
form the image layer that ismore sensitive to the astrophysics
of the flow than to purely relativistic effects [24–26]. As a
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1For an animation of this effect, see https://youtu.be/
4-DvyMPs-gA.

2Spherical emission creates a “shadow” inside of this
curve [11–13], which is often called the “shadow edge” even
when its interior is not dark [14].
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result, the bounds placed on possible deviations from general
relativity are on the order of several percent [27,28], and are
comparable to the constraints derived from gravitational-
wave observations of stellar-mass, binary black holes [29], or
x-ray spectroscopy measurements of low-mass binaries and
active galactic nuclei [30]. By contrast, future detections of
orbiting (n ≥ 1) photons will open a newwindow into strong
gravity and enable higher-precision probes of the Kerr
geometry, since it is this orbiting light which forms the part
of the image—the photon ring—that belongs to the black
hole itself, rather than to its plasma.
There are three major obstacles to measuring a photon

ring. First, since the photon rings are exponentially narrow
(in n) features, resolving them requires interferometric
observations on exponentially long baselines [7]. At the
current observing frequency of 230 GHz, even Earth-
spanning baselines are too short to resolve the first ring,
but it should become accessible to next-generation space-
based interferometers. In particular, the Single Aperture
Large Telescope for Universe Studies (SALTUS) is a bold
proposal—currently a contender for NASA’s upcoming
Probemission—to launchwithin the next decade a spacecraft
far enough to access the first two rings of M87*.
Optical depth poses a second hurdle: even though photons

could in principle circumnavigate the black hole indefinitely
(albeit unstably), in practice, those that traverse its emission
regionmultiple times are eventually reabsorbed by thematter
they intersect—an effect that cuts off image layers past some
n > 0. Nevertheless, since absorptivity decreases with pho-
ton energy, the first few rings still ought to be present in
images taken at sufficiently high frequencies. Simple models
suggest that at 230 GHz, the n ¼ 1 ring is always visible
while the n ¼ 2 ring may be only marginally observable,
whereas both rings should be clearly visible at 345GHz [11].
State-of-the-art simulations of general-relativistic magneto-
hydrodynamic (GRMHD) flows [31] also confirm these
expectations [32]. For this reason, SALTUS is slated to
simultaneously observe at both frequencies. M87*makes for
a particularly exciting prospective target because a measure-
ment of itsn ¼ 2 ring diameter could deliver a stringent test of
the Kerr hypothesis, which predicts a definite shape for its
higher-n rings: photons orbiting just outside the horizon of a
black hole can probe its extreme gravity and carry away
information about its spacetime geometry, encoded in the
observable shape of the rings that these photons produce in
their observer’s sky [33–35].
Time variability introduces a third significant complica-

tion. While time-averaged GRMHD-simulated movies
have shown that the photon rings are persistent, sharp
features that come to dominate observations with very-
long-baseline interferometry (VLBI) after averaging over
sufficiently long timescales [7], it remains to be understood
how clearly visible the rings will be to a realistic, near-
future, space-VLBI mission like SALTUS, which will be
limited in the number of snapshots it can collect. In each
snapshot, such an interferometer—with a single space

leg—can only sample the radio visibility on one space-
ground baseline, thereby only measuring the projected
diameter dφ of the photon ring at one angle φ in the
image.3 To compensate for its sparse baseline coverage, the
instrument can observe at regular intervals along its orbit
around the Earth, eventually filling in every angle φ in the
Fourier domain, with each dφ thus sampled twice per orbit.
The baseline lengths overwhich the ring signature dominates
the signal fix the orbital radius (about lunar distance for the
n ¼ 2 ring of M87*) and hence the orbital period (∼1
month), which in turn sets the cadence of these snapshots:
∼40MM87� , or roughly every two weeks. As it is evidently
impractical to maintain coherence over such timescales, the
snapshots must be incoherently time-averaged; moreover,
only ∼24 snapshots of dφ can be sampled per year.
In a single snapshot, the “clean” interferometric signa-

ture of the ring—a periodic ringing in the visibility
amplitude—is typically “polluted” by noise from both
the instrument and from astrophysical fluctuations (plasma
flares, emission ropes, or other ring mimickers), which can
obscure the signal. The key question is then: Can the
interferometric signature of a photon ring—and hence its
projected diameter—be recovered from an incoherent time-
average over N ≈ 20 snapshots of its visibility amplitude
on very long space-ground baselines?
An affirmative answer to this question would open the

door to a consistency test of the Kerr hypothesis—a
cornerstone of general relativity (GR) in the strong-field
regime—via space-VLBI measurements of the photon ring
shape. The paper [35] (henceforth GLM) took the first steps
toward establishing the viability of such a test for M87*.
GLM examined a range of models of stationary, axisym-
metric, equatorial disks that reproduce the time-averaged
observational appearance of GRMHD-simulated flows, and
found that the observable shape of their n ¼ 2 ring always
follows a specific functional form, independent of the
source model. They concluded that this ring shape is a
robust prediction of strong-field GR.
In other words, observations of the n ¼ 2 photon ring

can in principle disentangle gravitational and astrophysical
effects that are otherwise commingled in the direct image.
Moreover, GLM simulated interferometric data of the kind
that could be collected by a mission such as SALTUS, and
were able to extract this ring shape from the visibility
amplitude on space-ground baselines. Their experimental
forecast achieved a subpercent level of precision for the
resulting test of the Kerr hypothesis, suggesting that M87*
holds exceptional promise as a target for such a test in
practice. This analysis was recently reviewed in depth and
extended to an even larger selection of equatorial disk
models, supporting these conclusions [10].

3The angle in the image corresponds to the space element’s
baseline angle in the Fourier plane [33–35], while the baseline
length determines the index n of the subring whose interfero-
metric signature dominates the signal [7,10].
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While these early results are encouraging, demonstrating
the feasibility of a ring shape measurement requires further
theoretical work. Crucially, even though the GLM analysis
did include realistic instrument noise, it only considered
time-averaged images of equatorial disks. The latter limita-
tionwas recently tackledwith a study of geometric thick-disk
models [11], but to date a detailed investigation of source
fluctuations and time variability has yet to be carried out.
The present work is the first attempt to remedy this lacuna.

The main obstruction is technical: as high-order photon rings
are exponentially narrow compared to the overall structure of
a black hole image, resolving them in the image plane incurs a
large computational cost.More precisely, their presence in the
image introduces a large separation of scales between the
pixel grid size (which must be large enough to capture the
entire field of view) and the pixel spacing (the grid must
achieve a sufficiently fine resolution to see the narrow rings).
While a brute-force approach—pumpingmillions of pixels in
the grid—can overcome this scale separation for a handful of
images, it becomes intractablewhen dealingwith a black hole
movie consisting of several hundred snapshots, in which case
adaptive ray tracing is necessary [36,37] (and less wasteful).
Here, we present a numerical tool4 designed to efficiently

compute high-resolution “slow-light” movies of generic

(nonstationary and nonaxisymmetric) equatorial sources
around a Kerr black hole, together with their associated
radio visibility on very long baselines; we present example
outputs in Fig. 1.
The code was developed with the intent to maximize

speed while still guaranteeing the accuracy of its output,
particularly the radio visibility on very long baselines,
which encodes the high-frequency components of a snap-
shot’s Fourier transform and is therefore extremely sensi-
tive to its most minute image features. The code’s structure
is highly modular, and most of its individual components
reproduce preexisting capabilities; its main novelty is
arguably to combine all these routines into one single
and convenient-to-use (we hope) package.
One new and important technique from which AART

derives much of its power deserves special mention: it turns
the very feature of photon rings that makes them so difficult
to fully resolve—namely, their thinness—to its advantage.
It does so by decomposing the full image into multiple
layers labeled by half-orbit number n, and ray tracing in
each layer the image of the nth photon ring with exponen-
tially high (in n) resolution.
More precisely, the lensing behavior of a black hole

forces the nth photon ring to lie within an exponentially
small (in n) region of the image plane, dubbed the nth
lensing band, with each band completely fixed by the Kerr
geometry [10,35]. A key innovation of AART is to first

FIG. 1. Top: Snapshots of a nonstationary, nonaxisymmetric, equatorial source around a Kerr black hole ray-traced with AART.
Most image features in these snapshots arise from fluctuations in the source, with the exception of the strikingly bright and narrow
photon ring: a persistent, sharp feature that comes to dominate the image formed by time-averaging many of these snapshots (Fig. 2).
These images were produced using the parameters listed in Table II at regular time intervals of 250M. Bottom: The corresponding
visibility amplitudes for spin-aligned (blue) and spin-perpendicular (red) cuts across each of the above images. The black hole spin is
a=M ¼ 94% and the observer inclination is θo ¼ 17°.

4The code is publicly available at https://github.com/
iAART/aart.
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compute (once and for all) the lensing bands associated
with a given black hole spin and inclination, and then to
ray trace, for the nth layer, only pixels lying in the nth
lensing band. Since each lensing band contains an
exponentially demagnified image of the main emission,
by also increasing the resolution in each band exponen-
tially,5 the code is guaranteed to resolve the source with
roughly the same effective resolution in every layer. In
other words, AART adapts its ray-tracing resolution (grid
spacing) to each layer, but also adjusts the ray-tracing
region (grid size), so as to resolve the increasingly fine
features present in higher layers using only a fixed
number of pixels per layer.
Other ray tracers use adaptive mesh refinement to

increase pixel density in regions where they detect long
geodesic path lengths [36] or large gradients [37,38]. This
results in a new, nonuniform grid for every new snapshot,
which is recursively refined until a desired criterion is met,
or else the number of recursions exceeds a hard-set limit.
Therefore, small image features can sometimes be missed
when this limit is hit.

By contrast, the adaptiveness provided by the lensing
bands is determined by the Kerr geometry alone and results
in the same, uniform grid for every image of a given black
hole spin and inclination. These grids therefore need be
computed only once, and provided that their resolution
increases at the proper rate set by the demagnification
factor, they cannot miss any feature that is already resolved
in the direct n ¼ 0 image.
Finally, high-n layers comprise photons that execute

many orbits in the Kerr photon shell [39] where their radial
potential almost develops a double root and geodesic
integrals diverge logarithmically, leading to a growing risk
of numerical error. To minimize error, AART performs
analytical ray tracing using an exact solution of the Kerr
null geodesic equation recently given in terms of Legendre
elliptic integrals and Jacobi elliptic functions [40], similar
in spirit to previous implementations based on Carlson
symmetric forms [41,42].
To summarize: AART uses lensing bands to prevent a

large separation of scales (between the grid size and its
spacing) and thereby maintain its speed as it increases the
pixel density in higher-n photon rings, which is necessary
to ray trace the fine image features that (due to the nonlocal
character of the Fourier transform) influence the visibility
on long baselines; moreover, the rings are ray traced
analytically to avoid errors.

FIG. 2. Left: Time average of 100 ray-traced snapshots of INOISYequatorial profiles uniformly sampled over a time interval of 1000M.
The INOISY parameters take the “best-guess” values for M87* presented in Table II. Hence, this image is directly comparable to the time-
averaged image of M87* presented in Fig. 1 of Ref. [7], for which the underlying GRMHD simulation’s parameters were chosen to be
consistent with the 2017 Event Horizon Telescope observations of M87*. Right: Visibility amplitudes of all 100 snapshots along cuts
parallel (φ ¼ 0°, blue) and perpendicular (φ ¼ 90°, red) to the black hole spin axis. The solid lines correspond to the incoherently time-
averaged amplitudes. Embedded is a panel zooming into the average visibility amplitude in the baseline range u ∈ ½425; 445�Gλ, with
the best-fit ring signature overlaid (black).

5Successive subrings are demagnified by an analytically
known, angle-and-spin-dependent factor e−γðφÞ, where γðφðr̃ÞÞ
is the Lyapunov exponent that governs the instability of nearly
bound photons at orbital radius r̃ [5,7].
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These features of AART are specially tailored to the
photon ring and its interferometric signature; with this tool
in hand, it becomes feasible to investigate the effects of
time variability on measurements of the n ¼ 2 ring shape,
and we can begin to answer the key experimental question
posed above.
To study the effects of source fluctuations on the

observed visibility amplitude, we call upon both AART

and INOISY [43]: a code that can rapidly generate realiza-
tions of a 2D Gaussian random field with Matérn covari-
ance. Such a field can provide a simple statistical model for
a generic (nonstationary and nonaxisymmetric) stochastic
source in the equatorial plane of a Kerr black hole, with a
prescribed two-point function. Since a “realistic” choice of
autocorrelation structure is not yet known (and will require
additional research into the plasma physics of the fluid), our
goal will be to vary the statistics of the model within a wide
range of “reasonable” possibilities (informed by GRMHD
simulations), so as to parametrize our uncertainty in the
expected variability of signals from sources such as M87*.
Completing such a parameter survey is a large undertaking

beyond the scope of this first paper. Here, wewill be content
with a proof-of-concept demonstration that AART is up to the
task for such a study. To showcase its capabilities, we ray
trace 100 snapshots of an INOISY source with statistics set by
the “best-guess” parameters for M87* (listed in Table II).
Sample snapshots and their associated visibility amplitude
are shown in Fig. 1, while Fig. 2 includes all of the snapshots,
with the left panel displaying their time-averaged image and
the right panel all the individual visibility amplitudes
together with their incoherent time average (solid lines).
As expected, we find that the astrophysical fluctuationswash
out from the time average, leaving an image that is visibly
dominated by a prominent photon ring with clear n ¼ 1 and
n ¼ 2 subrings.
Correspondingly, the incoherently time-averaged visibil-

ity amplitude is dominated on long baselines by the

perfectly clean interferometric signature of the n ¼ 2 ring.
In particular, we find that the signal in the range
u ∈ ½425; 445�Gλ—which a satellite at lunar distance from
the Earth could access with 345 GHz observations—
exactly follows the periodic ringing pattern predicted for
a thin ring (black overlay in panel inset).
As we show in Fig. 3, the projected diameter dφ of the

n ¼ 2 ring can then be extracted from the periodicity of this
ringing in the visibility amplitude jVðu;φÞj. The top panels
display the ring diameter dφ inferred from an average over
N snapshots, with N ¼ 5, 10, 20, and finally 100, by which
time the smooth shape of the ring has emerged. The bottom
panels display the relative deviation from this fiducial
shape that is induced by astrophysical fluctations, whose
noise clearly averages out of the image; it is encouraging to
see this noise is also beat down in measurements of the ring
shape using only a few snapshots.
Of course, whether these conclusions are likely to hold

for M87* has yet to be established, and a systematic
investigation of astrophysical fluctuations remains to be
done. In a soon-to-be-released paper, we will initiate such a
study by repeating this analysis for multiple models of
M87*, varying the parameters both of the black hole (its
spin and inclination) and of the source (the INOISY model).
We also hope to report on the signature of the n ¼ 1 ring
and how it may encode the spin.
To guide the reader, we now give a summary of the rest of

the paper, which—like AART—is written in a modular way.

A. Summary

In Sec. II, we review the problem of light propagation in
the Kerr spacetime. We write down the null geodesic
equation and its exact analytical solution as it is imple-
mented in AART, and describe the key concept of lensing
bands (Fig. 4). We then illustrate the lensing behavior of the
black hole by plotting its “transfer functions”: mappings of
directions in the observer sky to the spacetime points where

FIG. 3. Top: The projected diameter dφ of the n ¼ 2 photon ring inferred from an incoherent time average over N snapshots of the
source. The green curves are best fits of the GR-predicted shape [Eq. (127)] to the synthetic data. To show how the fits improve with
increasing N, each panel displays the data of its predecessor in the background. Bottom: The difference between the best-fitting curve at
a given N and the “true” shape of the ring (solid gold line in last panel) to which the signal converges as N → ∞. The parameters of the
model are listed in Table II.
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the corresponding light rays intersect the equatorial plane.
The transfer functions for polar coordinates ðrs;ϕsÞ in the
plane are shown in Figs. 5, 6, and 9 for the n ¼ 0, n ¼ 1,
and n ¼ 2 images, respectively. Likewise, the time lapseΔt
between source and observer is also shown in Figs. 7 and 8
for the n ¼ 0 and n ¼ 1 images, respectively. The nth
image always fills out the nth lensing band, as expected.
We also give an approximate formula for light bending

that was derived by Beloborodov [44] for nonrotating black
holes in the weak-deflection regime. We express his result
in a very simple form [Eq. (43)] that proves to be
remarkably accurate for the computation of n ¼ 0 images
of axisymmetric sources, for most black hole spins and
inclinations. This observation, which is illustrated in
Fig. 10, highlights the fact that n ¼ 0 photons barely carry
an imprint of the black hole spin, as they do not spend
enough time near it to be strongly affected by its gravi-
tational field. Beloborodov’s approximation can thus be
regarded as a generalization to all inclinations of the “just
add one” prescription for the transfer function of a spin-
aligned observer, for whom the impact parameter ρ is
simply related to emission radius rs by adding one: ρ ≈
rs þM [5,45]. AART can also parallel transport linear
polarization. We check that Beloborodov’s approximation
is adequate for ray tracing n ¼ 0 polarimetric images
(Fig. 11), which can be done using simple algebraic
equations that we write down explicitly.

In Sec. III, we describe our model of equatorial emission.
First, we review stationary and axisymmetric equatorial disk
profiles that can reproduce the time-averaged observational
appearance of M87* in GRMHD simulations [9,35].
Then, we add in astrophysical fluctuations with prescribed
statistics. We model these fluctuations using Gaussian
random fields and describe their statistical properties in
great detail. In Sec. IV, we use INOISY to simulate a variable
source. With AART, we ray trace its instantaneous snapshots
(Fig. 12) and compute its light curve (Fig. 13). Great care
must be taken in the choice of resolution and field of
view used in each layer, and Sec. V discusses these issues
in depth (Figs. 14–16).
We can then produce movies of a stochastic, nonsta-

tionary, nonaxisymmetric source. In Sec. VI, we compute
movies of the associated visibility amplitude and use this
synthetic data to reconstruct the projected diameter dφ of
the n ¼ 2 ring, before concluding with a brief discussion
of future prospects in Sec. VII. We relegate some details
to Apps. A, B, and C. Throughout the paper, we work in
ð−;þ;þ;þÞ metric signature with geometric units in
which GN ¼ c ¼ 1. Our conventions for Legendre elliptic
integrals are listed in Appendix A of Ref. [46].

II. THEORETICAL FRAMEWORK

The special integrability properties of the Kerr space-
time reduce its geodesic equation to a problem of
quadratures [47], resulting in elliptic integrals that are
expressible in Legendre normal form [40,48–50]. Modern
computers can evaluate the Legendre elliptic integrals very
fast and to arbitrary precision, reducing the computational
cost of ray-tracing in Kerr. In this section, we review the
exact solution of the Kerr null geodesic equation in
Legendre form [5,40] as well as the approximate solution
derived in Schwarzschild by Beloborodov [44], and we use
them to plot the transfer functions mapping Bardeen’s
coordinates in the observer sky [15] to the equatorial plane.

A. Null geodesics of the Kerr exterior

Astrophysical, rotating black holes of mass M and
angular momentum J ¼ aM are subject to the Kerr bound
jaj ≤ M and are described by the Kerr geometry.
The Kerr metric is written in Boyer-Lindquist coordi-

nates ðt; r; θ;ϕÞ in terms of functions Σðr; θÞ ¼
r2 þ a2 cos2 θ and ΔðrÞ ¼ r2 − 2Mrþ a2. The roots of
ΔðrÞ define the radii of the outer and inner event horizons:

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð1Þ

With respect to Mino time τ, a photon with four-momentum
pμ follows a null geodesic xμðτÞ obtained by solving

dxμ

dτ
¼ −

Σ
pt

pμ: ð2Þ

FIG. 4. Illustration of lensing bands with different grid reso-
lutions, for black hole spin a=M ¼ 50% and observer inclination
θo ¼ 60°. Orange, purple, and magenta marks depict light rays
that intersect the equatorial plane once (n ¼ 0 band), twice
(n ¼ 1 band), and thrice (n ¼ 2 band), respectively. The black
dashed line is the critical curve (21). Embedded is a panel
showcasing the increasing grid resolution in higher-n bands. The
region inside the lensed n ¼ 0 equatorial horizon, shown in
black, is always excluded from our calculations.
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The resulting trajectory is independent of the photon energy
−pt and can be parametrized by two conserved quantities:
the energy-rescaled angular momentum and Carter constant

λ ¼ −
pϕ

pt
; η ¼ p2

θ

p2
t
− a2 cos2 θ þ λ2 cot2 θ: ð3Þ

We are interested in solving for the trajectories xμðτÞ
that connect two spacetime events ðts; rs; θs;ϕsÞ and

ðto; ro; θo;ϕoÞ, where the labels “s” and “o” stand for
“source” and “observer,” respectively. We will specialize to
distant observers (ro ≫ M) at nonzero inclination θo ∈
ð0; π=2Þ above the equatorial plane θs ¼ π=2 where we
place the source. (The measure-zero cases θo ∈ f0; π=2g
technically require separate treatments [5], but in practice
one can simply change the inclination slightly and use the
same analytical expressions.) The symmetries of the Kerr

FIG. 5. Direct (n ¼ 0) images of the equatorial plane θs ¼ π=2 for Kerr black holes with spins a=M ∈ f50%; 99%g and observer
inclinations θo ∈ f17°; 80°g. The isoradial curves (purple) correspond to rings of constant Boyer-Lindquist radius rs=M ∈
f3; 6; 9; 12; 15; 18g between rs ¼ rþ (the apparent image of the equatorial horizon, in black) and the cutoff at rs ¼ 20M. The colors
change every 45° across curves of constant ϕs.
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geometry—its stationarity and axisymmetry—allow us to
set ts ¼ 0 and ϕo ¼ 0 without loss of generality.
A photon that reaches an observer with four-momentum

pμ
o and conserved quantities ðλ; ηÞ appears in the sky at

Cartesian position ðα; βÞ given in terms of �o ¼ signpθ
o by

Bardeen [15],

α ¼ −
λ

sin θo
; β ¼ �o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ a2 cos2 θo − λ2 cot2 θo

q
;

ð4Þ

for ro → ∞. If the photon carries a linear polarization,
then its observed electric vector polarization angle (EVPA)
is [51–54]

χ ¼ arctan

�
νκ1 − βκ2
βκ1 þ νκ2

�
; ν ¼ −ðαþ a sin θoÞ; ð5Þ

where κ denotes the complex-valued Penrose-Walker
constant

FIG. 6. Same as Fig. 5 for the n ¼ 1 image, which is a demagnified and rotated copy of the direct n ¼ 0 image (shown as a faded
background).
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κ ¼ κ1 þ iκ2 ¼ ðPA − iPBÞðr − ia cos θÞ; ð6Þ
PA ¼ ðptfr − prftÞ þ a sin2 θðprfϕ − pϕfrÞ; ð7Þ

PB ¼ ½ðr2 þ a2Þðpϕfθ − pθfϕÞ − aðptfθ − pθftÞ� sin θ;
ð8Þ

a quantity that is also conserved along null geodesics—
thanks to the Petrov type D nature of the Kerr metric [55]—
and can be used to algebraically solve the parallel transport

problem for a linear polarization vector f by evaluating κ at
the source.
The separability of Kerr geodesic motion allows the r

and θ trajectories to be decoupled [47], These independent
motions are then controlled by radial and angular geodesic
potentials whose zeros give the turning points of their
respective motion:

RðrÞ ¼ ðr2 þ a2 − aλÞ2 − ΔðrÞ½ηþ ðλ − aÞ2�; ð9Þ

FIG. 7. Same as Fig. 5 for the renormalized time t̃ð0Þ relative to an observer at ro ¼ 10000M [Eq. (41)], with the same isoradial curves
(purple). The solid, dashed, and dotted gray lines, respectively, denote contours of fixed t̃=M ∈ f−10; 0; 10g. Each panel has its own
color scale for clarity.
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ΘðθÞ ¼ ηþ a2 cos2 θ − λ2 cot2 θ: ð10Þ

Both potentials have exactly four (not always real) roots

r1 ¼ −z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 þ B

4z

r
; θ1 ¼ arccosð ffiffiffiffiffiffi

uþ
p Þ; ð11Þ

r2 ¼ −zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 þ B

4z

r
; θ2 ¼ arccosð ffiffiffiffiffiffi

u−
p Þ; ð12Þ

r3 ¼ z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 −

B
4z

r
; θ3 ¼ arccosð− ffiffiffiffiffiffi

u−
p Þ; ð13Þ

r4 ¼ zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
A
2
− z2 −

B
4z

r
; θ4 ¼ arccosð− ffiffiffiffiffiffi

uþ
p Þ; ð14Þ

which depend only on the conserved quantities ðλ; ηÞ via6

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ þ ω− −A=3

2

r
; ω� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3

27
þQ2

4

r
3

s
;

ð15Þ

A ¼ a2 − η − λ2;
B
2M

¼ ηþ ðλ − aÞ2; C ¼ −a2η;

ð16Þ

P ¼ −
A2

12
− C; Q ¼ −

A
3

��
A
6

�
2

− C
�
−
B2

8
; ð17Þ

u� ¼ △θ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
△2

θ þ
η

a2

r
; △θ ¼

1

2

�
1 −

ηþ λ2

a2

�
: ð18Þ

We will now restrict our attention to positive spins
0 ≤ a ≤ M.

B. Kerr critical curve

The radial potential (9) develops a double root at r̃ ≥ rþ
[that is, Rðr̃Þ ¼ R0ðr̃Þ ¼ 0] if and only if [5,15]

λ̃ ¼ aþ r̃
a

�
r̃ −

2Δðr̃Þ
r̃ −M

�
; η̃ ¼ r̃3

a2

�
4MΔðr̃Þ
ðr̃ −MÞ2 − r̃

�
; ð19Þ

where r̃ ∈ ½r̃−; r̃þ� with

r̃� ¼ 2M

�
1þ cos

�
2

3
arccos

�
� a
M

���
: ð20Þ

A geodesic with critical conserved quantities λ ¼ λ̃ and
η ¼ η̃ asymptotes to an unstably bound orbit at radius r̃ in
the Kerr photon shell. For a distant observer, the Kerr
critical curve C is the image in the sky of these asymp-
totically bound orbits:

C ¼ fðα̃; β̃Þ∶ðλ; ηÞ ¼ ðλ̃; η̃Þg: ð21Þ

Though this purely theoretical curve is not in itself
observable, it does play a key role in the study of lensing
by a Kerr black hole [56]. It is traced using Eq. (4)
evaluated on Eq. (19) for all the values r̃ ∈ ½r̃−; r̃þ� such
that β̃2 ≥ 0. It is always closed, convex, and reflection-
symmetric about the α axis [34].

C. Analytical backwards ray tracing

The character (real or complex) and ordering of the radial
roots fr1; r2; r3; r4g (when they are real) lead to a classi-
fication of radial motion into four types [40,57,58]. We are,
however, only interested in the rays that connect a distant
observer to an equatorial source. This excludes two of the
motion types, leaving only two others corresponding to
rays that start from infinity at one end point before they
either cross the horizon or return to infinity at the other.7

FIG. 8. Same as Fig. 7 for the n ¼ 1 image. The solid gray line
is an isochronous curve of fixed renormalized time t̃ð1Þ ¼ −10M.
The color scale is chosen to highlight the rapid variation in t̃ð1Þ at
the edges of the lensing band (which correspond to the horizon
and infinity).

6Here,
ffiffiffi
x3

p
denotes the real cube root of x if x is real, or else, the

principal value of the function x1=3 (that is, the cubic root with
maximal real part).

7The angular motion also has two possible behaviors accord-
ing to whether η≷0. We ignore vortical rays with η < 0 as they
cannot reach the equator [46]. Such rays always lie within the
apparent image of the horizon.
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The boundary between these two behaviors in the phase
space of null geodesics constitutes the Kerr photon shell of
asymptotically bound orbits, a special locus in phase space
with emergent conformal symmetry [59]. We now describe
how this separation is manifested in the sky.
Given a black hole spin and observer inclination ða; θoÞ,

we can pick a direction ðα; βÞ in the observer sky and shoot
a light ray backwards into the geometry in that direction.
Such a ray will cross the equatorial plane a total number of
times Nðα; βÞ, which can be determined by computing the
total Mino time τ elapsed along the entire development of
the trajectory. Rays in the interior of the critical curve all
fall into the black hole; that is, they encounter no radial
turning point and terminate their motion across the Kerr
exterior on the event horizon at r ¼ rþ. Rays in the exterior
of the critical curve are all deflected back to infinity; that is,
their radial motion encounters a turning point at r ¼ r4,
whereupon they bounce back toward r → ∞. Thus, the
critical curve (21) delineates the boundary between photon
capture (its interior) and photon escape (its exterior), and
may be regarded as the cross-sectional area of the hole. In-
between rays that lie exactly on C are trapped in the photon
shell where they can in principle orbit forever; in practice,
this never occurs because such orbits are unstable (or
equivalently, because C is infinitely thin).
Let rij ¼ ri − rj and define A ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

r32r42
p

, B ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r31r41

p
,

and

I ð2Þ
0 ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p F

�
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − r4
r − r3

r31
r41

r
j r32r41
r31r42

�
; ð22Þ

I ð3Þ
0 ¼ 1ffiffiffiffiffiffiffi

AB
p F

�
arccos

�
1 − r−r2

r−r1
B
A

1þ r−r2
r−r1

B
A

����� ðAþ BÞ2 − r221
4AB

�
;

ð23Þ

where FðφjkÞ is an incomplete elliptic integral of the first
kind. These functions are the antiderivatives (A10) and
(A22), and all the radial geodesic integrals Ik are definite
integrals that can be obtained from their respective anti-
derivative Ik as follows.
If a ray lies inside of C, then its motion is, following the

labeling introduced in Ref. [40], of type (2) when all roots
are real (in which case rþ > r− > r4 > r3 > r2 > r1), or
else of type (3) when r3 ¼ r̄4 are complex-conjugate roots
with rþ > r− > r2 > r1.

8 In either case, the definite
integrals down to radius rs on the ray are

IkðrsÞ ¼ I ð2;3Þ
k ðroÞ − I ð2;3Þ

k ðrsÞ: ð24Þ

If a ray lies outside of C, then its motion is always of type
(2), and the definite integrals down to radius rs on the ray are

IkðrsÞ ¼ I ð2Þ
k ðroÞ ∓ I ð2Þ

k ðrsÞ; ð25Þ

with sign −=þ before/after reaching the turning point
at r ¼ r4.
The Mino time τðrsÞ elapsed along a ray inside C is thus

τ−ðrsÞ ¼
Z

ro

rs

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ≡ I0ðrsÞ ¼ I ð2;3Þ

0 ðroÞ − I ð2;3Þ
0 ðrsÞ:

ð26Þ

Hence, the total Mino time elapsed along the full light
ray is

τ−max ¼
Z

ro

rþ

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ¼ τ−ðrþÞ: ð27Þ

Likewise, the Mino time τðrsÞ elapsed along a ray outside
C is

τþðrsÞ ¼
�Z

ro

rs

þ2w
Z

rs

r4

�
drffiffiffiffiffiffiffiffiffiffi
RðrÞp ¼ I ð2Þ

0 ðroÞ ∓ I ð2Þ
0 ðrsÞ;

ð28Þ

where the sign is − before the turning point at r ¼ r4
(w ¼ 0) and þ after the bounce (w ¼ 1). Hence, the total
Mino time elapsed along the full light ray is

τþmax ¼ 2

Z
ro

rþ

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ¼ 2I ð2Þ

0 ðroÞ; ð29Þ

and its radial turn occurs at the “half-way” Mino time

τ4 ¼
Z

ro

rþ

drffiffiffiffiffiffiffiffiffiffi
RðrÞp ¼ I ð2Þ

0 ðroÞ ¼
τþmax

2
: ð30Þ

We will use τmax to denote the appropriate choice of τ�max.
At last, the total number of equatorial crossings

Nðα; βÞ is

N ¼
�
τmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−u−a2

p
þ signðβÞFo

2K

	
−HðβÞ þ 1; ð31Þ

whereHðxÞ denotes the Heaviside function whileK and Fo
are defined in Eqs. (A4) and (5); see also Appendix A
of Ref. [10].
A light ray crosses the equatorial plane for the (nþ 1)th

time at Mino time τ ¼ τðnÞs , where

τðnÞs ¼ GðnÞ
θ ∈ ½0; τmax�; n ∈ f0;…; N − 1g; ð32Þ

with GðnÞ
θ given in Eq. (A1). This equatorial crossing

occurs at
8There exist type (4) rays with both r1 ¼ r̄2 and r3 ¼ r̄4, but

they are vortical.
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rðnÞs ¼ rð2;3Þs ðτðnÞs Þ; ð33Þ

ϕðnÞ
s ¼ ϕo − IðnÞϕ − λGðnÞ

ϕ ; ð34Þ

tðnÞs ¼ to − IðnÞt − a2GðnÞ
t ; ð35Þ

with rð2;3Þs ðτÞ given in Eqs. (A20) and (A36) for geo-
desics of types (2) and (3), respectively, while the angular

integrals GðnÞ
t;ϕ are given in Eqs. (A2) and (A3). Meanwhile,

the radial integrals

IðnÞt;ϕ ¼ It;ϕðrðnÞs Þ ð36Þ

decompose via Eqs. (A8) and (A9) into definite integrals
that are to be evaluated via Eq. (24) for rays inside C or via

Eq. (25) for rays outside C, using the antiderivatives I ð2;3Þ
k

given by Eqs. (A10)–(A13) for type (2) geodesics or
Eqs. (A22)–(A25) for type (3) geodesics. In practice, we
take ro ≫ M to be very large but not infinite, for reasons
described in Eq. (41) below.

D. Kerr lensing bands

The functions rðnÞs , ϕðnÞ
s , and tðnÞs defined in Eqs. (33)–(35)

are the “transfer functions” that map the equatorial plane to
its (nþ 1)th lensed image in the observer sky, where the
index n ≥ 0 may be thought of as a photon half-orbit
number [5,7].
To describe the lensing behavior of a Kerr black hole, it

is helpful to draw contour plots of these function—that is,

level sets of fixed rðnÞs , ϕðnÞ
s , and tðnÞs within each image layer

n. First, however, one must determine the regions of the
image plane in which these functions have support.
This is a nontrivial problem because these functions

always evaluate to some value: for instance, rðnÞs ðα; βÞ
always returns some source radius, even when the ray shot
back from ðα; βÞ does not in fact intersect the equatorial

plane nþ 1 times. In such cases, rðnÞs ðα; βÞ may sometimes
be obviously unphysical (it could, for example, take a
negative value), but not always.
We define the nth lensing band as the image-plane

subregion consisting of those rays that cross the equatorial
plane at least nþ 1 times after being shot back from the
observer, before either terminating on the horizon (if they
are shot back from inside the critical curve C) or else
returning to infinity (if they are shot back from outside C)
after an elapsed Mino time τmax.
By definition, the nth lensing band is the physical

domain of the transfer functions rðnÞs , ϕðnÞ
s , and tðnÞs . This

definition also implies that it is the subregion of the image
plane in which the function Nðα; βÞ defined in Eq. (31) is
precisely equal to nþ 1.

This last observation leads us to a formula that character-
izes the boundary of the nth lensing band: it is the set of
points ðα; βÞ in the image plane for which

τmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−u−a2

p
þ signðβÞFo

2K
−HðβÞ ¼ n; ð37Þ

such thatNðα; βÞ jumps by one across the boundary of each
lensing band. This condition can equivalently be written as

τmax ¼ GðnÞ
θ ; ð38Þ

with GðnÞ
θ given in Eq. (A1). The n ≥ 1 lensing bands have

a different character than the n ¼ 0 layer—we now focus
on the former and defer a discussion of the latter to the next
section.
Each n ≥ 1 lensing band is annular in shape and foliated

by contours of fixed rðnÞs , with every source radius mapping
onto a unique closed curve within the band. Moreover, this
bijective map is order-preserving: moving radially out-
wards within a band, one crosses contours of monotoni-

cally increasing rðnÞs . Thus, the inner edge of the nth lensing
band is the (nþ 1)th image of the equatorial event horizon

(the contour of fixed rðnÞs ¼ rþ), while its outer edge is the
(nþ 1)th image of the equatorial circle at infinity (the

contour of fixed rðnÞs ¼ ∞).
Rays that connect a distant observer to the event horizon

cannot encounter a radial turning point along their trajec-
tory, so the inner edge must always appear inside the
critical curve. Conversely, rays that connect a distant
observer to infinity have to make a turn along their radial
trajectory, so the outer edge must always appear outside the
critical curve. Hence, the n ≥ 1 lensing bands are annuli
that always straddle the critical curve. Since successive
images of a source are demagnified and appear exponen-
tially closer to the critical curve [5,7], the lensing bands
form a stack of nested annuli, as seen in Fig. 4.
To summarize, the inner edge of the nth lensing band is

the solution of Eq. (38) with τmax ¼ τ−max given in Eq. (27),
while its outer edge is the solution with τmax ¼ τþmax given
in Eq. (29). The two sides of Eq. (38) are continuous

functions GðnÞ
θ ðα; βÞ and τ�maxðα; βÞ of the image-plane

position ðα; βÞ.
In practice, we use the following procedure to determine

these edges. We first select a set of polar angles φi ∈ ½0; 2π�
around the image plane, with associated positions ðα̃i; β̃iÞ
on the critical curve (21)—that is, ðα̃i; β̃iÞ ∈ C is the point
where the critical curve is intersected by the ray emanating
from the origin at polar angle φi. Next, we parametrize
these rays as ðαiðϵÞ; βiðϵÞÞ ¼ ϵðα̃i; β̃iÞ. For each φi, we

compute GðnÞ
θ ðϵÞ along the corresponding ray over the

range ϵ ∈ ð0.5; 3Þ. We also compute τ−maxðϵÞ on the range
ϵ ∈ ð0.5; 1Þ and τþmaxðϵÞ on the range ϵ ∈ ð1; 3Þ. We then
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determine the unique parameters ϵ� within each of these

ranges such that GðnÞ
θ ðϵ�Þ ¼ τ�maxðϵ�Þ. These values cor-

respond to the points ðα�i ; β�i Þ ¼ ϵ�ðα̃i; β̃iÞ along the
ray of constant φi where it intersects the lensing band’s
outer and inner edges, respectively. Connecting the points
ðα�i ; β�i Þ thus obtained at every angle φi traces out the
edges of the lensing band, which is finally obtained as the
annular region between these two closed curves. These
boundaries—and hence, the lensing band—can be deter-
mined to arbitrarily high precision by sampling sufficiently
many φi.
To check the computation, one can verify that for each

i, rðnÞs ðα−i ; β−i Þ ≈ rþ and rðnÞs ðαþi ; βþi Þ ≈∞ up to numerical
error.9 Further discussion of lensing bands may be found
in Ref. [10].

E. Apparent image of the horizon

We now return to the n ¼ 0 lensing band, which (unlike
its higher-n counterparts) is noncompact. This difference
can be understood intuitively: if the black hole mass shrinks
to zero, the n ≥ 1 lensing bands must disappear with the
hole, whereas the n ¼ 0 band must extend to fill the entire
image plane.
Mathematically, the equations in the previous section

still hold. The inner and outer edges of the n ¼ 0 band are

still the contours of fixed rð0Þs ¼ rþ and fixed rð0Þs ¼ ∞,
respectively. These curves, respectively, correspond to the
primary image of the equatorial event horizon (appearing
inside C) and of the circle of infinite radius (appearing
outside C). The inner edge can be determined via the same
root-finding procedure outlined above (with n ¼ 0), result-
ing in a closed curve H contained within the critical curve
C. On the other hand, the outer edge is at infinity in the
image plane (as it would be in flat space), so the n ¼ 0
lensing band is no longer an annulus. Instead, it consists of
the entire (unbounded) exterior of H.
Meanwhile, the interior of H may technically be viewed

as the n ¼ −1 band, since it consists of rays that never
reach the equator before terminating on the horizon. In an
equatorial disk model, this region would be completely
dark, giving rise to an “inner shadow” feature [9], and may
naturally be viewed as the apparent image of the horizon. In
Fig. 4, we display this image as a shaded black region for
the case of a black hole with spin a=M ¼ 50% observed
from an inclination θo ¼ 60°.

F. Analytic grid adaptiveness

It has long been known that images of the equatorial
plane of a Kerr black hole are lensed into increasingly
demagnified, compact regions of the image plane [2,60].
More recently, this lensing behavior has been exploited
to efficiently ray trace equatorial disk models in which
the n ¼ 0, 1, and 2 image components are all fully
resolved [35].

AART is designed with this goal in mind and is built
around the lensing behavior of a Kerr black hole. It ray
traces images of an equatorial source layer-by-layer, using a
nonuniform grid adapted to this layered structure. The nth
image layer, which consists of the (nþ 1)th image of the
source, is only ray traced on pixels within the nth lensing
band, which is precisely the region of the image plane
occupied by this image. As a result, AARTavoids computing
unneeded pixels in each layer, substantially improving its
efficiency.
This layer-by-layer approach naturally allows for differ-

ent resolutions to be used in each image layer. This is
important because the exponential-in-n demagnification of
successive images of a source requires the use of exponen-
tially higher resolutions to resolve the source at the
same level of detail in higher-n layers. AART increases
the resolution in successive lensing bands by roughly the
same demagnification factor eγ that shrinks them (γ is a
Lyapunov exponent governing the orbital instability of
bound photon orbits [7]) such that every image of the
source is resolved by roughly the same number of pixels—
see Sec. V for a more detailed discussion of the resolution
requirements in each layer. This approach enables ray
tracing up to arbitrarily high n and ensures that all images
of the source are equally well resolved, with a roughly fixed
computational cost per layer.
To summarize, AART makes use of a nonuniform

adaptive grid composed of multiple layers, each of
which it ray traces at a resolution adapted to the lensing
band that makes up the layer. Since the lensing bands are
completely determined by the Kerr geometry via the
analytic formula (38), this form of adaptiveness is ana-
lytic, with the ray tracing also carried out analytically
using the exact transfer functions (33)–(35). This adap-
tiveness is purely geometrical and independent of image
features or gradients (unlike, for example, the method in
Refs. [36,37]).
In practice, to produce the n ¼ 0 grid points, AART

creates a Cartesian grid covering the desired area of the
image plane, but excluding points in the apparent image of
the horizon (that is, the interior of H). In each n ≥ 1 layer,
the code produces a Cartesian grid of points in an area
centered around the critical curve and then discards those
points which do not lie within the nth lensing band.
Numerically, the code only keeps those points which lie
within the concave hull of the points ðαþi ; βþi Þ and outside
the concave hull of the points ðα−i ; β−i Þ.

9In principle, one could also determine the inner and outer
boundaries of the nth lensing band as those contours of fixed
rðnÞs ðα; βÞ ¼ r− (inside C) or fixed rðnÞs ðα; βÞ ¼ ∞ (outside C),
respectively, which are closest to C. However, this method is
impractical because rðnÞs ðα; βÞ can vary significantly across these
contours. Yet, it is this very behavior that makes this check
effective.
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We caution the reader that the n ≥ 1 bands are not
always convex: at high inclinations and moderate to high
spins, their edges may become nonconvex curves, as may
be seen for instance in the right column of Fig. 6 for the
n ¼ 1 band or in Fig. 9 for the n ¼ 2 band. In such cases,
using the convex hull of the boundary points ðα�i ; β�i Þ to
define the lensing band can produce an incorrect grid that
overestimates the size of the band and includes points
which do not really belong in it, which is why must use the
concave hull instead.
In Fig. 4, we display an example of an AART grid (with a

coarse resolution for visualization purposes), which
includes points in the n ¼ 0 (orange dots), n ¼ 1 (purple
crosses), and n ¼ 2 (magenta dots) lensing bands.

G. Visualization of the equatorial transfer functions

Having defined the transfer functions (33)–(35) that map
the equatorial plane of a Kerr black hole onto the image
plane of a distant observer, we will now illustrate their
behavior with the help of contour plots. Though we have
yet to describe their range, we have already elucidated
their domain of definition: as described in Sec. II D, the

functions rðnÞs , ϕðnÞ
s , and tðnÞs are only physical within the

corresponding nth lensing band.
Following Refs. [2,5], in Figs. 5 and 6, we display

contours of fixed rð0Þs and rð1Þs , which foliate the n ¼ 0 and
n ¼ 1 lensing bands, respectively. Physically, these “iso-
radial” curves are the direct (n ¼ 0) and first relativistic
(n ¼ 1) images of the rings of constant Boyer-Lindquist
radius rs in the equatorial plane θs ¼ π=2. Since the n ¼ 0

lensing band is unbounded, rð0Þs has noncompact support,

while rð1Þs maps the entire Kerr equatorial plane into a finite

annulus: the n ¼ 1 lensing band. In each band, rðnÞs spans
the entire range ½rþ;∞Þ once and only once, so every
equatorial ring produces precisely one image in each

lensing band. Moreover, the map rðnÞs is order-preserving:
the source radius grows monotonically in the radial
direction.

These two figures also illustrate the behavior of ϕð0Þ
s and

ϕð1Þ
s by painting the Kerr equatorial plane with a color

wheel, as in Ref. [61]. This wheel changes colors across
“isopolar” curves of fixed ϕs, which are drawn at every 45°
in the source plane. Their corresponding images—the

curves of fixed ϕðnÞ
s —form a swirling pattern that illustrates

the effects of frame-dragging. We emphasize that this swirl
is a purely geometric effect, and that gravitational redshift
is not yet included at this stage (its effects will be described
in Sec. III below).

Unlike rðnÞs , ϕðnÞ
s has a rather complicated range. While

ϕð0Þ
s spans the entire range ½0; 2πÞ once and only once, so

that every point source produces precisely one direct image

(as in flat spacetime), as n grows large, the maps ϕðnÞ
s cover

this range an increasing (linearly divergent) number of
times [45,62,63].
As a result, the equatorial plane is unfolded increasingly

many times in higher lensing bands, which therefore
contain multiple images of a single point source. This
surprising and intricate lensing behavior is connected to
the development of caustics [64] and will be explored
elsewhere.

While the transfer functions rðnÞs and ϕðnÞ
s suffice to

describe the lensing of a static source, one still needs tðnÞs to
describe a time-dependent source and account for its time-
delay effects. Since light takes forever to reach a distant

observer that is truly at asymptotic infinity, tðnÞs is techni-
cally infinite when ro → ∞. More precisely, the null
geodesic equation in Kerr dictates that

dt
dr

≈
r→∞

1þ 2M
r

þO
�
1

r2

�
: ð39Þ

Hence, the coordinate time elapsed along a geodesic
grows as

tðnÞs ≈
ro→∞

ro þ 2M log ro þOð1Þ; ð40Þ

with the leading linear divergence arising from the first
term in Eq. (39), and the subleading log-divergence from

the second. Because of these divergences, tðnÞs is inherently
dependent on the observer radius. However, subtracting
these (“infrared”) divergences yields a “renormalized” time

FIG. 9. Same as Figs. 5 and 6 for the n ¼ 2 image, with the
n ¼ 1 image shown as a faded background. Despite a significant
zoom, the extremely narrow n ¼ 2 lensing band is still barely
visible.
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t̃ðnÞ ≡ tðnÞs − ðro þ 2M log roÞ; ð41Þ

which remains finite even as ro → ∞. Moreover, in this
limit, the dependence on ro drops out, and t̃ðnÞ tends to a
constant along any outward-propagating light ray. In the

limitM → 0, t̃ð0Þ → tð0Þs − ro and t̃
ð0Þ
s ¼ 0 is the future light

cone of the origin. In other words, in flat space, a ray
emitted radially outwards from rs ¼ 0 at ts ¼ 0 reaches null
infinity ro → ∞ with t̃ð0Þ ¼ 0.
We display density plots of t̃ð0Þ and t̃ð1Þ in Figs. 7 and 8,

respectively. In practice, to take the limit ro → ∞, we
evaluate Eq. (41) at a large value of ro ≫ M. The color
scale in Fig. 7 ensures that t̃ð0Þ ¼ 0 is white and sits in the
middle of the scale. At higher spins and inclinations, the
range of t̃ð0Þ grows wider and more skewed toward negative
values. Accordingly, we use a different color scale in
each panel. We also display three contours of fixed time:
t̃ð0Þ ¼ −10M (solid), t̃ð0Þ ¼ 0 (dashed), and t̃ð0Þ ¼ 10M
(dotted). These “isochronous” curves may be either open or
closed, and in some cases, they may even be composed of
multiple disconnected segments, highlighting the warped
nature of the black hole spacetime.
The range of t̃ðnÞ is always infinite in every lensing band.

More precisely, it is unbounded below but bounded above:
the reason is that if the entire equatorial plane emits light
forever, then an observer can see light from arbitrarily far
back in the past (emitted from regions that are either very
close to the horizon or very far behind it) but it does take
some minimum time for any light to reach an observer,
even when it is emitted from the nearest point in the plane.
In Fig. 7, we do not see arbitrarily large negative values of
t̃ð0Þ because we have a finite resolution (and therefore do
not have pixels that resolve rays arbitrarily close to the
horizon) and because we cut off the disk at rs ¼ 20M (and
therefore do not see rays emitted from farther behind the
black hole).
The infinite range of t̃ð1Þ is more readily apparent in

Fig. 8, where we use a different color scale to highlight the
divergent time elapsed along light rays at the edges of the
lensing band: the inner edge consists of rays that asymptote
to the horizon infinitely far back in the past, while the outer
edge consists of rays that bounce back towards null infinity,
incurring another time lapse that diverges as Eq. (40). The
rapidly changing colors at the edges of the lensing band
illustrate this behavior. Again, the finite resolution near the
inner edge, together with the cutoff at rs ¼ 20M near the
outer edge, preclude us from resolving light rays emitted
arbitrarily far back in the past. In Fig. 8, we chose a color
scale spanning 99.9% of the range of time lapses sampled
by the pixels making up the n ¼ 1 grid.
Comparing Figs. 7 and 8, we see that successive images

of the equatorial plane are delayed by a time of order
τ ∼ 15M. Likewise, comparing the n ¼ 1 image of the
equatorial plane in Fig. 6 to its n ¼ 2 image in Fig. 9 shows

that successive images are not only time-delayed but also
demagnified and rotated. This lensing behavior results in a
self-similar photon ring substructure that is governed by
Kerr critical exponents γ, δ, and τ, which, respectively,
control the demagnification, rotation, and time delay of
successive subring images [5,7].

H. Analytic ray tracing with Beloborodov’s
approximation

Direct (n ¼ 0) light rays experience the smallest deflec-
tion. In Schwarzschild, Beloborodov used an ingenious
expansion to derive an excellent analytic expression that
approximates the trajectories of such rays [44]. His small-
deflection-angle expansion is remarkably effective because
its leading, linear term only receives its first subleading
correction from a cubic term with a small coefficient. To
describe this result, we define

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q
; cosψ ¼ −

β tan θoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ β2tan2θo

p ∈ ½−1; 1�:

ð42Þ

In terms of these variables, a straightforward manipulation
of Beloborodov’s formulas leads to the approximate
expression

rð0Þs

M
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − cosψ
1þ cosψ

�
2

þ b2

1 − cos2 ψ

s
−
�
1 − cosψ
1þ cosψ

�
;

ð43Þ

which is highly accurate for low-to-moderate inclinations
θo, as shown in Fig. 10. The agreement may seem
surprising in the Kerr case, since this formula is derived
for Schwarzschild. In practice, the approximation (43) is
excellent for rays that never get within ∼4M of the black
hole—for rays that come closer and experience greater
deflection, it remains good along the portion of the ray up
to the first equatorial crossing, but breaks down afterward,
once the deflection angle grows large.
Intuitively, the reason Eq. (43) holds even for nonzero

spins is that n ¼ 0 rays are only weakly lensed and do not
spend sufficient time orbiting the black hole to explore its
geometry. Typically, n ¼ 0 rays only come close enough to
the black hole to probe the leading, monopole moment of
its gravitational field (the mass), but are largely insensitive
to its subleading, dipole moment (the spin), which con-
tributes small corrections to the transfer function in an
inverse-radius expansion.10

10This observation also underlies the “just add one” prescrip-
tion rð0Þs ≈ b −M, which gives an excellent approximation to the
transfer function for a polar observer at θo ¼ 0 and for any value
of the spin, as first noticed in Ref. [5] and then derived, along with
subleading OðM=bÞ corrections in Ref. [45].
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With a little effort, under the Beloborodov approxima-
tion for the direct image, one can show that the sign of the
quantity

τB ¼ cosψ −
1

1 − 3b
b̃
cos½1

3
arccosð− b̃

bÞ�
; ð44Þ

where b̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α̃2 þ β̃2

p
¼ 3

ffiffiffi
3

p
M is the Schwarzschild criti-

cal impact parameter (apparent image radius of the critical

curve), determines whether a ray shot back from an image-
plane position ðα; βÞ with b > b̃, which must necessarily
encounter a radial turning point, does so before (τB > 0)
or after (τB < 0) first crossing the equatorial plane at
radius (43).11

FIG. 10. Apparent positions of source rings of constant Boyer-Lindquist radius rs in the equatorial plane (θs ¼ π=2) for different
values of the spin and inclination within the n ¼ 0 band, using the exact expression [Eq. (33)] and the Beloborodov approximation
[Eq. (43)]. The Beloborodov approximation is still good even for moderate values of the spin and high inclination values.

11Tsupko provides an analytic expression for the shape of
n ≥ 2 images [65].
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I. Photon four-momentum at equatorial crossings

Last, we describe how to compute the source momentum
of a photon that is loaded onto a ray as it crosses the
equator.
The four-momentum p ¼ pμdxμ of a Kerr photon is

p ¼ E

�
−dt�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp
ΔðrÞ dr�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
dθ þ λdϕ

�
; ð45Þ

where E ¼ −pt is the photon energy, whileRðrÞ and ΘðθÞ
are the radial and angular geodesic potentials (9)–(10),
which depend on the specific (energy-rescaled) angular
momentum λ and Carter constant η of the photon defined
in Eq. (3).
A ray shot backwards from image-plane position ðα; βÞ

has conserved quantities ðλ; ηÞ obtained by inverting
Eq. (4). When such a ray crosses the equatorial plane

for the (nþ 1)th time at the radius rðnÞs given by Eq. (33), a
photon of energy E loaded onto the ray will have a geodesic

momentum given by Eq. (45) evaluated at r ¼ rðnÞs and
θ ¼ π=2 with those values of ðλ; ηÞ. This specifies the
momentum up to discrete signs�r;θ. We now describe how
to also determine these two signs.
First, �θ ¼ signpθ

s is trivial to compute, since n ¼ 0
photons must be emitted toward the observer, and so they
always have �θ ¼ −signðcos θoÞ. This sign must flip at
every crossing, so

�θ ¼ ð−1Þnþ1signðcos θoÞ ð46Þ

at the (nþ 1)th equatorial crossing. As for �r ¼ signpr
s,

two possibilities arise. Rays that appear inside the critical
curve can never encounter a radial turning point and are
therefore always outgoing; as such, for rays inside of C, we
always have

Inside C∶ �r ¼ þ: ð47Þ

On the other hand, rays that appear outside the critical
curve do encounter a radial turning point at radius r ¼ r4,
which they reach at Mino time τ ¼ τ4 given in Eq. (30).
Hence, for rays outside of C, �r depends on whether the

Mino time τðnÞs ¼ GðnÞ
θ of the (nþ 1)th equatorial crossing,

which is given in Eq. (A1), precedes or follows the radial
turn at Mino time τ4; that is,

Outside C∶ �r ¼ signðτ4 −GðnÞ
θ Þ: ð48Þ

When using the Beloborodov approximation from
Sec. II H to ray trace n ¼ 0 images, one merely replaces

the exact rð0Þs in the preceding discussion by its approxi-
mation (43), which specifies the geodesic momentum at
first equatorial crossing up to signs�r;θ. The angular sign is

still �θ ¼ −signðcos θoÞ. For the radial sign �r, we must
again distinguish between rays inside and outside C, but
this time the relevant critical curve is that of Schwarzschild:
a circle of constant radius b ¼ b̃, where b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
and

b̃ ¼ 3
ffiffiffi
3

p
M. Rays inside C (with b < b̃) have �r ¼ þ as

always, while rays outside C with (b > b̃) have

�r ¼ sign τB: ð49Þ

III. EQUATORIAL EMISSION MODEL

In the previous section, we described how Kerr black
holes lens light. We will now introduce a simple, phenom-
enological model of electromagnetic emission from the
equatorial plane and describe how to compute its obser-
vational appearance as seen by distant observers such as
ourselves.

A. Intensity images

Our goal is to compute an observed intensity Io at
every image-plane position ðα; βÞ. For each pixel in
the image, we compute Ioðα; βÞ by tracing the correspond-
ing ray backwards into the geometry; each time it passes
through the emission region—in this case, the equatorial
plane—we load additional photons onto the ray according
to the local source intensity Is. Since I=ν3 is the invariant
number of photons of frequency ν along a ray, it
follows that

Ioðα; βÞ ¼
XNðα;βÞ

n¼0

ζng3ðrðnÞs ; α; βÞIsðrðnÞs ;ϕðnÞ
s ; tðnÞs Þ; ð50Þ

which generalizes to nonstationary and nonaxisymmetric
sources the analogous formula in Ref. [35]. In this expres-
sion, ζn is a geometric “fudge” factor and g ¼ νo=νs is the

observed redshift, while the transfer functions rðnÞs , ϕðnÞ
s ,

and tðnÞs , which are given in Eqs. (33)–(35), denote the
spacetime position of the ray’s (nþ 1)th equatorial cross-
ing, with n ranging from 0 to the total number N of
crossings given in Eq. (31).
The factor ζn is meant to account for the (neglected)

effects of geometrical thickness, which we can mimick
with [35]

ζn ¼


1 n ¼ 0;

ζ n > 0;
0 < ζ ≤ 1: ð51Þ

The inclusion of this geometric factor significantly
improves the agreement of this simplified equatorial
model of emission with time-averaged radiative GRMHD
simulations [9].
Finally, to derive the observed redshift g, we must

prescribe a four-velocity for the accretion flow of radiating
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matter. We consider flows with a four-velocity of the
general form

u ¼ utð∂t − ι∂r þ Ω∂ϕÞ; ð52Þ

where the angular and radial-infall velocities are defined as

Ω ¼ uϕ

ut
; ι ¼ −

ur

ut
; ð53Þ

and uμ are the contravariant components of the four-
velocity. In Appendix B, we introduce two purely circular
flows: a geodesic, Keplerian flow ů, together with a
nongeodesic, sub-Keplerian flow û obtained by rescaling
the Keplerian angular momentum by a sub-Keplerianity
parameter 0 < ξ ≤ 1, such that û → ů as ξ → 1. We also
introduce the four-velocity ū of purely radial geodesic
infall. Then, following Refs. [11,66], we introduce a flow ũ
given by a linear superposition of purely circular and purely
radial motion. The resulting combined motion, which we
present and derive in detail in Appendix B, is a nongeodesic
family of flows with three parameters: the sub-Keplerianity
factor 0 < ξ ≤ 1, and two other parameters 0 ≤ βr ≤ 1 and
0 ≤ βϕ ≤ 1 controlling the radial and angular components
of the superposition, respectively. For βr ¼ βϕ ¼ 0, ũ
reduces to the ξ-independent radial inflow ū. At the other
extreme, when βr ¼ βϕ ¼ 1, ũ reduces to the sub-
Keplerian flow û, which for ξ ¼ 1 recovers the circular-
equatorial geodesic flow first used by Cunningham [67].
We summarize these flows in Table I.
Once a specific four-velocity (52) has been prescribed,

the observed redshift is then given by [Eq. (54)]

g ¼ E
−pμuμ

¼
�
ut
�
1�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp
ΔðrÞ ι − λΩ

��−1
; ð54Þ

where the conserved quantities ðλ; ηÞ of the photon trajec-
tory are related to its apparent position ðα; βÞ via Eq. (4),
while �r ¼ signpr

s denotes the sign of the photon radial

momentum at its source whose computation is described in
Sec. II I above.
Given a black hole spin a, an observer inclination θo,

some prescribed accretion flow u, and an equatorial
emission profile Is, we now have everything needed to
compute an observed image (50). To summarize, the
procedure is the following:
(1) determine the lensing bands as described in

Sec. II D;
(2) in each lensing band, define a regular Cartesian grid

of appropriate resolution—the resulting grids (in-
dexed by n) form the different image layers de-
scribed in Sec. II F;

(3) for each pixel in a given layer, trace the correspond-
ing ray back into the geometry and compute its

equatorial crossings xðnÞs using the transfer functions
in Sec. II C;

(4) use the prescribed flow u to compute the redshift
(54); and

(5) finally, for each pixel in the image, use the equatorial
crossings from 3, the redshift from 4, and the
prescribed source profile Is to compute the observed
intensity (50).

A key observation is that the source profile Is only enters
this procedure at the very last step. In particular, steps 1
through 3 depend only on the black hole spin and observer
inclination, and can therefore be computed once and for all
for each choice of ða; θoÞ. The output can then be reused for
each new choice of accretion flow u or source profile Is,
offering a significant time advantage (particularly when ray
tracing movie frames).
Some comments are in order about step 2. First, while

there is no reason to favor regular grids in principle, they do
offer computational advantages in practice, since many
numerical algorithms (such as grid interpolation) are
optimized for such grids. Second, there is no real reason
to favor Cartesian grids, and AART only relies on them for
simplicity—it may be, however, that for extremely high n,
regular but non-Cartesian grids become more computa-
tionally efficient. Third, the exact choice of “appropriate
resolution” adapted to each grid will be described in detail
in Sec. V.

B. Polarimetric images

In principle, besides the observed intensity (Stokes I),
we could also ray trace the observed linear polarization
(Stokes P ¼ Qþ iU) to obtain a polarimetric image. In
practice, rather than computing the Stokes parameters Q
and U separately, we will instead simply express the
observed linear polarization as

Po ¼ mIoe2iχ ; ð55Þ

where 0 ≤ m ≤ 1 is a fractional degree of polarization and
χ denotes the EVPA (5). In a realistic model,m itself would

TABLE I. Summary of the different accretion flows that we
consider. The circular Keplerian flow ů corresponds to Cunning-
ham’s geodesic prescription [67], while ū denotes the radial
geodesic inflow. The nongeodesic, sub-Keplerian flow û is the
circular motion obtained by rescaling the Keplerian specific
angular momentum l̊ ¼ −ůϕ=ůt by a factor 0 < ξ < 1. The
nongeodesic flow ũ is a general linear superposition of these
purely circular and radial motions.

Motion type Four-velocity Definition

Geodesic Circular Keplerian ů Appendix B 1
Radial infall ū Appendix B 2

Nongeodesic Sub-Keplerian û Appendix B 3
General flow ũ Appendix B 4
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vary across the image, since the degree of polarization of a
photon usually depends on the angle at which the corre-
sponding light ray intersects the local magnetic field at the
source.
Here, we will be content to set m to a constant, resulting

in sufficiently realistic polarimetric images for our pur-
poses. In effect, this amounts to assuming that our
astrophysical source emits isotropically, which is a con-
venient choice that allows us to continue treating the
emission profile Is as a scalar, rather than a directed
quantity. With this choice (redefining the color scale to
absorb the proportionality factor m), the magnitude jPoj ¼
mIo of the observed linear polarization is identical to the
image intensity Io, leaving only its direction–the EVPA—as
the sole new feature to be displayed in polarimetric
images. We indicate the orientation of the plane of
polarization using “polarimetric ticks”: these are polariza-
tion vectors [53,68]

fo ¼ mIoð− sin χ∂α þ cos χ∂βÞ; ð56Þ

where m is chosen to make the ticks legible and χ is
computed from a prescribed source polarization profile
(described in the next section) that we parallel transport

along light rays using the conservation of the Penrose-
Walker constant κ defined in Eq. (6).12 The length jfoj ¼
jPoj ∝ Io of the ticks also encodes the magnitude of the
polarization, which improves readability. We present an
example of a polarimetric image in Fig. 11.
In the remainder of this section, we describe the

equatorial emission profiles implemented in AART. The
modularity of the code makes it easy to include any
quantity of interest in the ray tracing, but we limit ourselves
to Stokes I and P in this paper.

C. Stationary and axisymmetric source profiles

State-of-the-art time-averaged GRMHD-simulated
images of realistic sources can be mimicked by ray tracing
images of stationary, axisymmetric, equatorial emission
profiles [9]. Such models therefore offer a computationally
cheap way to study either time-independent or long-time-
averaged sources.

FIG. 11. Observed intensity Io (in logarithmic scale) and linear polarization Po corresponding to the stationary and axisymmetric
source profile (58) with parameters μ ¼ r−, ϑ ¼ M=4, and γ ¼ −1. The linear polarization is represented by ticks (56) that are aligned
with the plane of polarization of the light—given by the EVPA [Eq. (5)]—and whose length encodes the magnitude of Stokes P. Left:
Polarimetric n ¼ 0 image ray traced using the exact analytic transfer functions in Sec. II C. Right: Same image ray traced using the

Beloborodov approximation (43) for the source radius rð0Þs . The black hole spin a=M ¼ 50% and observer inclination θo ¼ 80°
correspond to the case from Fig. 10 with the largest difference between the exact and approximate isoradial curves, yet the resulting
images appear almost identical. Here, the accretion flow follows the Cunningham prescription [67] corresponding to geodesic circular
motion, i.e., u ¼ ů in Appendix B 1, and we took the source magnetic field to have purely radial spacetime components, i.e., only Br

s
is nonzero.

12A slightly more realistic synchrotron emission model would
set m ∝ sin2 ζ, where ζ denotes the angle of emission relative to
the local magnetic field, but including this nonisotropy does not
produce a large effect [54].

ADAPTIVE ANALYTICAL RAY TRACING OF BLACK HOLE … PHYS. REV. D 107, 043030 (2023)

043030-19



Following [10,35], we model such sources by setting

Isðrs;ϕs; tsÞ ¼ JðrsÞ; ð57Þ

where we take the radial profile JðrÞ to be the analytic
function

JSUðr; μ;ϑ; γÞ≡ e−
1
2
½γþarcsinhðr−μϑ Þ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − μÞ2 þ ϑ2

p ; ð58Þ

which is derived from Johnson’s Standard Unbounded (SU)
distribution and can be rapidly computed to arbitrary
precision everywhere. The three parameters μ, ϑ, and γ,
respectively, control the location of the profile’s peak, its
width, and the profile asymmetry. We invite the reader to
consult Sec. 5 of Ref. [10] for a more in-depth description
of these parameters and their interpretation.
To illustrate the computation of a polarimetric image and

the validity of Beloborodov’s approximation in Sec. II H,
we now consider a black hole of spin a=M ¼ 50% viewed
from an inclination θo ¼ 80°. This is the case in Fig. 10 for
which the differences between the exact and approximate

rð0Þs are largest. We focus on the n ¼ 0 image layer, which
we ray trace with both the exact transfer function (33) and
its approximation (43). We adopt Cunningham’s prescrip-
tion u ¼ ů (described in Appendix B 1) for the accretion
flow, resulting in the redshift g̊ given by Eq. (B22) for
sources outside the ISCO (B16) and by Eq. (B29) for
sources within. This completes steps 1 through 4 above. In
step 5, we set JðrsÞ ¼ JSUðrsÞ with μ ¼ r− [Eq. (1)],
ϑ ¼ M=4, and γ ¼ −1, so the emission peaks past the
horizon.
Finally, to prescribe the source polarization fs, we

impose

fs · ps ¼ 0; fs · us ¼ 0; fs · Bs ¼ 0: ð59Þ

The first condition states that the polarization is
perpendicular to the direction of light propagation–this
must by definition be true everywhere, including at the
source. Meanwhile, the second condition implies that the
polarization vector is purely spatial in the emitter frame,
since

fðtÞ ¼ −fðtÞ ¼ −fμe
μ
ðtÞ ¼ −fs · us; ð60Þ

where Latin indices (a) label tensor components in the
local orthonormal frame eμðaÞ of the emitter, with time leg

eμðtÞ ¼ uμs , while Greek indices μ label spacetime compo-

nents. Imposing this condition does not lead to any loss of
generality. Rather, it is simply a way to fix gauge: under
gauge transformations, the polarization undergoes a
gauge shift fs → fs þ cps [53] that leaves the first con-
dition invariant but shifts fs · us by cps · us. Thus, setting

c ¼ −ðfs · usÞ=ðfs · usÞ results in a gauge-fixed fs that
obeys the second condition by construction. Last, the third
condition asserts that the polarization is perpendicular to
the spacetime vector Bs. This is the only physical
assumption imposed by the relations (59). A suitable
choice for modeling synchrotron emission is to let Bs be
the local magnetic field.13

Together, the three conditions (59) determine three out of
four components fμs of the source polarization, which
suffices to fix its spacetime orientation and hence the
observed EVPA. The remaining component essentially
controls the magnitude of the observed polarization, which
in our model is not fixed at the source, but rather at the
observer where we peg it to the observed intensity Io.
Mathematically, this prescription fixes the Penrose-Walker
constant (6) up to an overall scale factor that drops out of
the formula (5) for the EVPA χ. More precisely, solving
(59) yields, in terms of bμν ¼ Bμ

spν
s − Bν

sp
μ
s ,

fr ¼
bθϕ − btθΩ
bθϕιþ brϕΩ

ft; ð61Þ

fθ ¼
brϕ þ btϕιþ btrΩ

bθϕιþ brϕΩ
ft; ð62Þ

fϕ ¼ −
brθ þ btθι

bθϕιþ brϕΩ
ft; ð63Þ

where, for clarity, we have temporarily dropped the sub-
scripts “s.” Lowering indices in Eq. (6) and evaluating it at
θ ¼ π=2 then gives the source Penrose-Walker constant
κs ¼ κ1 þ iκ2:

rκ1 ¼ aðprfϕ − pϕfrÞ − ðr2 þ a2Þðptfr − ftprÞ; ð64Þ

rκ2 ¼ ðpθfϕ − pϕfθÞ − aðptfθ − pθftÞ: ð65Þ

The computation of the photon momentum ps at the
source is described in Sec. II I, while the parameters ðι;ΩÞ
of the flow ů are given in Appendix B 1. The component ft
that controls the magnitude of the polarization remains
undetermined, but it factors out of both κ1 and κ2, and
therefore drops out of the ratio in the formula (5) for the
EVPA χ, as mentioned above. The resulting explicit
expressions are implemented in AART.

13As a technical aside, we emphasize here that the condition
fs · us ¼ 0 is also crucial for the following reason. Suppose that
we start with a polarization f0s which only obeys f0s · ps ¼ 0,
while f0s · us ≠ 0 and f0s · Bs ≠ 0. Then a gauge shift f0s → fs ¼
f0s þ cps with c ¼ −ðf0s · BsÞ=ðps · BsÞ results in a physically
equivalent polarization vector that obeys fs · Bs ¼ 0. Thus, one
can always make the initial polarization perpendicular to the
magnetic field by applying a gauge transformation that leaves the
observed polarization invariant. The gauge-fixing condition in
Eq. (59) is therefore essential.
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All that is left to specify are the spacetime components
Bμ
s of the local magnetic field. The decomposition of the

electromagnetic field strength Fμν into electric and mag-
netic fields is frame dependent. In a realistic synchrotron
emission model, the polarization would be perpendicular to
the local magnetic field in the emitter frame, with compo-
nents Bμ

s ¼ −⋆Fμνuμ.
For our example, we simply choose the spacetime field

Bs to be purely radial, keeping only a nonzero Br
s com-

ponent whose magnitude also scales out of the EVPA χ. We
display the resulting n ¼ 0 images, ray traced using both

the exact and approximate rð0Þs in the left and right panels of
Fig. 11, respectively. Even though the corresponding
isoradial curves (plotted in the right column of Fig. 10)
differ noticeably, the ray traced, images in Fig. 11 none-
theless look very similar and would be indistinguishable
with near-term observations. The Beloborodov approxima-
tion is thus excellent for ray tracing direct images of
axisymmetric source configurations.
Having showcased the polarimetric capabilities of AART,

we now leave polarization aside and turn to variable sources.

D. Modeling variable sources
with Gaussian random fields

Variable (nonstationary and nonaxisymmetric) sources
can broadly be divided into two classes. On the one hand,
one can consider specific physical phenomena that are
governed by deterministic equations. A commonly studied
example is that of a “hot spot”: a localized source of
enhanced emissivity that usually orbits around the black
hole and thereby produces a characteristic pattern of light
echoes (see, e.g., Refs. [62,69–73]). Adding such a source
to our model is straightforward in AART: one merely needs
to insert the deterministic source to the right-hand side
(RHS) of Eq. (57) before carrying out the usual ray tracing.
On the other hand, one can also consider sources

subject to statistical fluctuations. Hot spots are transient
and unlikely to be present in any given observation of
M87*, but we certainly expect its surrounding plasma to
flare and produce emission ropes (or other photon ring
mimickers), which in the absence of a definite physical
model we can still represent as random fluctuations in the
astrophysical source. A widely used tool to model such
astrophysical noise is the Gaussian random field (GRF);
see, e.g., Ref. [74] for applications to cosmology. A random
field G is a function on a space X such that GðxÞ is a random
variable for every x ∈ X. A GRF is a random field that is
completely determined by its mean μ and covariance C,

μðxÞ ¼ hGðxÞi; CðΔxÞ ¼ hGðxÞGðxþ ΔxÞi ≥ 0: ð66Þ

More precisely, we define a random field GðxÞ with mean
μðxÞ and covariance CðΔxÞ to be a GRF if it satisfies the
property

hei
P

k
l¼1

slGðxlÞi ¼ e−
1
2

P
k
l;j¼1

CðΔxljÞslsjþi
P

k
l¼1

μðxlÞsl ; ð67Þ

which states that its joint probability distribution on any set
of k points xl, with l ∈ f1;…; kg, is a k-dimensional
multivariate Gaussian distribution with mean vector
μ ¼ fμ1;…; μkg and covariance matrix Clj ¼ CðΔxljÞ,
where Δxlj ¼ jxl − xjj.
The following discussion is technical and readers inter-

ested only in applications may skip to Sec. III H.
The mean and covariance are also known as the one-

point and two-point (or autocorrelation) function, respec-
tively. As a result of the defining relation (67), these
low-point correlation functions determine all higher k-point
functions of a GRF via Wick’s theorem (also known as the
Isserlis theorem), which may be derived by differentiation
with respect to multiple sl.
For instance, letting Gl denote GðxlÞ for a zero-mean

GRF, it is immediately seen by differentiating Eq. (67) with
respect to s1, s2, and s3 that GðxÞ must have a vanishing
three-point function, hG1G2G3i ¼ 0. An additional deriva-
tive with respect to s4 implies that the four-point function
hG1G2G3G4i is

hG1G2ihG3G4i þ hG1G3ihG2G4i þ hG1G4ihG2G3i: ð68Þ

In general, for a zero-mean GRF, all k-point functions
vanish for k odd, whereas for k even they are given by all
the possible “contractions” of the two-point functions
hGlGji ¼ CðΔxljÞ. This is Wick’s theorem in a nutshell,
and it makes precise the idea that a GRF is a “simple”
random field whose correlation structure is fully deter-
mined by two functions μðxÞ and CðΔxÞ.
This property is very convenient for our modeling

purposes, since only two functions need to be specified
to prescribe all of the statistics of our astrophysical source.
For example, Wick’s theorem also fixes all the even
moments of a zero-mean GRF:

hG2kðxÞi ¼ ð2k − 1Þ!!½Cð0Þ�k; hG2kþ1ðxÞi ¼ 0; ð69Þ

where the k ¼ 2 case is compatible with Eq. (68) evaluated
at coincident points. (Of course, the odd moments all
vanish.)
We now specialize to GRFs in d-dimensional Euclidean

space X ¼ Rd. A GRF is homogeneous if it is invariant
under translations, so Gðxþ aÞ ¼ GðxÞ for a ∈ Rd, and it
is isotropic if it looks the same in all directions, so GðxÞ ¼
GðxÞ with x ¼ jxj.
A real-space GRF GðxÞ defines a (generally complex)

GRF G̃ðkÞ in momentum space via the Fourier transform

G̃ðkÞ ¼
Z

GðxÞe−ik·xddx; GðxÞ ¼
Z

G̃ðkÞ
ð2πÞd e

ik·xddx:

ð70Þ
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If GðxÞ is homogeneous, then we let x0 ¼ xþ Δx and
Fourier transform its autocorrelation to derive the covari-
ance of G̃ðkÞ:

hG̃�ðkÞG̃ðk0Þi ¼
ZZ

hGðxÞGðx0Þieik·x−ik0·x0
ddxddx0 ð71Þ

¼
ZZ

CðΔxÞeiðk−k0Þ·xe−ik0·ΔxddxddΔx

ð72Þ

¼
Z

eiðk−k0Þ·xddx
Z

CðΔxÞe−ik0·ΔxddΔx

ð73Þ

¼ ð2πÞdδðdÞðk − k0ÞC̃ðk0Þ: ð74Þ

Similarly, higher-point functions of G̃ðkÞ may also be
obtained by Fourier transforming those of GðxÞ. One finds
that G̃ðkÞ is a GRF obeying Eq. (67) with mean μ̂ðkÞ and
covariance (74), which is also referred to as the power
spectrum PðkÞ of GðxÞ. When GðxÞ is also isotropic, so is
PðkÞ ¼ PðkÞ with k ¼ jkj. Like covariances, power spec-
tra are always non-negative.
The most ubiquitous GRF is the white noise process

WðxÞ. It is the standard, homogeneous, and isotropic GRF
defined by a flat power spectrum with uniform C̃ðk0Þ ¼ 1,
so that

hW̃�ðkÞW̃ðk0Þi ¼ ð2πÞdδðdÞðk − k0Þ; ð75Þ

hWðxÞWðx0Þi ¼ δðdÞðx − x0Þ: ð76Þ

With Eq. (67), this delta-function autocorrelation implies
that WðxÞ consists of independent Gaussian random
variables at every x ∈ Rd, and likewise in momentum
space for W̃ðkÞ. Thus, creating realizations of white noise
is trivial: it suffices to draw from independent normal
distributions at every point.
In fact, Eq. (74) provides a straightforward way to

produce realizations of any homogeneous GRF GðxÞ:
first, one creates a realization W̃ðkÞ of white noise; next,

one multiplies it by
ffiffiffiffiffiffiffiffiffiffiffi
C̃ðkÞ

q
to obtain a realization of

ĜðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
C̃ðkÞ

q
W̃ðkÞ; finally, inverse Fourier transform-

ing ĜðkÞ yields a realization of GðxÞ. [We note that this
procedure is well-defined since C̃ðkÞ ≥ 0.]
Just as a standard Gaussian distribution has zero mean

and unit variance, we define a standard GRF as a zero-mean
GRF with unit covariance at the origin: μðxÞ ¼ 0
and Cð0Þ ¼ 1.
We now consider the Matérn field F νðxÞ of order ν,

which is another standard, homogeneous, and isotropic

GRF that is well-known to statisticians, who use it to model
a wide range of processes; see, e.g., Ref. [75] for its various
applications. This zero-mean GRF obeys the Matérn
covariance of order ν,

CνðxÞ ¼
1

2ν−1ΓðνÞ
�
x
λ

�
ν

Kν

�
x
λ

�
; ð77Þ

where Γ denotes the Gamma function and KνðxÞ the
modified Bessel function of the second kind of order ν.
Here, λ is a correlation length, while ν is a differentiability
parameter that we will always take to be ν ¼ n − d=2 for

some positive integer n. At short distances, CνðxÞ ≈x≪λ
1þ

cνx2ν for some constant cν, so it is best (though not strictly
necessary) to require ν > 0.
The Matérn field F νðxÞ is also ubiquitous in physics:

though its position-space covariance (77) may seem unfa-
miliar, in momentum space it becomes14 (see Appendix C
for a derivation)

C̃νðkÞ ¼
N 2λd

ð1þ λ2k2Þνþd
2

; N 2 ¼ ð4πÞd2 Γðνþ
d
2
Þ

ΓðνÞ ; ð78Þ

which for n ¼ 1 (or ν ¼ 1 − d=2), we recognize as the
quantum propagator for a free scalar field of mass m ¼ λ−1

in Euclidean signature. To the best of our knowledge, this
link has not been stated explicitly before, and we explore it
in detail in Appendix C.
The Matérn field F νðxÞ enjoys a special connection to

linear stochastic partial differential equations (SPDE).
Realizations of its Fourier transform F̃ νðkÞ are related
to white noise via

F̃ νðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C̃νðkÞ

q
W̃ðkÞ: ð79Þ

Such a relation holds for any homogeneous GRF, but it takes
a particularly simple form for the Matérn covariance (78):

ð1þ λ2k2Þν2þd
4F̃ νðkÞ ¼ N λ

d
2W̃ðkÞ: ð80Þ

Returning to position space gives the linear (fractional)
SPDE

ð1 − λ2∇2Þν2þd
4F νðxÞ ¼ N λ

d
2WðxÞ; ð81Þ

which exactly matches Eq. (2) of Ref. [76] since
N 2σ2 ¼ λ2ν. As we show in Appendix C, for n ¼ 1 and
ν ¼ 1 − d=2, this SPDE is compatiblewith the identification
F νðxÞ≡ΦðxÞ,whereΦðxÞ is a freeEuclidean scalar field of
mass m ¼ λ−1, as expected.

14Equivalently, C̃νðkÞ ¼ σ−2

ðk2þλ−2Þνþd
2

with σ2 ¼ λ2ν

ð4πÞd2
ΓðνÞ

Γðνþd
2
Þ as

in Ref. [76].
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If instead, n ¼ 2 and ν ¼ 2 − d=2, then the resulting
Matérn field, which we will simply denote F ðxÞ, obeys a
linear SPDE

ð1 − λ2∇2ÞF ðxÞ ¼ N λ
d
2WðxÞ; ð82Þ

which has no fractional derivative and is thus simpler to
solve numerically, as explained in Ref. [43] below Eq. (3)
therein.
This connection between the Matérn field F ðxÞ and a

linear SPDE is especially useful once we introduce inho-
mogeneities. Inhomogeneous GRFs are hard to generate via
other means than solving the associated SPDE; in particu-
lar, the trick (79) for generating realizations of F̃ ðkÞ breaks
down because the Fourier modes are no longer delta-
correlated as in Eq. (74).

E. Inhomogeneous and anisotropic Matérn fields

Before describing how to include inhomogeneity, we
first discuss how to model homogeneous anisotropies,
following closely the excellent treatment in Ref. [43].
Still in d dimensions, we introduce d orthonormal vectors

ul, d correlation lengths λl > 0, with l ∈ f1;…; dg, and
define

Λ ¼
Xd
l¼1

λ2luluT
l; jΛj≡ detΛ ¼

Yd
l¼1

λ2l: ð83Þ

Wewill also allow the unit vectorsul to not be orthogonal, as
long as jΛj retains the same form. The matrixΛ is invertible,
and its inverse Λ−1 defines a metric onRd with line element

ds2ðΔxÞ ¼ Δx · Λ−1Δx ¼
Xd
l¼1

�
Δx · ul

λl

�
2

: ð84Þ

We now use this to define the generalizedMatérn covariance

CνðxÞ ¼
1

2ν−1ΓðνÞ ds
νðxÞKνðdsðxÞÞ: ð85Þ

When λ1 ¼ � � � ¼ λn ¼ λ, so that Λ ¼ λ2I, this reproduces
the homogeneous, isotropic Matérn covariance (77), as
desired.
However, if the constants λl are unequal, then the

resulting GRF remains homogeneous but becomes aniso-
tropic along a direction set by the unit vectors ul. An
example with d ¼ 2 is displayed in Fig. 1 of Ref. [43].
Following the steps that led to Eq. (73), the corresponding
momentum-space covariance is

C̃νðkÞ ¼
N 2

ffiffiffiffiffiffijΛjp
ð1þ k · ΛkÞνþd

2

: ð86Þ

In this case, we can still use Eq. (79) to obtain realizations
of the anisotropic Matérn field. We can also follow the
derivation of Eq. (81) to find that the anisotropic field obeys
the SPDE

ð1 − ∇ · Λ∇Þν2þd
4F νðxÞ ¼ N jΛj14WðxÞ: ð87Þ

Finally, to include inhomogeneity, we allow the unit
vectors ul → ulðxÞ to become functions. Then Λ → ΛðxÞ
becomes a function too—with the same definition (83)—
but the rest of the previous discussion breaks down.
Instead, we must reverse the logic and define the inhomo-
geneous, anisotropic Matérn field F νðxÞ by the SPDE (87)
with variable coefficients ΛðxÞ.
We emphasize that the resulting field F νðxÞ no longer

obeys the covariance (86), which is not a function on
momentum space once ΛðxÞ is position-dependent, but it is
a well-defined GRF arising as a solution to the SPDE (87);
see also Ref. [77].
As explained below Eq. (81), in practice, we will only

use the field F ðxÞ with n ¼ 2 and ν ¼ 2 − d=2 as it obeys
the SPDE

½1 − ∇ · ΛðxÞ∇�F ðxÞ ¼ N jΛðxÞj14WðxÞ; ð88Þ

which has no fractional derivatives and is therefore more
tractable numerically. Since we took our white noise to
have unit variance, this SPDE exactly matches Eq. (5)
of Ref. [43] (after setting σ ¼ 1 therein), which is what
INOISY solves.
One last comment is in order: in the inhomogeneous

case, the Matérn field F ðxÞ that INOISY produces by
numerically integrating Eq. (88) does not follow the
covariance (85); in particular, it may not be standard with
μðxÞ ¼ 0 andCð0Þ ¼ 1. To “standardize” it, we will always
work with a rescaled field

F̂ ðxÞ ¼ F ðxÞ − hF ðxÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hF 2ðxÞi − hF ðxÞi2

p ; ð89Þ

which also happens to be precisely what INOISY imple-
ments. For a homogeneous field, this makes no statistical
difference.

F. Nonstationary and nonaxisymmetric
source profiles

With the inhomogeneous, anisotropic Matérn field
F̂ ðxÞ in hand, we are now in a position to model the
fluctuations of an equatorial accretion disk and produce
INOISY simulations.
Before doing so, we first describe what we want to

achieve intuitively, without being too rigorous. We let
xs ¼ ðrs;ϕs; tsÞ. As in Ref. [8], we want the total intensity
(57) to consist of a background radial profile JðrsÞ with
some fluctuations ΔJðxsÞ:
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IsðxsÞ ¼ JðrsÞ þ ΔJðxsÞ ¼ JðrsÞ½1þ FðxsÞ�: ð90Þ

Here, F≡ ΔJ=J is the fractional variation in the source,
which at first we assume to be fractionally small:
0 < jFðxsÞj ≪ 1. We also want these fluctuations to wash
out under averaging,

hFðxsÞi ¼ 0; ð91Þ

so that after averaging over fluctuations using hJðrsÞi ¼
JðrsÞ, we recover the stationary, axisymmetric profile (57):

hIsðxsÞi ¼ hJðrsÞi þ hJðrsÞFðxsÞi ¼ JðrsÞ: ð92Þ

Eventually,wewill alsowant to consider large fluctuations
withΔJ ∼ J, orF ∼Oð1Þ, but this could pose a problem: if at
some point xs, a fluctuation grew so large and negative that
FðxsÞ < −1, then we would have ΔJðxsÞ < −JðrsÞ, and
hence IsðxsÞ < 0 at that point, which is nonsensical because
an intensity is a (necessarily positive) count of photons—we
must therefore prevent this from happening.
Of course, we could demand that the fluctuations always

remain small, but there is a way to allow them to grow
large while still ensuring they do not result in a negative
intensity. The idea is to note that for small fluctuations
0< jFðxsÞj≪ 1, 1þF≈ 1þFþ 1

2!
F2 þ 1

3!
F3 þ…¼ eF,

so we may well replace the RHS of Eq. (90) by a
(necessarily positive) exponential:

IsðxsÞ ≅ JðrsÞeFðxsÞ: ð93Þ

For small fluctuations, this seems completely equivalent,
since

ΔJðxsÞ
JðrsÞ

¼ IsðxsÞ − JðrsÞ
JðrsÞ

≅ eFðxsÞ − 1 ≈
jFj≪1

FðxsÞ; ð94Þ

reproducing Eq. (90). The advantage of this definition is
that it can now be freely extended to arbitrarily large jFj,
even in the negative direction: a fluctuation FðxsÞ ≪ −1
would just result in a small but still positive (and hence still
physical) intensity, rather than an unphysical, negative
emissivity. Hence, our new definition (93) for IsðxsÞ
remains sensible even for large and negative field excur-
sions, unlike our first attempt (90).
However, as we are about to see, this new definition

suffers from a subtle issue: it does not actually satisfy
Eq. (92). For now, we use “≅” to remind us of this, and
proceed naively.
The preceding intuitive discussion hinges on being able

to produce a fluctuation field FðxsÞ with some desired
properties, such as Eq. (91). We now make this math-
ematically precise.
We replace FðxsÞ → σF̂ ðxsÞ, where F̂ ðxsÞ is the stan-

dard, zero-mean Matérn field defined in Eq. (89) as the

solution to the SPDE (87). We then define an emissivity
field [43]

IsðxsÞ≡ J ðxsÞ ≅ JðrsÞeσF̂ ðxsÞ; ð95Þ

where the parameter σ controls the scale of the fluctuations,
since F̂ ðxsÞ has unit covariance Cð0Þ ¼ 1. Because F̂ ðxsÞ
has zero mean, Eq. (91) is satisfied. Let us now check
Eq. (92):

hJ ðxsÞi ≅ JðrsÞheσF̂ ðxsÞi ¼ JðrsÞ
X∞
n¼0

hσnF̂ nðxsÞi
n!

; ð96Þ

where we series-expanded the exponential and used lin-
earity of the expectation value. Then by Eq. (69), relabeling
k ¼ 2n,

hJ ðxsÞi
JðrsÞ

≅
X∞
k¼0

σ2khF̂ 2kðxsÞi
ð2kÞ! ¼

X∞
k¼0

ð2k − 1Þ!!
ð2kÞ! σ2k: ð97Þ

Evaluating the sum results in

hJ ðxsÞi ≅ JðrsÞe1
2
σ2 ; ð98Þ

and we now see why the definition (93) is not what we
wanted, since it does not satisfy the requirement (92).
Instead, we let

IsðxsÞ ¼ J ðxsÞ≡ JðrsÞeσF̂ ðxsÞ−1
2
σ2 ; ð99Þ

which does have the desired property (92), and hence
recovers the background profile (57) after averaging. We
note that this can also be checked directly from the property
(67) with k ¼ 1,

heisGðxÞi ¼ e−
1
2
Cð0Þs2 ; ð100Þ

by taking s ¼ −iσ and G ¼ F̂ with μ ¼ 0 and Cð0Þ ¼ 1.
This also shows that σ2 effectively rescales the covariance
Cð0Þ. In particular, the fluctuations disappear as s → 0 and
we recover the pure envelope JðrsÞ of the background
surface brightness.

G. Complete statistics of the variable source

We can also use the GRF property to explicitly write
down the complete correlation structure of the random field
J ðxsÞ. With sl ¼ −iσ, G ¼ F̂ , μ ¼ 0, and Cð0Þ ¼ 1,
Eq. (67) becomes

heσ
P

k
l¼1

F̂ ðxlÞi ¼ e
1
2
σ2
P

k
l;j¼1

CðΔxljÞ: ð101Þ

Since hJ ðx1Þ���J ðxkÞi¼Jðr1Þ���JðrkÞheσ
P

k
l¼1

F̂ ðxlÞ−k
2
σ2i,
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hJ ðx1Þ � � �J ðxkÞi
Jðr1Þ � � � JðrkÞ

¼ exp

�
−
kσ2

2
þ σ2

2

Xk
l;j¼1

CðΔxljÞ
�
:

ð102Þ

This result characterizes all the statistics of the variable
source J ðxsÞ in terms of a single covariance function, as
advertised.
Of course, this formula with k ¼ 1 confirms that Eq. (92)

holds. Meanwhile, for k ¼ 2 the double sum in the
exponential is

P
2
l;j¼1 CðΔxljÞ ¼ CðΔx11Þ þ CðΔx12Þ þ

CðΔx21Þ þ CðΔx22Þ so we obtain the two-point function

hJ ðx1ÞJ ðx2Þi
Jðr1ÞJðr2Þ

¼ e−σ
2þσ2

2
½2Cð0Þþ2CðΔx12Þ� ¼ eσ

2CðΔx12Þ;

ð103Þ

which is the exponential of the Matérn field’s autocorre-
lation. Going further, for k ¼ 3 the double sum in the
exponential is

P
2
l;j¼1 CðΔxljÞ ¼ 3Cð0Þ þ 2CðΔx12Þ þ

2CðΔx13Þ þ 2CðΔx23Þ so

hJ ðx1ÞJ ðx2ÞJ ðx3Þi
Jðr1ÞJðr2ÞJðr3Þ

¼ eσ
2½CðΔx12ÞþCðΔx13ÞþCðΔx23Þ�; ð104Þ

and one can check that J ðxsÞ is a non-Gaussian random
field. That is, it does not quite obey the GRF property (67),
though its statistics (102) are still governed by a single
covariance.
For some intuition, let us reexamine the fractional

variation F≡ ΔJ=J, whose statistics are encoded in the
random field

Ĵ ðxsÞ≡ J ðxsÞ − JðrsÞ
JðrsÞ

¼ eσF̂ ðxsÞ−1
2
σ2 − 1: ð105Þ

Its one-point and two-point functions are

hĴ ðxsÞi ¼ 0; hĴ ðxsÞĴ ðx0
sÞi ¼ eσ

2CðΔxÞ − 1: ð106Þ

If the fluctuations are very small, then this is approximately

hĴ ðxsÞĴ ðx0
sÞi ≈

σ2≪1
σ2CðΔxÞ; ð107Þ

which is the autocorrelation of a GRF with covariance σ2.
This is also true for higher-point functions; using Eq. (102),
we can show that the field Ĵ ðxsÞ is approximately Gaussian
at leading order in σ. Thus, small fluctuations are Gaussian,
but larger fluctuations introduce non-Gaussianities.

H. Generating realizations of an accretion
flow using INOISY

To summarize, we model variable sources via the
emissivity (99), which is defined in terms of the Matérn
field (89) and displays the correlation structure (102). The
zero-mean field F̂ ðxsÞ and its statistics are fully determined
by its covariance, which is controlled by a metric ΛðxsÞ of
the form (83). Given such a metric, a realization of F̂ ðxsÞ is
obtained by solving the linear SPDE (88) with some
realization WðxsÞ of white noise. This is essentially what
INOISY does, though in practice, the continuous SPDE (88)
is actually discretized and its solution is a Gaussian Markov
random field approximating F̂ ðxsÞ [43]. As for the
envelope JðrsÞ, we use the radial profile (58).
Therefore, all we need to do to specify our model is to fix

a choice of unit vectors ulðxsÞ and correlation lengths λl,
where now l ∈ f0; 1; 2g. Such a choice will define ΛðxsÞ
and hence our nonstationary, nonaxisymmetric stochastic
source profile.
Since we want to produce “realistic” images and vis-

ibility amplitudes, we will choose F̂ ðxsÞ to be an inho-
mogeneous, anisotropic Matérn field whose power
spectrum is comparable to that observed in GRMHD
simulations [43], and therefore serves as a good phenom-
enological model.
Instead of xs ¼ ðrs;ϕs; tsÞ, we use a regular Cartesian

grid xs ¼ ðts; xs; ysÞ in the Kerr equatorial plane, and
INOISY solves the SPDE (88) on this grid with periodic
boundary conditions. Following Eq. (83), we pick a
position-dependent anisotropy

ΛðxsÞ ¼
X2
l¼0

λ2lðrsÞulðxsÞuT
lðxsÞ: ð108Þ

Under this prescription, u0ðxsÞ sets the temporal correla-
tion of the flow, with characteristic correlation time λ0ðrsÞ,
while u1ðxsÞ and u2ðxsÞ determine its spatial structure,
which at any given time exhibits correlations of character-
istic lengths λ1ðrsÞ and λ2ðrsÞ, respectively. Following
Ref. [43], we take these three-dimensional (3D) unit
vectors to have ðts; xs; ysÞ components

u0ðxsÞ ¼ ð1; vxðxsÞ; vyðxsÞÞ; ð109Þ

u1ðxsÞ ¼ ð0; cos θðxsÞ; sin θðxsÞÞ; ð110Þ

u2ðxsÞ ¼ ð0;− sin θðxsÞ; cos θðxsÞÞ; ð111Þ

where we have yet to specify vx, vy, and θ. In practice, we
will only let these functions depend on the spatial posi-
tion ðxs; ysÞ.
We note that u1ðxsÞ · u2ðxsÞ ¼ 0 are always orthogonal

to each other, but not to u0ðxsÞ. Nonetheless, the resulting
ΛðxsÞ still has a determinant of the form required by
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Eq. (83), since jΛðxsÞj ¼ λ20λ
2
1λ

2
2. Also, the sign of u1 and

u2 is arbitrary, as it sets only the spatial correlation; the
flow in time is set by u0.
To be consistent with our choice of accretion flow (52),

we must take the temporal correlations to have the same
velocity:

v⃗≡ dr
dt

∂r þ
dϕ
dt

∂ϕ ¼ −ι∂r þ Ω∂ϕ; ð112Þ

where Ω and ι, respectively, denote the angular and radial-
infall velocities (53). In Cartesian coordinates this velocity
becomes v⃗ ¼ vx∂x þ vy∂y with

vxðxsÞ ¼ −
xs
rs
ι − ysΩ; vyðxsÞ ¼ −

ys
rs
ιþ xsΩ: ð113Þ

As for the spatial correlations, we adopt the prescription
[43]

θðxsÞ ¼ arctanðys;−xsÞ þ θ∠: ð114Þ

This sets the major axis u1ðxsÞ of the spatial correlation
tensor to lie at a constant angle θ∠ relative to the equatorial
circles of constant radius rs. The resulting flow displays
spiral features with opening angle θ∠. The choice θ∠ ≈ 20°
produces spiral arms broadly consistent with GRMHD
simulations [43,78].
This completes the specification of our stochastic surface

brightness. To summarize, the accretion flow model takes
as input 12 parameters, each of which is listed in Table II,
along with a short description and the default value used for
the main examples in this paper. To compute images, we

must also specify three more parameters: the black hole
spin a, the observer inclination θo, and the mass-to-distance
ratio

ψ ¼ 1

3.62 μas
M
ro

; ð115Þ

which combines the black hole mass M and observer
distance ro, and which is defined relative to a fiducial value
for M87*.

IV. APPLICATIONS

Having fully described our stochastic source model,
we can now simulate it with INOISY and then use AART to
ray trace its appearance and compute its visibility. We will
present a whole suite of simulations in a follow-up paper,
but for now we limit ourselves to one complete example
from which Figs. 1–3 are derived. We first explain in detail
how to obtain Figs. 1 and 2, while Fig. 3 will be the focus
of Sec. VI.
For this simulation, we ran INOISYon a regular Cartesian

grid ðxs; ys; tsÞ of size 2048 × 2048 × 512. For each of
the spatial coordinates ðxs; ysÞ, we uniformly placed
2048 pixels within the range ½−50; 50�M, resulting in a
spacing of 0.05M between pixels, whereas for the time
coordinate ts, we placed 512 pixels uniformly within the
range ½0; 1000�M, resulting in a cadence of one frame every
1.95M. We used the default values listed in Table II for the
15 parameters in the model.
The left panel in Fig. 12 shows an example of a snapshot

extracted from the resulting INOISY run. The accretion flow
appears qualitatively similar to GRMHD-simulated flows.
In particular, we tuned the scale σ of fluctuations to ensure
that the total observed flux (the blue light curve in Fig. 13)
varies by a factor of ∼3 between its minimum and
maximum. This level of time-variability mimics the light
curves obtained from GRMHD simulations: see, for exam-
ple, Figs. 3 and 4 of Ref. [79], Fig. 8 of Ref. [80], or Fig. 5
of Ref. [31]. Ensuring that this agreement also holds
quantitatively is an interesting challenge that we hope to
tackle in the future.

A. Fast-light: Stationary nonaxisymmetric source

After producing our INOISY simulation, we use AART to
ray trace it. A commonly adopted simplification in carrying
out ray tracing is the so-called “fast-light” approximation.
When staring at a variable source, a single frame Ioðto; α; βÞ
of its observational appearance at a fixed moment in time is
formed by photons that were emitted at different times

tðnÞs ðα; βÞ in the history of the source. The reason is that
photons that appear at different positions ðα; βÞ in the
image plane follow different paths in the geometry, thereby

incurring different time delays Δt ¼ to − tðnÞs on their
way from source to observer, as shown in Figs. 7 and 8.

TABLE II. Summary of the 15 parameters in our nonstationary
and nonaxisymmetric stochastic source model, together with their
default values used for the majority of our examples. The first
three pertain to the geometry, while the other 12 prescribe the
statistics of the equatorial surface brightness.

Parameter Default value Description

ψ 1.07 BH mass-to-distance ratio
a=M 94% BH spin
θo 17° Observer inclination

ζ 1.5 Geometrical factor
σ 0.4 Fluctuation scale
ξ 0.95 Sub-Keplerian factor
βr 0.95 Radial velocity factor
βϕ 0.95 Angular velocity factor
θ∠ 20° Anisotropy direction
λ0 2π=Ω Temporal correlation
λ1 5rs Spatial correlation in the xs direction
λ2 0.1λ1 Spatial correlation in the ys direction
μ r− Controls location of profile peak
ϑ 1=2 Controls profile width
γ −3=2 Controls profile asymmetry
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The fast-light approximation simply ignores this variable
time delay and maps the image plane ðα; βÞ onto a
single snapshot of the equatorial plane, using only the

transfer functions rðnÞs and ϕðnÞ
s from Sec. II C and replacing

Eq. (50) by

Ioðα; βÞ ¼
XNðα;βÞ

n¼0

ζng3ðrðnÞs ; α; βÞIsðrðnÞs ;ϕðnÞ
s Þ: ð116Þ

Mathematically, this is equivalent to keeping the emission
time ts fixed while letting the observation time to vary
across the image. Naturally, if the source is stationary, then
this is a moot distinction since the time dependence drops
out anyway, so this amounts to treating each individual
INOISY snapshot as a stationary (though nonaxisymmetric)
source. Thus, the fast-light approximation is exact for a
stationary source, and it can offer a decent approximation
as long as the source varies slowly relative to the “fast” light
being traced, hence the name.
As an example, we take the first (ts ¼ 0) snapshot from

our INOISY simulation and ray trace it as described in
Sec. II C, assuming a black hole spin of a=M ¼ 94% and
an observer inclination of θo ¼ 17°. In the n ¼ 0 layer, we
ray trace at the same spatial resolution as the underlying
INOISY simulation; that is, we use a spacing of δxð0Þ ¼
δxINOISY ¼ 0.05M between grid pixels. In the higher-n
layers, we adaptively increase the resolution by a factor of

FIG. 12. Left: Intensity profile (in logarithmic scale) of a single snapshot from an INOISY simulation with the parameters in Table II.
Right: Ray-traced image corresponding to this equatorial source profile, treating the realization of the random field on the left as static
(the “fast-light” approximation). The inset panels decompose the image into layers: the direct n ¼ 0 image and the first two (n ¼ 1 and
n ¼ 2) photon rings.

FIG. 13. Normalized light curves of the stochastic INOISY

source with parameters in Table II. Green line: total emitted
flux measured from INOISY snapshots. Blue line: total observed
flux measured from ray-traced images. Relativistic effects (gravi-
tational redshift, Doppler boosting, and light bending) make the
observed flux smoother and less variable than the emitted flux.
The vertical dotted lines indicate the times corresponding to the
four snapshots displayed in Fig. 1.
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2 in each successive band, and ray trace on grids with
spacings of δxðnÞ ¼ 2nδxð0Þ between pixels.
The right panel of Fig. 12 displays the resulting image (in

a logarithmic color scale to highlight the accretion flow),
which looks qualitatively similar to the single snapshots
produced with state-of-the-art GRMHD simulations [9,31].
The figure also displays a decomposition of the image into
its n ∈ f0; 1; 2g layers, which are shown individually in the
inset panels. Each separate layer appears well-resolved,
suggesting that our grid resolutions are sufficient to resolve
the photon rings. Indeed, we have verified (using a con-
vergence test detailed in Sec. V) that the results derived
from the observable of interest (which in our case is the
visibility amplitude, presented in Sec. IV C) do not change
when the resolutions are doubled.

B. Slow-light: Nonstationary
nonaxisymmetric source

With the transfer functions (33)–(35) implemented in
AART, it is also easy to perform a “slow-light” ray-tracing
that takes into account varying photon emission times
across the image. We simply use Eq. (50) and plug in all the
transfer functions defined in Sec. II C. This requires us to
use the entire series of snapshots generated by INOISY;
that is, we must now use the full time evolution of the
accretion flow.
Slow-light tracing does introduce two new complica-

tions. First, since the pixels in a single frame of a movie of
the source can depend on a very wide range of emission

times tðnÞs ðα; βÞ, in order to produce a movie of some
duration To, we typically need to simulate the source over a
longer duration Ts > To. In practice, we can estimate how
much longer Ts needs to be by examining isochronal curves
in the n ¼ 0 layer, such as those displayed in Fig. 7. At low

inclinations, the range of tð0Þs ðα; βÞ over sampled pixels is
about 50M, but this range grows much larger at higher
inclinations. In addition, the higher-n images are composed
of photons emitted roughly a time nτ earlier, so in order to
ray trace a movie containing n layers, we expect to need
Ts − To ≳ 50M þ nτ ≈ 80M. Some rays may occasionally
require sampling the source even earlier than the start of
the simulation, but this is not really an issue with INOISY

thanks to its use of periodic boundary conditions (including
in time).

Second, because tðnÞs ðα; βÞ varies smoothly across the
image plane, the code must be able to sample the source
Isðrs;ϕs; tsÞ for continuous values of ts, including at times
in between the frames computed by INOISY. This problem
can be dealt with using interpolation, but only so long as the
underlying INOISY simulation has sufficiently high reso-
lution to smoothly resolve the flow’s motion. This is the
case in our example simulation, as the INOISY movie of the
equatorial source has high enough cadence to be smoothly
interpolated in time.

Thus, AART readily produces a movie of the source
(whose parameters are listed in Table II). We display four
snapshots from this movie, taken at intervals of 250M, in
the top row of Fig. 1. We also plot its light curves in Fig. 13:
the total observed flux (measured in the image plane) and
total emitted flux (measured in the equatorial plane) are
shown in blue and green, respectively, with the former
appearing smoother and less variable than the latter due to
relativistic effects.
As in the stationary (fast-light) case, the snapshot images

in Fig. 1 present bright transient features that are qualita-
tively similar to those seen in state-of-the-art snapshots of
GRMHD simulations [9,31]. These transient features can
obscure the photon ring in instantaneous snapshots, but
they wash out of the average over 100 snapshots in Fig. 2,
leaving the photon ring as the only prominent feature in the
time-averaged image shown in the left panel. This image
can be directly compared to the one shown in Fig. 1 of
Ref. [7], which was also obtained by time-averaging over
100 uniformly spaced snapshots taken from a GRMHD
simulation with a time range of 1000M.

C. Visibility on long baselines

A radio interferometer such as the EHT samples a
(complex) radio visibility VðuÞ. By the van Cittert–
Zernike theorem, this is related to a sky brightness
IoðxoÞ via a 2D Fourier transform

VðuÞ ¼
Z

IoðxoÞe−2πiu·xod2xo: ð117Þ

Here, xo are dimensionless image-plane coordinates mea-
sured in radians, such as ðα; βÞ=ro, while the dimensionless
vector u is a “baseline” projected onto the plane per-
pendicular to the line of sight and measured in units of the
observation wavelength [68]. We use radio-astronomy
conventions to make this Fourier transform 2π-symmetric,
unlike the definition (70).
Therefore, to relate simulated images to actual observ-

ables, we must Fourier transform them to compute their
visibility. In particular, the narrow image features—like the
photon rings—that encode precise information about the
spacetime dominate the interferometric signal on very long
baselines u ¼ juj ≫ 1 [7,35], requiring us to compute
Fourier transforms up to very high frequencies. To do
so, we again exploit the layered image structure: since the
observed intensity (50) decomposes into

Ioðα; βÞ ¼
XNðα;βÞ

n¼0

Inðα; βÞ; ð118Þ

with Inðα; βÞ denoting the nth image layer, we can likewise
use the linearity of the Fourier transform (117) to decom-
pose the total complex visibility into individual subring
components:
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VðuÞ ¼
X∞
n¼0

VnðuÞ; VnðuÞ ¼
Z

InðxoÞe−2πiu·xod2xo:

ð119Þ

The subring images InðxoÞ with n > 0 consist of narrow
rings of characteristic widths e−γn (where γ is a Lyapunov
exponent) and roughly equal intensities. Hence the total
flux Vnð0Þ of the nth image layer also scales like e−γn [7].
Moreover, a narrow ring produces a characteristic, weak
u−1=2 power-law falloff in its Fourier transform: indeed one
can show that in the regime

1

d
≪ u ≪

1

w
; ð120Þ

the visibility (117) in polar coordinates u ¼ ðu;φÞ of a ring
of diameter ∼d and width ∼w takes the “universal” form
[33,34]

1

2
VðuÞ ¼ e−2πiCφuffiffiffi

u
p

�
αLφe−

iπ
4eiπdφu þ αRφe

iπ
4e−iπdφu

�
; ð121Þ

where αL;Rφ ¼ αR;Lφþπ > 0 encodes the polar intensity profile
around the ring, while dφ and Cφ are its projected diameter
and centroid displacement at angle φ in the image,
respectively.
As first pointed out in Ref. [7], this suggests that the nth

photon ring dominates the interferometric signal in the
regime

1

wn−1
≪ u ≪

1

wn
; ð122Þ

where wn ≈ e−γnw0 is the width of the nth subring,
producing a characteristic cascading structure of damped
oscillations with periodicity encoding the diameter of
successive subrings; see also Secs. 2 and 4 of Ref. [10]
for a more detailed discussion.
Since we compute images layer-by-layer—as described

in Sec. II F—with a different grid and resolution in each
layer In, it is convenient to also compute the visibility
layer-by-layer as well, and obtain each Vn as the Fourier
transform (119) of In.
Instead of taking this 2D Fourier transform directly, as in

Refs. [10,35], we make use of the projection-slice theorem
to compute Vnðu;φÞ along slices of fixed polar angle φ in
the Fourier plane. The procedure is as follows. For each
angle φ, we first compute the Radon transform along the
cut at angle φ across the image; that is, in each lensing
band, we integrate the observed intensity In along lines
perpendicular to the slice of constant φ. Then, we inter-
polate each Radon transform to the resolution of the
highest-order lensing band. Last, we sum up the contribu-
tions from all the image layers In, and perform a one-
dimensional Fourier transform to finally obtain Vðu;φÞ.

The bottom row of Fig. 1 presents the visibility ampli-
tudes jVðu;φÞj along slices of constant φ ¼ 0° (in red) and
φ ¼ 90° (in blue) of the corresponding snapshots in the top
row. Since these individual snapshots display a strong
dependence on the variable emission profile, the visibility
amplitudes also exhibit a large variability. Nevertheless,
as we mentioned previously, these fluctuations wash out
under time-averaging, leaving the characteristic ringing
signature of the photon ring as the main persistent feature
that dominates the visibility.
We also display thevisibility amplitudes at baseline angles

φ ¼ 0° and φ ¼ 90° (again, in red and blue, respectively)
for our 100 snapshots in the right panel of Fig. 2. Their
incoherent time-average is also shown with bold solid lines.
“Incoherent” here means that the averaging is performed at
the level of thevisibility amplitudes jVðu;φÞj, as in a realistic
experiment [35], rather than at the level of the complex
visibilities themselves, before taking the amplitude—these
operations (averaging and taking amplitudes) do not com-
mute for complex quantities. (Experimentally, the latter type
of “coherent” time-averaging would require tracking the
visibility phase over the course of all observations, which is
beyond our near-term capabilities.) These time-averaged
amplitudes can be directly compared to those of a radial
profile; see, e.g., Figs. 4 and 5 of Ref. [35].

V. RAY TRACING REQUIREMENTS

As described in Sec. II F, we decompose images into layers
labeled byphoton half-orbit numbern and ray trace each layer
separately. In principle, one can choose any grid resolution in
each lensing band. In practice, however, these resolutions
must be sufficiently high to resolve the image features present
in each layer. Otherwise, the output is not a faithful image of
the source, and the resulting visibility is likewise inaccurate.
In addition, the n ¼ 0 lensing band occupies all of the image
plane, whereas the n ¼ 0 grid must of course have a finite
size. Hence, the direct image of the source may need to
be truncated, which could in turn introduce errors in the
visibility. In this section,we describe the requirements on grid
resolution and size that must be met in order to ensure that
both the image and the visibility of a source are correctly
computed. We also strive to explain the types of errors
encountered when these requirements are not met.
We first discuss grid resolution and then grid size. A

finite resolution erases small-scale features and a finite field
of view cuts off large-scale features, but these effects can be
remedied with the use of interpolation and extrapolation,
respectively.

A. Resolution requirements

1. Requirements on the underlying simulation
of the source

When computing images of some source model IsðxsÞ,
we must be able to sample the source intensity Is at
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arbitrary xs within the range of the simulation. This is
because the transfer functions (33)–(35) vary smoothly
across the image plane, as discussed in Sec. II G and as
illustrated in Figs. 5 through 9.
For a stationary and axisymmetric source profile of the

form (57), this requirement is trivial, since we typically
specify the radial profile JðrsÞ analytically, as we did in
Eq. (58) with Johnson’s SU distribution (which can be
computed anywhere to arbitrary precision). On the other
hand, if the source profile IsðxsÞ is not known exactly, then
we must define it everywhere in the range where it is to be
sampled via interpolation.
In that case, it is important that the interpolation be done

on a dense grid, so that we do not miss any features of the
source. In practice, this means that if its smallest features
are of size ∼w, then before interpolating the source, we
must first sample it on a grid with pixel spacing δx≲ w.
Otherwise, if the grid spacing is some δx≳ w, then we may
miss a feature of size w in between two successive grid
points xi and xi þ δx, leading to an error in both the
computed image and its visibility.
Moreover, the grid density must be high enough to

resolve all the features in the source with many points, so as
to ensure that the resulting interpolation is smooth: if some
features are underresolved (for instance, if a bump in a
radial profile has only one point underneath it), then
interpolation will produce spurious sharp features in the
image that will have a significant impact on its Fourier
transform, and hence the visibility. Thus, δx≲ w is not
enough—we must in fact require that δx ≪ w.15

For the GRFs that we introduced in Sec. III to model
astrophysical fluctuations, this means that the spacing
between grid points xs ¼ ðts; xs; ysÞ must be smaller than
the characteristic size of fluctuations, which is set by the
correlation lengths λl with l ∈ f0; 1; 2g. That is, we
require a grid spacing δx ≪ λl.
We reiterate that interpolation is unavoidable here

because the INOISY simulation grid does not coincide
(barring some incredible fine-tuning) with the equatorial
crossings of rays traced backwards from points in the
image-plane grids.

2. Requirements on the image grids used in ray tracing

We now describe the resolutions needed in the grids used
to ray tracewithin each lensing band, as described inSec. II F.
For the direct n ¼ 0 image, we must ray trace on a grid

with spacing δxð0Þ ≲ δxmodel for precisely the same reasons

as listed above for the underlying model—provided we do
so, we will not miss any image features and they will all be
well resolved.
Likewise, in the higher-n layers, we must ray trace on

grids with exponentially fine spacings δxðnÞ ≈ e−γnδxð0Þ.
The reason is simply that if the smallest feature in the n ¼ 0
image is of size w0 ≈ w, then its nth mirror image in the nth
lensing band will be roughly of size wn ≈ e−γnw0. To avoid
missing these features (or underresolving them), we must
demand that δxðnÞ ≪ wn, a condition that is automatically
satisfied with this adaptive grid scaling tailored to the Kerr
lensing behavior.
Provided that each image layer is ray traced at a

sufficiently high resolution to ensure that no subgrid
structure is omitted, we can safely interpolate the image
layers InðxoÞ. In turn, we can evaluate their Radon trans-
forms along any desired slice, and then take a 1D Fourier
transform to obtain their correctly computed visibilities
VnðuÞ, as described in Sec. IV C.
Conversely, we note that if the resolution is not increased

in each successive layer, then eventually some image
layer InðxoÞ will have lensed features smaller than its grid
spacing. This unresolved subgrid structure will render the
visibility VnðuÞ, and thus the full visibility VðuÞ, inaccu-
rate. Hence, adaptive ray tracing is necessary to guarantee
accurate visibilities.

3. Convergence tests

To summarize, for both the emission model IsðxsÞ and its
ray-traced image layers InðxoÞ, wemust use sufficiently high
resolutions to ensure that we do not truncate any subgrid
structure (that is, structure on length scales smaller than the
resolution). This then allows us to safely interpolate IsðxsÞ
and InðxoÞ, without missing any features or introducing any
spurious new ones in the interpolation procedure.
Interpolating IsðxsÞ is needed to obtain the layers InðxoÞ,

as ray tracing requires us to compute the intensity loaded on
rays that intersect the equatorial source at generic crossing
points. Interpolating the image layers InðxoÞ is also needed
to compute their Fourier transforms VnðuÞ, and hence the
visibility (119). Any errors in either of these steps introduce
errors in the final visibility VðuÞ, so we must carefully
avoid them by using the appropriate resolutions, as
explained above.
In practice, however, these requirements are only heu-

ristic. For instance, the Lyapunov exponent is an angle-
dependent function γðφÞ around the image plane, so we
cannot precisely realize the exponential scaling δxðnÞ ∼
e−γnδxð0Þ on a Cartesian grid. In addition, eγðφÞ can be as
large as ∼20, but such an increase in pixel density is not
always necessary. In fact, recall that for the example in
Sec. IV, we simply set δxðnÞ ¼ 2nδxð0Þ, a much more
modest but still adequate scaling of pixel density.
Inversely, a realization of an INOISY source realization

may occasionally make a field excursion that creates a far

15This smooth interpolation effectively defines the source
down to arbitrarily small length scales by decreeing that no
new features appear below size w, which is the minimal (most
conservative) “ultraviolet completion” of the model. Any other
choice would modify the visibility on baselines u≳ 1=w and
should then be specified as part of the model itself, rather than
by fiat.
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smaller fluctuation than the minimum size w typically
expected from its correlation matrix ΛðxsÞ. While sta-
tistically improbable, such events cannot be precluded from
occurring, and could result in a too-large grid spacing
δxmodel ≳ w. Unfortunately, it is intractable to directly
check that this does not happen.
Instead, it is best to numerically check for the absence of

errors using a simple convergence test, in which one
doubles all the resolutions (of the simulated profile and
image grids) and computes again the observables (images
and visibilities). In Fig. 14, we show an example of a
convergence test for the example from Sec. IV: after
halving the grid resolutions, the changes in the visibility
amplitude remain small, confirming that the resolution
scaling δxðnÞ ¼ 2nδxð0Þ is adequate.

B. Field of view requirements

Being able to completely resolve an emission profile
IsðxsÞ and a (central) part of its image IoðxoÞ is a necessary
but not sufficient condition to correctly compute its
visibility VðuÞ.
Another requirement for the accurate computation of a

source model’s visibility is related to the size of its image’s
field of view (FOV) and how fast the emission profile
decays past it. Even when all the photon rings are fully
resolved (that is, the resolution in each lensing band is

sufficiently high), it is still imperative to check that the FOV
is sufficiently large for the image to include all of the
features with significant flux.
If the FOV is too small and cuts out a portion of the

source, then this truncation may create a sharp drop in the
observed intensity at the edges of the image. Such an
artificial transition would effectively introduce high-
frequency components to the image, polluting its Fourier
transform, and hence its visibility. This is the well-known
Gibbs phenomenon.
Since we are interested in narrow features of the image,

and in particular the interferometric signature of its n ¼ 2
photon ring that is encoded in the visibility on very long
baselines, we cannot avoid dealing with this potential
effect.

1. Field of view of the direct image

We first focus on the direct image, as it is the most prone
to the Gibbs phenomenon. This is because it occupies the
n ¼ 0 lensing band, which has noncompact support: as
described in Sec. II E, it fills the entire image plane (except
for the interior of the apparent equatorial horizon).
If the emission profile has compact support in the

equatorial plane ðrs;ϕsÞ, however, its direct image
I0ðxoÞ will also have compact support within the n ¼ 0
layer, and we can terminate our FOV just past the edge of
this image without introducing any truncation errors or
triggering the Gibbs phenomenon.
On the other hand, if the emission profile extends

infinitely far in the equatorial plane (remaining nonzero
as rs → ∞), or else if its support is too large to fully ray
trace over in practice, then we must necessarily cut off
its n ¼ 0 image.16

For instance, consider the simple, stationary, axisym-
metric source (57) with radial profile JðrsÞ given by
Johnson’s SU distribution (58). While this emission profile
does decay very fast as rs → ∞, it always remains finite. In
Fig. 15, we plot it in logarithmic scale for two sets of values
of its parameters. From now on, we focus on the red profile,
with parameters μ ¼ r−, ϑ ¼ M=2, and γ ¼ −3=2. We first
ray trace its direct n ¼ 0 image on a grid of size 400M, and
then we compute the corresponding visibility amplitude
jV0ðu; 0°Þj, which we plot as a black dashed curve in the
top left panel of Fig. 16.
At the edge of our FOV, JðrsÞ has dropped to ≲10−11

times its maximum intensity. As such, the sudden drop
introduced by our truncation is too small to produce a
significant ringing effect on long baselines, and so it cannot
meaningfully affect the signal. We will consider this large
FOVand its associated visibility amplitude as the “correct”
one. Next, we ray trace the same image with its FOV

FIG. 14. Convergence test of the resolution needed to ray trace
an INOISY snapshot. We plot its visibility amplitude at baseline
angles φ ¼ 0° (red lines) and φ ¼ 90° (blue lines) computed
using the grid resolutions described in the main text. The black
dashed lines correspond to the visibility amplitudes obtained after
doubling the nominal resolution. The inset panel zooms into the
region were the fits were performed to infer the projected ring
diameter as described in Sec. VI. Since the differences are
consistently below 1%, we can validate the resolution.

16We saw in Sec. VA that a finite grid resolution introduced an
“ultraviolet” cutoff; now we see a finite grid size as the
corresponding “infrared” cutoff.
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truncated at rs ≈ 15M, a cutoff past which JðrsÞ drops to
≲10−4 times its maximum intensity. We then plot the
resulting visibility amplitude as the solid blue curve in the
top left panel of Fig. 16. Perhaps surprisingly, it differs
quite significantly from the “correct” one. In fact, their
relative difference—which we plot as a blue curve in the
small panel below the main—shows a large and growing
percentage error that exceeds 100% before even reaching
100Gλ. Even though the total flux that we ignored is tiny,
the sudden drop in intensity at the FOV’s edge triggered the
Gibbs phenomenon.
The resulting error can affect the interferometric signa-

ture of the n ¼ 2 photon ring and is therefore an obstacle
that we need to overcome, especially since this very profile
is roughly consistent with the 2017 EHT observations of
M87* [35].
There are two approaches to mitigating this problem.

The first is to increase the FOV until the profile decays
enough at the edges that it “effectively vanishes”—in that
case, these spurious ringing effects will not be noticeable.
In effect, this is what we did when we chose an FOV of
400M. However, it may not always be feasible to extend the
FOV this much. For instance, if the emission profile is an
INOISY source simulated on a grid that stretches out to some
maximal rs, then extending the source past this cutoff
would require extrapolation. This is already subtle for
smooth profiles, as it amounts to introducing ad hoc data to
the model.

The second approach—referred to as “apodization”—
has already been used to deal with this problem in Ref. [10].
This method involves the multiplication of the image by a
suitable window (also known as tapering or apodization
function) that smoothly tapers the intensity to precisely
zero before the edge of the FOV. For our example, we will
use the window function

Cðs¬; r¬Þ ¼
1 − tanh ½s¬ðr − r¬Þ�

2
; ð123Þ

with a cutoff value of r¬ ¼ 15M (well within the “small”
FOVof 50M) and s¬ ¼ M, which results in the smooth but
rapidly truncated profile depicted with a dashed red line
in Fig. 15.
Ray tracing the direct image of this profile and comput-

ing its visibility amplitude now results in the solid red curve
that we plot in the top left panel of Fig. 16. Its difference
relative to the “correct” amplitude is much smaller, and the
percentage difference remains fairly constant well past
100Gλ. This can therefore be an effective method.
In practice, we prefer to always use emission profiles that

smoothly terminate within the FOV of our direct image,
which we can easily take to be 50M wide. In case our
source profile extends beyond this FOV, we apply the
window function (123) to it and take the resulting profile as
our “true” source.

2. Field of view of higher layers

Since the n > 0 lensing bands all have compact support,
it is straightforward to avoid the Gibbs phenomenon in
higher-n image layers and visibilities: we just take a FOV
that includes the totality of the nth photon ring (that is, all
the flux in the nth image layer).
We briefly describe the effects that windowing the

emission profile as discussed above has on higher visibility
amplitudes. The top right panel of Fig. 16 shows that the
windowed profile produces roughly the same visibility
(solid red curve) as the original one (dashed black curve) up
to baselines u ∼ 100 Gλ, which are necessary to resolve
image features of size

100 Gλ ¼ 1011

rad
≈

1

2 μas
: ð124Þ

For M87*, whose photon ring has a diameter
∼10M ≈ 40 μas, this corresponds to a size of 0.5M, or
half the n ¼ 1 ring width.
Thus, differences in the visibility amplitude jV1ðu; 0°Þj

only become apparent on baselines that start to resolve its
width, as can be seen in the small plot of percentage
deviation. On the other hand, truncating the FOV of the
n ¼ 1 image from 400M to 50M has no discernible effect
on its visibility amplitude (solid blue curve) and results in a
vanishingly small deviation.

FIG. 15. Radial emission profile JSUðr; μ;ϑ; γÞ [Eq. (58)] with
μ ¼ r− to ensure that the profile peaks past the outer horizon at
r ¼ rþ. The values of the other parameters ϑ and γ are shown in
the legend. The dashed lines depict the profile multiplied by the
cutoff function (123) with s¬ ¼ M and r¬ ¼ 15M. From left to
right, the vertical lines indicate the inner and outer horizons
r ¼ r� and the ISCO radius rms.
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Finally, we can repeat this exercise for the n ¼ 2 ring.
Again, windowing the profile has a negligible effect of
≲1%, as does the truncation. In fact, the latter deviation in
this case ought to vanish entirely and is only nonzero due to
numerical error introduced by the discretization of the
Fourier transform: extending the FOVof the image to 400M

by “zero padding” changes the sampling of the fast Fourier
transform, resulting in a minute effect.
We note that these tiny errors are essentially negligible in

the full visibilities, which we compare in the bottom right
panel of Fig. 16, where most of the percentage error can be
attributed to the direct image, as expected.

FIG. 16. Normalized visibility amplitudes jVnðu; 0°Þj corresponding to the image layers Inðα; βÞ produced by the red radial emission
profile in Fig. 15 (Johnson’s SU distribution with μ ¼ r−, ϑ ¼ M=2, and γ ¼ −3=2), for n ¼ 0 (top left), n ¼ 1 (top right), and n ¼ 2
(bottom left). Bottom right: Normalized visibility amplitude jVðu; 0°Þj corresponding to the full image Ioðα; βÞ obtained by summing
over the preceding three layers. In each quadrant, the main panel shows the visibility amplitudes obtained using different values for the
field of view (FOV): dashed black for a large 400M FOV, blue for a smaller 50M FOV, and red for the 50M FOV with a cutoff applied
[Eq. (123) with s¬ ¼ M and r¬ ¼ 15M]. Inset panels zoom into the shaded regions of each main plot to highlight the differences
between the visibility amplitudes, while the smaller panels beneath the main ones plot percentage differences relative to the amplitude
with large 400M FOV. In all these examples, we have assumed that the flow follows the Cunningham prescription [67], which in our
notation corresponds to the Keplerian circular motion described in Sec. B 1.
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VI. MEASURING THE PHOTON RING SHAPE

Using black hole imaging to test general relativity in a
regime where gravity is strong and yet nondynamical poses
significant challenges: one must disentangle the astrophysi-
cal effects of the radiating source from the purely gravi-
tational ones [26,29]. A promising approach is to focus on
the n ¼ 2 photon ring, whose interferometric signature is
expected to dominate the time-averaged radio visibility on
long baselines.
More precisely, Ref. [35] proposed a test of strong-field

GR based on a shape measurement of the n ¼ 2 photon ring
aroundM87*,which has been recently reviewed inRef. [10].
Here, we show in the context of our example from

Sec. IV how AART may be used to simulate this test using a
source that includes “realistic” astrophysical fluctuations
(generated with INOISY, as described in Sec. III). We offer a
brief overview of the key points in the test, and refer the
reader to Refs. [10,35] for more details.
In the regime (120), a ring of projected diameter dφ has

a visibility that takes the universal form (121). Therefore,
its amplitude can be well approximated in this regime
by [33,34]

jVðu;φÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαLφÞ2 þ ðαRφÞ2 þ 2αLφα

R
φ sinð2πdφuÞ

q
; ð125Þ

where the functions

αL=Rφ ðuÞ ¼ eupperðuÞ � elowerðuÞ
2

ð126Þ

encode the intensity profile around the ring image, while
eupper=lowerðuÞ are the upper/lower envelopes of the visibil-
ity amplitude, respectively.
The width w and diameter d of the n ¼ 1 ring do not

always satisfy the condition w=d ≪ 1 needed for the
universal regime (120) to exist, but those of the n ¼ 2
ring do. Hence, we can fit Eq. (125) to the visibility
amplitudes in the regime (122) dominated by the n ¼ 2 ring
after numerically computing the functions αL=Rφ ðuÞ (a
simple cubic interpolation is enough).
The inset panel in Fig. 2 shows the visibility amplitude

for two baseline angles φ ¼ 0° and φ ¼ 90° in the baseline
range u ∈ ½425; 445� Gλ (corresponding to an Earth-Moon
baseline with an operation band of 332–344 GHz) with
their best fit to Eq. (125) overplotted in black dashed lines.
According to GR, the shape of the n ¼ 2 photon ring is

the sum of a circle, with radius R0, and an ellipse centered
at the origin, with radii R1 and R2 [35]. This “circlipse”
shape has a projected diameter given by [34]

dφ
2

¼ R0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 sin

2ðφ − φ0Þ þ R2
2 cos

2ðφ − φ0Þ
q

; ð127Þ

where φ0 is an offset angle to account for the orientation of
the ring within the image plane.

Using the statistical model described in Sec. III for the
emission profile with the parameters shown in Table II, we
(i) average the visibility amplitudes of N snapshot images;
(ii) fit Eq. (125) to the visibility amplitude for 36 angles
φ ¼ f0°; 5°;…; 175°g to obtain the projected diameters dφ;
and (iii) fit the general GR prediction given in Eq. (127) to
obtain fR0; R1; R2;φ0g. The best global fits of Eqs. (125)
and (127) were found using a Markov chain Monte Carlo
(MCMC) method.17

We report the best-fit values of the parameters in
Eq. (127) and their normalized root-mean-square error
(RMSE) for each N in Table III. The resulting curves,
shown in Fig. 3, follow the GR prediction very closely,
even when only five snapshots are (incoherently) averaged.
The lower panels in Fig. 3 show the difference of the best-
fit curve for each case with the best-fit curve for the purely
radial profile consisting of the envelope of the emission
model (that is, when there are no fluctuations).
The results of this example are very encouraging for

future missions targeting measurements of the photon ring
shape: with only a few snapshots, one may already start to
check whether the data follow the GR prediction. A
systematic study including instrumental noise is required
to simulate a realistic experimental forecast—we leave this
for future work.

VII. FUTURE OUTLOOK

Here, we have presented AART: a new, publicly available,
numerical code designed for precision studies of a black
hole’s photon rings. AART exploits the integrability of null
geodesics in the Kerr geometry to ray trace images
analytically, with no loss of numerical precision even for
strongly lensed photons that orbit the black hole multiple
times. The code decomposes the image plane into layers—
lensing bands—with increasing grid resolution adapted to
the lensing behavior of the hole.

TABLE III. Best-fit values for the projected diameter dφ
[Eq. (127)] obtained after averaging N snapshots. The resulting
fits are shown in Fig. 3. The normalized residuals RMSE are root-
mean-square errors divided by the average value of dφ.

N R0 R1 R2 φ0 RMSE

5 37.045 1.289 0.879 1.319° 4.5 × 10−4

10 36.250 2.077 1.679 1.308° 3.2 × 10−4

20 36.909 1.419 1.027 0.987° 2.4 × 10−4

100 36.052 2.283 1.894 0.426° 1.1 × 10−4

∞ 36.115 2.219 1.830 0.202° 4.2 × 10−5

17Since we are neglecting the phase of the oscillation,
Eq. (125) allows for several values of dφ separated by ∼1=u
to provide a good fit [35]. However, the global maximum is not
always the actual diameter dφ of the ring as measured directly in
the image domain. As explained in Ref. [10], in those cases, one
must infer the diameter by fitting at multiple angles.
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The modular structure of AART can accommodate any
time-dependent and nonaxisymmetric equatorial emission
profile, and the code could be extended to nonequatorial,
anisotropic sources. Also, the components described herein
can be used separately: AART is designed to individually
export the lensing bands, critical curve, apparent horizon,
and redshift factors, which can therefore serve as input for
other studies.
As a prime application, we showed how the experimental

forecast for the test of general relativity proposed in Ref. [35]
could be further refined by including source fluctuations.
We used INOISY [43] to simulate a stochastic model of
equatorial emission, and we produced high-resolution syn-
thetic images together with their corresponding visibility on
long baselines. We then successfully extracted the GR-
predicted shape for the projected diameter of the n ¼ 2 ring
from its interferometric signature. In a follow-up paper, we
will use this framework to carry out a parameter estimation
survey that also includes instrument response and noise—
this will further validate the test proposed in Ref. [35] and
bears relevance to SALTUS and other space-VLBI missions
targeting the photon ring [81,82].
Although we only studied the Kerr geometry, our

approach may serve as a useful guide to studying other
theories. For instance, the Kerr lensing bands may offer a
starting point for numerically finding those of slightly
deformed spacetimes.
Finally, recent EHT observations of Sgr A* found that

only ∼3.5% of the EHT GRMHD models passed the light-
curve variability constraint [22]. Given the uncertainty
associated with the variability excess, and the possibility
of missing physical ingredients in current astrophysical
models, efforts to develop astrophysics-agnostic phenom-
enological approaches such as the one presented in this
work are just as valuable as the improvement of accretion
disk simulations.
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APPENDIX A: EXPLICIT FORM OF NULL
GEODESICS IN THE KERR EXTERIOR

This appendix lists all the formulas needed to compute
the observational appearance of Kerr equatorial sources

in the sky of a distant observer. Readers are referred
to Refs. [5,40] for derivations and further details.
Throughout, FðφjkÞ, EðφjkÞ, and Πðn;φjkÞ denote the
incomplete elliptic integrals of the first, second, and third
kinds, respectively, defined according to the conventions
listed in Appendix A of Ref. [46]. KðkÞ≡ Fðπ=2jkÞ
denotes the complete integral of the first kind and we also
let E0ðφjkÞ≡ ∂kEðφjkÞ ¼ ½EðφjkÞ − FðφjkÞ�=ð2kÞ.

1. Angular geodesic integrals

The angular motion of a Kerr photon can display two
qualitatively different behaviors depending on the sign of
its energy-rescaled Carter constant η. Since we only
consider sources in the Kerr equatorial plane, we may
ignore vortical motion with η < 0, which can never reach
the equator [46]. We thus restrict our attention to ordinary
motion with η > 0, in which case the angular geodesic
integrals in Sec. II are [5]

GðnÞ
θ ¼ 1

a
ffiffiffiffiffiffiffiffiffi−u−

p ½2mðnÞK ∓o Fo�; ðA1Þ

GðnÞ
ϕ ¼ 1

a
ffiffiffiffiffiffiffiffiffi−u−

p ½2mðnÞΠ ∓o Πo�; ðA2Þ

GðnÞ
t ¼ −

2uþ
a

ffiffiffiffiffiffiffiffiffi−u−
p ½2mðnÞE0 ∓o E0

o�; ðA3Þ

where �o ¼ signβ, mðnÞ≡ nþHðβÞ counts the number
of angular turning points encountered along the trajec-
tory, HðxÞ denotes the Heaviside function, and we also
introduced

K ¼ K

�
uþ
u−

�
¼ F

�
π

2

���� uþu−
�
; ðA4Þ

Fo ¼ F

�
arcsin

�
cos θoffiffiffiffiffiffi

uþ
p

����� uþu−
�
; ðA5Þ

E0
o ¼ E0

�
arcsin

�
cos θoffiffiffiffiffiffi

uþ
p

����� uþu−
�
; ðA6Þ

Πo ¼ Π
�
uþ; arcsin

�
cos θoffiffiffiffiffiffi

uþ
p

����� uþu−
�
: ðA7Þ

2. Radial geodesic integrals

The radial integrals can be decomposed into [40]

Iϕ ¼ 2Ma
rþ − r−

��
rþ −

aλ
2M

�
Iþ −

�
r− −

aλ
2M

�
I−

�
; ðA8Þ

It ¼
ð2MÞ2
rþ − r−

�
rþ

�
rþ −

aλ
2M

�
Iþ − r−

�
r− −

aλ
2M

�
I−

�
þ ð2MÞ2I0 þ ð2MÞI1 þ I2; ðA9Þ
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with the integrals I0, I1, I2, and I� reducible to
Legendre form.
Their precise form depends on the nature of the radial

roots fr1; r2; r3; r4g: there are four different cases for null
geodesics in the Kerr exterior, but only two of these—
labeled type (2) and type (3)—arise for light rays that
connect the equatorial plane to a distant observer; mean-
while, type (4) geodesics can reach distant observers but
never the equator, since they are all vortical, whereas type
(1) geodesics are all bound to the black hole and cannot
reach a distant observer at infinity [40].

a. Type (2)

In this case, all the roots are real and the motion is
restricted to r ≥ r4 > r3 > r2 > r1.
The antiderivatives of the radial geodesic integrals take

the manifestly real and smooth forms [40]

I0 ¼ Fð2ÞðrÞ; ðA10Þ

I1 ¼ r3Fð2ÞðrÞ þ r43Π
ð2Þ
1 ðrÞ; ðA11Þ

I2 ¼
ffiffiffiffiffiffiffiffiffiffi
RðrÞp

r − r3
−
r1r4 þ r2r3

2
Fð2ÞðrÞ − Eð2ÞðrÞ; ðA12Þ

I� ¼ −Πð2Þ
� ðrÞ − Fð2ÞðrÞ

r�3

; ðA13Þ

with (recall that rij ¼ ri − rj)

Fð2ÞðrÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Fðarcsin x2ðrÞjk2Þ ≥ 0; ðA14Þ

Eð2ÞðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p
Eðarcsin x2ðrÞjk2Þ ≥ 0; ðA15Þ

Πð2Þ
1 ðrÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

r31r42
p Π

�
r41
r31

; arcsin x2ðrÞjk2
�

≥ 0; ðA16Þ

Πð2Þ
� ðrÞ ¼ 2r43

r�3r�4
ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p Π
�
r�3r41
r�4r31

; arcsin x2ðrÞjk2
�
;

ðA17Þ
where the auxiliary function x2ðrÞ is defined as

x2ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − r4
r − r3

r31
r41

r
∈
�
0;

ffiffiffiffiffiffi
r31
r41

r �
⊂ ½0; 1Þ; ðA18Þ

while the elliptic modulus is

k2 ¼
r32r41
r31r42

∈ ð0; 1Þ: ðA19Þ

Finally, the source radius is given in terms of the Jacobi
elliptic sine function snðφjkÞ by

rð2Þs ðτÞ ¼ r4r31 − r3r41sn2ðX2ðτÞjk2Þ
r31 − r41sn2ðX2ðτÞjk2Þ

; ðA20Þ

X2ðτÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
r31r42

p
τ − Fðarcsin x2ðroÞjk2Þ: ðA21Þ

b. Type (3)

In this case, only r1 and r2 are real roots while r3 ¼ r̄4
are complex-conjugate roots, and the range of radial motion
is r ≥ rþ > r− > r2 > r1.
The antiderivatives of the radial geodesic integrals take

the manifestly real and smooth forms [40]

I0 ¼ Fð3ÞðrÞ; ðA22Þ

I1 ¼
�
Ar1 þ Br2
Aþ B

�
Fð3ÞðrÞ þ Πð3Þ

1 ðrÞ; ðA23Þ

I2 ¼
�
Ar1 þ Br2
Aþ B

�
2

Fð3ÞðrÞ þ 2

�
Ar1 þ Br2
Aþ B

�
Πð3Þ

1 ðrÞ

þ
ffiffiffiffiffiffiffi
AB

p
Πð3Þ

2 ðrÞ; ðA24Þ

I� ¼ −
Aþ B

Ar�1 þ Br�2

Fð3ÞðrÞ

þ 2r21
ffiffiffiffiffiffiffi
AB

p

ðAr�1Þ2 − ðBr�2Þ2
R1ðα�; arccos x3ðrÞjk3Þ;

ðA25Þ

with (recall that rij ¼ ri − rj)

Fð3ÞðrÞ ¼ 1ffiffiffiffiffiffiffi
AB

p Fðarccos x3ðrÞjk3Þ; ðA26Þ

Πð3Þ
l ðrÞ ¼

�
2r21

ffiffiffiffiffiffiffi
AB

p

B2 − A2

�l

Rlðα0; arccos x3ðrÞjk3Þ; ðA27Þ

R1ðα;φjjÞ ¼
1

1 − α2

�
Π
�

α2

α2 − 1
;φjj

�
− αf1

�
; ðA28Þ

R2ðα;φjjÞ ¼
1

α2 − 1

�
FðφjjÞ − α2EðφjjÞ

jþ ð1 − jÞα2
�

þ α3 sinφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jsin2φ

p
ðα2 − 1Þ½jþ ð1 − jÞα2�ð1þ α cosφÞ

þ ð2j − α2

α2 − 1
Þ R1ðα;φjjÞ
jþ ð1 − jÞα2 ; ðA29Þ

f1 ¼
p1

2
log

����p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jsin2φ

p
þ sinφ

p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jsin2φ

p
− sinφ

����; ðA30Þ

p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − 1

jþ ð1 − jÞα2

s
; ðA31Þ

where the auxiliary function x3ðrÞ is defined as
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x3ðrÞ ¼
Aðr − r1Þ − Bðr − r2Þ
Aðr − r1Þ þ Bðr − r2Þ

∈
�
−

1

α0
; 1

�
⊂ ð−1; 1Þ;

ðA32Þ

while the elliptic modulus is

k3 ¼
ðAþ BÞ2 − r221

4AB
∈ ð0; 1Þ; ðA33Þ

and the other parameters are

α0 ¼
Bþ A
B − A

> 1; α� ¼ Br�2 þ Ar�1

Br�2 − Ar�1

¼ −
1

x3ðr�Þ
;

ðA34Þ
A ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

r32r42
p

> 0; B ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
r31r41

p
> 0: ðA35Þ

Finally, the source radius is given in terms of the Jacobi
elliptic cosine function cnðφjkÞ by

rð3Þs ðτÞ ¼ ðAr1 − Br2Þ − ðAr1 þ Br2ÞcnðX3ðτÞjk3Þ
ðA − BÞ − ðAþ BÞcnðX3ðτÞjk3Þ

;

ðA36Þ
X3ðτÞ ¼

ffiffiffiffiffiffiffi
AB

p
τ − Fðarccos x3ðroÞjk3Þ: ðA37Þ

APPENDIX B: ACCRETION FLOW
FOUR-VELOCITIES

Let us consider an equatorial four-velocity

u ¼ ut∂t þ ur∂r þ uϕ∂ϕ ¼ utdtþ urdrþ uϕdϕ; ðB1Þ
with uμ and uμ the contravariant and covariant components,
respectively. The angular and radial-infall velocities are

Ω ¼ uϕ

ut
; ι ¼ −

ur

ut
: ðB2Þ

Meanwhile, the energy and specific angular momentum are

E ¼ −ut; l ¼ uϕ
E
: ðB3Þ

For geodesic motion, these quantities are conserved,
whereas

ν ¼ ur
ut

ðB4Þ

is not. These variables parametrize the four-velocity as

u ¼ utð∂t − ι∂r þΩ∂ϕÞ ¼ Eð−dt − νdrþ ldϕÞ: ðB5Þ
Any two components of u determine it entirely, as the
third can be recovered from the normalization condition
u · u ¼ −1. We will parametrize the four-velocity using
either the pair ðι;ΩÞ, the pair ðν;lÞ, or the pair ðE;lÞ, as
follows. First, define

ΠðrÞ ¼ r2gϕϕjθ¼π=2 ¼ ðr2 þ a2Þ2 − a2ΔðrÞ: ðB6Þ

Given ðι;ΩÞ, unit-normalization fixes

ut ¼
�
1 − ðr2 þ a2ÞΩ2 −

2M
r

ð1 − aΩÞ2 − r2

ΔðrÞ ι
2

�−1=2
;

ðB7Þ
which is physically admissible provided the quantity in
square brackets is positive. We took the positive square root
to ensure ut > 0 is future-directed. Lowering the index of uμ

yields

E¼ χut; ν¼ r2

ΔðrÞ
ι

χ
; l¼ΠðrÞΩ−2aMr

r2χ
; ðB8aÞ

χ ¼ 1 −
2M
r

ð1 − aΩÞ: ðB8bÞ

Conversely, given ðν;lÞ, unit-normalization fixes the
energy to

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔðrÞ
ΠðrÞ
r2 − 4aMl

r − ð1 − 2M
r Þl2 − ½ΔðrÞr ν�2

s
; ðB9Þ

which is physically admissible provided the quantity under
the square root is positive. Raising the index ofuμ thenyields

ut ¼ E
χ
; ι ¼ ΔðrÞ

r2
χν; Ω ¼ χ

r2
ðlþ aHÞ; ðB10aÞ

χ ¼ 1

1þ 2M
r ð1þHÞ ; H ¼ 2Mr − al

ΔðrÞ : ðB10bÞ

It is often convenient to express Ω and χ in terms of l
only as

Ω ¼ aþ ð1 − 2M
r Þðl − aÞ

ΠðrÞ
r2 − 2aMl

r

; χ ¼ ΔðrÞ
ΠðrÞ
r2 − 2aMl

r

: ðB11Þ

Last, given ðE;lÞ, the full four-velocity can be recovered by
solving the normalization condition u · u ¼ −1 [or equiv-
alently, Eq. (B9)] for

ν¼ r
ΔðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΠðrÞ
r2

−
4aMl

r
−
�
1−

2M
r

�
l2 −

ΔðrÞ
E2

s
: ðB12Þ

Finally, the observed redshift gðι;ΩÞ is

g ¼ E
−pμuμ

¼ 1

ut
�
1�r

ffiffiffiffiffiffiffi
RðrÞ

p
ΔðrÞ ι − λΩ

� : ðB13Þ

Alternatively, the redshift can also be expressed in terms of
ðE; ν;lÞ as [Eq. (B10)]
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g ¼ ΔðrÞ
E
h
G�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp ΔðrÞ

r2 ν
i ; ðB14aÞ

G ¼ ΠðrÞ
r2

−
�
1 −

2M
r

�
lλ −

2aM
r

ðlþ λÞ: ðB14bÞ

1. Keplerian circular orbits (geodesic motion)

We let u ¼ ů denote the four-velocity of timelike,
circular-equatorial geodesics. These orbits define
Keplerian motion in the Kerr spacetime; they are only
stable if [Eq. (2.20) of [56]]

r2 − 6Mrþ 8a
ffiffiffiffiffiffiffi
Mr

p
− 3a2 ≥ 0; ðB15Þ

or equivalently, if r ≥ rms,where rms denotes the radius of the
(marginally stable) innermost stable circular orbit (ISCO),

rms ¼ M½3þ Z2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − Z1Þð3þ Z1 þ 2Z2Þ

p
�; ðB16aÞ

Z1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2�

3

q
½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a�

3
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a�

3
p

�; ðB16bÞ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2� þ Z2

1

q
; a� ¼

a
M

: ðB16cÞ

Inside the ISCO,wemust use an inspiraling geodesicmotion,
as orbits are unstable and particles must fall into the horizon.

a. Outside the ISCO radius

For r ≥ rms, we can set ι̊ ¼ 0 and the Kerr geodesic
equation determines the Keplerian angular velocity
[Eq. (2.16) of [56]]:

Ω̊ ¼
ffiffiffiffiffi
M

p

r3=2 þ a
ffiffiffiffiffi
M

p : ðB17Þ

The contravariant four-velocity is then [Eqs. (B5) and (B9)]

ůt ¼ r3=2 þ a
ffiffiffiffiffi
M

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 þ 2a

ffiffiffiffiffi
M

p
r3=2

p ; ðB18aÞ

ůr ¼ 0; ðB18bÞ

ůϕ ¼
ffiffiffiffiffi
M

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 þ 2a

ffiffiffiffiffi
M

p
r3=2

p ; ðB18cÞ

and the Keplerian conserved quantities are [Eq. (B8)]

E̊ ¼
ffiffiffi
r

p ðr − 2MÞ þ a
ffiffiffiffiffi
M

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 þ 2a

ffiffiffiffiffi
M

p
r3=2

p ; ðB19aÞ

l̊ ¼
ffiffiffiffiffi
M

p ðr2 þ a2 − 2a
ffiffiffiffiffiffiffi
Mr

p Þffiffiffi
r

p ðr − 2MÞ þ a
ffiffiffiffiffi
M

p : ðB19bÞ

Likewise [Eq. (B8)],

ν̊ ¼ 0; χ̊ ¼ 1 −
2M

ffiffiffi
r

p

r3=2 þ a
ffiffiffiffiffi
M

p : ðB20Þ

Hence, the covariant four-velocity is [Eq. (B5)]

ůt ¼ −
ffiffiffi
r

p ðr − 2MÞ þ a
ffiffiffiffiffi
M

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 þ 2a

ffiffiffiffiffi
M

p
r3=2

p ; ðB21aÞ

ůr ¼ 0; ðB21bÞ

ůϕ ¼
ffiffiffiffiffi
M

p ðr2 − 2a
ffiffiffiffiffiffiffi
Mr

p þ a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 þ 2a

ffiffiffiffiffi
M

p
r3=2

p : ðB21cÞ

Finally, the observed redshift is [Eq. (B13)]

g̊ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3 − 3Mr2 þ 2a

ffiffiffiffiffi
M

p
r3=2

p
r3=2 þ ffiffiffiffiffi

M
p ða − λÞ : ðB22Þ

All of the above quantities are physically admissible
provided r3 − 3Mr2 þ 2a

ffiffiffiffiffi
M

p
r3=2 > 0, which is the case

for all r ≥ rms.

b. Inside the ISCO radius

For r ∈ ½rþ; rms�, we follow Cunningham’s prescription
[67] and smoothly extend the flow past the ISCO using
geodesic inspirals with the conserved quantities of the ISCO:

Ems ¼ E̊jr¼rms
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3

M
rms

s
; ðB23aÞ

lms ¼ l̊jr¼rms
¼

ffiffiffiffiffi
M

p ðr2ms − 2a
ffiffiffiffiffiffiffiffiffiffiffi
Mrms

p þ a2Þffiffiffiffiffiffiffi
rms

p ðrms − 2MÞ þ a
ffiffiffiffiffi
M

p : ðB23bÞ

This choice results in a nonzero radial component
[Eq. (B12)]

ν̊ ¼ r2

ΔðrÞE̊ms

ffiffiffiffiffiffiffiffiffiffi
2

3

M
rms

s �
rms

r
− 1

�
3=2

> 0; ðB24Þ

where we used the identity r2ms − 6Mrms þ 8a
ffiffiffiffiffiffiffiffiffiffiffi
Mrms

p
−

3a2 ¼ 0 [Eq. (B15)] to simplify the expressions for both
Ems and ν̊.
It then follows that [Eq. (B10)]

ι̊ ¼ χ̊ðrms
r − 1Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
rms
M − 1

q ; Ω̊ ¼ χ̊

r2
ðlms þ aH̊Þ; ðB25aÞ

χ̊ ¼ 1

1þ 2M
r ð1þ H̊Þ ; H̊ ¼ 2Mr − alms

ΔðrÞ ; ðB25bÞ
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so that the covariant four-velocity is explicitly [Eq. (B5)]

ůt ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3

M
rms

s
; ðB26aÞ

ůr ¼ −
r2

ΔðrÞ

ffiffiffiffiffiffiffiffi
2

3

M
rs

s �
rms

r
− 1

�
3=2

; ðB26bÞ

ůϕ ¼
ffiffiffiffiffi
M

p ðr2ms − 2a
ffiffiffiffiffiffiffiffiffiffiffi
Mrms

p þ a2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ms − 3Mr2ms þ 2a

ffiffiffiffiffi
M

p
r3=2ms

q : ðB26cÞ

The contravariant four-velocity is then [Eqs. (B5)
and (B10)]

ůt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3

M
rms

s
ΠðrÞ − 2aMlmsr

r2ΔðrÞ ; ðB27aÞ

ůr ¼ −

ffiffiffiffiffiffiffiffiffiffi
2

3

M
rms

s �
rms

r
− 1

�
3=2

; ðB27bÞ

ůϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3

M
rms

s
aþ ð1 − 2M

r Þðlms − aÞ
ΔðrÞ ; ðB27cÞ

The contravariant components may also be recast in the
form

ůt ¼ Ems

χ̊
; ůϕ ¼ Ems

r2
ðlms þ aH̊Þ; ðB28aÞ

which matches Eq. (A12) of [67] since ðγe; λeÞ ¼
ðEms;lmsÞ.
Finally, the observed redshift is [Eq. (B14)]

g̊ ¼ ΔðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

3
M
rms

q �
G̊�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp ðrms

r −1Þ3=2ffiffiffiffiffiffiffiffiffiffi
3
2
rms
M −1

p
� ; ðB29aÞ

G̊ ¼ ΠðrÞ
r2

−
�
1 −

2M
r

�
lmsλ −

2aM
r

ðlms þ λÞ: ðB29bÞ

2. Radial infall (geodesic motion)

We let u ¼ ū denote the four-velocity of timelike,
radially infalling equatorial geodesics. One class of such
trajectories consists of particles that fall in from spatial
infinity with zero initial velocity and vanishing (conserved)
angular momentum:

Ē ¼ 1; l̄ ¼ 0: ðB30Þ
As particles fall in, they pick up a radial velocity
[Eq. (B12)]

ν̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrðr2 þ a2Þ

p
ΔðrÞ > 0; ðB31Þ

and due to frame-dragging (the off-diagonal term gtϕ ≠ 0),
they also acquire an angular velocity Ω̄ ≠ 0 [Eq. (B10)]:

ῑ ¼ ΔðrÞ
ΠðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrðr2 þ a2Þ

q
; Ω̄ ¼ 2aMr

ΠðrÞ ; ðB32aÞ

χ̄ ¼ r2ΔðrÞ
ΠðrÞ ; H̄ ¼ 2Mr

ΔðrÞ : ðB32bÞ

Explicitly, the covariant four-velocity is then [Eq. (B5)]

ūt ¼ −1; ūr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrðr2 þ a2Þ

p
ΔðrÞ ; ūϕ ¼ 0; ðB33Þ

while the contravariant four-velocity is [Eqs. (B5)
and (B10)]

ūt ¼ ΠðrÞ
r2ΔðrÞ ; ðB34aÞ

ūr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrðr2 þ a2Þ

p
r2

; ðB34bÞ

ūϕ ¼ 2aM
rΔðrÞ : ðB34cÞ

Finally, the observed redshift is [Eq. (B13)]

ḡ ¼ r2ΔðrÞ
ΠðrÞ − 2aMrλ�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Mrðr2 þ a2Þ
p : ðB35Þ

3. Sub-Keplerian orbits (nongeodesic motion)

We now define a four-velocity u ¼ û for time-
like, equatorial sub-Keplerian orbits. Such trajectories
cannot be geodesic; following [83], we introduce a “sub-
Keplerianity” parameter ξ ∈ ð0; 1Þ and instead prescribe a
non-geodesic motion via

l̂ ¼ ξl̊ ¼ ξ

ffiffiffiffiffi
M

p ðr2 þ a2 − 2a
ffiffiffiffiffiffiffi
Mr

p Þffiffiffi
r

p ðr − 2MÞ þ a
ffiffiffiffiffi
M

p ; ðB36Þ

where l̊ denotes the Keplerian specific angular momentum
(B19b). As for Keplerian motion (with ξ ¼ 1), we must
treat radii outside and inside of the ISCO radius rms
separately.

a. Outside the ISCO radius

For r ≥ rms, we demand that, as for Keplerian orbits,

ν̂ ¼ 0: ðB37Þ
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This fixes the sub-Keplerian orbital energy to be [Eq. (B9)]

Ê ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔðrÞ
ΠðrÞ
r2 − 4aMl̂

r − ð1 − 2M
r Þl̂2

s
> 0; ðB38Þ

which is manifestly real for all ξ ∈ ð0; 1Þ, since the quantity
in the square root is strictly greater than when ξ ¼ 1.
It then follows that [Eqs. (B10) and (B11)]

ι̂ ¼ 0; Ω̂ ¼ aþ ð1 − 2M
r Þðl̂ − aÞ

ΠðrÞ
r2 − 2aMl̂

r

; ðB39Þ

so that the covariant four-velocity is explicitly [Eq. (B5)]

ût ¼ −Ê; ûr ¼ 0; ûϕ ¼ l̂ Ê : ðB40Þ

The contravariant four-velocity is then [Eqs. (B5) and
(B10)]

ût ¼ Ê
ΔðrÞ

�
ΠðrÞ
r2

−
2aMl̂

r

�
; ðB41aÞ

ûr ¼ 0; ðB41bÞ

ûϕ ¼ Ê
ΔðrÞ

�
aþ

�
1 −

2M
r

�
ðl̂ − aÞ

�
: ðB41cÞ

Finally, the observed redshift is [Eq. (B14)]

ĝ ¼ ΔðrÞ
Ê½ΠðrÞr2 − ð1 − 2M

r Þl̂λ − 2aM
r ðl̂þ λÞ�

: ðB42Þ

b. Inside the ISCO radius

For r ∈ ½rþ; rms�, we do not expect orbits to remain
circular. Instead, we use Cunningham’s prescription (B23)
to smoothly extend the sub-Keplerian condition (B36) past
the ISCO using the conserved quantities of the sub-
Keplerian ISCO orbit,

Êms ¼ Êjr¼rms
; l̂ms ¼ l̂jr¼rms

¼ ξlms; ðB43Þ

or more explicitly,

Êms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔðrmsÞ
ΠðrmsÞ
r2ms

− 4aMl̂ms
rms

−
�
1 − 2M

rms

�
l̂2
ms

vuut ; ðB44aÞ

l̂ms ¼ ξ

ffiffiffiffiffi
M

p ðr2ms − 2a
ffiffiffiffiffiffiffiffiffiffiffi
Mrms

p þ a2Þffiffiffiffiffiffiffi
rms

p ðrms − 2MÞ þ a
ffiffiffiffiffi
M

p : ðB44bÞ

This choice results in a nonzero radial component
[Eq. (B12)]

ν̂ ¼ r
ΔðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΠðrÞ
r2

−
4aMl̂ms

r
−
�
1 −

2M
r

�
l̂2
ms −

ΔðrÞ
Êms

s
:

ðB45Þ

It then follows that [Eq. (B10)]

ι̂ ¼ ½ΔðrÞ�2ν̂
ΠðrÞ − 2aMl̂msr

; Ω̂ ¼ χ̂

r2
ðl̂ms þ aĤÞ; ðB46aÞ

χ̂ ¼ 1

1þ 2M
r ð1þ ĤÞ ; Ĥ ¼ 2Mr − alms

ΔðrÞ ; ðB46bÞ

so that the covariant four-velocity is explicitly [Eq. (B5)]

ût ¼ −Êms; ûr ¼ −ν̂Êms; ûϕ ¼ l̂msÊms: ðB47Þ

The contravariant four-velocity is then [Eqs. (B5) and (B10)]

ût ¼ Êms

ΔðrÞ
�
ΠðrÞ
r2

−
2aMl̂ms

r

�
; ðB48aÞ

ûr ¼ −
ΔðrÞ
r2

ν̂Êms; ðB48bÞ

ûϕ ¼ Êms

ΔðrÞ
�
aþ

�
1 −

2M
r

�
ðl̂ms − aÞ

�
: ðB48cÞ

Finally, the observed redshift is [Eq. (B14)]

ĝ ¼ ΔðrÞ
Êms½Ĝ�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞp ΔðrÞ

r2 ν̂�
; ðB49aÞ

Ĝ ¼ ΠðrÞ
r2

−
�
1 −

2M
r

�
l̂msλ −

2aM
r

ðl̂ms þ λÞ: ðB49bÞ

4. General flow (nongeodesic motion)

We can linearly superpose the preceding four-velocities
to obtain a general flow u ¼ ũ combining both circular
motion and radial inflow. Following [11,66], we do so by
defining

ũr ¼ ûr þ ð1 − βrÞðūr − ûrÞ; ðB50Þ

Ω̃ ¼ Ω̂þ ð1 − βϕÞðΩ̄ − Ω̂Þ; ðB51Þ

where û is the four-velocity of the sub-Keplerian flow,
given by Eq. (B41) for r ≥ rms (outside the ISCO) and by
Eq. (B48) for rþ < r < rms (inside the ISCO), while ū is
the radial inflow four-velocity (B34). Likewise, Ω̂ ¼ ûϕ=ût

is the sub-Keplerian angular velocity, given by Eq. (B46)
outside the ISCO and by Eq. (B46) inside the ISCO, while
Ω̄ ¼ ūϕ=ūt is the angular velocity (B32) of radial inflow.
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Given ũr and Ω̃ ¼ ũϕ=ũt, we can solve the normalization
condition u · u ¼ −1 for ũt, the only missing component of
the four-velocity, resulting in a simple modification of
Eq. (B7):

ũt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

ΔðrÞ ðũrÞ2
1 − ðr2 þ a2ÞΩ̃2 − 2M

r ð1 − aΩ̃Þ2

vuut ; ðB52Þ

This fully specifies the general four-velocity ũ.
For generic values of the three parameters ðξ; βr; βϕÞ, the

flow ũ is not geodesic. However, when βr ¼ βϕ ¼ 0, ũ
reduces to the radial inflow ū, which is ξ-independent and
geodesic. At the opposite end, when βr ¼ βϕ ¼ 1, ũ reduces
to the sub-Keplerian flow ũðξÞ, which in turn reduces when
ξ ¼ 1 to geodesic Keplerian motion ů ¼ ũð1Þ.

APPENDIX C: MORE ON THE MATÉRN
COVARIANCE

This appendix offers a field-theoretic interpretation of
the Gaussian random field with Matérn covariance.

1. Classical field

A free, massive scalar field ΦðxÞ with mass m in
Euclidean spacetime Rd is described by the Lagrangian

L ¼ 1

2
∂μΦ∂

μΦþ 1

2
m2Φ2; ðC1Þ

and therefore obeys the Euler-Lagrange field equation

∂L
∂Φ

¼ ∂μ

�
∂L

∂ð∂μΦÞ
�
; ðC2Þ

which in this case is the classical Klein-Gordon wave
equation

ð∇2 −m2ÞΦðxÞ ¼ 0; ðC3Þ

where ∇2 ¼ ∂μ∂
μ is the scalar Laplacian. The Green

function ΔdðxÞ for this equation is defined by

ð∇2 −m2ÞΔdðxÞ ¼ −δðdÞðxÞ: ðC4Þ

In momentum space, this reads ðk2 þm2ÞΔ̃dðkÞ ¼ 1, so

Δ̃dðkÞ ¼
1

k2 þm2
; ðC5Þ

where k2 ¼ k · k. The inverse Fourier transform (70) yields

ΔdðxÞ ¼
Z

eik·x

k2 þm2

ddk
ð2πÞd ¼

md−2

ð2πÞd2 ðmxÞ1−d
2K1−d

2
ðmxÞ;

ðC6Þ

where x2 ¼ x · x. We present a full derivation of this
nontrivial identity in Eq. (C34) below.

2. Quantum field

Integrating the Lagrangian (C1) by parts recasts it as

L ¼ −
1

2
Φð∇2 −m2ÞΦ: ðC7Þ

The path integral over this Lagrangian defines the
Euclidean quantum field theory of a free, massive scalar
field ΦðxÞ with mass m in Rd, which is fully characterized
by its two-point function: the Feynman propagator (C6).
Letting ν ¼ 1 − d=2 and λ ¼ 1=m, the propagator

becomes

ΔdðxÞ ¼
md−2

ð2πÞd2
�
x
λ

�
ν

Kν

�
x
λ

�
; ðC8Þ

which is (proportional to) a Matérn covariance.
We conclude that a d-dimensional Gaussian random field

withMatérn covariance of order ν ¼ 1 − d=2 and correlation
length λ is equivalent to a (Euclidean) quantum scalar field of
Compton wavelength λ (and therefore mass m ¼ 1=λ).

3. Higher-derivative fields

Consider now the higher-derivative theory

L ¼ −
1

2
Φð∇2 −m2ÞnΦ; ðC9Þ

where n is an integer power. This is a free (Gaussian)
theory because it remains quadratic in the field for any n.
Classically, the field obeys the higher-derivative wave
equation

ð∇2 −m2ÞnΦðxÞ ¼ 0; ðC10Þ

whose Green function Δd;nðxÞ is defined by

ð∇2 −m2ÞnΔd;nðxÞ ¼ −δðdÞðxÞ: ðC11Þ

In momentum space, this reads ðk2 þm2ÞnΔ̃d;nðkÞ ¼ 1, so

Δ̃d;nðkÞ ¼
1

ðk2 þm2Þn ; ðC12Þ

and the inverse Fourier transform (70) yields

Δd;nðxÞ ¼
Z

eik·x

ðk2 þm2Þn
ddk
ð2πÞd ∝ ðmxÞn−d

2Kn−d
2
ðmxÞ:

ðC13Þ
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This nontrivial identity, including the proportionality fac-
tor, is derived in Eq. (C34).
Letting ν ¼ n − d=2 and λ ¼ 1=m, the propagator

becomes

Δd;nðxÞ ¼ C

�
x
λ

�
ν

Kν

�
x
λ

�
; ðC14Þ

which is (proportional to) a Matérn covariance.
We conclude that a d-dimensional Gaussian random field

with Matérn covariance of order ν ¼ n − d=2 and corre-
lation length λ is equivalent to a (Euclidean) quantum scalar
field of Compton wavelength λ (and therefore mass
m ¼ 1=λ) with a kinetic term including 2n derivatives.
In Lorentzian signature, such a kinetic term would lead

to problems with causality, but in Euclidean signature this
seems like an acceptable statistical field.

4. Connection with the associated SPDE

A d-dimensional Gaussian random field ΦðxÞ with
Matérn covariance of order ν ¼ n − d=2 and correlation
length λ ¼ 1=m obeys the stochastic PDE

ðm2 −∇2Þn2ΦðxÞ ¼ WðxÞ; ðC15Þ

where the pseudodifferential operator on the left-hand side
(LHS) is defined via its spectral properties [76], and the
Gaussian random field WðxÞ is the standard white noise
process defined in Sec. III D.
We now wish to reconcile this statement with more

familiar facts from quantum field theory, particularly in the
case n ¼ 1.
When n ¼ 1, the Gaussian random field ΦðxÞ is a

Euclidean scalar field. Yet, Eq. (C15) implies that it also
obeys

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −∇2

p
ΦðxÞ ¼ WðxÞ; ðC16Þ

which seems to impose yet another condition on the field.
We now show how this statement is consistent with the
propagator (C6), which fully characterizes the behavior of
the field.
The key is to multiply two copies of this equation

inserted at two different points x1 and x2, keeping track
of which position the derivatives in the Laplacian act
upon:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −∇2

1

q
Φðx1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −∇2

2

q
Φðx2Þ ¼ Wðx1ÞWðx2Þ:

ðC17Þ

We now massage the LHS as follows. First, we are
free to move the derivatives to the left, since ∇2

i acts only
on ΦðxiÞ:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −∇2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −∇2

2

q
Φðx1ÞΦðx2Þ ¼ Wðx1ÞWðx2Þ:

ðC18Þ

Next, we take expectation values of the fields on both sides:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −∇2

1Þðm2 −∇2
2Þ

q
hΦðx1ÞΦðx2Þi ¼ hWðx1ÞWðx2Þi:

ðC19Þ

By definition, the two-point function on the LHS is of
course the Euclidean quantum propagator

hΦðx1ÞΦðx2Þi ¼ Δdðx1 − x2Þ: ðC20Þ

As for the two-point function on the RHS, it is none other
than the autocorrelation function of Gaussian white noise,

hWðx1ÞWðx2Þi ¼ δðdÞðx1 − x2Þ; ðC21Þ

which is by definition a delta function. We thus have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −∇2

1Þðm2 −∇2
2Þ

q
Δdðx1 − x2Þ ¼ δðdÞðx1 − x2Þ:

ðC22Þ

Since both two-point functions depend only onx ¼ x1 − x2,
we have ∇2

1 ¼ ∇2
2 ¼ ∇2, and thus we are left with

ðm2 −∇2ÞΔdðxÞ ¼ δðdÞðxÞ: ðC23Þ

This is exactly Eq. (C4), proving that it is consistent for the
Euclidean quantum fieldΦðxÞ to also obey the SPDE (C16).
This is the quantum-statistical analog of the classical field
equation (C3): the presence of the white noise source term
WðxÞ is what lends the Euclidean field its statistical nature.
Finally, when n ¼ 2, the Gaussian random field ΦðxÞ

obeys

ðm2 −∇2ÞΦðxÞ ¼ WðxÞ; ðC24Þ
which is a linear SPDE and therefore straightforward to
solve. This is the reason why it is implemented in
INOISY [43].

5. Derivation of the scalar propagator

Here, we derive Eqs. (C6) and (C13), which are
equivalent to the position-space formula (77) for the
Matérn covariance. In spherical coordinates,

Δd;nðxÞ ¼
Ωd−1

ð2πÞd
Z

∞

0

kd−1

ðk2 þm2Þn
Z

π

0

eikx cos θsind−2θdθ dk;

ðC25Þ
whereΩn denotes the solid angle on the sphere Sn, which is
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Ωn ¼
2π

n
2

Γðn
2
Þ : ðC26Þ

We now need two identities from Gradshteyn and
Rhyzik [84]: by 3.915-5 (p492), we have for Reν > −1=2
Z

π

0

eiβ cos θsin2νθdθ ¼ ffiffiffi
π

p �
2

β

�
ν

Γ
�
νþ 1

2

�
JνðβÞ; ðC27Þ

and by 6.565-4 (p678), we have for −1 < Re ν <
Reð2μþ 2=3Þ, r > 0, and m > 0,

Z
∞

0

kνþ1JνðkxÞ
ðk2 þm2Þμþ1

dk ¼ mν−μxμ

2μΓðμþ 1ÞKν−μðmxÞ: ðC28Þ

Using the first formula with β ¼ kx and ν ¼ d=2 − 1,
we find

Δd;nðxÞ ¼ X
Z

∞

0

kd−1

ðk2 þm2Þn
�
2

kx

�d
2
−1
Jd

2
−1ðkxÞdk; ðC29Þ

where the prefactor is

X ¼ Ωd−1

ð2πÞd
ffiffiffi
π

p
Γ
�
d − 1

2

�
¼ 2π

d−1
2

ð2πÞd
ffiffiffi
π

p ¼ 21−
d
2

ð2πÞd2 : ðC30Þ

We can thus rewrite

Δd;nðxÞ ¼
x1−

d
2

ð2πÞd2
Z

∞

0

k
d
2

ðk2 þm2Þn Jd
2
−1ðkxÞdk: ðC31Þ

The second identity with ν ¼ d=2 − 1 and μ ¼ n − 1 then
yields

Δd;nðxÞ ¼
x1−

d
2

ð2πÞd2
m

d
2
−nxn−1

2n−1ΓðnÞKd
2
−nðmxÞ; ðC32Þ

so we finally obtain

Δd;nðxÞ ¼
21−n

ð2πÞd2ðn − 1Þ!

�
m
x

�d
2
−n
Kd

2
−nðmxÞ: ðC33Þ

Since K−νðxÞ ¼ KνðxÞ, this exactly reproduces Eq. (C13):

Δd;nðxÞ ¼
21−nmd−2n

ð2πÞd2ðn − 1Þ! ðmxÞn−d
2Kn−d

2
ðmxÞ; ðC34Þ

and setting n ¼ 1 recovers Eq. (C6).
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