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The gravitational waves emitted by massive black hole binaries in the Laser Interferometer Space
Antenna (LISA) band can be lensed. Wave-optics effects in the lensed signal are crucial when the
Schwarzschild radius of the lens is smaller than the wavelength of the radiation. These frequency-
dependent effects can enable us to infer the lens parameters, possibly with a single detection alone. In this
work, we assess the observability of wave-optics effects with LISA by performing an information-matrix
analysis using analytical solutions for both point-mass and singular isothermal sphere lenses. We use
gravitational-waveform models that include the merger, ringdown, higher harmonics, and aligned spins to
study how waveform models and source parameters affect the measurement errors in the lens parameters.
We find that previous work underestimated the observability of wave-optics effects and that LISA can
detect lensed signals with higher impact parameters and lower lens masses.
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I. INTRODUCTION

When electromagnetic (EM) waves travel near massive
objects over cosmological distances, they get gravitation-
ally lensed [1]. Gravitational lensing leads to many exciting
observations in the EM band, such as distortions of galaxy
images into long arcs or “Einstein rings,” multiple images
of the same supernova explosion, and statistical distortions
of background radiation in the limit of weak lensing.
Gravitational lensing of EM waves is widely utilized in
cosmology, astrophysics, and astronomy to reveal evidence
of dark matter [2,3], discover exoplanets [4], measure the
Hubble constant [5], and uncover massive objects and
structures that are too faint to be detected directly [6], for
example.
Just like EM waves, gravitational waves (GWs) can also

get gravitationally lensed [7–12]. If observed, lensed GWs
could enable a plethora of new scientific studies. When
combined with EM lensing surveys, they may allow us to
locate merging black holes at a subarcsecond precision [13].
If accompanied by an EM counterpart, the submillisecond
lensing time-delay measurements granted by GW observa-
tions could enable precision cosmography [13–18]. It has
also been suggested that lensed GWs can be used to measure
the speed and polarization content of GWs [19–21], detect

intermediate-mass and primordial black holes through
microlensing [22–24], and constrain the population of
lenses [25].
The prospect of observing GW lensing at low frequencies

with the Laser Interferometer Space Antenna (LISA) [26] is
particularly exciting. While the geometric-optics approxi-
mation holds for the strongly lensed stellar-mass black
hole binary (BHB) mergers accessible to the ground-based
GW detectors such as LIGO [27], Virgo [28], and
KAGRA [7,9,12,29–32], the massive black hole binaries
(MBHBs) detectable by LISA emit GWs at much lower
frequencies, allowing the possibility for wave-optics effects
(such as diffraction) to be detected in the lensed signal. If the
Schwarzschild radius of the lens is smaller than the wave-
length λ of the GWs, diffraction effects are crucial. For
diffraction to be prominent, the lensmassML must satisfy the
condition [12]

ML ≲ 105M⊙

�
f
Hz

�
−1
; ð1Þ

where f is the GW frequency.
Wave-optics effects can lead to frequency-dependent

amplitude and phase modulations in the GW detections.
Therefore, LISA detections of these lensing-induced effects
may be used to measure the lens parameters, such as the
redshifted lens mass MLz ¼ ð1þ zLÞML, where zL is the
redshift of the lens, and the position of the source in
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the source plane. More ambitiously, if the event rates are
large enough, the measurement of lens parameters may
even enable us to probe the lens population. Furthermore,
the characteristic interference patterns observed in the
signal can be used to break the so-called mass-sheet
degeneracy, in part of the wave-optics regime and in the
interference regime, with only one lensed waveform [33].
Wave-optics effects in gravitational lensing of GWs have

been extensively studied in the literature [7,11,12,24,33–38].
In their pioneering work, Takahashi and Nakamura [12]
(henceforth TN) calculated how accurately the lens param-
eters could be measured using an information-matrix analy-
sis. They considered GWs lensed by either point-mass (PM)
or singular isothermal sphere (SIS) lenses in the mass range
MLz ∈ ½106; 109�M⊙. For a LISA MBHB with detector-
frame (redshifted) total mass MTz ¼ 2 × 106M⊙, and mass
ratio q ¼ 1, they found that wave-optics effects allow for the
measurement of the lens parameters for SIS lenses in the
range MLz ≈ 106–108M⊙. However, TN found that lensing
magnification is negligible and that the lens parameters are
not well measured forMLz ≲ 106M⊙; therefore, they did not
investigate the case of lower lens masses.
Recent work [34] claimed that over (0.1–1.6)% of the

MBHBs with total (source-frame) mass 105–106.5M⊙ and
redshift zS ¼ 4–10 could have wave-optics effects detect-
able by LISA even when the impact parameter y is as large
as y ≃ 50. This claim is noteworthy for three reasons: (i) if
robust, the lensing probability could be an order of
magnitude larger than what was claimed in previous work;
(ii) TN found that, for SIS lenses, wave-optics effects
would be detectable for impact parameters as high as y ∼ 3,
considerably smaller than the value (y ≃ 50) found in [34];
and (iii) according to Ref. [34], wave-optics effects could
be distinguishable for SIS lenses with MLz ¼ 101–104M⊙,
several orders of magnitude smaller than the value of
MLz ¼ 106M⊙ considered in the TN study. These interest-
ing claims motivated us to revisit the problem.
The authors of Ref. [34] defined detectability in terms of

the so-called “Lindblom criterion” [39–42], i.e., they
assumed the difference δh≡ hL − hU between the lensed
waveform hL and the unlensed waveform hU to be
discernible when hδhjδhi > 1. According to this rough
criterion, the wave-optics effects are measurable if the
signal-to-noise ratio (SNR) of the difference between
the lensed and unlensed waveform is greater than 1. The
criterion may be too optimistic because it assumes that the
deviations from the theoretical waveform are solely due to
lensing and might not account for possible degeneracies
between the source and lens parameters (see, e.g., [43]).
One of the main goals of this paper is to update the

pioneering TN exploration of the detectability and measur-
ability of lensing effects in the GW signals emitted by
MBHBs. The TN study predated the 2005 numerical
relativity breakthrough, and, therefore, used an inspiral-
only waveform based on the restricted post-Newtonian

approximation, which does not take into account the merger,
ringdown, and higher-order modes. In this work we use two
waveform models: (i) IMRPhenomD, a (quadrupole-only)
phenomenological waveform model describing the full
inspiral, merger, and ringdown of aligned-spin BHBs
[44,45], and (ii) IMRPhenomHM, a phenomenological wave-
form model that also includes the higher-order modes [46].
The comparison between IMRPhenomD and IMRPhenomHM

allows us to investigate the effects of higher-order modes
on the measurability of lensing.
In their study, TN approximated lensed waveforms using

either the geometric-optics limit or the short-time-delay limit.
They also used the low-frequency approximation for the
detector response, as opposed to the full response. We use
analytical solutions to the lensing diffraction integral in the
wave-optics regime for both PM and singular isothermal
sphere (SIS) lenses and use these solutions to obtain analyti-
cal derivatives of the lensing diffraction integral. We use
these analytical derivatives to determine the precision with
which the lens parameters can be measured by extending the
information-matrix calculation implemented in the LISABETA

code [47], which computes the LISA detector response in the
Fourier domain. Our 13-dimensional matrices include all
source parameters (including aligned spins) aswell as the lens
parameters and account for possible degeneracies between
them. In this way, we can estimate the errors in the lens
parameters for MBHBs in a wide range of lens massesMLz∈
½101;109�M⊙ and impact parameters y ∈ ½0.01; 200�.
The paper is organized as follows. In Sec. II, we review

wave-optics effects in the gravitational lensing of GWs and
provide analytical solutions to the diffraction integral for
both PM and SIS lenses. In Sec. III, we describe the effect
of lensing on GWs and provide examples of lensed
waveforms and the information-matrix formalism used to
estimate measurement uncertainties in the MBHB and lens
parameters. In Sec. IV, we discuss the measurement errors
of lensing parameters, and in Sec. V, we present conclu-
sions and possible directions for future work. Throughout
the paper, we assume a ΛCDM cosmology with cosmo-
logical parameter values matching Planck 2018 [48]:
Hubble constant H0 ¼ 67.4 km s−1 Mpc−1, and matter
density Ωm ¼ 0.315. Unless specified otherwise, we work
in geometrical units ðG ¼ c ¼ 1Þ.

II. GRAVITATIONAL LENSING
AND WAVE OPTICS

The effect of a lens on GW propagation can be obtained
by solving the complex-valued diffraction integral1 for a
given source frequency f [12]:

1We prefer to call this quantity the diffraction integral (rather
than the “amplification factor,” as it is also known) because, in the
regime of interest for this paper, lensing can induce frequency-
dependent modulations in both the amplitude and phase of
the GWs.
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Fðf; yÞ ¼ DSð1þ zLÞξ20
DLDLS

f
i

Z
d2x exp½2πiftdðx; yÞ�: ð2Þ

The integral is over all possible paths, including those
which are not geodesics. Here, DL, DS, and DLS are the
angular-diameter distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. The dimensionless 2-vectors x and y
are defined as

x≡ ξ
ξ0

and y≡ η
DL

ξ0DS
; ð3Þ

where ξ and η are the physical coordinates of the image in
the lens plane and of the source in the source plane,
respectively.
The arbitrary length normalization ξ0 is usually chosen

to be the relevant scale of the problem. The time delay for a
given path is defined as

tdðx;yÞ¼
DSξ

2
0

DLDLS
ð1þ zLÞ

�
1

2
jx− yj2−ψðxÞþϕðyÞ

�
; ð4Þ

where ψðxÞ is the deflection potential. The quantity ϕðyÞ
sets the zero point of the time delay for a given source
position y, and it does not affect the relative time delay
between different paths. For convenience, we set ϕðyÞ so
that the minimum possible time delay minx tdðx; yÞ is zero.
From now on, for simplicity, we will restrict our

discussion to spherically symmetric lenses. In this case,
the problem becomes one dimensional, so ψðxÞ ¼ ψðxÞ,
and ϕðyÞ ¼ ϕðyÞ, where x≡ jxj and y≡ jyj. Without loss
of generality, the angular integral in Eq. (2) can be
performed by aligning the reference direction of the polar
coordinates with y, resulting in

Fðw;yÞ¼w
i
exp

�
iw

�
y2

2
þϕðyÞ

��

×
Z

∞

0

xdxexp

�
iw

�
x2

2
−ψðxÞ

��
J0ðwxyÞ: ð5Þ

Here,

w≡DSξ
2
0ð1þ zLÞð2πfÞ
DLDLS

ð6Þ

is a dimensionless frequency, and J0 denotes the zeroth-
order Bessel function. We will now apply Eq. (5) to two
specific mass distributions.

A. Point-mass lens

Let us first consider the simple case of a PM lens, for
which the mass density ρPMðrÞ ¼ MLδ

3ðrÞ. Here, δ3ðrÞ is
the three-dimensional Dirac delta function. A natural
choice for ξ0 is the Einstein radius, i.e.,

ξ0 ¼
�
4MLDLDLS

DS

�
1=2

: ð7Þ

With this choice, we have ψðxÞ ¼ ln x, and the radial
integral can be solved analytically with the result [12]

Fðw; yÞ ¼ exp

�
πw
4

þ i
w
2

�
ln
w
2
− 2ϕðyÞ

��

× Γ
�
1 −

w
2
i

�
1F1

�
w
2
i; 1;

wy2

2
i

�
: ð8Þ

Here, w ¼ 8πMLð1þ zLÞf, ϕðyÞ ¼ ðxþ − yÞ2=2 − ln xþ,
xþ ¼ ½ðy2 þ 4Þ1=2 þ y�=2, and 1F1ða; b; zÞ is the confluent
hypergeometric function.

B. Singular isothermal sphere lens

For a singular isothermal sphere (SIS) with velocity
dispersion σv, the mass density reads ρSISðrÞ¼σ2v=ð2πjrj2Þ.
For an axially symmetric gravitational lens, the lens mass
ML is defined as the amount of mass enclosed within the
Einstein radius of the lens. Therefore, the total mass of the
lens and the lens mass are equivalent for a point-mass lens.
This may not be the case for other lens profiles; for
example, the total mass of a dark matter halo with the
SIS profile is different from the lens mass of the halo. For
the SIS profile, the lens mass is related to σv as

ML ¼ 4π2σ4vDLDLS

DS
: ð9Þ

The Einstein radius is

ξ0 ¼
4πσ2vDLDLS

DS
¼

�
4MLDLDLS

DS

�
1=2

; ð10Þ

and w ¼ 8πMLð1þ zLÞf (as in the case of a PM lens).
We choose the normalization to be ξ0, giving ψðxÞ ¼ x

and ϕðyÞ ¼ yþ 1=2 in Eq. (5) for the SIS lens. The
resulting formula for the radial integral can be found in
Ref. [12]. The numerical evaluation of this formula is
difficult for large values of w and y since both the
exponential and Bessel-function factors in the integrand
can oscillate rapidly.
Several different numerical approaches have been pro-

posed to tackle this problem [12,49,50]. Here, we propose
and implement a simple, effective method based on a
Taylor expansion2 of the exponential factor exp½−iwψðxÞ�

2After our preprint appeared on the arXiv, Ryuichi Takahashi
brought to our attention that a perturbative expansion of the
lensing potential to find analytical solution of the diffraction
integral for SIS lenses was also proposed in Ref. [51].
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in Eq. (5). We begin our evaluation by defining the
integral3

Inðw; yÞ≡
Z

∞

0

xneiwx
2=2J0ðwxyÞxdx ð11Þ

¼ 1

2

�
2i
w

�
N
ΓðNÞ1F1

�
N; 1;−i

wy2

2

�
; ð12Þ

where N ≡ ðnþ 2Þ=2. We also define the series expansion
of the exponential of the potential,

Ψðw; xÞ≡ e−iwψðxÞ ¼
X∞
n¼0

ΨnðwÞxn: ð13Þ

Using these definitions, Eq. (5) can then be evaluated by
integrating the expansion term by term, which gives

Fðw; yÞ ¼ w
i
exp

�
iw

�
y2

2
þ ϕðyÞ

��X∞
n¼0

ΨnðwÞInðw; yÞ:

ð14Þ
This series is usually only conditionally convergent or even
divergent, but it can be summed with the help of series
acceleration techniques. For an SIS lens, ψðxÞ ¼ x, so
ΨnðwÞ ¼ ð−iwÞn=n!, and the Shanks transformation (e.g.,
see [53]) performs well in accelerating the summation.
When ðw; yÞ approaches the geometric-optics limit, this
series requires very high floating-point precision and
sufficiently many terms to provide satisfactory conver-
gence. So, in practice, we use a piecewise strategy to
evaluate Fðw; yÞwith the help of geometric-optics approxi-
mation, detailed in Appendix A.
Diffraction integrals computed using Eq. (8) (for PM

lenses, top panels) and this analytical solution (for SIS
lenses, bottom panels) are shown in Fig. 1. For a given
impact parameter y, at sufficiently small values of the
dimensionless frequency w, the lensing effect is negligible
because the lens size is negligible compared to the wave-
length of GWs. Asw increases, the effect of lensing starts to
be visible through the oscillations of Fðw; yÞ as a function
of w. The value of w marking the transition between these
two regimes depends on the impact parameter y.
In closing this section, let us note that the total mass of the

SIS profile is, strictly speaking, infinite. This nonphysical
behavior is conventionally regularized by introducing an
outer boundary at r ¼ rΔ such that ρSISðrΔÞ ¼ Δρcr, where
Δ is a dimensionless constant (we set Δ ¼ 200), and ρcr ¼
3H2

L=ð8πÞ is the critical density of theUniverse at the redshift
zL with the corresponding Hubble parameter HL. In
Appendix B, we demonstrate that this truncation does not
affect our results.

III. LENSED GRAVITATIONAL WAVEFORMS
AND INFORMATION-MATRIX FORMALISM

The lensed gravitational waveform in the frequency
domain h̃Lðf; θSÞ≡ h̃Lþ − ih̃L× is given by the product of
the diffraction integral Fðw; yÞ and the unlensed waveform
h̃ðfÞ,

h̃Lðf; θS; θLÞ ¼ Fðw; yÞh̃ðf; θSÞ; ð15Þ

where w ¼ 8πMLzf, and y and Fðw; yÞ are given
by Eqs. (3) and (5), respectively. The vector θS ≡
fMTz; q; dl; tc; ι;ϕc; λ; β;ψ ; χm; χpg includes 11 source
parameters: the detector-frame total mass MTz, mass ratio
q, luminosity distance to the source dl, coalescence time tc,
inclination angle ι, coalescence phase ϕc, right ascension λ,
declination β, polarization angle ψ , and two parameters—
the “effective spin” χp ¼ ðm1χ1 þm2χ2Þ=ðm1 þm2Þ and
the asymmetric spin combination χm ¼ ðm1χ1 −m2χ2Þ=
ðm1 þm2Þ—for the spins of the binary components,
which we assume to be aligned with the orbital angular
momentum. The vector θL ≡ fMLz; yg includes, in con-
trast, the lens parameters. Using the decomposition of the
waveform in spin-weighted spherical harmonics h̃ðf; θSÞ ¼P

l;m −2Ylmh̃lmðf; θSÞ, and Eq. (15), it is straightforward
to derive the expression of the lensed GW modes
h̃Llmðf; θSÞ as

h̃Llmðf; θS; θLÞ ¼ Fðw; yÞh̃lmðf; θSÞ: ð16Þ

A GW signal causes a shift in the frequency of the laser
traveling between spacecraft pairs in the LISA constella-
tion. This effect can be described using three reduced TDI
observables: ãðfÞ, ẽðfÞ and t̃ðfÞ. These observables are
mutually independent, and they represent a particular
combination of the shifts in the laser frequency between
spacecraft pairs that reduces the effect of the laser noise.
Their definition is

ãðfÞ; ẽðfÞ; t̃ðfÞ ¼
X
lm

Tlm
a;e;tðfÞh̃lmðf; θSÞ; ð17Þ

where Tlm
a;e;tðfÞ are mode-by-mode transfer functions

describing the response of the LISA detector to the passage
of the GW signal defined in Eq. (20) of Ref. [54], and
h̃lmðfÞ are the modes of the gravitational radiation crossing
the LISA detector. In the case of a lensed signal, the GW
modes h̃lmðf; θSÞ should be replaced by the lensed modes
h̃Llmðf; θS; θLÞ defined in Eq. (16).
In Fig. 2, we show the amplitude of the three reduced

TDI observables as a function of the GW frequency for a
reference source with binary parameters MTz¼6×106M⊙,
zS ¼ 2, ι ¼ 2.42, ϕc ¼ 1.84, λ ¼ 0.3, β ¼ 0.3, and
ψ ¼ 0.94. We compare the unlensed GW signal with the
same signals lensed by either PM or SIS lenses with

3This integral corresponds to Eq. (6.631.1) in Ref. [52] if we
make the substitutionsα ¼ −iw=2, β ¼ wy, μ ¼ nþ 1, and ν ¼ 0.
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redshift zL ¼ 1, redshifted lens mass MLz ¼ 2 × 107 M⊙,
and impact parameter y ¼ 1.0. Diffraction effects are
clearly visible, and the amplitude and frequency of the
wave-optics modulations depend on the structure of the
lens. Both the PM and the SIS lenses induce strong
oscillations in the amplitude of the TDI reduced observ-
ables at frequencies around 0.1 mHz because lensing
causes GWs to travel through different path lengths and
therefore produces interference.
We use the information-matrix formalism (or linear

signal approximation) [12,55–57] to determine the uncer-
tainties in estimating the parameters of the MBHB system
and the lens. This formalism is valid in the large-SNR limit,
and therefore it is expected to be accurate for most LISA
MBHBs. In the linear signal approximation, the likelihood
associated with each reduced TDI observable in Eq. (17) is
a multidimensional Gaussian of the form

pðΔθiÞ ¼ N exp

�
−
1

2
ΓX̃
ijΔθiΔθj

�
; ð18Þ

where θ≡ fθS; θLg, ΓX̃
ij is the information matrix associ-

ated with each observable X̃ ∈ fã; ẽ; t̃g, and N ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðΓ=2πÞp

is a normalization factor. The information
matrix for each reduced TDI observable reads

ΓX̃
ij ¼

�
∂X̃
∂θi

				 ∂X̃
∂θj

�
; ð19Þ

where the inner product is defined as

ðajbÞ≡ 4Re
Z

∞

0

df
ãðfÞb̃�ðfÞ
SnðfÞ

; ð20Þ

and SnðfÞ is the SciDRv1 [58] LISA power spectral density
(PSD). In practice, for each binary, we fixed the initial
frequency of the integral in Eq. (20) to obtain a time to
merger of at most one year, with a lower boundary of
fmin ¼ 10−5 Hz. The detailed calculation of the derivatives
of X̃ appearing in Eq. (19) is given in Appendix C. Since
the TDI observables are independent, the total likelihood is

FIG. 1. Left panels: absolute value of the diffraction integral “contrast” jFðw; yÞ − 1j, multiplied by the impact parameter y to compensate
for the dynamic range. Right panels: phase factor argFðw; yÞ. These quantities were computed by evaluating the diffraction integral for the
PM lens (top row) and SIS lens (bottom row), and they are shown as functions of the dimensionless frequency w ¼ 8πMLzf and impact
parameter y. The top x axis in each panel shows the physical frequency (in Hz) corresponding to a redshifted lens mass MLz ¼ 106M⊙.
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the product of the likelihoods, and therefore the total
information matrix is

Γ ¼ Γã
ij þ Γẽ

ij þ Γt̃
ij: ð21Þ

The uncertainties on the parameters θ can then be found
from the variance-covariance matrix (the inverse of the
information matrix):

hΔθiΔθji ¼ ðΓ−1Þij: ð22Þ

IV. RESULTS

In this section, we investigate how waveform models and
source parameters affect the measurement of the lens
parameters for both PM and SIS lenses. We first investigate
how the measurement of the lens parameters is affected by
different waveform models (Sec. IVA) and source param-
eters (Sec. IV B). Then we present an extensive exploration
of lens-parameter measurement accuracy for a wide range
of lens masses and impact parameters, considering first PM
lenses (Sec. IV C) and then SIS lenses (Sec. IV D).

A. Effect of the merger, ringdown, and higher-order
modes on the measurement of the lens parameters

Our goal is to improve over the pioneering TN analy-
sis [12] by considering the effects of the merger, ringdown,
and higher harmonics. In their work, the errors in the lens
mass and impact parameter were estimated for a single
MBHB and scaled by the source SNR to estimate the
measurement uncertainty of lens parameters for other
lensed MBHBs. More importantly, the TN analysis

predated the 2005 numerical relativity breakthrough and
therefore included neither the merger and ringdown nor
higher harmonics. Furthermore, their work does not include
an exploration of how other source parameters (such as the
binary’s inclination angle and component spins) affect the
measurement of the lens parameters.
We estimate measurement uncertainties on MLz and y

for Oð100Þ MBHBs with fixed intrinsic parameters (to
begin with, we fix the detector-frame total mass MTz ¼
2 × 106M⊙, mass ratio q ¼ 1, and redshift zS ¼ 1), and
randomly sampled extrinsic parameters (inclination angle ι,
coalescence phase ϕc, right ascension λ, declination β, and
polarization angle ψ ) over uniform distributions. To under-
stand the effect of the merger/ringdown, higher-order
modes, and spins, we focus on four representative wave-
form models: (i) a nonspinning IMRPhenomD model where
the signal is truncated at the innermost stable circular orbit
(henceforth ISCO), which includes only the inspiral part of
the waveform and closely mimics the TN results; (ii) a
nonspinning IMRPhenomD model including the merger
and ringdown (MR); (iii) a nonspinning IMRPhenomHM

model including both MR and higher-order modes
(HM); (iv) an IMRPhenomHM model with extremal spins
aligned with the orbital angular momentum (χ1 ¼ χ2 ¼ 1),
henceforth IMRPhenomHM+; and (v) an IMRPhenomHM model
with extremal spins antialigned with respect to the
orbital angular momentum (χ1 ¼ χ2 ¼ −1), henceforth
IMRPhenomHM−.
Figure 3 shows how well the observation of a “typical”

MBHB by LISA could constrain the mass of a PM lens in
the redshifted lens-mass range MLz ∈ ½103; 109�M⊙. For
concreteness, we focus on a single value of the impact
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FIG. 2. Comparison between the frequency-domain amplitude of unlensed waveforms (solid lines) and waveforms lensed by a PM
(dotted) or SIS (dashed) lens. Left panel: blue and red lines refer to the time-delay interferometry (TDI) observables ã and ẽ,
respectively. Right panel: TDI observable t̃, where the signal amplitude is much smaller. All results refer to a redshifted lens mass
MLz ¼ 2 × 107 M⊙, a lens redshift zL ¼ 1, and an impact parameter y ¼ 1.0. The source parameters are MTz ¼ 6 × 106M⊙, zS ¼ 2,
ι ¼ 2.42, ϕc ¼ 1.84, λ ¼ 0.3, β ¼ 0.3, ψ ¼ 0.94, and χm ¼ χp ¼ 0.
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parameter y ¼ 0.1. We consider the five waveform models
listed above, and we do not normalize the results by the
SNR. The general trend with mass is similar to the findings
of the inspiral-only TN analysis (see the left panel of Fig. 7
in [12]), but our calculations allow us to quantify the effect
of the merger/ringdown, higher harmonics, and spins. By
comparing nonspinning binaries with the signal truncated
at the ISCO with those including merger and ringdown
(MR), we see that the inclusion of merger and ringdown
leads to improvements by about one order of magnitude in
the measurement of the lens mass. Models with higher
harmonics (IMRPhenomHM, in green) lead to further improve-
ments in measurement accuracy relative to models without
higher harmonics (IMRPhenomD, in red), as expected. The
dependence of the waveform on the angles is more
pronounced when we include higher harmonics. As a
consequence, the measurement errors for IMRPhenomHM

have a larger “spread” around the median compared to
the measurement errors for IMRPhenomD. It is also well
known that aligned (antialigned) spins typically increase
(reduce) the SNR because of the orbital hang-up effect [59],
and indeed we find that measurement errors are smallest for
extremal aligned spins (IMRPhenomHM+, in brown) and
largest for extremal antialigned spins (IMRPhenomHM−, in
blue). For lens massesMLz ≳ 107M⊙, the geometric-optics
limit is a good approximation, and ΔMLz=MLz depends
solely on the SNR and the impact parameter y [12]. Since in
this calculation we have fixed y, the uncertainties in the
large-MLz regime shown in Fig. 3 are inversely propor-
tional to the SNR of the signal.

Given the intrinsic parameters of an MBHB, we are
interested in estimating the “critical lens mass” Mcrit

Lz ,
defined as the lowest lens mass for which we can extract
information on either MLz or y. We (somewhat arbitrarily)
define this threshold as the lens mass corresponding to a
100% relative uncertainty on the respective parameter.
For the MBHB considered in Fig. 3, we find Mcrit

Lz ¼
1.08þ0.64

−0.40 × 105M⊙ for IMRPhenomD truncated at the ISCO,
Mcrit

LzLz ¼ 4.73þ2.45
−1.75 × 103M⊙ for IMRPhenomD, Mcrit

Lz ¼
3.19þ1.39

−1.17 × 103M⊙ for IMRPhenomHM, Mcrit
Lz ¼ 1.49þ0.62

−0.49 ×
103M⊙ for IMRPhenomHM+, and Mcrit

Lz ¼ 6.63þ3.46
−2.24 × 103M⊙

for IMRPhenomHM−. The quoted values correspond to the
median and 68% confidence interval of each critical
lens mass. We find that the critical lens mass decreases
when we include the merger and higher harmonics in
the waveform model, as well as for MBHBs with large
aligned spins, in agreement with the trends described
earlier.
We can estimate in a similar way the critical impact

parameter ycrit below which we can extract information on
at least one of the lens parameters. We consider the same
MBHB, but we now assume a PM lens with fixed
redshifted mass MLz ¼ 107M⊙, and we vary the impact
parameter in the range y ∈ ½0.01; 200�. The relative uncer-
tainty in y follows the same qualitative trends as the
uncertainties in MLz as we vary the waveform model,
and the critical impact parameters are ycrit ¼ 52.6þ17.4

−10.1 for
IMRPhenomD truncated at the ISCO, ycrit ¼ 92.4þ24.5

−16.6
for IMRPhenomD, ycrit ¼ 92.0þ36.5

−17.3 for IMRPhenomHM,

FIG. 3. Relative uncertainty on the redshifted lens mass, ΔMLz=MLz. Left: comparison between the “inspiral only” version of
IMRPhenomD truncated at the ISCO (orange), the IMRPhenomD model including the merger and ringdown (red), and the IMRPhenomHM

including also the higher harmonics (green). Right: comparison of IMRPhenomHM waveforms with different spin magnitudes. Green curve
refers to nonspinning binaries, while blue (brown) curves refer to the IMRPhenomHM− (IMRPhenomHM+) extremal antialigned (aligned) spin
models. All results are for Oð100Þ MBHBs with MTz ¼ 2 × 106M⊙, q ¼ 1, and zS ¼ 1, with extrinsic parameters (ι, ϕc, λ, β, and ϕ)
randomly sampled over uniform distributions.Dark solid lines show themedianvalue ofΔMLz=MLz, while the shaded regions correspond to
1σ confidence intervals. Herewe consider PM lenseswith a range of redshifted lensmassesMLz, but we fix the impact parameter to y ¼ 0.1.
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ycrit ¼ 114þ39
−25 for IMRPhenomHM+, and ycrit ¼ 86.8þ21.1

−19.4 for
IMRPhenomHM−.
In summary: the inspiral-only waveforms used in TN

lead, in general, to an overestimate of measurement
uncertainties in the lens parameters relative to waveforms
including also the merger and ringdown. For this reason,
their results should be regarded as conservative. The
merger, ringdown, and higher-order modes can signifi-
cantly improve our ability to measure the lens mass, and the
“critical” measurable lens mass Mcrit

Lz varies by a factor of
∼2 or 3 for MBHBs with large (anti)aligned spins.

B. Effect of the source parameters on the
measurement of the lens parameters

We now focus on the effect of the source parameters on
the measurement of MLz and y. We consider IMRPhenomHM

MBHB waveforms with MTz ¼ 107M⊙, q ¼ 1.2, zS ¼ 5,
and five selected values of the aligned binary component
spins: χ1 ¼ χ2 ∈ f−1;−0.5; 0; 0.5; 1g. To begin with, we
focus on PM lenses with y ¼ 0.1 andMLz ∈ ½103; 109�M⊙.
We examine the effect of various parameters, namely: the

inclination angle ι; the magnitude of the spins; and, finally,
the sky location angles (right ascension λ and declination
β), mass ratio q, coalescence phase ϕc, and polarization
angle ψ . We considerOð100Þ random values for each set of
parameters that we vary and fix all angles that are not being
varied to an “intermediate” value of π=3.
When we explore the effect of each source parameter, we

either normalize the resulting errors in the lens parameters
to a reference SNR ¼ 1000, or we consider MBHBs at
fixed redshift. This allows us to understand whether the

lens parameter estimation accuracy is dominated by the
SNR of the source or by more subtle features related to the
specific parameter we vary. For example, higher harmonics
(when detectable) can reduce correlations between param-
eters, and the relative importance of higher harmonics is
strongly affected by the inclination of the binary. We will
now describe our findings for each parameter.

1. Inclination angle

In Fig. 4, we plot ΔMLz=MLz as a function of MLz for a
sample of Oð100Þ MBHBs obtained by drawing ι uni-
formly in arccosðιÞ ∈ ½−1; 1�. Left panel: all errors are
normalized to SNR ¼ 1000; Right panel: the binary is
located at a fixed redshift zS ¼ 5.
Consider, first, the left panel. Face-on (ι ¼ 0) and face-

off (ι ¼ π) binaries yield the same lens mass uncertainties,
as we would expect based on symmetry, and therefore we
only show errors for ι ¼ 0. Face-on and face-off binaries
yield the largest errors in MLz in the small-MLz, wave-
optics regime. This is because the amplitude of higher-
order modes, which are important to remove degeneracies
between parameters, are suppressed for these values of ι.
Indeed, the errors are smallest for edge-on binaries
(ι ¼ π=2), when higher-order modes matter the most. In
the large-MLz, geometric-optics regime, ΔMLz=MLz
depends only on the impact parameter y and on the
SNR of the binary [12]. Since all of our binaries have
the same SNR ¼ 1000 and we fix y ¼ 0.1, ΔMLz=MLz
tends to a constant for large MLz, as expected.
Similar trends can be observed in the right panel. In the

large-MLz (geometric-optics) regime, the errors depend

FIG. 4. Effect of the MBHB inclination angle ι on the estimation accuracy of the redshifted lens massMLz. Results are for an MBHB
with MTz ¼ 107M⊙, q ¼ 1.2, zS ¼ 5, χ1 ¼ χ2 ¼ 0, and ϕc ¼ λ ¼ β ¼ ψ ¼ π=3, and a PM lens with impact parameter y ¼ 0.1. We
show Oð100Þ random realizations of ι (in beige) but also plot results for two selected values of ι ¼ 0 and π=2 (blue and green,
respectively). In the left panel, all uncertainties have been rescaled to a fixed SNR ¼ 1000. In the right panel, this normalization was not
applied.
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solely on the SNR of the binary because y ¼ 0.1 is fixed:
edge-on binaries (ι ¼ π=2, which have the smallest SNR)
yield the highest errors, while face-on and face-off binaries
(ι ¼ 0 and ι ¼ π, which have the highest SNR) yield the
smallest errors. The situation is partially reversed in the
wave-optics regime because higher-order modes remove
degeneracies, partially compensating for the smaller SNR
of the edge-on binaries.
The critical redshifted lens mass above which lensing

effects become detectable isMcrit
Lz ¼ 9.91þ2.81

−0.56 × 104M⊙ for
fixed SNR, and Mcrit

Lz ¼ 1.23þ0.26
−0.08 × 105M⊙ for MBHBs at

fixed distance. Therefore, variations in the inclination angle
ι lead to a relative uncertainty of ≈30% (≈20%) within the

1σ credible interval for binaries at fixed SNR (fixed
distance, respectively).
We explored different values of the impact parameter and

SIS lenses, finding qualitatively similar conclusions. We
also studied MBHBs with different total masses and mass
ratios. In general, higher harmonics are more important for
unequal-mass binaries, and this results in larger variances
in Mcrit

Lz as we vary ι.

2. Spins

In Fig. 5, we show how spins affect the estimate of the
lens mass. We consider five different spin combinations:
χ1 ¼ χ2 ∈ f−1;−0.5; 0; 0.5; 1g.

FIG. 5. Effect of the MBHB spins χ1 and χ2 on ΔMLz=MLz. Results are for the same setting as in Fig. 4, but now we fix ι ¼ π=3, and
we vary the spins in the range χ1 ¼ χ2 ¼ f−1;−0.5; 0; 0.5; 1g (blue, red, green, orange, and brown, respectively).

FIG. 6. Effect of theMBHB sky location (right ascension and declination) onΔMLz=MLz. Results are for the same setting as in Fig. 4, but
now ι ¼ π=3. Right panel: median error is shown in black; the 1σ confidence interval is shown by dashed black lines, and the individual
realizations are in blue. Left panel: we only show the median since errors are dominated by the SNR and the dispersion is minimal.
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FIG. 7. Relative errors in the redshifted lens mass ΔMLz=MLz (left panels) and impact parameter Δy=y (right panels) in the ðMLz; yÞ
plane for a PM lens. The rows refer to three different MBHBs, with parameters listed in the legend. White contour lines correspond to
100, 10, and 1% relative errors. In the black regions, the relative errors are larger than 100%, and the corresponding parameter is
unmeasurable. The MBHBs’ unlensed SNR is 697.0, 715.8, and 181.8 from top to bottom.
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When we normalize to the SNR (left panel), large aligned
(antialigned) spins produce lower (larger) errors in thewave-
optics regime. All errors converge to the same value in the
geometric-optics regime for the reasons explained above.
The same trend is visible and more pronounced for binaries
at fixed redshift (right panel): large aligned (antialigned)
spins produce lower (larger) errors in both the wave-optics
and geometric-optics regimes.
Most of these trends are explained by the fact that

aligned (antialigned) spins increase (reduce) the SNR
because of the orbital hang-up effect [59]. Aligned spins
affect the measurement of the lens mass even at constant
SNR because the orbital hang-up effect causes the binary to
spend more cycles in band and therefore reduces parameter
estimation errors.
By sampling Oð100Þ MBHBs with χ1, χ2 uniformly

distributed in the range ½−1; 1�, while keeping all other
parameters fixed, we find a critical redshifted lens mass of
Mcrit

Lz ¼ 7.63þ2.04
−1.81 × 104M⊙ (relative uncertainty of ≈25%)

for fixed SNR, and Mcrit
Lz ¼ 1.15þ0.67

−0.63 × 105M⊙ (relative
uncertainty of ≈50%) for fixed distance.
Qualitatively, we find similar results when we vary the

impact parameter, consider the SIS lens model, or change
the MBHB masses.

3. Sky location, mass ratio, coalescence phase,
and polarization angle

In Fig. 6, we considerOð100ÞMBHBs with sky location
(right ascension and declination) uniformly distributed on
the celestial sphere. The minimal dispersion of the uncer-
tainties seen in the left panel shows that while sky location
affects ΔMLz=MLz, the effect is predominantly due to the
different SNR of binaries located at different positions
in the sky. The critical redshifted lens mass Mcrit

Lz ¼
8.35þ3.93

−3.03 × 104M⊙ (with a relative uncertainty of ≈45%)
when the redshift is fixed; the median is the same (but with
a minimal relative uncertainty ≲1%) when we fix the SNR.
To understand the effect of varying mass ratio q, we

varied q uniformly in the range [1, 10] Oð100Þ times. We
found Mcrit

Lz ¼ 1.87þ0.97
−0.73 × 105M⊙ (with a relative uncer-

tainty of ≈50%) at fixed distance, and Mcrit
Lz ¼ 7.341.01−0.46 ×

104M⊙ (with a relative uncertainty of approximately
≈15%) at fixed SNR. As expected, varying the mass ratio
affects how pronounced the higher-order modes are, which
can lower measurement uncertainties. However, changing
the mass ratio also affects the SNR of the signal. Therefore,
both the effects (degeneracy removal by higher-order
modes versus reduced SNR) affect the result when the
SNR rescaling is not applied. This is similar to the case of
varying the inclination angle.
We also varied the coalescence phase in the range

ϕc ∈ ½0; 2π�. We found Mcrit
Lz ¼ 1.08þ0.15

−0.07 × 105M⊙ (with
a relative uncertainty of ≈10%) at fixed distance, and an
even smaller uncertainty (≲6%) at fixed SNR. By varying

the polarization angle uniformly in the range ψ ∈ ½0; 2π�we
find Mcrit

Lz ¼ 1.23þ0.08
−0.08 × 105M⊙ (≈6% uncertainty), with

an even smaller uncertainty (≲5%) at fixed SNR.
Once again, the results are qualitatively similar when we

vary the impact parameter, consider the SIS lens model, or
change the MBHB masses.

C. Point-mass lens

So far, we have investigated how the measurement of
lens parameters is affected by waveform modeling and
source parameters. We will now consider three represen-
tative MBHBs and compute lens parameter estimation
accuracy for a wide range of lens masses and impact
parameters. In this section, we focus on PM lenses with
y ∈ ½0.01; 200� and MLz ∈ ½103; 109�M⊙.
In Fig. 7, we show contour plots of ΔMLz=MLz (left

panels) and Δy=y (right panels) in the ðMLz; yÞ plane.
Different rows refer to three different nonspinning MBHBs
with detector-frame mass MTz ¼ 108M⊙, q ¼ 1.2, zS ¼ 1

(top); MTz ¼ 107M⊙, q ¼ 1.2, zS ¼ 5 (middle); and
MTz ¼ 106M⊙, q ¼ 1.2, zS ¼ 8 (bottom). These masses
and redshifts have been chosen as representative of typical
MBHB systems observable by LISA (see, e.g., [60–62]).
To reduce computational time, the angles ι, ϕc, λ, β, and ψ
were all set to π=3. The range of variability of the
results around these intermediate values was discussed in
Sec. IV B above.
The SNRs of the unlensed signals from these MBHBs

are 697,716, and 182 for the top, middle, and bottom panels
in Fig. 7, respectively. When the signals are lensed, the
SNRs increase up to ∼5970, ∼9180, and ∼2050 for the top,
middle, and bottom panels, respectively.
Three white contour lines in each panel highlight the

100, 10, and 1% relative uncertainty boundary regions. In
the black regions (outside the outermost white contour), the
relative uncertainty is greater than 100%, and therefore at
least one of the lensing parameters is unmeasurable. In fact,

TABLE I. Four binaries of various redshifted total masses (first
column), mass ratio (second column), and redshift (third col-
umn), we list the lowest redshifted lens mass Mcrit

Lz and highest
impact parameter ycrit for which MLz is measurable (fourth and
fifth columns); and the largest impact parameter ycrit for which y
is measurable (sixth column). The first three rows refer to the
binaries considered in Fig. 7; the fourth row refers to the binary
shown in Fig. 3 (where we fix the angles ι, ϕc, λ, β, and ψ to π=3).
All results in this table are for PM lenses.

ΔMLz=MLz Δy=y

MTz½M⊙� q zS Mcrit
Lz ½M⊙� ycrit ycrit

108 1.2 1 ≳106 ≲30 ≲40

107 1.2 5 ≳105 ≲30 ≲40

106 1.2 8 ≳5 × 104 ≲15 ≲20

2 × 106 1 1 ≳4 × 103 ≲60 ≲80
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in some regions of the parameter space, we can measure
only one of the lens parameters.
Consider, for example, an MBHB withMTz ¼ 108M⊙ at

zS ¼ 1 (top row) with lens parameters MLz ≈ 107M⊙ and

y ≈ 0.1: in this case the lens mass can be measured with
≈10% relative uncertainty, but y is unmeasurable. For this
same binary, MLz is measurable when y≲ 30 and MLz ≳
106M⊙ (top-left panel), while y is measurable when

FIG. 8. Same as Fig. 7, but for an SIS lens.
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y≲ 40 (top-right panel). These “detectability boundaries”
are slightly different for lighter binaries. We show
representative examples in Table I. Based on this extensive
analysis, we conclude that the critical values of ycrit and
Mcrit

Lz are more optimistic than the TN predictions for PM
lenses because the merger/ringdown and higher-order
modes sensibly reduce the errors in the lens parameters.

D. Singular isothermal sphere lens

We now consider the same MBHBs as in Sec. IV C, but
we extend the analysis to SIS lenses with y ∈ ½0.01; 200�
and MLz ∈ ½101; 108�M⊙. In Fig. 8, we show contour plots
of ΔMLz=MLz (left panels) and Δy=y (right panels) in the
ðMLz; yÞ plane. Once again, we set all angles (ι, ϕc, λ, β, ψ )
equal to π=3.
The SNRs of the unlensed signals were listed in Sec. IV

C. When the signals are lensed, the SNRs increase up to
∼2620, ∼7660, and ∼1180 for the top, middle, and bottom
MBHBs in Fig. 8, respectively.
For the binary with MTz ¼ 108M⊙ (top row), MLz is

measurable when y≲ 20 andMLz ≳ 6 × 105M⊙, while y is
measurable when y≲ 45. In some regions of the parameter
space, we can measure only one of the lens parameters. A
qualitative difference with respect to PM lenses is that ycrit

is no longer (approximately) constant, but it depends on
MLz (as expected from, e.g., Fig. 10 of TN). We summarize
the results for each binary in Table II.
For the binary withMTz ¼ 107M⊙ (middle row), we find

that the highest ycrit corresponds to MLz ≈ 104M⊙.
Reference [34] found the maximum value of the inner
product defining the Lindblom criterion, hδhjδhi ≈ 6, occurs
for a comparable value ofMLz, and that hδhjδhi decreases—
while still satisfying the condition hδhjδhi > 1—for lower
values of MLz. Note, however, that, according to our
analysis, none of the lens parameters is measurable for
MLz ≲ 3 × 103M⊙. This implies that the Lindblom criterion
is necessary but not sufficient to conclude whether lensing is
observable.
Our findings are significantly more optimistic than those

in TN: by including the merger, ringdown, and higher
harmonics, we can measure lens parameters for higher
values of y and lower values of MLz than previously
thought. Even if we consider a more stringent measurability
criterion (setting the threshold at, say, 10% relative uncer-
tainty), we still find that we can extract information about

the lens parameters for higher values of y and lower values
of MLz than estimated by TN. As in the case of PM lenses,
the values ofMcrit

Lz and ycrit have a strong dependence on the
parameters of the source and the lens. The simple estimates
of lensing probability by TN assumed ycrit to be constant,
but a more careful estimate should consider the dependence
of Mcrit

Lz or ycrit on the source and lens parameters.

V. CONCLUSIONS AND OUTLOOK

Wave-optics effects in lensed GW signals emitted by
MBHBs in the LISA band are important when the
Schwarzschild radius of the lens is smaller than the
wavelength of radiation [cf. Eq. (1)]. If detected, these
frequency-dependent wave-optics effects could lead to a
plethora of applications, such as precision cosmology or
constraints on the population of lenses.
We have studied the observability of wave-optics effects

by LISA. We computed the parameter-estimation errors
using analytical solutions for both PM and SIS lenses.
These analytical solutions allow us to compute the deriva-
tives of the diffraction integral Fðw; yÞ. In the context of
lensing, this is (to our knowledge) the first study using
gravitational-waveform models that include the merger,
ringdown, higher harmonics, and aligned spins. We found
that the inspiral-only waveforms used in previous work
overestimate measurement uncertainties in the lens param-
eters by about an order of magnitude. Themerger, ringdown,
and higher-order modes significantly improve our ability to
measureMLz and y. The critical value of the redshifted lens
mass for which such measurements are possible varies by a
factor of ∼2 or 3 for MBHBs with large (anti)aligned spins.
We selected three representative MBHBs that could be

detectable by LISA and performed an extensive parameter
estimation survey for a wide range of lens masses and
impact parameters. The results for PM (SIS) lenses are
shown in Fig. 7 (Fig. 8) and Table I (Table II). We found
that the critical values of the lens mass and impact
parameter for which lensing is measurable depend very
strongly on the source parameters. Therefore, assuming
these critical parameters to be constant can lead to incorrect
estimates of the lensing probability.
As claimed by Ref. [34], the lens parameters could be

measurable for SIS lenses with impact parameters satisfy-
ing y > 3. However, (contrary to the claims of Ref. [34])
we found that none of the SIS lens parameters are
measurable for MLz ≲ 3 × 103M⊙: this shows that the
Lindblom criterion is not accurate enough to determine
whether lensing is observable.
Our parameter-estimation study shows that GW lensing

of MBHBs with LISA may be more easily observable than
previously thought. Estimating the rate of observable
lensing events requires population studies based on astro-
physical models [60–62], and it is an exciting topic for
future work.

TABLE II. Same as Table I, but for an SIS lens.

ΔMLz=MLz Δy=y

MTz½M⊙� q zS Mcrit
Lz ½M⊙� ycrit ycrit

108 1.2 1 ≳6 × 105 ≲20 ≲45

107 1.2 5 ≳3 × 104 ≲25 ≲40

106 1.2 8 ≳2 × 104 ≲10 ≲20
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APPENDIX A: EVALUATION OF Fðw; yÞ FOR
SINGULAR ISOTHERMAL SPHERE LENSES

We evaluate Fðw; yÞ for an SIS lens using a piecewise
strategy: we sum the series in Eq. (14) for small ðw; yÞ, and
we use the geometric-optics approximation for large ðw; yÞ.
More in detail, we set

Fðw; yÞ ¼
�
Fwaveðw; yÞ ðw < 250 ∧ wy < 250Þ;
Fgeomðw; yÞ ðotherwiseÞ: ðA1Þ

Here, Fwaveðw; yÞ denotes the right-hand side of Eq. (14),
and Fgeomðw; yÞ is the geometric-optics approximation:

Fgeomðw; yÞ ¼
� jμþj1=2 − ijμ−j1=2 expð2iwyÞ ðy ≤ 1Þ;
jμþj1=2 ðy > 1Þ;

ðA2Þ

where μ� ¼ �1þ 1=y is the magnification of the images in
the geometric-optics limit.
When numerically evaluating Fwaveðw; yÞ, we use

the NSUM function from the package for real and com-
plex floating-point arithmetic with arbitrary precision
MPMATH v1.2.1 [66], with a floating-point precision
parameter dps = 50 and the options {‘method’:
‘shanks’,‘tol’:1e-15}. We have verified that
these options can ensure convergence of the series, as well
as the convergence of the series expansions required to
evaluate the derivatives (see Appendix C 2), in the ðw; yÞ
region relevant for our study. When using the geometric-
optics approximation Fgeomðw; yÞ, we have also verified
that the error is always ≲10%.

APPENDIX B: SINGULAR ISOTHERMAL
SPHERE WITH AN OUTSIDE BOUNDARY

In the main text, we noted that the total mass of the SIS
profile is formally infinite and that this divergence is
usually regularized by introducing an outer boundary at
r ¼ rΔ such that ρSISðrΔÞ ¼ Δρcr, where Δ is a dimension-
less constant. Solving for rΔ as defined above yields
rΔ ¼ ½4=ð3ΔÞ�1=2σv=HL, which leads to a normalized
lens-plane coordinate xΔ ≡ rΔ=ξ0. For the lensing con-
figurations relevant to this paper, xΔ is in the single-image
regime. We can thus compute the corresponding impact
parameter yΔ ¼ xΔ − 1, with the result

yΔ ¼ 1

2π
ffiffiffiffiffiffi
3Δ

p
�

1

σvHL

��
DS

DLDLS

�
− 1: ðB1Þ

FIG. 9. Impact parameter y200 corresponding to the r200 boundary as a function of the lens redshift zL and the source redshift zS for
three redshifted lens masses (left to right): MLz ¼ f105; 107; 109gM⊙.
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The velocity dispersion σv can then be related to the
redshifted lens mass MLz using Eq. (9). In Fig. 9, we plot
y200 as a function of zL and zS for three selected values of
MLz. We conclude that for the lensing configurations
relevant to this paper, the impact parameter y200 corre-
sponding to the r200 boundary is greater than ∼100, and
thus the truncation of the SIS profile is irrelevant in the
range of potentially detectable values of y.

APPENDIX C: ANALYTICAL DERIVATIVES

Equations (16) and (17) imply that the reduced TDI
observables X̃L of a lensed MBHB have the form

X̃LðθL; θSÞ ¼ Fðw; yÞX̃ðθSÞ: ðC1Þ

From the analytical expressions of Fðw; yÞ for the PM and
SIS lenses, we can get analytical expressions for the
derivatives of the lensed waveform appearing in the
information matrix as follows.
Using Eq. (C1), the partial derivative of the lensed

waveform with respect to any parameter γ reads

∂X̃LðθL; θSÞ
∂γ

¼
�
∂Fðw; yÞ

∂w
·
∂w
∂γ

þ ∂Fðw; yÞ
∂y

·
∂y
∂γ

�
X̃ðθSÞ

þ Fðw; yÞ ∂X̃ðθ
SÞ

∂γ
: ðC2Þ

If γ ∈ θL, all terms proportional to ∂X̃ðθSÞ=∂γ vanish.
Similarly, if γ ∈ θS, all partial derivatives of Fðw; yÞ with
respect to γ vanish. We compute the numerical derivatives
with respect to the source parameters using the software
LISABETA [47]. The derivatives with respect to the lens
parameters are computed below, first for PM lenses and
then for SIS lenses.
In summary: the derivatives of the lensed waveforms

with respect to MLz involve Eqs. (C5) and (C9) for PM
lenses, and Eq. (C14) for SIS lenses. The derivatives with
respect to y are given by Eq. (C10) for PM lenses, and
(C15) for SIS lenses. Once these derivatives are known, we
can use Eqs. (21) and (22) to estimate the errors in any of
the 13 source and lens parameters γ.

1. Point-mass lens

The diffraction integral Fðw; yÞ depends only on the lens
parameters MLz and y. From Eq. (8), we see that we need
derivatives of the gamma function ΓðzÞ with respect to w,
and derivatives of the confluent hypergeometric function

1F1ða; b; zÞ with respect to both w and y. The derivatives of
the other terms in Eq. (8) are trivial. The gamma function in
the Weierstrass form [67] can be written as

ΓðzÞ ¼
�
zecz

Y∞
r¼1

��
1þ z

r

�
e−z=r

��−1
; ðC3Þ

where c is the Euler-Mascheroni constant [67], and z ∈ C.
Differentiating, we get

Γ0ðzÞ ¼ ΓðzÞΨðzÞ; ðC4Þ

where ΨðzÞ is the digamma function [52].
Now, set z ¼ 1 − wi=2 to find

∂Γð1 − w
2
iÞ

∂w
¼ −

1

2
iΓ
�
1 −

w
2
i

�
Ψ
�
1 −

w
2
i

�
: ðC5Þ

The confluent hypergeometric function can be written as

1F1ða; b; zÞ ¼ 1þ a
b
z
1!

þ aðaþ 1Þ
bðbþ 1Þ

z2

2!
þ � � � : ðC6Þ

Since b ¼ 1, the only required derivatives are those with
respect to a and z. The partial derivative of Eq. (C6) with
respect to z is given by

∂1F1ða; b; zÞ
∂z

¼ a
b 1F1ðaþ 1; bþ 1; zÞ: ðC7Þ

The partial derivative of Eq. (C6) with respect to a is
given by

∂1F1ða; b; zÞ
∂a

¼
X∞
k¼0

ðaÞkΨðaþ kÞzk
k!ðbÞk

− ΨðaÞ1F1ða; b; zÞ; ðC8Þ

where ðaÞk ¼ Γðaþ kÞ=ΓðaÞ is the Pochhammer symbol,
and ΨðzÞ is the digamma function as before.
Using Eqs. (C7) and (C8), we can find the partial

derivative of 1F1ða; b; zÞ with respect to w:

∂1F1ða; b; zÞ
∂w

¼ ∂1F1ða; b; zÞ
∂a

·
∂a
∂w

þ ∂1F1ða; b; zÞ
∂z

·
∂z
∂w

¼ i
2
·
∂1F1ða; b; zÞ

∂a
þ y2

2
i ·

∂1F1ða; b; zÞ
∂z

¼ i
2

X∞
k¼0

�
i w
2

�
k
Ψ
�
i w
2
þ k

�
zk

k!ð1Þk

−Ψ
�
i
w
2

�
1F1

�
i
w
2
; 1; i

wy2

2

�

−
wy2

4 1F1

�
i
w
2
þ 1; 2; i

wy2

2

�
: ðC9Þ

Then, ∂Fðw; yÞ=∂w can be obtained by using Eqs. (C5)
and (C9) and applying the product rule. Setting w ¼
8πMLzf and using the chain rule gives ∂Fðw; yÞ=∂MLz.
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Similarly, the partial derivative of 1F1ða; b; zÞ with
respect to y is given by

∂1F1ða; b; zÞ
∂y

¼ wyi ·
∂1F1ða; b; zÞ

∂z

¼ −
w2y
2 1F1

�
w
2
iþ 1; 2;

wy2

2
i

�
: ðC10Þ

Then, ∂Fðw; yÞ=∂y can be obtained using Eq. (C10) and
applying the product rule.

2. Singular isothermal sphere lens

The diffraction integral Fðw; yÞ for the singular iso-
thermal sphere lens can be analytically obtained by the
perturbative expansion described in Sec. II B. In this case,
Fðw; yÞ is given by Eq. (14), and, again, it is only a function
of MLz and y. To get the corresponding derivatives of
Fðw; yÞ, we need the derivative of ΨnðwÞ ¼ ð−iwÞn=n!
with respect to w, and the derivatives of Inðw; yÞ with
respect to w and y. The derivatives of the other terms in
Eq. (14) are trivial.
The derivative of ΨnðwÞ ¼ ð−iwÞn=n! with respect to w

is given by

∂ΨnðwÞ
∂w

¼ ð−iÞn
ðn − 1Þ!w

n−1: ðC11Þ

To obtain the derivative of Inðw; yÞ [Eq. (11)] with
respect to w, we need to differentiate 1F1ðN; 1;−iwy2=2Þ
with respect to w, where N ¼ ðnþ 2Þ=2. Using Eq. (C7),
we get

∂Inðw;yÞ
∂w

¼N
2

�
2i
w

�
N
ΓðNÞ

��
−i

y2

2

�
1F1

�
Nþ1;2;−i

wy2

2

�

−
1

w1F1

�
N;1;−i

wy2

2

��
: ðC12Þ

∂Inðw; yÞ
∂y

¼ −iN
wy
2

�
2i
w

�
N
ΓðNÞ1F1

�
N þ 1; 2;−i

wy2

2

�
:

ðC13Þ

Using Eqs. (C11)–(C13), we get

∂Fðw; yÞ
∂w

¼ ∂Eðw; yÞ
∂w

X∞
n¼0

ΨnðwÞInðw; yÞ

þ Eðw; yÞ
X∞
n¼0

�
∂ΨnðwÞ
∂w

Inðw; yÞ

þ ΨnðwÞ
∂Inðw; yÞ

∂w

�
; ðC14Þ

where Eðw; yÞ ¼ ðw=iÞ exp fiw½y2=2þ ϕðyÞ�g. The partial
derivative of Fðw; yÞ with respect to MLz can be obtained
by using the chain rule as before.
Finally, we have

∂Fðw; yÞ
∂y

¼ ∂Eðw; yÞ
∂y

X∞
n¼0

ΨnðwÞInðw; yÞ

þ Eðw; yÞ
X∞
n¼0

ΨnðwÞ
∂Inðw; yÞ

∂y
: ðC15Þ
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