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Standard sirens—gravitational wave (GW) sources with an electromagnetic (EM) counterpart—can be
used to measure the Hubble constant directly which should help to ease the existing Hubble tension.
However, if the source has a relative velocity to the expanding universe on top of its motion due to the
Hubble flow, a relativistic redshift affects the redshift of the EM counterpart and the apparent distance of
the GW source, and thus it needs to be corrected to obtain accurate measurements. We study the effect of
such a relative velocity on GWs for a source in an expanding universe showing that the total redshift
of the wave is equal to the product of the relativistic redshift and the cosmological redshift. We further
find that a relative velocity of the source changes its apparent distance by a factor ð1þ zrelÞ2 in contrast to
a linear factor for the cosmological redshift. We discuss that the additional factor for the relativistic
redshift is a consequence of a velocity-dependent amplitude for GWs. We consider the effect of the
relative velocity on the chirp mass and the apparent distance of the source an observer would infer when
ignoring this velocity. We find that for different astrophysical scenarios the error, i.e., the deviation
between the value inferred and the actual value, can range between 0.1% and 7% for the chirp mass while
the error in the apparent distance can be between 0.25% and 15%. Furthermore, we consider the error
introduced in the measurement of the Hubble constant using standard sirens for two cases: (i) when the
effect of velocity on the redshift of the EM counterpart is considered but not on the apparent distance
obtained from GWs and (ii) when the effect of the relative velocity is ignored completely. We find that in
the first case the error can reach 1% for a source moving due to the peculiar velocity of its host galaxy and
that in the second case the error can be more than 5% for a source at the distance of GW150914 with the
same velocity.
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I. INTRODUCTION

With almost 100 gravitational wave (GW) detections up
to date, we can firmly say that the era of GWastronomy has
started [1–3] and it will only become more intriguing with
the improving accuracy of current and future gravitational
wave detectors [4–12]. A particularly interesting applica-
tion in GWastronomy is to use standard sirens—GWevents
with an electromagnetic (EM) counterpart—to measure the
expansion of the universe [13–20]. For such a source, we
can use the luminosity distance from GW detection
together with the redshift from its EM counterpart to
determine the Hubble constant. However, the relation

between the Hubble constant, a redshift of the source,
and its luminosity distance is derived under the assumption
that the source is at rest relative to the expanding universe
and thus a relative velocity of the source on top of the
Hubble flow needs to be corrected when inferring the
Hubble constant [21].
Different astrophysical scenarios suggest that GW

sources are moving with relative velocities ranging from
a few 100 km s−1 up to several percent of the speed of light
[22]. Three particularly interesting cases that affect most if
not all GW sources are (i) gravitational kicks induced by
the merger of the source [23–33], (ii) binary black holes
(BBHs), binary neutron stars (BNSs), and black hole
neutron star binaries (BHNSB) orbiting a supermassive
black hole (SMBH) in the center of a galaxy [34–43], and
(iii) a peculiar velocity of the host galaxy [44–51]. In
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particular, the peculiar velocity of the host galaxy has been
considered in the literature when correcting for the effect of
velocity [19,52–55]. However, the corrections only focus
on the effect the relative velocity has on the redshift of the
EM counterpart but ignore the effect of this velocity on the
apparent distance.
Different methods have been proposed to measure the

relative velocity of a GW source by either considering a
time-dependent phase shift [56–63] or a change in the
spherical modes of the GW [64–68]. From the information
of the source’s relative velocity from GWs, we can
correct the apparent distance for its change due to the
relativistic redshift as well as set tighter constraints on the
redshift of the EM counterpart. Taking these two correc-
tions into account will greatly reduce the estimation
error, i.e., the difference between the value inferred from
detection and the actual value, for the Hubble constant
thus helping to ease the Hubble tension [69–80].
Therefore, it is crucial to have a detailed understanding
of the effect of a source’s relative velocity on the GW’s
frequency and the obtained apparent distance in an
expanding universe.
In Sec. II, we start revising the effect of an expansion of

the universe on the frequency of GWs and the luminosity
distance of the source. We then study the effect of a
source’s relative velocity on the frequency and the
apparent distance of the source in a static universe in
Sec. III to then extend our analysis in Sec. IV to the case of
a source moving with a relative velocity on top of the
Hubble flow in an expanding universe. Most remarkable,
we find that the apparent distance for a source with a
relative velocity scales with the square of the relativistic
redshift, in contrast to the case of cosmological redshift
where the distance scales with a linear factor of the
redshift. In Sec. V, we analyze the implication of our
results on the estimated chirp mass and distance of the
source, where we show that for realistic astrophysical
scenarios the estimation error of the two can go up to
several percent. We, further, discuss the square factor of
the relativistic redshift in the apparent distance and show
that it can be attributed to a velocity-dependent change in
the amplitude of GWs. We study the implications of our
results for the measurement of the Hubble constant using
standard sirens for the case where only the redshift of the
EM counterpart is considered and when the relative
velocity of the source is completely ignored. We find
that for a typical peculiar velocity of the source the error
can already reach 1% for the first case while for the second
case the error can go up to several 10% depending on the
distance of the source. We finalize drawing conclusions in
Sec. VII. Throughout this paper, unless otherwise indi-
cated, we use geometrical units in which the gravitational
constant and the speed of light are equal to one (i.e.,
G ¼ c ¼ 1). Furthermore, we use bold symbols for three-
dimensional spatial vectors and a tilde to mark four-
dimensional space-time vectors.

II. COSMOLOGICAL REDSHIFT

We start considering the effect of the cosmological
expansion on the frequency of a GW in a Friedmann-
Lemaître-Robertson-Walker (FLRW) universe, described
by the metric [81]

ds2 ¼ dt2 − a2ðtÞ
�

dr2

1 − kr2
þ r2dθ2 þ r2 sin2ðθÞdϕ2

�
:

ð1Þ

Here, aðtÞ is the time-dependent scale factor that describes
the expansion of the universe while k describes its
curvature, where k ¼ 0 corresponds to a flat universe, k> 0
corresponds to a closed universe, and k < 0 corresponds to
an open universe. For simplicity and because observational
data suggests that our universe is relatively flat [82,83],
we restrict the analysis in this paper to the case of a flat
universe k ¼ 0. However, in principle, the methods devel-
oped in this paper can be extended to the cases of a close
and an open universe with some additional effort. For the
redshift of a closed or an open universe when only
considering the cosmological expansion see, e.g., Ref. [84].
For the derivation of the cosmological redshift of GWs,

we follow the procedure introduced in Ref. [84] where we
consider a source located at a comoving distance rs and an
observer located at r ¼ 0. Suppose the source emits a wave
with a crest at a time ts and a second crest at a time ts þ Δts.
Further, assume the first cress is detected by the observer at
a time to while the second crest is detected at a time
to þ Δto. Because in general relativity GWs travel at the
speed of light [81], we can describe the path of the first
crest by setting ds2 ¼ 0 in Eq. (1) and solving the integrals

Z
to

ts

dt
aðtÞ ¼ −

Z
rs

0

dr; ð2Þ

while for the second crest, we have to solve the integrals

Z
toþΔto

tsþΔts

dt
aðtÞ ¼ −

Z
rs

0

dr: ð3Þ

Note, that in both cases the integral over r is the same
because in comoving coordinates the coordinate locations
of the source and the observer do not change if they are
initially at rest [84].
Solving the integrals, then subtracting the results of

Eq. (2) from the results of Eq. (3), and expanding to linear
order in Δts and Δto, we find

Δto ¼
aðtoÞ
aðtsÞ

Δts: ð4Þ

Therefore, we find that in an expanding universe there is a
dilation of the time measured by an observer far from the
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source. Using the usual convention that aðtoÞ ¼ 1 [21], we
define the cosmological redshift as

ð1þ zcosÞ ≔ a−1ðtsÞ; ð5Þ

leading to the following relation for the time measured by
the observer’s and source’s clocks

dto ¼ ð1þ zcosÞdts: ð6Þ

Using this result and that the frequency of a wave is the
time derivative of the coordinate invariant phase of the
wave, we get that the frequency in the observer frame fo
and the frequency in the source frame fs fulfill

fo ¼
fs

ð1þ zcosÞ
: ð7Þ

After deriving the effect of cosmological expansion on
the frequency of a GW, we analyze how the apparent
distance of the source Dapp is affected by the cosmological
redshift. The apparent distance can be determined using the
energy flux F of the source that corresponds to the energy E
irradiated per unit time dt per unit area dA

F ≔
dE
dAdt

: ð8Þ

The apparent distance of a GW is then defined as the radius
of a sphere for which the absolute luminosity of the source
L ≔ dEs=dts equals the flux in a unit area

F ¼ L
D2

appdΩs
; ð9Þ

where we used that for a sphere dA ¼ r2dΩ. In the case of
cosmological expansion, the apparent distance is equal to
the luminosity distance DL [84] but we use the term
apparent distance to distinguish the two in the more general
case where the source is not only affected by cosmological
expansion.
To get the apparent distance for a GW source in an

expanding universe, we use that the energy of a GW
transforms in the same way as its frequency [84]

Eo ¼
Es

ð1þ zcosÞ
; ð10Þ

that the time is dilated as in Eq. (6), and that dΩ is not
affected by the cosmological expansion because it is
isotropic while the distance between the source and the
observer is aðtoÞrd. However, using that aðt0Þ ¼ 1, we
have that the distance between the source and the observer
is equal to the comoving distance rd. Putting everything
together, we obtain

F ¼ L
ð1þ zcosÞ2r2ddΩs

ð11Þ

and thus find the apparent distance

Dapp ¼ ð1þ zcosÞrd: ð12Þ

Therefore, we recover the classical result that the apparent
distance, which in this case is equal to the luminosity
distance DL, equals the comoving distance times the same
factor by which the frequency is redshifted [85].

III. RELATIVISTIC REDSHIFT

In this section, we derive the relativistic redshift
and the change of the apparent distance induced by a
relative velocity between the source and the observer in a
static universe using the same methods as in the previous
section. Therefore, we consider a Minkowski space with
the metric [86]

ds2 ¼ dt2 − dr2 − r2dθ2 − r2 sin2ðθÞdϕ2: ð13Þ

The case of a moving source in a flat but expanding FLRW
universe is discussed in the next section.
Before we derive the effect of the relative velocity, we

need to fix the coordinates systems (COs) for the observer
O and the source S. We set the origins of the two COs to
agree at the time t ¼ t0 ¼ 0, where we mark quantities in S
with a prime while quantities in O remain unprimed. In O,
the source moves with a relative velocity v while the
observer remains at the origin of the CO and in S the
observer moves with a relative velocity v0 while the source
remains at the radial distance r0s. To simplify the calcu-
lations, we setO to have its z-axis parallel to the velocity of
the source v and S to have its z-axis antiparallel to the
velocity of the observer v0. With this setting the two COs are
parallel and the polar angle θ is affected by the relative
velocity while the azimuthal angle ϕ is not.
We consider again two subsequent crests of a GW, where

the first is emitted at the event r̂0s ¼ ðt0s; r0s sinðθ0sÞ cosðϕ0
sÞ;

r0s sinðθ0sÞ sinðϕ0
sÞ; r0s cosðθ0sÞÞ and the second at the event

r̂0sþΔ ¼ ðt0s þ Δt0s; r0s sinðθ0sÞ cosðϕ0
sÞ; r0s sinðθ0sÞ sinðϕ0

sÞ;
r0s cosðθ0sÞÞ. The observer detects the first crest at the
event r̂o ¼ ðto; 0; 0; 0Þ and the second at the event
r̂oþΔ ¼ ðto þ Δto; 0; 0; 0Þ. To determine the relativistic
redshift we need to solve the integrals we get from setting
the metric in Eq. (13) equal to zero. However, this step
requires the boundaries of the integrals to be expressed in
the same frame and thus we transform r̂0s and r̂0sþΔ into the
observer frame using the inverse Lorentz transformation,
i.e., r̂s ¼ Λð−vzÞr̂0s and r̂sþΔ ¼ Λð−vzÞr̂0sþΔ [86].
In the observer frame, we get for the emission time of the

first crest
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ts ¼ γðt0s þ vr0s cosðθ0sÞÞ ð14Þ

and for the emission time of the second crest

tsþΔ ¼ γðt0s þ Δt0s þ vr0s cosðθ0sÞÞ; ð15Þ

where γ ¼ ð1 − v2Þ−1=2 is the Lorentz factor. Furthermore,
we have that the radial coordinate of the emitter changes
from

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02s sin2ðθ0sÞ þ γ2ðr0s cosðθ0sÞ þ vt0sÞ2

q
ð16Þ

to

rsþΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02s sin2ðθ0sÞ þ γ2ðr0s cosðθ0sÞ þ vðt0s þ Δt0sÞÞ2

q
;

ð17Þ

while the polar angle changes from

cosðθsÞ ¼
γðr0s cosðθ0sÞ þ vt0sÞ

rs
ð18Þ

to

cosðθsþΔÞ ¼
γðr0s cosðθ0sÞ þ vðt0s þ Δt0sÞÞ

rsþΔ
; ð19Þ

and the azimuthal angle remains unaffected. Note that to
linear order in Δt0s, which is the order to which we expand
our results, the difference between cosðθsÞ and cosðθsþΔÞ
scales as 1=r0s, and hence it becomes negligible for typical
GW sources.
The integrals we need to consider are

Z
to

ts

dt ¼ −
Z

rs

0

dr ð20Þ

and

Z
toþΔto

tsþΔ

dt ¼ −
Z

rsþΔ

0

dr: ð21Þ

Solving the integrals, where we use Eqs. (14)–(17) for the
boundaries, then subtracting the results of Eq. (20) from
Eq. (21), and expanding again to linear order in Δto and
Δt0s, we get

Δto ¼ γð1 − v cosðθsÞÞΔt0s; ð22Þ

where we used Eq. (18) to simplify the result. Therefore,
we recover the classical result for the time dilation due to a
relative velocity

dto ¼ γð1 − v cosðθÞÞdts: ð23Þ

Defining the relativistic redshift as

ð1þ zrelÞ ≔ γð1 − v cosðθÞÞ ð24Þ

and using again that the frequency of a GW is the time-
derivative of its phase, we get the well-known expression
for the relativistic redshift

fo ¼
fs

ð1þ zrelÞ
: ð25Þ

Next, we derive the apparent distance for a source
moving with a relative velocity starting again from
Eq. (8). For a moving source, the area in which the
GWs are radiated dA ¼ r2dΩ is affected by a change of
the radial coordinate r but also due to a change of the solid
angle dΩ. For the transformation of the solid angle, we
use the transformation of the direction of the radiation
described by the wave vector k̂ ¼ ðfo; fo sinðθÞ cosðϕÞ;
fo sinðθÞ sinðϕÞ; fo cosðθoÞÞ. Using that the wave vector
transforms as k̂0 ¼ ΛðvzÞk̂, we find

cosðθ0Þ ¼ cosðθÞ − v
1 − v cosðθÞ : ð26Þ

From this equation follows

d cosðθ0Þ ¼ d cosðθÞ
γ2ð1 − v cosðθÞÞ2 ; ð27Þ

while the azimuthal angle is not affected by the relative
velocity (dϕ0 ¼ dϕ). Using dΩ ¼ dϕd cosðθÞ together with
Eq. (27), we get

dΩ ¼ ð1þ zrelÞ2dΩ0; ð28Þ

where we used the definition of the relativistic redshift
in Eq. (24). We find the transformation of the radial
coordinate from the vector describing the wavefront of
the GW at the time it reaches the observer r̂d ¼
ðrd;rd sinðθÞcosðϕÞ;rd sinðθÞsinðϕÞ;rd cosðθÞÞ. Using that
r̂0d ¼ ΛðvzÞr̂d and that the radial coordinate equals the
magnitude of the spatial vector, we find

rd ¼
r0d

ð1þ zrelÞ
: ð29Þ

Combining Eqs. (28) and (29) with Eq. (23) and the fact
that the energy of a GW transforms analogous to its
frequency [cf. Eq. (25)] to compute the flux as defined
in Eq. (8), we get

F ¼ L
ð1þ zrelÞ2r02d dΩ0 : ð30Þ

ALEJANDRO TORRES-ORJUELA and XIAN CHEN PHYS. REV. D 107, 043027 (2023)

043027-4



Therefore, we find for the apparent distance between the
source and the observer

Dapp ¼ ð1þ zrelÞr0d: ð31Þ

It equals the comoving distance at the time the GW reaches
the observer times the relativistic redshift, which is in
agreement with the result in Ref. [39]. However, r0d is the
comoving distance in the source frame, and combining
Eqs. (29) and (31), we get that the apparent distance in the
observer frame equals the comoving distance between
times the square of the relativistic redshift

Dapp ¼ ð1þ zrelÞ2rd: ð32Þ

Therefore, we find a difference in the effect of a cosmo-
logical and a relativistic redshift on the apparent distance.
While for an expanding universe the apparent distance
scales with a linear factor of the redshift [cf. Eq. (12)], the
apparent distance scales with a factor of the relativistic
redshift square for a moving source.

IV. TOTAL REDSHIFT

In the two previous, sections we derived the cosmologi-
cal redshift and its effect on the apparent distance in a flat
FLRW universe and the relativistic redshift and how it
affects the apparent distance in a Minkowski universe. In
this section, we derive the total redshift for a source moving
with a relative velocity in a flat FLRWuniverse and how the
apparent distance changes. We use the FLRW metric in
Eq. (1), set up COs for the observerO and the source S as in
Sec. III but use comoving Lorentz transformation

ΛcðvzÞ ¼

0
BBB@

γ 0 0 −aðtÞγv
0 1 0 0

0 0 1 0

−γv=aðtÞ 0 0 γ

1
CCCA: ð33Þ

to transform between the two COs to be consistent with the
metric. See the Appendix for a derivation of the comoving
Lorentz transformations.
We consider again the case of two subsequent crests of a

GW and find for the time coordinate of the first crest

ts ¼ γðt0s þ aðtsÞvr0s cosðθ0sÞÞ; ð34Þ

while for the time coordinate of the second crest, we have

tsþΔ ¼ γðt0s þ Δt0s þ aðtsþΔÞvr0s cosðθ0sÞÞ; ð35Þ

where we use the time of the corresponding events in the
scale factor. For the radial coordinate of the emitter when
the first crest is emitted, we get

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02s sin2ðθ0sÞ þ γ2ðr0s cosðθ0sÞ þ vt0s=aðtsÞÞ2

q
ð36Þ

and for the second crest

rsþΔ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02s sin2ðθ0sÞþγ2ðr0s cosðθ0sÞþvðt0sþΔt0sÞ=aðtsþΔÞÞ2

q
:

ð37Þ

The polar angle for the first crest has the form

cosðθsÞ ¼
γðr0s cosðθ0sÞ þ vt0s=aðtsÞÞ

rs
ð38Þ

while the polar angle for the second crest is

cosðθsþΔÞ ¼
γðr0s cosðθ0sÞ þ vðt0s þ Δt0sÞ=aðtsþΔÞÞ

rsþΔ
; ð39Þ

and the azimuthal angle remains unaffected again. We have
one more time that to linear order in Δt0s, the difference
between cosðθsÞ and cosðθsþΔÞ scales as 1=r0s, and hence
we can neglect their difference for typical GW sources.
We compute the path of the crests in a FLRWuniverse by

setting ds2 ¼ 0 in Eq. (1), to obtain

Z
to

ts

dt
aðtÞ ¼ −

Z
rs

0

dr ð40Þ

and

Z
toþΔto

tsþΔ

dt
aðtÞ ¼ −

Z
rsþΔ

0

dr; ð41Þ

where the boundaries are given in Eqs. (34)–(37). Solving
the integrals, subtracting the results of Eq. (40) from
Eq. (41), and expanding to linear order in Δto and Δt0s,
we find

Δto
aðtoÞ

−
γΔt0s
aðtsÞ

¼ −γ
v

aðtsÞ
cosðθsÞΔt0s; ð42Þ

where we used Eqs. (34) and (38) to simplify the expres-
sion. Next, we use that aðtoÞ ¼ 1 [21] and that aðtsÞ ¼
ð1þ zcosÞ−1, to get

dto ¼ ð1þ zcosÞγð1 − v cosðθÞÞdts: ð43Þ

Using the definition of the relativistic redshift in Eq. (24)
and that the frequency is the time derivative of the phase,
we get

fo ¼
fs

ð1þ zcosÞð1þ zrelÞ
; ð44Þ
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thus finding that the total redshift is equal to the product of
the cosmological redshift and the relativistic redshift

ð1þ ztotÞ ≔ ð1þ zcosÞð1þ zrelÞ: ð45Þ

Our result agrees with Ref. [87], which also considered the
combined effect of relative velocity and cosmological
expansion on the frequency of GWs, although their
approach is restricted to low relative velocities. Therefore,
our result represents an extension of their work.
Finally, we derive the combined effect of cosmological

expansion and the relative velocity of the source on the
apparent distance of a GW source. To get the trans-
formation of the radial coordinate, we consider again the
transformation of the wave vector describing the wavefront.
To consider the effect of the cosmological expansion, we
need to multiply rd by aðtoÞ while we take r0d times aðtsÞ.
To include the effect of the relative velocity, we use the
comoving Lorentz transformation. However, note that
because we transform the wave vector seen by the observer
[cf. before Eq. (29)] we have to use to in the scale factor in
the comoving Lorentz transformation. Therefore, using that
aðtoÞ ¼ 1, we get

rd ¼
r0d

ð1þ zcosÞð1þ zrelÞ
: ð46Þ

where we, further, used that aðtsÞ ¼ ð1þ zcosÞ−1. For the
solid angle, we use that it is not affected by the cosmo-
logical expansion and hence it transforms as in Eq. (28).
Inserting these results in Eq. (8) together with the

transformation of the time in Eq. (43) and using that the
energy transforms in the same way as the frequency in
Eq. (44), we get

F ¼ Lð1þ zcosÞ2
ð1þ ztotÞ2r02d dΩ0 ð47Þ

Therefore, we find for the apparent distance

Dapp ¼ ð1þ ztotÞð1þ zrelÞrd; ð48Þ

where we used Eq. (46) to express the result in the
coordinates of the observer. We see that the apparent
distance of a moving source in an expanding universe also
contains an additional factor of ð1þ zrelÞ. Furthermore, we
see that the apparent distance of a source at rest in an
expanding universe in Eq. (12) is equal to the one in
Eq. (48) for a vanishing relative velocity while the apparent
distance of a moving source in a Minkowski space in
Eq. (32) can be obtained by considering a source at a
cosmological redshift of zero, where the FLRW metric and
the Minkowski metric become equal.

V. OBSERVABLES FOR HIGH REDSHIFT
AND FAST MOVING SOURCES

As we showed in the previous sections, the relative
velocity of a GW source affects its frequency and apparent
distance. In particular, we find that the apparent distance for
moving sources needs to be corrected by an additional
factor that does not appear in the case of a source at rest
relative to the expanding universe at cosmological dis-
tances. Therefore, in this section, we analyze how the chirp
mass and the apparent distance inferred from observations
are affected when the observer ignores the relative velocity
of the source.
Before analyzing the effect of the relative velocity, we

discuss the observables of GWs which are the amplitude
of the wave ho (in two polarizations), the frequency of the
wave fo, and its time derivative _fo [39,85]. From the
measurement of fo and _fo in the inspiral part of the signal,
where the two merging compact objects are far apart and
can be approximated as point masses, one can determine
the chirp mass of the source in the observer’s frame as

Mo ≔
�
5_fof

−11=3
o

96π8=3

�3=5

: ð49Þ

It theoretically depends on the masses of the two compact
objects as Mo ¼ ðm1;om2;oÞ3=5ðm1;o þm2;oÞ−1=5 and
describes how the frequency increases with time.
Combining this result with the amplitude of the wave
ho, one can further determine the apparent distance of the
source, using

Dapp ¼ ðπfoMoÞ2=3
4Mo

ho
: ð50Þ

From Eqs. (7), (25), and (44) we see the frequency
of a GW transforms fo ¼ fs=ð1þ zÞ between the observ-
er’s and the source’s frame, where (1þ z) can be either the
cosmological, the relativistic, or the total redshift, while
from Eqs. (6), (23), and (43) it follows that _fo ¼ _fs=
ð1þ zÞ2. Using these results in Eq. (49), we get

Mo ¼ ð1þ zÞMs; ð51Þ

where Ms ≔ ðð5_fsf−11=3s Þ=ð96π8=3ÞÞ3=5 is the chirp mass
in the source’s frame. Therefore, we have that the chirp
mass of a source redshifted by a factor (1þ z) is changed
by the same factor. This behavior is known as the “mass-
redshift degeneracy” of GWs.
From Eq. (50), we get that the observed amplitude of a

GW goes as

ho ¼ ðπfoMoÞ2=3
4Mo

Dapp
: ð52Þ
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Using that a source at rest and a cosmological redshift
ð1þ zcosÞ has an apparent (luminosity) distance Dapp ¼
ð1þ zcosÞrd [cf. Eq. (12)], the observed chirp mass in
Eq. (51), and Eq. (7), we get for the observed amplitude

ho;rest ¼ ðπfsMsÞ2=3
4Ms

rd
≕ hs: ð53Þ

Therefore, we recover the classical result that the amplitude
of GWs is independent of the cosmological redshift [13].
The amplitude of a GW from a source that is moving

with a relative velocity can be determined from Eq. (52)
using the apparent distance in the observer frame in
Eq. (32) or Eq. (48) for a source in the local universe or
at a cosmological distance, respectively. In both cases, we
get that the observed amplitude has the form

ho;moving ¼
hs

ð1þ zrelÞ
: ð54Þ

Therefore, we find that the amplitude of a GW from a
source with a relative velocity differs from the amplitude of
a source at rest by a factor ð1þ zrelÞ−1 independent of its
cosmological redshift.
The difference in the amplitude of a GW from a moving

source and a source at rest can be understood from the fact
that the solid angle is not invariant under (comoving)
Lorentz transformations or, to put in a more physical
picture, that the aberration of GWs leads to a focusing
of the wave rays parallel to the relative velocity of the
source [61,67,88]. The same effect is well known for light
as a part of the so-called “headlight effect” or “relativistic
beaming” and leads to an additional factor of ð1þ zrelÞ2 in
the intensity of the light [89].
We have now all tools to analyze the impact of a relative

velocity of the source on the chirp mass and the apparent
distance inferred from GW detection. Different astrophysi-
cal models predict a variety of relative velocities for GW
sources, where we consider the following three particularly
interesting cases: (i) gravitational kicks which in average
have a velocity of 400 km s−1 [90] while extreme kicks of
up to 5000 km s−1 can occur for some special configura-
tions [23–33], (ii) BBHs, BNSs, and BHNSBs orbiting a
SMBH in the center of a galaxy [34–43], where the velocity
depends on the mass of the central SMBH and the radius of
the orbit—for a SMBH with a typical mass of 107M⊙
and for an orbital radius of 5 mpc the orbital velocity is
around 3000 km s−1 while for an orbital radius of 100Rs

(Rs ¼ 2GM=c2 is the Schwarzschild radius of a BH with
mass M) we have a velocity of around 7% the speed of
light, and (iii) the peculiar velocity of galaxies induced by
the gravitational interaction of the host galaxy with its
environment which in average has been measured to be
around 1500 km s−1 [44–51]. Note that, in principle, these
velocities are time-dependent and that the effect of the

relative velocity on the redshift also depends on its
orientation relative to the line-of-sight (LOS). However,
we only want to show the principles of this effect, where-
fore we assume the relative velocity to be constant and
either parallel or antiparallel to the LOS.
For a moving source where the observer assumes it to be

at rest relative to the expanding of the universe, the error in
the chirp mass can be estimated from the relative difference
between the chirp mass the source would have if it would
be at restMr ¼ ð1þ zcosÞMs and the chirp mass observed
for the moving source Mo ¼ ð1þ ztotÞMs

δM ≔
����Mr −Mo

Mo

���� ¼
����1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ v
1� v

r ����; ð55Þ

where the upper sign corresponds to the relative velocity
being antiparallel to the LOS (relativistic redshift) and the
lower sign to the relative velocity being parallel to the LOS
(relativistic blueshift).
Figure 1 shows the relative error in the measurement of

the chirp mass of the source when the observer assumes it is
at rest for different relative velocities. We see that the error
is a monotonic function of the relative velocity and that it
can reach 1% for a velocity of 3000 km s−1 corresponding
to a binary orbiting a SMBH of the mass 107 M⊙ at a
distance of 5 mpc while for lower velocities like the average
kick velocity and the peculiar velocity of galaxies the error
is below 1%. For extreme kicks of 5000 km s−1 the error is
slightly higher than 1.5% and it can go up to around 7% for
a binary orbiting a SMBH at 100 Rs. We further can see
that there is a difference in the error when the relative
velocity and the LOS are antiparallel (source moving away

FIG. 1. The relative error in the chirp mass for a source moving
at different relative velocities when the observer assumes the
source is at rest. The red dashed-dotted line corresponds to the
relative velocity and the LOS being antiparallel while the blue
dotted line corresponds to the two being parallel. The vertical
lines represent typical velocities for the astrophysical scenarios
described in the text.
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from the observer) or parallel (source approaching the
observer) but the difference is relatively small and only
becomes relevant for highly relativistic velocities of several
percent the speed of light.
The error in the apparent distance can be estimated con-

sidering the relative difference between the apparent distance
Dapp;r¼ð1þzcosÞDs (Ds ≔ ðπfsMsÞ2=3 × ð4Ms=hsÞÞ the
source would have if it would be at rest and the observed
apparent distance for the moving source Dapp;o ¼
ð1þ ztotÞð1þ zrelÞDs

δDapp ≔
����Dapp;r −Dapp;o

Dapp;o

���� ¼
���� 2v
1� v

����; ð56Þ

where the plus sign corresponds to the relative velocity being
antiparallel to the LOS and the minus sign to the relative
velocity and the LOS being parallel.
In Fig. 2, we see that the relative error in the measure-

ment of the apparent distance when the observer assumes
the source is at rest is bigger than for the chirp mass.
The error is still negligible for average kick velocities
of 400 km s−1 but for a peculiar velocity of galaxies of
1500 km s−1 the error can go up to around 1%. For a binary
orbiting a SMBH of mass 107 M⊙ at a distance of 5 mpc the
error is above 2% and for extreme kicks the error goes up to
around 3%. For highly relativistic velocities the depend-
ence on the orientation of the velocity relative to the LOS
becomes again more prominent so that for a binary orbiting
a SMBH at a radius of 100Rs and the relative velocity
being antiparallel to the LOS the error in the apparent
distances is around 13% while for the relative velocity and
the LOS being parallel the error increases to 15%.
We see that ignoring the relative velocity of the source

impacts the measurement of the chirp mass and the
apparent distance causing errors of up to 7% in the first
and of up to 15% in the latter. Therefore, including a

relative velocity of the source is crucial to obtain accurate
results and not over- or underestimating its parameters,
where the apparent distance is particularly affected due to
its ð1þ zrelÞ2-dependence. Moreover, the apparent distance
plays a crucial role in determining the Hubble constant H0

using standard sirens [13], wherefore we analyze the impact
of the relative velocity in measurements of H0 in the
following section.

VI. THE EFFECT OF THE SOURCE’S RELATIVE
VELOCITY ON THE MEASUREMENT OF THE

HUBBLE CONSTANT

GW sources with EM counterparts have been proposed
as standard sirens to measure the Hubble constant H0

[13,14]. Up to date, the two most prominent GW events
used for measurements ofH0 are GW170817, the merger of
a BNS with a subsequent optical transient [15–17,91,92],
and GW190521, a merger of a BBH with the event
“ZTF19abanrhr” as a candidate EM counterpart [18,20].
Usually, the sources are assumed to be at rest relative to the
expanding universe although there are many astrophysical
scenarios where the source needs to be considered as
moving. In Refs. [52–55] the effect of a source’s relative
velocity, in particular the peculiar velocity of the host
galaxy, has been included to correct for the error on the
redshift of the EM counterpart, however, the effect of the
relative velocity on the amplitude respective the square
factor for ð1þ zrelÞ in the apparent distance has been
ignored. Therefore, two different scenarios for errors need
to be considered when analyzing the impact of the source’s
relative velocity on the measurement of the Hubble con-
stant: (i) the effect of the relative velocity is considered in
the redshift of the source but not for its apparent distance,
and (ii) the source is moving but the relative velocity is
completely ignored. Case (i) is a common error in most
studies including the effect of a relative velocity. Case
(ii) arises when a wrong astrophysical model for the
source’s relative velocity is being applied, e.g., when using
the usual assumption that the source only moves due to the
peculiar velocity of its host galaxy but in reality, it has a
much higher velocity induced by an orbital motion around
a SMBH as discussed in Ref. [93], where it is shown that
1%–2% of all LIGO/Virgo/KAGRA sources merge at a
distance of 10Rs from a SMBH.
For a source at a small cosmological distance (zcos ≪ 1),

we have the following relation between its cosmological
redshift zcos, its luminosity distance DL, and the Hubble
constant H0 [84]

zcos ¼ H0DL: ð57Þ

Using that DL ≔ ð1þ zcosÞrd, where rd is the comoving
distance between source and observer in the frame of the
observer, we further get zcos ¼ H0rd=ð1 −H0rdÞ. From
Eq. (57) it follows that H0 can be inferred using the

FIG. 2. The relative error in the apparent distance for a source
moving at different relative velocities when the observer assumes
the source is at rest. The lines represent the same cases as in
Fig. 1.
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apparent distance of the GW source Dapp and the redshift
zEM of its EM counterpart as

H0;i ¼
zEM
Dapp

: ð58Þ

However, if the source is moving the effect of the relative
velocity on the redshift and the apparent distance needs to
be corrected, otherwise we would infer a wrong value for
H0. As mentioned above, a typical cause for the relative
velocity of the source is the peculiar velocity of its host
galaxy [52–55]. For BNS mergers the EM counterpart
comes from a subsequent kilonova produced by the
interaction of ejected mass interacting with matter sur-
rounding the newly formed compact object [94–97]. For
BBHs the EM counterpart can be produced through differ-
ent mechanisms like the interaction with the surrounding
gas in the center of a galaxy due to the gravitational kick of
the remnant black hole or a jet ejected during the merger,
and BBHs merging inside a common envelope followed
by an explosive EM counterpart [98–100]. In general, the
relative velocity of the GW source and its EM counterpart
can differ but, in most cases, the velocity of the GW source
and the EM counterpart are equal or at least of the same
order; thus we consider them to be equal in our analysis.
An observer including the effect of the relative velocity

on the redshift but ignoring its effect on the apparent
distance would use zEM ¼ zcos to infer the Hubble constant,
thus finding

H0;v ≔
ztot
Dapp

¼ H0

ð1þ zrelÞ2
; ð59Þ

where ð1þ zrelÞ is in Eq. (24). Therefore, we recover
the correct value for H0 if the source is at rest but if the
source is moving with a relative velocity we obtain an
erroneous result. The error done by not considering the
effect of the relative velocity on the apparent distance can
be estimated as

δH0;v ≔
����H0;v −H0

H0

���� ¼
���� 2v
1� v

����; ð60Þ

where we again consider the special cases of the relative
velocity being antiparallel to the LOS (plus sign) and
parallel to the LOS (minus sign). We see in Fig. 3, that the
error increases with an increasing magnitude of the relative
velocity and already can reach around 1% for a peculiar
velocity of the host galaxy of 1500 km s−1. For a binary
orbiting a SMBH of 107M⊙ at a distance of 5 mpc with a
velocity of 3000 km s−1 the error goes up to around 2% and
can exceed 3% for extreme kicks of 5000 km s−1. For
higher relative velocities the orientation of the velocity
relative to the LOS becomes significant, varying from 13%
for the two being antiparallel to 15% for the two being

parallel for a binary orbiting a SMBH at a distance
of 100Rs.
An observer completely ignoring the effect of relative

velocity would infer the Hubble constant using the total
redshift for the EM counterpart (zEM ¼ ztot) and the
apparent luminosity distance, thus obtaining

H0;r ≔
ztot
Dapp

¼ ð1þ zcosÞzrel þH0DL

ð1þ zrelÞ2DL
: ð61Þ

We recover again the correct value for H0 if the source is at
rest but, if the source is moving with a relative velocity,
we obtain an erroneous result and, in particular, the value
inferred for H0 depends on the distance of the source. The
error done by ignoring the relative velocity of the source
can be estimated by

δH0;r ≔
����H0;r −H0

H0

����
¼
���� ð1þ zrelÞ2zcos − ð1þ zrelÞð1þ zcosÞ þ 1

ð1þ zrelÞ2zcos

����; ð62Þ

where we used Eq. (57) to eliminate the direct
dependence on H0. We, furthermore, use that ð1þ zrelÞ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1�vÞ=ð1∓ vÞp

for the relative velocity and the LOS
being either antiparallel (upper sign) or parallel (lower
sign).
The error in the measurement of the Hubble constant

further increases when the effect of the relative velocity is
not only ignored in the apparent distance but also the
redshift of the EM counterpart. Figure 4 shows the relative
error for a source at a cosmological redshift of 0.09

FIG. 3. The relative error in the Hubble constant for a source
moving at different relative velocities when the observer only
considers the effect of the relative velocity on the redshift of the
EM counterpart but not the apparent distance of the source
respective the amplitude of the GW. The lines correspond to the
same cases as in Fig. 1.
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(corresponding to the distance of GW150914 [1]) for
different velocities. We see that even for relatively low
velocities of only 400 km s−1, corresponding to the average
kick velocity, the error can reach around 1.5%. For an
average peculiar velocity of the host galaxy of 1500 km s−1

the error already exceeds 5%, and the error becomes bigger
than 10% for a source moving with more than 3000 km s−1,
corresponding to the orbital velocity of a binary orbiting a
SMBH of 107M⊙ at 5 mpc. The dependence on the
orientation of the velocity relative to the LOS becomes
again more prominent for high relative velocities thus
causing the error to vary between around 60% and 80%
for a binary at an orbit of 100Rs around a SMBH. In Fig. 5,
we fix the relative velocity of the source to be the typical
peculiar velocity of galaxies and vary the cosmological
redshift of the source. We see that for this relatively low
velocity the error is almost the same for the relative velocity
being either antiparallel or parallel to the LOS while it
decreases for an increasing cosmological redshift. For a
source at the distance of GW170817 (zcos ¼ 0.01) [1], the
error in H0 is more than 50%. The error for a source at the
distance of GW150914 decreases to still considerable 5%
and goes below 1% for sources at cosmological redshifts of
more than 0.3. We see that for a source at the distance of
GW190521 (zcos ¼ 0.72) [2] the error goes down to around
0.2%. However, it should be noted that Eq. (57) assumes
the cosmological redshift to be much smaller than one and
hence the estimation for redshifts close to one are less
reliable. In general, we expect the error for high cosmo-
logical redshifts to be at least bounded from below by the
errors found when only correcting for the effect of the
relative velocity on the redshift of the EM counterpart,
which is independent of the cosmological redshift.
Last, we consider the case of GW170817 using a relative

velocity of roughly 300 km s−1 as used in the analysis
conducted by the LIGO and Virgo Collaborations [15,16].

From Eq. (62) we get that if the relative velocity of
the source would be ignored completely the error would
be around 100% thus making the result useless. When
correcting by the effect of the relative velocity on the
redshift of the EM counterpart but ignoring its effect on the
apparent distance as done in Ref. [15], the error can be
estimated using Eq. (60) to be 0.2% and hence we confirm
that their result is reliable while the error inH0 is dominated
by other effects. However, for sources with higher relative
velocities the error when ignoring their effect on the
apparent distance increases quickly, hence it needs to be
considered.
Although the orientation of the relative velocity is

random the error induced by not properly considering
the relative velocity is not symmetric in the orientation and
hence we do not expect the error to cancel out for a high
number of detections. Moreover, the relativistic shift moves
heavy (and hence usually loud) BBHs that are redshifted
toward the more sensitive frequency range of LIGO/Virgo/
KAGRAwhile blueshifted sources are moved out of band.
This shift should induce a selection effect that will addi-
tionally hinder a reduction of the error by an increase in
numbers. Similar selection effects may also occur for other
sources and other detectors.

VII. CONCLUSIONS

We studied the effect of cosmological expansion and the
relative velocity of the source on the frequency of GWs and
the apparent distance obtained from them. We recover the
classical result that the frequency of a source at rest relative
to the expanding universe is redshifted by the cosmological
expansion while its apparent distance increases by the same

FIG. 4. The relative error in the Hubble constant for a source at
the cosmological distance of GW150914 (zcos ¼ 0.09) that is
moving at different relative velocities but the observer assumes it
to be at rest relative to the expanding universe. The lines
correspond to the same cases as in Fig. 1.

FIG. 5. The relative error in the Hubble constant for a
source moving with a typical peculiar velocity of galaxies of
1500 km s−1 for different cosmological redshifts of the source.
The red dashed-dotted line corresponds to the relative velocity
and the LOS being antiparallel while the blue dotted line
corresponds to the two being parallel. The vertical lines corre-
spond to the cosmological redshift for the GW events
GW170817, GW150914, and GW190521.
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redshift factor. We also show that the total redshift of a
source moving with a relative velocity in an expanding
universe is equal to the product of the cosmological redshift
times the relativistic redshift, as usually assumed. However,
we find that the apparent distance of a source moving with
a relative velocity changes by a factor of the relativistic
redshift square, in contrast to the linear behavior for the
cosmological redshift. The additional factor can be attrib-
uted to the fact that the amplitude of GWs from a moving
source changes by the same factor relative to a source
at rest.
Using these results we analyze the estimation error in the

two main observables of GWs, the chirp mass of the source
and its apparent distance when the relative velocity is
ignored. We consider the three astrophysical scenarios of
gravitational kicks, the orbital motion of BBHs, BNSs, or
BHNSBs around a SMBH, and the peculiar velocity of the
host galaxy which lead to velocities varying from a few
100 km s−1 up to several percent of the speed of light. The
error in the chirp mass and the apparent distance varies
between 0.1% respective 0.25% for average kick velocities
and go up to 7% and 15%, respectively, for sources close to
a SMBH. Furthermore, the error exceeds 1% in the
apparent distance for a source moving due to the peculiar
velocity of its host galaxy. Therefore, the errors induced by
a relative velocity are at a similar level to current estimation
errors for sources close to a SMBH but there is no critical
effect for lower velocities [1–3].
Furthermore, we study how the relative velocity of the

source impacts the estimation of the Hubble constant using
standard sirens when only considering the effect of the
relative velocity on the redshift of the EM counterpart but
not on the apparent distance and when completely ignoring
the effect of the source’s relative velocity. We find that in
the first case, the error in H0 can already reach 1% for a
typical peculiar velocity of the host galaxy and go up to
15% for a binary close to a SMBH. When completely
ignoring the effect of the relative velocity, the error
increases to 5% for a typical peculiar velocity of the host
galaxy for a source at the cosmological redshift of
GW150912. We, furthermore, find that the error depends
on the cosmological redshift of the source where for a
typical peculiar velocity of the host galaxy it can go up to
over 50% for a source like GW170817 at a cosmological
distance of 0.01 while it decreases to under 1% for sources
at cosmological redshifts of more than 0.3.
The measurement of the Hubble constant using

standard sirens is affected by estimation errors in the sky
localization of the GW source and its EM counterpart,
where the error is dominated by instrumental uncertainties
at a 10%-level [3,14,15]. Other errors from the “inclination-
distance-degeneracy” or possible lensing of the source
add to the systematic error to at least a percent level.
However, these errors can be mitigated by proper
modeling of the respective effect or, e.g., by breaking

the inclination-distance-degeneracy when including higher
spherical modes [101–103]. The error induced by a relative
velocity of the source when only considering its effect on
the redshift of the EM counterpart is at a similar level to
other estimation errors and can be even bigger than these
when completely ignored. Therefore, we argue that the
relative velocity of the source needs to be modeled as a
systematic error, including its effect on the apparent
distance of the source, to obtain accurate estimations of
the Hubble constant.
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APPENDIX: COMOVING LORENTZ
TRANSFORMATIONS

When considering a flat universe, one expects that the
laws of special relativity are valid since there is no
gravitational force. This implies that Lorentz transforma-
tions can be used to transform between moving observers.
However, Lorentz transformations do not preserve the line
element for a flat FLRW metric and hence they need to be
adapted. In this section, we derive comoving Lorentz
transformations that are analogous to the usual Lorentz
transformations but leave the line element for the flat
FLRW metric invariant.
We can write the flat FLRW metric [cf. Eq. (1)] as

ds2 ¼ dt2 − a2ðtÞdr2; ðA1Þ

while we denote the geodesic of a particle in this space as
p̂ ¼ ðp0; pÞ. We see that for such a geodesic the line
element has the form ds2 ¼ dp2

0 − a2ðtÞdp2. If we use the
regular Lorentz transformation for a velocity along the
z-coordinate to transform the geodesic p̂0 ¼ ΛðvzÞp̂, we get
for the line element

ds2¼ðγ2−a2ðtÞγ2v2Þdp2
0−2ð1−a2ðtÞÞγ2vdp0dpz

−a2ðtÞdp2
x−a2ðtÞdp2

y− ða2ðtÞγ2− γ2v2Þdp2
z ðA2Þ

and thus we see the that line element is not invariant under
Lorentz transformations.
To find the transformations that leave the line element

invariant, we define the following transformation
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ΛcðvzÞ ¼

0
BBB@

Aγ 0 0 −Bγv
0 C 0 0

0 0 D 0

−Eγv 0 0 Fγ

1
CCCA: ðA3Þ

Note that this is just the Lorentz transformation with
additional factors in all nonvanishing elements. Our goal
is to determine the factors A;B;C;D; E; F so that the line
element remains invariant under these transformations.
Transforming the geodesic and inserting the result in
Eq. (A1), we get

ds2 ¼ ðA2γ2 − E2a2ðtÞγ2v2Þdp2
0 − 2ðAB − EFa2ðtÞÞ

× γ2vdp0dpz − C2a2ðtÞdp2
x −D2a2ðtÞdp2

y

− ðF2a2ðtÞγ2 − B2γ2v2Þdp2
z : ðA4Þ

Therefore, for the line element to be invariant requires

1 ¼ A2γ2 − E2a2ðtÞγ2 þ E2a2ðtÞ; ðA5aÞ

0 ¼ AB − EFa2ðtÞ; ðA5bÞ

1 ¼ C2; ðA5cÞ

1 ¼ D2; ðA5dÞ

a2ðtÞ ¼ F2a2ðtÞγ2 − B2γ2 þ B2 ðA5eÞ

where we used γ2v2 ¼ γ2 − 1 to reshape the equations.
From Eqs. (A5c) and (A5d) and imposing that the

transformation shall not invert directions, we get
C ¼ D ¼ 1. We, further, see that for Eq. (A5a) to be
fulfilled, we need A ¼ 1 and E ¼ 1=aðtÞ. Using this result
in Eq. (A5b), we get B ¼ aðtÞF which together with
Eq. (A5e) and the requirement that the transformation does
not invert the orientation of the geodesic leads to F ¼ 1.
Therefore, we get for the comoving Lorentz transformation
for a velocity in direction of the z-coordinate

ΛcðvzÞ ¼

0
BBB@

γ 0 0 aðtÞγv
0 1 0 0

0 0 1 0

γv=aðtÞ 0 0 γ

1
CCCA: ðA6Þ

We highlight that the comoving Lorentz transformation
resembles several properties of the regular Lorentz trans-
formation, in particular, that the inverse comoving Lorentz
transformation can be obtained by inverting the sign of the
velocity. Moreover, the inverse comoving Lorentz trans-
formation also leaves the line element invariant. Last, we
point out that the time in the scale factor needs to be the
time of the event transformed using the time in the rest
frame of the observer.
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