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Even though the crystallized nature of the neutron star crust plays a pivotal role in describing various
fascinating astrophysical observations, its microscopic structure is not fully understood in the presence of a
colossal magnetic field. In the present work, we study the crustal properties of a neutron star within an
effective relativistic mean field framework in the presence of magnetic field strength ∼1017 G.We calculate
the equilibrium composition of the outer crust by minimizing the Gibbs free energy using the most recent
atomic mass evaluations. The magnetic field significantly affects the equation of state (EOS) and the
properties of the outer crust, such as neutron drip density, pressure, and melting temperature. For the inner
crust, we use the compressible liquid drop model for the first time to study the crustal properties in a
magnetic environment. The inner crust properties, such as mass and charge number distribution, isospin
asymmetry, cluster density, etc., show typical quantum oscillations (De Haas-van Alphen effect) sensitive
to the magnetic field’s strength. The density-dependent symmetry energy influences the magnetic inner
crust like the field-free case. We study the probable modifications in the pasta structures and it is observed
that their mass and thickness changes by ∼10–15% depending upon the magnetic field strength. The
fundamental torsional oscillation mode frequency is investigated for the magnetized crust in the context of
quasiperiodic oscillations in soft gamma repeaters. The magnetic field strengths considered in this work
influences only the EOS of outer and shallow regions of the inner crust, which results in no significant
change in global neutron star properties. However, the outer crust mass and its moment of inertia increase
considerably with increase in magnetic field strength.
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I. INTRODUCTION

In a recent breakthrough, astronomers detected an
extremely bright radio burst from the Galactic magnetar
SGR 1935þ 2154 [1,2], which confirmed that the gamma
ray bursts (GRBs) originate from the magnetars at cosmo-
logical distances [3]. Magnetars are the family of neutron
stars with an extremely intense magnetic field (≥1015 G)
known for their observed quiescent in a wide range of the
electromagnetic spectrum that includes x-rays and γ-rays in
the form of powerful bursting emissions [4,5]. The origin of
the colossal magnetic field in the magnetar is still contro-
vertible; however, a common hypothesis is that strong
dynamo effects caused, due to the initial spin period, are
responsible for such an extreme environment [6,7]. The
activities of the magnetars are principally associated with
the crustal motion, which twists its magnetosphere [8,9].
Another class of neutron stars with a strong magnetic field
(1012–1014 G) are the pulsars [10] (the majority of the

observed neutron stars are pulsars) which convert the
rotational energy of the star into periodic multiwavelength
radiations [11,12]. Magnetars, along with pulsars, provide
extraordinary opportunities to develop and test theories or
models to describe and explain the wide range of associated
observational phenomena [13,14], such as gamma ray
bursts, fast radio bursts (FRB), x-ray outbursts, etc.
In general, the global properties such as mass, radius, the

moment of inertia, etc., of a magnetar or pulsar are dictated
by their core, where the density reaches ∼10 times the
nuclear saturation density, and the matter is considered to
be homogeneous [15]. The core is covered by ∼1 km thick
heterogeneous crust characterized by fully ionized nuclei
submerged in a strongly-degenerate electron gas known as
the outer crust and the nuclear clusters [spherical in the
shallower region and distorted (nuclear pasta) in dense
regions] surrounded by electrons and the degenerate-
dripped neutron gas known as the inner crust [16]. This
layer of the neutron star is of primary interest to nuclear and
astrophysicists as it acts as a unique exotic nonterrestrial
laboratory to test the theories of strong interaction and
validate them using various observations. Recently it was
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shown that the crust plays a crucial role in stabilizing the
magnetic field by solidification, which results in the develop-
ment of elastic forces that consequently avoid the fast decay
of themagnetic field [17]. Therefore, an accurate description
of neutron star crust in the presence of a magnetic field is
essential to extract the core’s properties and understand
microscopic aspects of the crust, such as cooling [18],
entrainment, quasiperiodic oscillations (QPOs) [19], tor-
sional vibrations, shattering [20], transport [21], etc. The
astrophysical phenomena related to the interaction and
evolution of the magnetic field in the neutron star crust
[5,22,23] also make the study of the neutron star crust in a
magnetic environment highly desirable.
There have been numerous attempts in the last five

decades to study the neutron star’s outer and inner crust
since they were first estimated for a cold nonaccreting-
unmagnetized neutron star by Baym-Pethick-Sutherland
(BPS) [24] and Baym-Bethe-Pethick (BBP) [25], respec-
tively. While the outer crust calculations are relatively
straightforward, where the nuclear masses act as input
parameters, the inner crust structure is determined by
considering the dripped neutron gas, an environment non-
viable for a terrestrial laboratory. The persistent uncertain-
ties in the nuclear matter observables make the inner crust
calculations inevitably model dependent. Various forms of
nuclear interaction and inner crust models such as micro-
scopic Hartree-Fock [26], Thomas-Fermi (TF) [27],
extended TF (ETF) [28,29], compressible liquid drop
model (CLDM) [30–33], nuclear density functional theory
[34], molecular dynamics simulations [35,36], etc. have
been used in the past to investigate the inner crust. The
principal aim of these studies was to perform structural
analyses, such as elasticity properties, to understand the
neutron star crust oscillations, equilibrium composition,
transition properties, etc., and examine their model depend-
encies [37,38]. The inner crust structure is dependent on the
density dependence of symmetry energy in the subsatura-
tion density regime of the nuclear matter [30,31,39].
Most neutron star crust calculations in literature have

been performed for an unmagnetized neutron star, and not
much emphasis is given to the magnetized crust; a handful
of studies consider the magnetic field, the majority consider
only the outer crust composition [19,40–43]. The inner
crust calculations are either limited to the effect of magnetic
field on the electrons [44] or study the crust-core transition
properties employing the Vlasov formalism for dynamical
instability [45,46]. Only a few inner crust calculations have
been performed using the self-consistent Thomas-Fermi
approximation employing relativistic mean field theory
[47–49], some of which [49] consider a fixed proton
fraction instead of β equilibrium in the inner crust.
Therefore, the lack of comprehensive investigations of
magnetized neutron crust in a unified manner using the
realistic equation of state (EOS), which satisfies relevant

nuclear matter and neutron star constraints, underscores the
need for such an analysis.
In this work, we aim to investigate the possible changes

in the neutron star crust’s structure due to the presence of a
magnetic field and its EOS and study the associated
phenomena. Recently, we studied the crustal properties
of the neutron star [30,31], using the CLDM method
employing the effective relativistic mean field model
(E-RMF). We extend these calculations for the case of
magnetic fields by incorporating the magnetic field effects
in the EOS. This will help us to understand the neutron star
crust structure in a magnetic environment and analyze the
possible deviations compared to the unmagnetized neutron
star. For the first time, we use the CLDM method to
estimate the crust structure of a magnetized neutron star.
Using the CLDM method to estimate the inner crust
structure is known to be efficient and produces results
on par with the TF calculations [38]. These calculations are
economical compared to the self-consistent methods that
suffer from the boundary problems [50], and hence are
applied in a wide range of inner crust calculations.
We calculate the equilibrium composition of the outer

crust using the most recent experimental atomic mass
evaluations AM2020 [51] in supplement with the theoretical
calculations of Hartree-Fock-Bogoliubov (HFB) [52,53] and
finite-range liquid-drop model (FRDM) [54]. Various inner
crust properties, such as equilibrium composition, crust-core
transition properties, pasta phase appearance, pasta mass,
thickness, and frequency of QPOs in context to the soft
gamma repeaters (SGRs), etc., are calculated for a magnet-
ized neutron star. These properties play a central role in
explaining various mechanisms of magnetar and pulsar
activities which include transport of magnetic field lines
(hall drift) [5,55], sudden fractures in the crust due to
accumulating crustal stress [8], neutron superfluidity that
causes glitches in pulsars [56], transient heating of crust [57],
etc. Furthermore, we also investigate the role of EOS on
the crustal properties of neutron stars in a magnetized
environment.
The paper’s organization is as follows: In Sec. II, we

describe the effect of magnetic field on the EOS employing
the E-RMF framework. The outer and inner crust formu-
lation is described in brief. The results are discussed in
Sec. III, where the outer crust is discussed in Sec. III A, the
inner crust and associated properties within CLDM for-
malism are discussed in Sec. III B, and the unified EOS in
Sec. III C. Finally, we summarize our results in Sec. IV.

II. FORMALISM

A. E-RMF in the presence of magnetic field

The effective Lagrangian in the effective relativistic
mean field model, which includes σ, ω, ρ, δ, and photons
in association with the baryons can be written as [58–63],
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Here ΦðrÞ, WðrÞ, RðrÞ, DðrÞ, and AðrÞ are the fields
corresponding to σ, ω, ρ, and δ mesons and photons,
respectively. The gs, gω, gρ, gδ, and e2

4π are the corresponding
coupling constants and ms, mω, mρ, and mδ are the
corresponding masses. The zeroth component T00 ¼ H
and the third component Tii of the energy-momentum
tensor [64]

Tμν ¼ ∂
νϕðxÞ ∂E

∂ð∂μϕðxÞÞ
− ηνμE; ð2Þ

yields the energy and pressure density, respectively.
Various couplings in the E-RMF Lagrangian have their

own importance and make the model flexible to accom-
modate various phenomena associated with the nuclear
matter. The ζ0 [self-coupling of the isoscalar-vector ω
meson (WðrÞ4)] and the self-coupling of σ meson (k3, k4)
help soften the equation of state. On the other hand,
Λω (quartic-order cross-coupling of ρ and ω mesons
[RðrÞ2WðrÞ2)] plays a crucial role in governing the density
dependence of symmetry energy and help in the better
agreement of neutron skin thickness data. Λω also provides
us with the flexibility of fitting the spherical nuclei without
hurting the ability to vary the neutron skin thickness of
208Pb to a wide range [65]. η1, η2, and ηρ couplings (cross-
couplings of σ − ω and σ − ρmesons) influence the surface
properties of finite nuclei and the δ meson softens the
symmetry energy at subsaturation densities while stiffens
the EOS at high densities [66,67]. For more details on the
E-RMF formalism and EOS, one can see [58,68,69]. Here
we briefly describe the effect of magnetic field on the EOS,
based on [70,71].
The energy spectrum of the proton, which gets modified

due to the Landau level, is written as [70,71]
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and for charged leptons (electron and muon) as
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Here, σz is the spin along the axis of the magnetic field B, n
is the principal quantum number, and kz is the momentum
along the direction of the magnetic field.M� is the effective
mass for the proton. The neutron spectrum is similar to the
Dirac particle and takes the form,

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

n

q
þW þ R=2: ð7Þ

The number and energy density at zero temperature and in
the presence of a magnetic field is given by [70]
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respectively. In the above equations, kif;n;σz is defined by

ki
2

f;n;σz
¼ Ei2

f − M̄i2
n;σz ; ð10Þ

where the Fermi energies are fixed by the respective
chemical potentials given by

El¼e;μ
f ¼ μμ;e; ð11Þ

Eb¼p;n
f ¼ μb −W � R=2: ð12Þ

In Eqs. (8) and (9), nmax is the integer for which the Fermi
momentum remains positive in Eq. (10) and is written as
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Here [x] represents the greatest integer less than or equal to x.
The scalar density for the protons is further determined as

ρsp ¼ jqjBM�
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The number, scalar, and energy density for the neutrons
are similar to the field-free case and can be found in [58,68]
and references therein. The total energy density is the sum
of matter-energy density and the contribution from the
electromagnetic field, B

2

8π. Finally, the pressure can be written,
keeping the thermodynamic consistency as

P ¼
X
i¼n;p

μiρi − E: ð15Þ

It is often convenient to express the magnetic field strength in
the critical magnetic field of an electron (Bc) as

B� ¼ B
Bc

; ð16Þ

where Bc ∼ 4.414 × 1013 G. A magnetic field strength is
said to be strongly quantizing if only the lowest Landau level
is filled i.e., ν ¼ ðnþ 1

2
− 1

2
q
jqj σzÞ ¼ 0 [15].

B. Outer and inner crust

The outer crust is assumed to be stratified into various
layers, which consist of a single nuclear species (single-
nucleus approximation [72]) surrounded by a relativistic-
degenerate electron gas. The nuclei make up a perfect
crystal arranged on a body-centered cubic (bcc) lattice. To
determine the properties of the outer crust in the presence
of magnetic field B, we minimize the Gibbs free energy
given by [73]

GðA; Z; PÞ ¼ MðA; ZÞ
A

þ 4

3

EL

A
þ 1

2

Ezp

A
þ Z
A
μe; ð17Þ

at a fixed pressure, where μe is the electron chemical
potential, EL and Ezp are the static-lattice and zero-point
energy [30,73]. The nuclear mass, MðA; ZÞ, is obtained
from either the experimental atomic mass evaluations [51]
or theoretical calculations such as the HFB framework. The
condition μn ¼ Mn, where μn is the chemical potential of
neutrons, makes the outer crust boundary where neutrons
start to drip out of the nuclei.

The inner crust comprises of clusters surrounded by
neutron gas and ultrarelativistic electron gas. Using the
CLDM based on the Wigner-Seitz (WS) cell approxima-
tion, the energy of the cluster is written as [30,32,33,74]

Eðrc; yp; ρ; ρnÞ ¼ fðuÞ½Ebulkðρb; ypÞ�
þ Ebulkðρg; 0Þ½1 − fðuÞ�
þ Esurf þ Ecurv þ Ecoul þ Ee: ð18Þ

Here rc is the radius (half-width in the case of planar
geometry) of the WS cell, yp is the proton fraction, and ρ
and ρn are the baryon density of charged nuclear com-
ponent, and density of neutron gas, respectively. The
cluster is characterized by density ρi and volume fraction
u as [38,74]

u ¼
� ðρ − ρgÞ=ðρi − ρgÞ for clusters;

ðρi − ρÞ=ðρi − ρgÞ for holes:
ð19Þ

The function fðuÞ is defined as

fðuÞ ¼
�
u for clusters;

1 − u for holes:
ð20Þ

We consider the three canonical geometries, namely
spherical, cylindrical, and planar, defined by a dimension-
ality parameter d ¼ 3, 2, 1, respectively. The surface and
curvature energies are written as [32,74],

Esurf þ Ecurv ¼
ud
rN

�
σs þ

ðd − 1Þσc
rN

�
; ð21Þ

where rN is the radius/half-width of the cluster/hole
and σs and σc are the dimension-independent surface
and curvature tension based on the TF calculations and
are defined as [75]

σs ¼ σ0
2pþ1 þ bs

y−pp þ bs þ ð1 − ypÞ−p
; ð22Þ

σc ¼ ασs
σ0;c
σ0

ðβ − ypÞ: ð23Þ

Here, the parameters (σ0, σc, bs, α, β, p) are optimized for a
given equation of state on the atomic mass evaluation 2020
data [51]. The Coulomb energy reads as [74]

Ecoul ¼ 2πðeypnirNÞ2uηdðuÞ; ð24Þ

where e is the elementary charge and ηdðuÞ is associated
with the pasta structures. The detailed formalism for the
CLDM approximation is given in [30,33,74].
For a given baryon density, the equilibrium composition

of a WS cell is obtained by minimizing the energy per unit
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volume using the variational method where the auxiliary
function to be minimized reads as [30,33]

F ¼ EWS

VWS
− μbρ: ð25Þ

Here, μb is the baryonic chemical potential. This results in a
set of four differential equations corresponding to mechani-
cal, dynamical, β equilibrium, and the nuclear virial
theorem [33,73]. The viral relation is used to solve the
value of rN numerically. To obtain the most stable pasta
structure at a given baryon density, we first calculate the
composition of a spherical nucleus. Then keeping this
composition fixed, we calculate the radius or half-width of
five different pasta structures; namely, the sphere, rod,
plate, tube, and bubble. The equilibrium phase is then the
one that minimizes the total energy of the system.

C. Neutron star observables

For a static star, the macroscopic properties such as M
and R of the neutron star can be found by solving the
following Tolmann-Oppenheimer-Volkoff (TOV) equa-
tions as [76,77]

dPðrÞ
dr

¼ −
½PðrÞ þ EðrÞ�½mðrÞ þ 4πr3PðrÞ�

r½r − 2mðrÞ� ; ð26Þ

and

dmðrÞ
dr

¼ 4πr2EðrÞ: ð27Þ

The M and R of the star can be calculated with boundary
conditions r ¼ 0; P ¼ Pc and r ¼ R; P ¼ P0 at a certain
central density.
The neutron star’s moment of inertia (MI) is calculated in

the Refs. [78–84]. The expression of I of uniformly rotating
neutron star with angular frequency ω is given as [85–87]

I ≈
8π

3

Z
R

0

drðE þ PÞe−ϕðrÞ
�
1 −

2mðrÞ
r

	
−1 ω̄

Ω
r4; ð28Þ

where ω̄ is the dragging angular velocity for a uniformly-
rotating star. The ω̄ satisfying the boundary conditions are

ω̄ðr ¼ RÞ ¼ 1 −
2I
R3

;
dω̄
dr

����
r¼0

¼ 0: ð29Þ

To calculate the accurate core/crust thickness or mass,
one needs to integrate the TOV Eqs. (26) and (27) from
R ¼ 0 to R ¼ Rcore, which depends on pressure as
PðR ¼ RcoreÞ ¼ Pt. We calculate the crustal MI using
Eq. (28) from the transition radius (Rc) to the surface of
the star (R), which is given by [88,89]

Icrust ≈
8π

3

Z
R

Rc

drðE þ PÞe−ϕðrÞ
�
1 −

2mðrÞ
r

	
−1 ω̄

Ω
r4: ð30Þ

The second Love number (k2) and its corresponding
dimensionless tidal deformability (Λ) are related with a
relation Λ ¼ ð2=3Þk2C5, where C is the compactness of the
star [90]. The details regarding the Love number and tidal
deformability can be found in Refs. [68,90,91].

III. RESULTS AND DISCUSSION

In this section we discuss the effect of the magnetic field
on the outer and inner crust of a neutron star and its
implications on crustal properties. The only input param-
eters in calculating the outer crust composition are the mass
of the nuclei and the magnetized electron gas EOS. In this
work, the experimental masses are taken from the most
recent mass evaluations AME2020 [51] whenever avail-
able, along with the data of 82Zn [92], 77−79Cu [93], and
151−157Yb [94]. For unknown masses, we use the theoretical
microscopic calculations of HFB24 and HFB26 [52],
which are highly-sophisticated mass models based on
accurately calibrated Brussels-Montreal functional for
unconventional regimes. In addition, we also use the most
recent FRDM [54] results for comparison.
The inner crust structure is determined using six E-RMF

parameter sets with varying saturation properties; namely,
G3 [95], IOPB-I [68], FSUGarnet [96], IUFSU [88],
IUFSU� [88], and SINPB [97]. In Refs. [30,31], we used
these parameter sets to study a neutron star’s crustal
properties without considering the magnetic field’s effect.
Here we assess the magnetic effects on the EOS and intend
to investigate the corresponding effect on neutron star’s
properties. We also provide the unified EOS at a given
magnetic field, considering the same strength throughout
the neutron star’s interior. We restrict the strength of the
magnetic field under B� ≤ 5000 to satisfy the assumptions
made in [98] to calculate the neutron star structure using
spherically symmetric treatment of the NS structure.

A. Outer crust

The equilibrium composition of the outer crust of a
nonaccreting magnetized neutron star is determined by
minimizing the Gibbs free energy given in Eq. (17) at a
fixed pressure. In principle, the nuclear masses should
modify in the presence of the magnetic field [19,40,43],
which might affect the outer crust composition. However, a
comprehensive mass table in the presence of a magnetic
field is not yet available. Moreover, Refs. [19,40,43]
suggest that a field strength > 1017 G is required to alter
the nuclear ground state significantly, whereas the highest
observed field strength at the surface of the magnetar is
20 × 1014 G for SGR 1806-20 [99] among 26 currently
known magnetars.1 Therefore we use the nuclear masses for
the field-free case in this study, keeping the strength of
magnetic field ∼1017 G.

1https://www.physics.mcgill.ca/pulsar/magnetar/main.html.
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In Fig. 1(a) we show the equilibrium composition
of the outer crust of a magnetized neutron star as a function
of the density at various strengths of the magnetic field
B� ¼ B=Bc. The nuclear masses are taken from experi-
mental AME2020 [51], and HFB26 [52] table. The outer

crust is stratified into various layers. For a weak magnetic
field (B� ∼ 10), which is relevant for the “pulsar” [100],
the composition remains similar to the field-free case.
For the field strength B� > 500, the sequence of nuclei
and the density at which they occur change significantly.

(a) (b)

FIG. 1. (a) The neutron number (N) and charge/proton number (Z) as a function of density in the outer crust of the magnetized neutron
star for various values of magnetic field strength B�. The unknown masses are taken from the HFB26 mass model. (b) The variation of
α ¼ N−Z

NþZ as a function of density.

FIG. 2. The sequence of nuclei in the outer crust of neutron star from low to high density at various magnetic field values. The most
recent experimental atomic mass evaluations AME2020 [51] are taken whenever available and microscopic calculations of HFB24 and
HFB26 [52] along with the FRDM(2012) mass tables [54] are used for the unknown mass.
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The Z ¼ 26 and N ¼ 30 (56Fe) plateau keeps extending
with the increasing magnetic field and extends up to
1.0706 × 10−5 fm−3 for the field strength B� ¼ 5000 as
compared to the 4.9729 × 10−9 fm−3 for the field free case.
The density at which the N ¼ 50 plateau appears (charac-
teristic of the outer crust at B� ¼ 0) increases monotoni-
cally with increasing field strength. This means that the
nuclei become more and more symmetric with increasing
magnetic fields at the same pressure. This is clear from
Fig. 1(b) where we plot the asymmetry parameter α ¼ N−Z

NþZ
as a function of density. The isospin asymmetry increases
almost linearly at a higher magnetic field whereas an
exponential behavior is observed for the field-free case.
However, the maximum α does not exceed ∼0.4 for field
strength as high as B� ¼ 5000. This behavior of the outer
crust composition can be attributed to the EOS of the
electron gas. With increasing field strength, the chemical
potential or Fermi energy of the electrons decreases, which
enforces a delay in the pressure where new nuclear species
start appearing.
The qualitative observations in Figs. 1(a) and 1(b) are

also supported by the nuclear mass model HFB24 [52], and
FRDM [54]. The detailed composition and equation of state
for these mass models, along with the unified magnetized
equation of states, are provided in the GitHub link.2 As the
deeper portion of the outer crust is determined using the
mass excess from the theoretical mass models, there exists a
model dependency of the sequence of the nuclear species
[30]. To investigate the model dependency in the presence
of the magnetic field, we show the sequence of nuclear
species in Fig. 2 along with the density of the surface (ρsurf ),
and neutron drip density (ρdrip) in Table I for the HFB26,
HFB24, and FRDM mass models at various magnetic field
strengths.
All the mass models predict approximately the same

sequence of nuclei for a given magnetic field strength,
except for the appearance/disappearance of certain nuclei.
This shows that the outer crust of a neutron star is
dominantly dependent on the structural effects (magic
number of neutrons at N ¼ 50, 82) of the nucleus rather
than the nuclear matter properties of the EOS with which
their masses have been determined. We show the symmetry
energy (J) and slope parameter (L) of the mass models in
Table II for reference. The outer crust preserves the N ¼ 50

and 80 plateau for the magnetic field as high as B� ¼ 5000.
When comparing different mass models, we observe that
the FRDM estimates a constant N ¼ 82 nuclei while the
HFB26 and HFB24 mass models deviate from it at higher
density. The FRDM mass model estimates the presence of
118Kr at the neutron drip density for all the magnetic field
strengths, while the HFB26 and HFB24 (having similar
symmetry energy) estimate the different isotopes of Sr for
B� up to 3000 and 178Te at higher magnetic field strength.
Furthermore, as we increase the magnetic field strength,

132Sn appears in place of 80Zn. There is also a possibility of
the existence of 130Cd at higher magnetic field strength,
although for a brief span. The odd number nucleus 121Y,
observed for the field-free case using the HFB24 mass
model, disappears at higher magnetic field strength. For a
particular value of the magnetic field, it is observed that the
transition of one nucleus to another happens at a lower
density for FRDM as compared to the HFB24, followed by
HFB26 in the regions closer to neutron drip density (where
the role of the theoretical mass model comes into play).
This trend can be attributed to their decreasing slope
parameter L.
With an increase in magnetic field strength, the surface

density of the outer crust of the neutron star increases as
high as seven times when compared with the B� ¼ 1000
and B� ¼ 5000 case due to the magnetic condensation.
This surface density is determined on the basis of the
experimental mass of 56Fe, and hence is the same for all
the mass models. The neutron drip density increases
exponentially with increasing magnetic field and becomes
three times as high compared to B� ¼ 1000. However, the
neutron drip density exhibits an oscillatory quantum nature
at a lower magnetic field arising from the Landau quan-
tization of electrons resulting in the increase or decrease
of the neutron drip density. Similar behavior was demon-
strated in [103], which suggests model independency of
these oscillations, which occurs for approximately B� <
1300. For higher magnetic field strengths, the electron EOS

TABLE I. The surface density of the outer crust (ρsurf ) and neutron drip (ρdrip) for the magnetic fields and mass models considered.

B� 1000 2000 3000 4000 5000

ρ (fm−3) HFB26 HFB24 FRDM HFB26 HFB24 FRDM HFB26 HFB24 FRDM HFB26 HFB24 FRDM HFB26 HFB24 FRDM

ρsurf × ð10−6Þ 1.0554 1.0544 1.0544 2.4708 2.4708 2.4708 4.0537 4.0537 4.0537 5.7897 5.7897 5.7897 7.5783 7.5783 7.5783
ρdrip × ð10−4Þ 2.9791 2.9207 2.9791 3.0387 2.9791 2.9791 4.6057 4.5154 4.5154 6.3226 6.3226 6.0771 7.9545 7.9545 7.6456

TABLE II. Symmetry energy (J) and slope parameter (L)
coefficient for the HFB26, HFB24, and FRDM mass models.

HFB24 [101] HFB26 [101] FRDM [102]

J (MeV) 30.0 30.0 32.3
L (MeV) 37.5 46.4 53.52https://github.com/hcdas/Unified_mf_eos.
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becomes strongly quantizing in the whole outer crust. A
slight variation in the neutron drip density for various mass
models at a given magnetic field strength is the conse-
quence of the drip nuclei which these models predict. More
neutron-rich (less bound) nuclei can sustain at lower
pressure for a higher magnetic field. The asymmetry at
the neutron drip density thus keeps increasing with increase
in magnetic field strength.
The transition pressure at the neutron drip point is more

important than the transition density, as the former plays a
direct role in calculating the mass of the crust [30,101]. We
plot the transition pressure for the various mass models:
HFB14, HFB24, HFB26, and FRDM in Fig. 3 as a function
of magnetic field strength. It increases linearly for a
magnetic field greater than ∼1300, which is the strongly
quantizing regime (only the lowest Landau level ν ¼ 0 is
filled). Transition pressure increases almost six times for
B� ¼ 5000 as compared to the field-free case. A higher
neutron drip transition pressure implies that the crustal
mass of the outer crust will be larger for greater strength of
the magnetic field. Furthermore, the neutron drip pressure
as a function of magnetic field strength seems to be model-
independent. Chamel et al. [41] determined an analytic
expression for the outer crust transition pressure (Pdrip) in
the strongly quantizing regime (B� > 1300). Based on the
evident model independency of the Pdrip in Fig. 3, the Pdrip

as a function of the magnetic field in both quantizing and
nonquantizing regime can be written as

Pdrip ¼ −1.81110−14 × B�3 þ 1.84910−10 × B�2

þ 3.57810−8 × B� þ 0.00049; ð31Þ

where the coefficients have relevant dimensions in the form
of MeV fm−3.

Other essential aspects of the outer crust of a neutron star
are its mechanical responses and melting temperature,
which plays a prime role in describing properties such
as crust failure [8] and dynamics of the crust [38]. The
mechanical properties are determined using its shear stress
which for a cold neutron star can be written following
Monte Carlo simulation [104] as

μ ¼ 0.1106

�
4π

3

�
1=3

A−4=3ρ4=3i ð1 − XnÞ4=3ðZeÞ2; ð32Þ

where ρi is the density of nuclei and Xn is the fraction of
neutrons not confined to the nuclei. The melting or
crystalline temperature, which defines the temperature at
which the crystalline lattice converts to the gas of ions, is
written in the one-component plasma (OCP) approximation
as [38,105]

Tm ¼ Z2e2

kbΓm

�
4π

3

ρi
A

�
1=3

: ð33Þ

Here, Γm ¼ 175 is the Coulomb coupling parameter at
the melting temperature. We show the variation of shear
modulus (μ) and melting temperature (Tm) in the outer crust
in Fig. 4 at various magnetic field strengths. As magnetic
field strength increases, there is a substantial enhancement
of both the shear modulus and the melting temperature. The
shear modulus increases up to four times for the field
strength B� ¼ 5000 when compared to the field-free case.
The melting temperature becomes as high as 0.6 MeV
as opposed to ∼0.25 MeV (0.01 MeV ¼ 1.16 × 108 K)
resulting in considerable increment. The increase in the μ
and Tm is a consequence of the increase in the neutron drip
density with a magnetic field that allows more neutron-rich
nuclei to exist at lower pressure and density. The results

FIG. 3. Transition pressure (Pdrip) at the neutron drip density in
the crust of neutron star as a function of magnetic field strength.

FIG. 4. The variation of shear modulus μ and crystallization
temperature Tm in the outer crust of a neutron star at various
magnetic field strengths. The theoretical mass model is HFB26.
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suggest that magnetic field might have profound implica-
tions in the transport, cooling, and magnetorotational
evolution of a neutron star as the outer crust structure
principally drives them [105].
In Fig. 5 we show the EOS of the outer crust of a cold

nonaccreting neutron star at various magnetic field strengths
using the HFB26 mass model. The EOS is significantly
affected in the outer crust’s shallower regions, where only a
few Landau levels of electrons are filled. The density of the
outer crust remains unchanged for a wide range of pressure,
making the matter almost incompressible in the layers
adjacent to the surface of the star. The composition in this
region is essentially determined by the experimental evalu-
ation and remains model-independent. As density grows, the
EOS becomes similar to the field-free case due to the rapidly
filling of the Landau levels. The discontinuity in the EOS for
weaker field strengths signifies that the lowest Landau level
is fully occupied.

B. Inner crust

The calculation of the inner crust in the presence of a
magnetic field is known to be tricky in the literature.
Quantum oscillations possess various challenges to numeri-
cal solutions, especially in models where the energy minima
becomes flat [39,44]. Furthermore, the small energy differ-
ence between various possible shapes (pasta structures) adds
to the difficulty [31]. Therefore, we extend the simplistic
CLDM formalism [30,32,33] of the inner crust to the finite
magnetic field strength.We consider theWScell to consist of
a nuclear cluster in a BCC crystal surrounded by an ultra-
relativistic electron gas along with the free neutron gas. We
do not take the effect of the anomalous magnetic moment
(AMM) in our calculations. The AMM for electrons is
insignificant in comparison to the nucleon mass [70],

whereas for baryons it is observed that the AMM becomes
important only for B ≥ 1018 G [47,49,106,107]. In addition,
using the one-loop fermion self-energy, Ferrer et al. [108]
suggests that the AMM of charged particles do not affect the
EOS significantly. However, the AMM is an important factor
for higher magnetic field strengths and play a significant role
in phenomena such as axion production and neutrino-
antineutrino pair emission [109,110].
For the calculation of inner crust composition, We use

six E-RMF parameter sets for which the value of their
symmetry energy and slope parameter are given in Table III
at saturation density and subsaturation density (0.05 fm−3),
relevant for the inner crust. In Fig. 6, we show the variation
of the binding energy ðEAÞ and pressure as a function of
baryon density (ρb) for various values of isospin-asymme-
try at different magnetic field strengths which is shown as a
color bar. In addition, we also show the variation of the
density-dependent symmetry energy. These calculations
are performed for the parameter set G3 [95]. The qualitative
behavior of other parameters remains the same, and their
behavior for the unmagnetized case has been well-
documented in the literature. It is clear from Fig. 6 that
hadronic EOS is not significantly affected for B < 1017 G,
which is the case of this study. The small changes appear in
the subsaturation density region, which is essential for the
neutron star crust. At ultrastrong magnetic field strengths,
the binding energy increases, making the system more and
more bound. The variation is more pronounced for sym-
metric matter as more charged particles are in the system.
The kinks on the pressure (especially at low density) appear
due to the successive filling of Landau levels, which
disappear at high densities because of the filling of more
and more Landau levels. This behavior is analogous to free
proton gas in a magnetic field [71].
The symmetry energy also does not change much for

B < 1017 G and increases for very strong magnetic field
strengths. Other nuclear matter properties, such as higher-
order symmetry energy and incompressibility derivatives,
also show no significant changes for B < 1017 G. Therefore,
the changes in the properties of the neutron star crust for
the magnetic field case are predominantly due to the changes
in electronic EOS, which in turn, changes the equilibrium
compositions through the condition of β equilibrium.

FIG. 5. Equation of state of the outer crust of a neutron star at
various magnetic field strengths. The theoretical mass model is
taken as HFB26 with the experimental evaluation of AME2020.

TABLE III. Symmetry energy (J) and slope parameter (L)
coefficient for the G3 [95], IOPB-I [68], FSUGarnet [96], IUFSU
[88], IUFSU� [88], and SINPB [97] parameter sets at saturation
density (ρ0) and subsaturation density (0.05 fm−3).

FSUGarnet IUFSU IUFSU* G3 IOPB-I SINPB

Jρ0 (MeV) 30.95 31.30 29.85 31.84 33.30 33.95
J0.05 (MeV) 18.07 17.8 15.73 15.66 15.6 14.98
Lρ0 (MeV) 51.04 47.21 51.50 49.31 63.58 71.55
L0.05 (MeV) 32.1058 33.85 32.26 36.781 37.2 36.7
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However, we include the magnetic field on the hadronic EOS
for the consistent and realistic calculations of various observ-
ables, which is absent in many crust calculations in the
literature [48]. Further, since the nuclear saturation energy
does not change significantly until B ∼ 1018 G [106], we use
the field free value of surface energy parameters [Eqs. (22)
and (23)]. These fits play a crucial role in the inner crust
calculations using the CLDM formalism. For details on the
surface energy fits, please see [30,30,33].
Out of various bulk properties of nuclear matter, sym-

metry energy predominantly governs the properties of
asymmetric systems, which include phase transition of
asymmetric nuclear matter, crustal properties of the neutron
star, neutron skin thickness, etc. [30,31,111,112]. In the
context of neutron star crust, where the typical baryon
density is in the subsaturation region, the uncertainties in
the symmetry energy account for the variation in the crustal
properties. The symmetry energy is not unique to a given
E-RMF parameter set and is mostly governed by the cross-
coupling of ω and ρ meson. Additionally, the behavior of
pure neutron matter (PNM) in the low-density regime is a
crucial aspect of crustal properties, as the free neutron gas
in the inner crust impacts the crust composition. The cross-
coupling of theω − ρmeson influences the PNM properties
in the subsaturation density region [95], making it the most
important factor determining the crust structure of a
neutron star within the E-RMF framework. The E-RMF
parameter sets used here are in harmony with the results
obtained by various microscopic calculations for the

PNM [113,114]. Furthermore, the six parameter sets differ
in the way they behave in the low-density regime [31] and,
therefore, provide us with the flexibility to investigate the
model dependency of our result and modification, if any, as
compared to the zero-magnetic field strength.
In Fig. 7 we show the distribution of the total number of

nucleons in the cluster and the charge number as a function

FIG. 6. The variation of the binding energy (E=A), pressure (P) and symmetry energy (J) of homogeneous nuclear matter as a function
of baryon density for various values of isospin asymmetry α ¼ ρn−ρp

ρnþρp
at various magnetic field strengths (shown in the color bar). The

parameter set taken is G3 [95].

FIG. 7. The distribution of the number of nucleons (A) in the
cluster and charge number (Z) as a function of density in the inner
crust of cold nonaccreting neutron star.
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of density in the inner crust of a magnetized neutron star
employing the CLDM formalism. For a weak magnetic
field strength, the atomic number distribution is similar to
the field-free case (Fig. 4 [30]) as a large number of Landau
levels are filled for electrons as well as protons. As the
magnetic field strength increases, the atomic number
distribution shows an oscillatory pattern due to the suc-
cessive filling of electron Landau levels, also known as the
de Haas-van Alphen effect [115]. For a high magnetic field
strength (B� ¼ 5000), which becomes strongly quantizing
for electrons, the oscillations typically represent the filling
of ν ¼ 0, 1, 2 Landau levels of electrons. However, the
small oscillations in between the larger ones occur due to
the filling of Landau levels of protons. Such behavior is
similar to one obtained in Lima et al. [49] for the Thomas-
Fermi calculations (see Figs. 8 and 12 of Ref. [49]).
Furthermore, the effect of symmetry energy is also

evident. The oscillations become broader for the IOPB-I
parameter set with the least symmetry energy at subsatu-
ration regions compared to the FSUGarnet with the highest
symmetry energy. The difference occurs as nuclear matter
EOS is affected due to the variation in electron chemical
potential depending on corresponding symmetry energy.
The number of nucleons in the cluster does not change
significantly for the magnetic field as high as B� ¼ 5000 or
B ¼ 2.207 × 1017 G. However, the oscillatory behavior is
similar to the distribution of atomic number.
The average cluster density and the asymmetry (α) in the

cluster are shown in Fig. 8 for various strengths of magnetic
field. The average cluster density decreases while the
asymmetry increases monotonically with inner crust den-
sity for all the magnetic field strengths, making the clusters
more and more dilute and neutron rich. The magnetic field
seems to have a feeble impact on the cluster density and its

asymmetry, as it does not change much except for the
quantum oscillations arising due to the filling of Landau
levels. A closer analysis, however, reveals that in the
shallower regions (ρ0 ≤ 0.01 fm−3) of the inner crust,
which is significantly affected due to the magnetic field
(only ν ¼ 0 level is filled), the density of the cluster is larger
for the higher magnetic field strength. The cluster becomes
more symmetric with an increasing magnetic field in this
density range. These results agreewith Ref. [44], which uses
the extended Thomas-Fermi method taking the magnetic
field effects only on the electrons. For ρ > 0.01 fm−3, the
behavior of the cluster density and its asymmetry becomes
comparable to the field-free case. The cluster cell size rc does
not change much for the field strengthB� ≤ 5000. However,
in the shallower region, it reduces as compared to the field-
free case. Furthermore, the equilibrium composition of the
inner crust changes significantly at very high magnetic field
strength, i.e., B� ≥ 10000. The presence of such a high
magnetic field in the crust of magnetars has not yet been
observed [5,116,117].
From the above analysis, it is clear that the magnetic

field causes quantum oscillations in the inner crust compo-
sition, where electrons play more crucial role as compared
to the baryons. For baryons, the critical magnetic field

[BP
c ¼ ðMp

Me
Þ2Be

c ¼ 1.487 × 1020 G] is substantially greater
than that of electrons. Since the magnetic field considered in
this work and those observed in the neutron star’s crust is
much lower than the BP

c , it does not significantly affect
baryon properties. We show the proton density, which is
equal to electron density in the inner crust of a neutron star in
Fig. 9 along with the number of Landau levels filled by
electrons. The proton density increases monotonically with
the inner crust density. The equilibrium proton density at a
given density in the inner crust depends on the parameter set

FIG. 8. The average cluster density (ρ0) and asymmetry in the
cluster as a function of density in the inner crust for various
values of magnetic field strength.

FIG. 9. Left: Proton or electron density as a function of density
in the inner crust. Right: The number of filled Landau levels of
electrons at a given proton or electron density.
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used. The FSUGarnet with the largest symmetry energy in
the subsaturation region estimates a higher proton density
than the G3 and IOPB-I sets, with lower-symmetry energy at
a particular magnetic field. However, the fluctuations in the
proton density are guided by the filling of electron Landau
levels. The discontinuity in the proton density arises where
the filling of the subsequent Landau level takes place. This
discontinuity occurs for the same proton density for all the
parameter sets but at different inner crust densities. We
further observe in our calculations that the density of neutron
gas is not significantly affected by the presence of the
magnetic field.
The EOS of the inner crust at various magnetic fields for

the E-RMF parameter sets FSUGarnet, G3, and IOPB-I are
shown in Fig. 10. We also show the EOS for the field-free
case for comparison. It is seen that the magnetic field
effects become prominent in the lower-density regions of
the inner crust. As density approaches the crust-core
transition density, magnetic field effects vanish as several
Landau levels of electron and protons are filled, and EOSs
imitates the field-free case. The inner crust experiences
higher pressure at lower density for the larger magnetic
field strength. The EOS preserves its dependence on the
symmetry energy as for a given magnetic field strength,
FSUGarnet shows the stiffest EOS followed by the G3 and
IOPB-I parameter sets, a trend observed for the field free
case [30]. We also compare the results of EOS with
switching on/off the magnetic field effects on the baryons
and observe that the electrons play a far critical role in the
inner crust calculations than the protons. Furthermore, the
above calculations are also performed for the IUFSU,
IUFSU�, and SINPB parameter sets, and it is seen that
the qualitative results remain the same.
It has been previously shown and verified in our

calculations that with an increase in magnetic field strength,

the system’s free energy decreases due to the Landau
quantization [49,70]. Therefore, it may impact the appear-
ance of nonspherical shapes in the higher-density regime
of the inner crust. To investigate this, we show the onset
density of different pasta structures in the inner crust of a
magnetized neutron star in Table IV for various mag-
netic field strengths. The density at which different pasta
structures appear does not change much for B� ¼ 1000. For
B� > 1000, the onset densities change but is not signifi-
cantly except for the crust-core transition density. These
changes or small fluctuations in the onset density for
different magnetic field strengths are not monotonic and
essentially depend on the magnetic field strength and EOS.
These results align with the self-consistent Thomas-Fermi
approximation of Bao et al. [47]. The substantial changes
can only be seen for magnetic field strength as high as

TABLE IV. The density (fm−3) of the onset of pasta structures
in the inner crust of magnetized neutron star using the G3 [95],
IOPB-I [68], FSUGarnet [96], IUFSU [88], IUFSU� [88], and
SINPB [97] parameter sets. Homogeneous represents the crust-
core transition density.

Density (fm−3)

B* Rod Slab Tube Bubble Homogeneous

FSUGarnet 10000 0.0443 0.0583 0.0812 0.0857 0.0913
5000 0.0453 0.0590 0.0811 0.0864 0.0925
3000 0.0456 0.0591 0.0811 0.0864 0.0926
1000 0.0456 0.0591 0.0810 0.0865 0.0926

0 0.0456 0.0590 0.0810 0.0865 0.0918

IUFSU 10000 0.0483 0.0634 0.0850 0.0896 0.0945
5000 0.0497 0.0644 0.0846 0.0902 0.0960
3000 0.0498 0.0643 0.0847 0.0900 0.0966
1000 0.0500 0.0642 0.0847 0.0901 0.0965

0 0.0499 0.0641 0.0847 0.0901 0.0965

IUFSU* 10000 0.0529 0.0632 0.0779 0.0824 0.0855
5000 0.0526 0.0647 0.0807 0.0837 0.0855
3000 0.0522 0.0652 0.0804 0.0836 0.0856
1000 0.0526 0.0650 0.0807 0.0836 0.0858

0 0.0525 0.0652 0.0807 0.0836 0.0858

G3 10000 0.0564 0.0631 0.0796 0.0834 0.0885
5000 0.0559 0.0648 0.0833 0.0858 0.0896
3000 0.0546 0.0657 0.0825 0.0854 0.0894
1000 0.0549 0.0655 0.0830 0.0853 0.0889

0 0.0551 0.0655 0.0830 0.0853 0.0889

IOPB-I 10000 0.0548 0.0615 0.0712
5000 0.0545 0.0617 0.0743
3000 0.0542 0.0620 0.0737
1000 0.0541 0.0619 0.0736

0 0.0542 0.0618 0.0735

SINPB 10000 0.0499 0.0573 0.0600
5000 0.0479 0.0542 0.0623
3000 0.0488 0.0545 0.0620
1000 0.0490 0.0542 0.0613

0 0.0490 0.0543 0.0611

FIG. 10. Equation of state of the inner crust of a magne-
tized neutron star using IOPB-I, G3, and FSUGarnet E-RMF
parameter sets.
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B� ¼ 10000 ¼ 4.414 × 1017 G. For B� ¼ 10000, and the
crust-core transition density decreases compared to the
field-free case as the free energy decreases faster at higher
density for higher magnetic fields. We do not see any
change in the number of pasta structures for a given E-RMF
parameter set as compared to the field-free case, even for
the magnetic field strength of B� ¼ 10000.
The feeble changes in the pasta onset density and

considerable change in the pressure because of the

magnetic field effect in the inner crust prompted us to
investigate the modifications which might occur in the mass
and the thickness of pasta layers. The mass and thickness
of the pasta are sensitively affected by the pressure and
chemical potential as given by [118]

ΔRp

ΔRc
≈
μc − μp
μc − μ0

; ð34Þ

(a)

(b)

FIG. 11. (a) The relative mass and (b) thickness of the different layers of pasta structures at various magnetic field strengths for
FSUGarnet, IUFSU, IUFSU�, G3, IOPB-I, and SINPB E-RMF parameter sets. The left scale shows the absolute values, while the
secondary right scale represents the percentage change with respect to the field-free case.
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ΔMp

ΔMc
≈ 1 −

Pp

Pc
: ð35Þ

Here, μc, μp, and μ0 are the baryon chemical potential at
crust-core transition, the location at which the pasta
structure starts, and at the surface of the star. Pp and Pc

are the pressure at the bottom of the pasta layer and at the
crust-core transition density.
We show the relative mass and thickness of different

pasta structures, namely; rods, slabs, tubes, and bubbles, in
Figs. 11(a) and 11(b) for the FSUGarnet, IUFSU, IUFSU�,
G3, IOPB-I, and SINPB parameter sets. We take the highest
field strength B� ¼ 10000 to investigate the thickness and
mass for the upper limit. The E-RMF sets are plotted with
increasing values of symmetry energy in the subsaturation
density regions, with FSUGarnet having the highest sym-
metry energy and SINB the least. The relative mass and
thickness of the different pasta layers are sensitive to a)
the strength of the magnetic field and b) the EOS used. The
changes with respect to the field-free case are similar to the
mass and thickness of a particular pasta layer at a particular
strength of the magnetic field. It is apparent that the relative
mass and thickness of pasta layers fluctuate with the
magnetic field and do not behave in a particular fashion.
One can see that deviations as high as (25–30)%with respect
to the field-free case can be seen for magnetic field strength
B� ¼ 10000 while it remains ∼ð10–15Þ% for B� ¼ 5000.
There is an interesting behavior of EOS on the relative
thickness and mass of pasta layers. The gross trend of

fluctuations for a particular pasta layer changes when we
compare different E-RMF calculations. The trend which is
shown by E-RMF parameter sets having larger symmetry
energy in the subsaturation density regions; namely,
FSUGarnet and IUFSU, get reversed for higher magnetic
field strength in comparison to IUFSU�, G3, IOPB-I, and
SINPB having comparatively lower symmetry energy. The
large fluctuations have a profound implication for a neutron
star cooling period, where the magnetic field’s decay occurs.
The inner crust structure, therefore, can change considerably
with the time period and magnetic field strength.
One of the significant characteristics of the inner crust is

its shear modulus and shear speed which plays a crucial
role in the crustal physics of neutron stars. We calculate
these quantities using the E-RMF forces considered in the
above analysis using the same method as in Ref. [30] and
observe that they also experience typical fluctuation due to
the Landau quantization. Considering the pasta phases to
have no shear modulus as prescribed in [31], we calculate
the frequency of the fundamental torsional oscillation mode
using the approximate solution of crustal shear perturbation
equation as [119–121]

ω2
0 ≈

e2νV2
sðl − 1Þðlþ 2Þ
2RRc

; ð36Þ

where e2ν ¼ 1 − 2M=R, R is the radius of the star, Rc is the
radius of the crust and l is the angular “quantum” number.
In Fig. 12, we show the frequency variation of fundamental

FIG. 12. Frequency of fundamental torsional oscillation mode (l ¼ 2) in the crust of a magnetized neutron star for maximum mass at
various magnetic field strengths.
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torsional oscillation mode (l ¼ 2) in the crust of a mag-
netized neutron star using various E-RMF forces. We
consider no entrainment effects in these calculations;
therefore, these estimates can be considered lower bound
on the fundamental torsional frequency [119]. Further, the
shear modulus is calculated at the boundary of nonspherical
structures in the inner crust. Out of all the forces, only
FSUGarnet and IUFSU satisfy the possible candidate for
the fundamental mode of QPOs; 18 Hz and 26 Hz [119].
The fundamental frequency also oscillates like other crustal
properties of neutron stars with changing magnetic fields.
For E-RMF force having a higher value of symmetry
energy in the subsaturation region, the frequency tends to
increase with the magnetic field, where it increases as high
as 8% as compared to the field-free case. Parameter sets
IUFSU�, G3, and IOPB-I also estimate an increase in
frequency; however, a sharp dip for field strength higher
than B� > 4000 can be seen for these sets. The frequency
varies as low as 15% for the IOPB-I set. For SINPB having
the least symmetry energy, more prominent fluctuations are
observed. Therefore, the torsional oscillation mode fre-
quency is sensitive to both the magnetic field strength and
EOS (symmetry energy of the EOS in the subsaturtion
region). These changes are significant in context to QPO,
which are major asteroseismological sources to constrain
neutron star crust properties such as pasta structures.
It may be noted that we do not consider possible

deformation of the Wigner-Seitz cell due to the presence
of magnetic field in this work. In literature, such attempts
have are primarily based on Thomas-Fermi approximation
with the modification that deformation of the cylindrical
nature is introduced in the electronic distribution with
spherically symmetric or deformed WS cell [122,123]. In
such studies, a predetermined nature of deformation of the
WS cell and the electronic gas distribution (cylindrical,
prolate, etc.) is necessary, which might not be true always.
The highly sophisticated molecular dynamics simulations
of the present day can be used for such analysis. Moreover,
solving Poisson’s equations in the cylindrical coordinate
need a lot of approximation to handle the boundary value
problems, such as using only the lowest Landau level, etc.,
and require a lot of computational power [50].

C. Unified EOS and neutron star observables

For completeness, we model a magnetized neutron star
in a unified way from the surface to the core under the
condition of β equilibrium and charge neutrality. The core
consists of neutrons, protons, electrons, and muons. The
outer and inner crust EOS have been defined in the earlier
section, whereas the EOS of the core is estimated using the
same E-RMF set for which the inner crust is calculated.
This procedure ensures the consistency between the crust
and the core and helps to estimate the crustal parameters
better. In general, the density [124], or chemical potential
[117] dependent magnetic field variations, are used for the

neutron star calculation in literature. However, we approxi-
mate the samemagnetic field strength throughout the neutron
star to calculate the properties such as outer and inner crust
thickness, mass, etc. This approximation is taken for the
simplicity of the calculations. It can be considered equivalent
to the density/chemical potential dependent magnetic field
profiles where the central field is quite low [98,125]. In such
circumstances, the EOS does not deviate much from the
field-free case, and the magnetic field almost becomes
constant for most parts of NS [98,125].
We show the unified EOS using the FSUGarnet, G3, and

IOPB-I parameters sets for a magnetized neutron star in
Fig. 13. The magnetic field effect become profound in the
outer crust and shallow regions of the inner crust, whereas it
vanishes in the core. The reason can be attributed to more
Landau level filling at a large density, which makes the
EOS similar to the field-free case. A significant variation in
the outer and inner crust EOS with changing magnetic
fields means that the crust structure will be affected
significantly, consequently impacting various microscopic
properties of a neutron star such as elastic properties,
cooling, bursts, etc. These conclusions remain valid even
for more realistic magnetic field profiles.
Finally, we calculate the global properties, such as mass,

radius, etc., of a magnetized neutron star at a particular
magnetic field using the TOV Eqs. (26) and (27) consid-
ering the star to be spherically symmetric. This assumption
remains valid for the strength of the magnetic field
considered in this work [98]. We observe that the maximum
mass and radius of the star do not change significantly up
to B� ¼ 5000 as the core EOS remains almost unaffected.
The E-RMF parameter sets considered in this work
reproduce the maximum mass and radius in agreement
with the (M ¼ 2.01þ0.04

−0.04M⊙) and (M ¼ 2.14þ0.10
−0.09 þM⊙)

limit [126,127]. To infer the effect of magnetic field on the
crust mass and thickness, we show neutron star properties

FIG. 13. Unified Equation of state (EOS) for a magnetized
neutron star at various magnetic field strengths.
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for canonical mass (M ¼ 1.4M⊙), corresponding radius
(R1.4), the radius of the outer crust (Roc), the radius of the
total crust (Rc), the mass of the outer crust (Moc), the mass
of the total crust (Mcrust), normalized maximum MI (I1.4),
the fractional moment of inertia for the outer crust
(Ioc=I1.4), the fractional moment of inertia for the total
crust (Ic=I1.4), second Love number (k21.4), and dimen-
sionless tidal deformability (Λ1.4) for various EOSs at
various magnetic field strengths in Table V. Although the
mass of the total crust remains almost similar with changing
magnetic field strength, the outer crust mass increases
∼5–6 times as compared to the field-free case. However,
the thickness of the outer crust does not change much with
magnetic field strength. The fractional crustal moment of
inertia of the total crust also remains unaffected. In contrast,
the outer crust moment of inertia increases ∼7–8 times
compared to the field-free case. The insensitiveness of the
total crust mass, thickness, and crustal moment of inertia
can be understood from Table IVand Fig. 10, which shows
a minute change in crust-core transition density and
pressure (and consequently chemical potential) which
decides the mass and thickness of the crust.

IV. CONCLUSION

In summary, we investigate the impact of the magnetic
field of the order of ∼1017 G on the neutron star crust and
the associated phenomena. We minimize the Gibbs free
energy for the outer crust using the nuclear mass from

the atomic mass evaluations AME2020 clubbed with the
theoretical mass models of HFB, producing the up-to-date
sequence of nuclei in the magnetized outer crust of a neutron
star. The outer crust structure predominantly depends on the
structural effects in atomic nuclei and becomes increasingly
symmetric as we increase the magnetic field strength. In the
presence of a magnetic field, more neutron-rich (less bound
nuclei) can sustain at lower pressure in the outer crust due to
the magnetic field. The surface density, neutron drip density,
and neutron drip pressure increase substantially with an
increase in the strength of the magnetic field.
To calculate the equilibrium composition of the inner

crust in the presence of the magnetic field, we use the
CLDM formalism for the first time using the E-RMF
framework for nuclear interaction. The equilibrium com-
position of the inner crust shows typical quantum fluctua-
tions, which become prominent at a high magnetic field. In
the shallow regions of the inner crust, the nuclear cluster
becomes more dense and symmetric with an increase in
magnetic field strength. The EOS of the electron plays the
predominant role in infusing the magnetic field effects on
inner crust EOS. In contrast, the symmetry energy of
the nuclear matter EOS dictates the in situ characteristics.
The inner crust calculations using the CLDM formalism
agree with the available self-consistent Thomas-Fermi
calculations.
We further investigate the possible change in the

pasta structures in the presence of the magnetic field. The
onset density of the various pasta structures fluctuates with

TABLE V. The neutron star properties for canonical mass (M ¼ 1.4M⊙), corresponding radius (R1.4), radius of the outer crust (Roc),
radius of the total crust (Rc), mass of the outer crust (Moc), mass of the total crust (Mcrust), normalized maximum MI (I1.4), fractional
moment of inertia for outer crust (Ioc=I1.4), fractional moment of inertia for total crust (Ic=I1.4), second Love number (k2;1.4) and
dimensionless tidal deformability (Λmax) for various EOSs at various magnetic field strength.

Parameter sets B* R1.4 (km) Roc (km) Rc (km) Moc (M⊙) Mc (M⊙) I1.4 Ioc=I1.4 Ic=I1.4 k2;1.4 λ1.4

FSUGarnet 0 13.1935 0.5291 1.35600 0.00005 0.02473 0.34297 0.00007 0.03630 0.08891 629.131
2000 12.9951 0.5269 1.20570 0.00011 0.02391 0.35245 0.00017 0.03456 0.09480 619.817
5000 12.9881 0.5274 1.19900 0.00028 0.02424 0.35292 0.00044 0.03506 0.09514 620.265

IUFSU 0 12.6075 0.4728 1.17940 0.00004 0.02392 0.35138 0.00005 0.03507 0.08704 488.953
2000 12.6153 0.4903 1.16400 0.00010 0.02563 0.35271 0.00015 0.03744 0.08844 498.451
5000 12.6092 0.4906 1.15680 0.00025 0.02574 0.35314 0.00039 0.03764 0.08873 498.730

IUFSU� 0 12.9221 0.5025 1.23540 0.00004 0.02563 0.34704 0.00006 0.03780 0.08843 563.083
2000 12.8100 0.5089 1.12460 0.00010 0.02605 0.35308 0.00016 0.03813 0.09230 561.581
5000 12.8039 0.5098 1.12070 0.00027 0.02658 0.35350 0.00042 0.03891 0.09259 562.141

G3 0 12.6278 0.4753 1.26130 0.00004 0.03376 0.34453 0.00005 0.05035 0.08128 460.236
2000 12.4931 0.4785 1.15580 0.00009 0.03257 0.35175 0.00014 0.04810 0.08546 458.863
5000 12.4864 0.4800 1.15200 0.00024 0.03313 0.35220 0.00038 0.04895 0.08576 459.176

IOPB-I 0 13.3316 0.5420 1.35420 0.00005 0.04004 0.34420 0.00007 0.05862 0.09244 686.640
2000 13.3117 0.5580 1.33620 0.00012 0.03954 0.34491 0.00019 0.05791 0.09281 684.730
5000 13.2987 0.5583 1.32950 0.00031 0.04055 0.34567 0.00050 0.05938 0.09335 685.145

SINPB 0 13.1576 0.5250 1.18490 0.00005 0.03053 0.34245 0.00006 0.04608 0.08814 612.943
2000 13.2057 0.5481 1.23350 0.00012 0.02914 0.33945 0.00019 0.04401 0.08605 609.610
5000 13.1297 0.5423 1.16630 0.00030 0.03024 0.34348 0.00048 0.04565 0.08865 610.223
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the magnetic field strength. It results in substantial mod-
ifications in their mass and thickness, which ranges as
high as 50%. The frequency of the fundamental torsional
oscillation mode is also investigated, and an increase/
decrease of ∼5% is seen depending upon the EOS and
the magnetic field strength.
Finally, we construct the unified EOS of a magnetized

neutron star by estimating the core EOS using the same
E-RMF parameter as for the inner crust, ensuring consis-
tency between both layers. The magnetic field impacts the
outer crust and the shallower regions of the inner crust as
the EOS of the electron gas becomes strongly quantizing
in this region. As density increases, a large number of
Landau level fillings lead to the core EOS imitating the
field-free EOS. We then calculate the global properties
for a canonical mass star, as the maximum mass does not
change for the considered magnetic field. The outer crust
mass and its fractional crustal moment of inertia increase

substantially with an increasing magnetic field. However,
the total crust mass and thickness remain immune to the
changing magnetic field strength.
Although the present work considers magnetized neu-

tron star crust to be composed of cold-catalyzed matter, it is
unlikely for the crust, especially the outer crust, to be in
complete thermodynamic equilibrium during its formation.
Therefore, the structure of the neutron star crust in the
presence of a magnetic field and some finite temperature
becomes essential. This improvement deserves more inves-
tigation and will be carried out in future work to understand
the neutron star structure holistically.
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