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Dwarf galaxies are small, dark-matter-dominated galaxies, some of which are embedded within the
Milky Way. Their lack of baryonic matter (e.g., stars and gas) makes them perfect test beds for probing the
properties of dark matter—understanding the spatial dark matter distribution in these systems can be used to
constrain microphysical dark matter interactions that influence the formation and evolution of structures in
our Universe. We introduce a new method that leverages simulation-based inference and graph-based
machine learning in order to infer the dark matter density profiles of dwarf galaxies from observable
kinematics of stars gravitationally bound to these systems. Our approach aims to address some of the
limitations of established methods based on dynamical Jeans modeling. We show that this novel method can
place stronger constraints on dark matter profiles and, consequently, has the potential to weigh in on some of
the ongoing puzzles associated with the small-scale structure of dark matter halos, such as the core-cusp
discrepancy.
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I. INTRODUCTION

Cosmological structure formation is known to proceed
hierarchically—smaller structures seed the formation of
larger structures [1]. Dark matter (DM) plays an outsized
role in this process, acting as a “scaffolding” on which
structure evolution plays out. At the same time, the precise
mechanism of structure formation is keenly sensitive to the
microphysical properties of DM, e.g., the nature of its self-
interactions. Deviations from the canonical Λ cold dark
matter paradigm of cosmology would be imprinted in the
properties of DM clumps (known as “halos”) on smaller
spatial scales. Robustly characterizing the distribution of
small-scale structures in our Universe may therefore hold
the key to answering one of the major unsolved questions in
particle physics and cosmology—the particle nature of DM.
Dwarf galaxies are small galaxies, some of which are

embedded within larger galaxies like the Milky Way. They
are dominated by DM [2], making them versatile astro-
physical laboratories for DM studies. A major goal in
cosmology and particle physics is to detect nongravitational
interactions of DM. For the canonical weakly interacting
massive particle (WIMP) DM paradigm, one of the main

avenues to do so is DM indirect detection: WIMPs could
annihilate into Standard Model (SM) particles, producing
striking signatures from DM-overdense regions in γ-ray
observations [3–12]. Being deficient in baryonic matter,
dwarf galaxies act as ideal targets for indirect detection, with
a relatively large predicted ratio of DM signal to astro-
physical background.
A pervasive puzzle in cosmology is the so-called core-

cusp discrepancy, referring to the question of whether the
inner DM density profiles of dwarf galaxies are cuspy
(steeply rising) or cored (flattened) [13,14]. N-body sim-
ulations using Λ cold dark matter cosmology suggest that in
the absence of baryonic physics, cold DM halos follow the
cuspy Navarro-Frenk-White density (NFW) profile [15],
which is characterized by a steep rise in the density ρ ∝ r−1

at small halo-centric radii r. However, recent measurements
of stellar dynamics suggest that these systems could instead
have a flattened density profile at their center, also known
as a core [16,17]; see Ref. [18] for a review. Potential
solutions to the core-cusp discrepancy range from stellar
feedback that ejects baryons and flattens the DM central
density profile [19–22] to alternative DM models like self-
interactions [23–25].
DM density profiles in dwarf galaxies are traditionally

inferred using spectroscopic observations of line-of-sight*tnguy@mit.edu
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velocities and angular positions of stars gravitationally
bound to these systems. In particular, integral moments
of the Jeans equation can be used to relate the velocity
dispersions of tracer stars to the gravitational potential of the
system [26,27]. Although Jeans modeling has proven highly
successful for modeling DM distributions in dwarf galaxies,
there are several caveats and limitations associated with this
approach (see, e.g., [28–30]). For example, Jeans modeling
assumes the system is in dynamical equilibrium, which may
not be a robust assumption given the active merger history
of the Milky Way (see Ref. [31] for a review). Assumptions
such as the isotropy of the gravitating system are also often
necessary in order to enable a tractable analysis. Finally, by
relying on a simplified description of the data through
second moments of the stellar velocity distribution, infer-
ence based on Jeans modeling is likely to lose some of the
salient information available in observations. Absent addi-
tional assumptions, this is expressed as a degeneracy
between the mass profile of the system and the anisotropy
structure of stellar orbits, known as the mass-anisotropy
degeneracy. Exploiting additional information about the
modeled stellar phase-space distribution can further inform
the DM density profile, helping break this degeneracy.
Several methods have been proposed in the literature to this
end [32], including using higher-order moments of the Jeans
equation [29,33,34], leveraging multiple distinct tracer
populations [35–37], including measured proper motions
when these are available [38,39], and alternative strategies
to solving the Jeans equation [40].
This paper introduces a new machine learning-based

approach for linking observed stellar properties to the DM
density profiles of dwarf galaxies. Our method is based
on forward modeling simulated dwarf galaxy systems and
corresponding observations, learning to summarize repre-
sentative features from these datasets using graph neural
networks, and performing simulation-based inference to
simultaneously extract the spatial profiles associated with
the DM and stellar components of the dwarf galaxy.

II. METHODOLOGY

We describe, in turn, the forward model used in this
study and its realization via simulations, the representation
of stellar kinematic data as a graph, and finally the feature-
extractor graph neural network and simulation-based infer-
ence procedure.

A. Datasets and the forward model

In this proof-of-principle exposition, we consider ideal-
ized simulations of spherical and dynamically equilibrated
dwarf galaxies. Our forward model is fully specified by the
joint distribution function (DF) fðx⃗; v⃗Þ of positions and
velocities of stars following a certain (a priori unknown)
spatial distribution (known as the “light profile”). These

tracer stars are gravitationally bound to a DM halo with a
density profile we wish to infer. We use the public code
StarSampler

1 to generate simulated realizations of stellar
kinematics (6D position and velocity phase-space compo-
nents) from the forward model. StarSampler uses importance
sampling [41–43] to sample the DF of positions and
velocities of tracer stars in a given DM potential.
We model the DM profile using the generalized NFW

(GNFW) profile [15],

ρGNFWDM ðrÞ ¼ ρ0

�
r
rs

�
−γ
�
1þ r

rs

�
−ð3−γÞ

; ð1Þ

which depends on three free parameters: the density
normalization ρ0, the scale radius rs, and the asymptotic
inner slope γ:γ ¼ 1 corresponds to a cuspy NFW profile,
while γ ¼ 0 corresponds to a pure DM core. We consider
these two parameter points as benchmarks, since the ability
to robustly distinguish between the two possibilities would
offer a path towards resolution of the core-cusp discrepancy.
We assume a stellar density distribution νðrÞ that follows

a 3D Plummer profile [44]:

νðrÞ ¼ 3L
4πr3⋆

�
1þ r2

r2⋆

�−5=2
; ð2Þ

where L is the total luminosity and r⋆ is the scale length.
We also introduce a velocity anisotropy profile βðrÞ in
order to model deviations from circular orbits; βðrÞ is
defined similarly to Refs. [45,46] as

βðrÞ ¼ r2

r2 þ r2a
; ð3Þ

which has an additional parameter ra describing the radius
of transition from isotropic velocity orbits at small radii to
radially biased orbits at larger radii.
In total, our model has three DM parameters ðρ0; rs; γÞ

and two stellar parameters ðr⋆; raÞ. Assuming the gravita-
tional potential of the system is dominated by DM, and the
model is independent of L in Eq. (2). We provide further
details of the forward model, phase-space distribution
function, and a summary of the prior distributions of the
DM and stellar parameters in Appendix A.
We generate 80 000 training samples, 10 000 validation

samples, and 10 000 test samples using the prior parameter
distributions. Each sample contains the 3D positions and 3D
velocities of tracer stars with respect to the center of a dwarf
galaxy. The number of stars in each galaxy is sampled from
a Poisson distribution nstars ∼ PoisðμstarsÞ. We set μstars ¼
100 stars in our baseline benchmark, roughly corresponding
in order of magnitude to the number of stars typically
observed in dwarf galaxies of interest [47–50]. We explore
variations on this choice in Appendix B 1.

1https://github.com/maoshenl/StarSampler.
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B. Data preprocessing and graph construction

For each kinematic sample, we randomly draw a line-of-
sight axis and project the galaxy onto the 2D plane
perpendicular to it. We then derive the 2D projected spatial
coordinates with respect to the center of the galaxy ðX; YÞ
and line-of-sight velocities vlos for each star in these
coordinates, reflecting typically available observations.
To study the validity of the method before the inclusion
of large measurement errors, we assume a Gaussian
velocity noise model with standard deviation 0.1 km=s.
The effect of larger measurement errors is shown in
Appendix B 1.
We can represent the stellar kinematic data in the form of

a potentially weighted, undirected graph G ¼ ðV; E; AÞ,
where V is a set of nodes representing jVj ¼ Nstars

individual stars, E is a set of edges, and A ∈ RNstars×Nstars

is an adjacency matrix describing the weights of connec-
tions between vertices. This representation is well suited for
our purposes since the stars in a dwarf galaxy have no
intrinsic ordering, and the graph structure can efficiently
capture information about the phase-space correlation
structure, including higher-order moments [51].
In our analysis, each node represents a star, with the node

features being its line-of-sight velocity ṽlos and the pro-
jected radius R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
. We choose to use R instead

of the full ðX; YÞ coordinates in order to incorporate
projective rotational invariance into the graph representa-
tion, which was found to enhance the simulation efficiency
of our method.
To determine the graph edges E, we calculate pair-wise

distances between all stars using ðX; YÞ, then connect each
star to its k-nearest stars including itself. Since the edges are
assumed to be undirected, each star can be connected to
more than k other stars. We found k ¼ 20 to provide a good
trade-off between model performance and computational
overhead. Finally, we do not include edge weights in our
graph, however, we have experimented with a variety
of weighting schemes, including attention-based learned
weights [52], and found them to perform similarly in
downstream inference to the unweighted case.

C. Neural network architecture and optimization

We use a graph neural network (GNN) gφ∶ G → RNfeat in
order to extract Nfeat summary features from the con-
structed graph representation x ∈ G of mock dwarf galaxy
stellar kinematic data. Here φ represents the parameters of
the graph neural network. The feature-extraction network
consists of five graph-convolutional layers, each with 128
channels, based on convolutions in the Fourier domain
using a basis of Chebyshev polynomials of order 4 as
filters [53]. This is followed by a global mean pooling
layer which aggregates the permutation-equivariant fea-
tures into a permutation-invariant representation, and a
fully connected layer that projects the output onto a set of

Nfeat ¼ 128 summaries gφðxÞ. We explore variations on the
graph-convolution scheme in Appendix B.
The joint posterior p̂ϕðθjgφðxÞÞ of the five parameters of

interest θ characterizing the DM and stellar profiles is
modeled using a normalizing flow [54–56]—a class of
flexible generative models that allow for efficient density
estimation as well as sampling. The flow transformation
(with parameters ϕ) is conditioned on the summary
features extracted by the graph neural network and its
negative log-density − log p̂ϕðθjgφðxÞÞ is used as the
optimization loss. Our flow model consists of four masked
autoregressive flow transformations, each using a two-
layer masked autoencoder for distribution estimation with
hidden dimension 128 [56,57]. This method falls under the
class of approaches known as simulation-based inference
(see Ref. [58] for a review), specifically neural conditional
posterior estimation [59,60].
The GNN and normalizing flow parameters fφ;ϕg are

optimized simultaneously on the 80 000 simulated training
samples using the AdamWoptimizer [61,62] with an initial
learning rate of 5 × 10−4 and a weight decay of 10−2 using
a batch size of 64. At the end of each epoch, we evaluate the
loss on the 10 000 held out validation samples and reduce
the learning rate by a factor of 10 if no improvement is seen
after four epochs. We stop training if the validation loss has
not improved after 10 epochs. Model training typically
terminates after ∼30–40 epochs, which takes ∼30 minutes
on a single NVIDIA Tesla V100 GPU.

III. RESULTS AND CONCLUSIONS

We apply our pipeline to 10 000 test dwarf galaxies and
summarize our results in Fig. 1. For each galaxy, we
condition the trained normalizing flow on features extracted
using the trained GNN feature extractor and draw 10 000
samples from the joint DM and stellar posterior. We then
compute the marginal medians as the predicted parameters
and sort them into bins based on their truth values. Figure 1
shows the median (solid blue line), middle-68% (blue
bands), and middle-95% (light blue bands) credible inter-
vals for each bin of the DM parameters. In general, our
method successfully recovers individual DM parameters
consistent with the underlying truth.
To demonstrate the ability of our method to distinguish

between a cored (γ ¼ 0) and cuspy (γ ¼ 1) DM profile, in
Figs. 2 and 3 we show the inferred posteriors on two test
dwarf galaxies with the same DM density normalization
(ρ0 ¼ 107 M⊙=kpc3), scale radius (rs ¼ 1 kpc), and stellar
profile, but with different inner density slopes (γ ¼ 0
and γ ¼ 1).
Figure 2 shows the posteriors on the recovered density

profile (top row), enclosed mass profile (middle row), and
orbital anisotropy profile (bottom row) as a function of halo-
centric radius of a cored (left) and a cuspy (right) profile.
The middle-68% and middle-95% credible intervals are
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shown as blue bands, and the truth profiles are shown with
the dashed red lines. We find our method is able to
successfully reconstruct the density, mass, and orbital
anisotropy profiles at small and large radii.
We apply Jeans analysis on these two test galaxies using

a procedure similar to that used in Ref. [30]. The posterior
is approximated with nested sampling [63,64] using the

module DYNESTY [65] with nlive ¼ 500 live points and a
convergence tolerance of Δ lnZ ¼ 0.1 on the estimated
evidence. Details of the Jeans analysis procedure are
provided in Appendix A 2. Figure 3 shows the joint
and marginal DM posteriors from Jeans modeling (left
panel) and our method (right panel) for γ ¼ 0 (red)
and γ ¼ 1 (blue), with the middle-68% and middle-95%
credible intervals as the contour lines. In the Jeans
analysis, we see significant overlap between the γ poste-
riors of the cored and cuspy halos. On the other hand, γ
posteriors inferred by our method have substantially
smaller overlap. See Appendix B 2 for a quantitative
comparison of the separability.
An important quantity in indirect searches for DM is the

astrophysical J factor—the integral along the line-of-sight s
and over solid angle Ω of the squared DM density
corresponding to a source target,

J ¼
Z

ds
Z

dΩ ρ2ðs;ΩÞ; ð4Þ

accurately determining it is therefore important for robustly
interpreting results of DM indirect detection experiments
using dwarf galaxies as targets [3–12].
In Fig. 4, we show the inferred J factors, normalized to

the truth values, for 100 dwarf galaxies randomly sampled
from our test dataset using our method (red error bars) and
compare these to the corresponding J factors obtained
using Jeans analysis (green error bars). The middle panel of
Fig. 4 shows ratios of uncertainties on the log10 J factors

FIG. 2. Example inferred posteriors of the density profile (top
row), enclosed mass profile (middle row), and velocity anisotropy
profile (bottom row) for dwarf galaxies with a cored DM profile
(left) and a cuspy DM profile (right). The dashed red line is the
truth profile, while the blue line and bands represent the median,
middle-68%, and middle-95% credible intervals, respectively.

FIG. 1. A comparison between the predicted and the truth values of the DM parameters on 10 000 test galaxies for our baseline
scenario. For each galaxy, the predicted parameters are taken to be the marginal medians of the joint posterior binned in truth values. The
median (solid blue line), middle-68% percentile (dark blue band), and middle-95% (light blue band) containment regions of each bin are
shown. The diagonal dashed red line denotes where the predicted and truth values are equal. The bottom row shows the prediction error
on the median Δθ≡ θ̂ − θtruth.
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obtained by our method to those obtained by the Jeans
analysis. It can be seen that our method generically provides
more stringent constraints than the Jeans analysis, as
expected from the fact that the DM density parameters
are overall better constrained. For the cases studied, this log-
uncertainty is on average ∼20% and up to a factor of ∼2
smaller for our method than that obtained using Jeans
analysis. The bottom panel shows the ratios of the absolute
differences between the truth and predicted log10 J factors
obtained by our method as compared to those obtained by
the Jeans analysis. The scatter around unity indicates that
neither method is systematically biased, as expected, and
serves as an additional cross-check of our analysis. Details
of the J-factor calculation and additional results comparing
the two methods are shown in Appendices A 3 and B 3.
To conclude, this paper introduces a novel method to

reconstruct the DM density profiles of Milky Way dwarf
galaxies from measured kinematics of tracer stars based on
graph neural networks and simulation-based inference.
The method compares favorably with and can outperform
established approaches based on Jeans dynamical model-
ing in speed, flexibility, as well as constraining power. The
latter is due to the fact that our method incorporates more
information about the phase-space structure of bound stars,
contrasted with Jeans-based methods which typically rely
on the second moments of the velocity distribution.
Additionally, the method simultaneously models the stellar
light profile and does not require fitting it beforehand.
Although in this paper we used simulations of orbitally
anisotropic spherical systems in order to enable a direct
comparison with existing methods, a particular strength of

FIG. 3. Example corner plots of the posterior DM parameters from Jeans dynamical modeling (left) and our method (right) on two test
galaxies with cored DM profile (red) and cuspy DM profile (blue). Both galaxies have the same central slope ρ0 and scale radius rs. The
contour lines show the 68% and the 95% credible intervals. It can be seen that our method provides a stronger constraint on the DM
parameters and is able to distinguish more cleanly between a cored and cuspy profile.

FIG. 4. Comparison between the J factors predicted by the
Jeans analysis and our method. Top: differences between the
predicted and true log10 J factors for the Jeans analysis (blue)
and our method (red). Middle: ratios of the symmetrized errors
on the log10 J factors, σlog10 J . Bottom: ratios of the absolute
differences between the truth and predicted log10 J factors. Our
method can accurately recover the J-factor posteriors while
generically providing tighter constraints than the traditional
Jeans analysis.
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our method is the ability to incorporate nonequilibrium
dynamics using cosmologically realistic simulations of
isolated dwarfs as well as satellites of Milky Way–like
systems, accounting for baryonic effects like tidal dis-
ruption [66] and supernova feedback [25]. We defer
this extension, as well as application of our method to
observational data, to future work.
Code used to reproduce the results of this paper is

available at [67].
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APPENDIX A: ADDITIONAL DETAILS
ON THE ANALYSIS

In Appendix A we describe additional details of our
analyses, including the assumed stellar phase-space dis-
tribution function in Appendix A 1, the Jeans dynamical
modeling method in Appendix A 2, computation of the
annihilation J factor in Appendix A 3, and the assumed
prior distributions in Appendix A 4. In Appendix B we
show additional results of our analysis, including system-
atic variations on the baseline analysis in Appendix B 1,
a quantitative comparison of the inner density slope and
J-factor posteriors between our method and the Jeans
analysis in Appendices B 2 and B 3, respectively, tests of
statistical coverage in Appendix B 4, and sensitivity of our
method to observational projection in Appendix B 5.
We elaborate here on several details of the analysis

presented in the paper. We show a schematic illustration of
our method, including a rough breakdown of the different
steps of the pipeline, in Fig. 5.

1. Details on the forward model and phase-space
distribution function

In this section, we describe in detail the forward model
used to generate the dataset. We model the DF using the
Osipkov-Merritt model as proposed by Refs. [45,46]. The
Osipkov-Merritt model depends on the angular momentum
J and relative energy per unit mass E ¼ ϕ − v2=2, where ϕ
is the gravitational potential and v is the velocity, through
the variable Q≡ E − J2=ð2raÞ. Here, ra is the scale radius
of the velocity anisotropy profile βðrÞ ¼ r2=ðr2 þ r2aÞ that
defines the transition from an isotropic velocity dispersion
at small radii to a radially biased dispersion at larger radii.
To solve for the DF fðE; JÞ ¼ fðQÞ, we first integrate fðQÞ
over the velocity space to obtain the stellar mass-density
profile

ρ⋆ðrÞ ¼
4π

1þ r2=r2a

Z
ϕ

0

dQfðQÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðϕ −QÞ

p
: ðA1Þ

Note that fðQÞ ¼ 0 for Q < 0. The final DF fðQÞ can be
obtained by Abel transforming ρ⋆,

fðQÞ ¼ 1

2π
ffiffiffi
2

p dGðQÞ
dQ

;

where GðQÞ ¼ −
Z

Q

0

dρQ
dϕ

dϕffiffiffiffiffiffiffiffiffiffiffiffiffi
Q − ϕ

p

and ρðQÞ ¼
�
1þ r2

r2a

�
ρ⋆ðrÞ: ðA2Þ

Assuming that the system is dominated by DM, the
gravitational potential ϕ depends on the DM density profile
via Poisson’s equation ∇2ϕ ¼ −4πGρDMðrÞ. The DM
density profile is parametrized through the generalized
Navarro-Frenk-White model as in the main text:

ρGNFWDM ðrÞ ¼ ρ0

�
r
rs

�
−γ
�
1þ r

rs

�
−ð3−γÞ

; ðA3Þ

where ρ0 is the density normalization, rs is the DM scale
radius, and γ is the inner density slope. The stellar density
profile is

ρ⋆ðrÞ ¼ ρ0;⋆
�
1þ r2

r2⋆

�−5=2
; ðA4Þ

where r⋆ is the stellar scale radius and ρ0;⋆ is the density
normalization of the stellar profile. For ρ0;⋆ ¼ 3M=4πr3⋆ and
M ∝ L, whereM andL is the enclosed mass and luminosity,
this is proportional to the 3D Plummer profile
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νðrÞ ¼ 3L
4πr3⋆

�
1þ r2

r2⋆

�−5=2
; ðA5Þ

which we use to characterize our stellar profile in the
main text. The DF fðQÞ may be written in terms of
the radius r and the tangential and radial velocity vr and
vt [i.e., fðQÞ ¼ fðr; vr; vtÞ] since J ¼ rvt and E ¼ ϕðrÞ−
ðv2t þ v2rÞ=2. StarSampler samples the coordinates r; vr;
vt of each star from fðr; vr; vtÞ using importance
sampling [41–43]. The 6D coordinates ðx; y; z; vx; vy; vzÞ
are then calculated by assuming a random projection
direction and spherical symmetry.

2. Details on Jeans analysis procedure

In this section, we briefly outline the Jeans analysis
procedure used in this work, closely following Ref. [30].
Following the derivation from Refs. [81,82], we first
assume the system follows the collisionless Boltzmann
equation

∂f
∂t

þ v⃗
∂f
∂x⃗

−
∂Φ
∂x⃗

·
∂f
∂v⃗

¼ 0; ðA6Þ

where ϕ is the gravitational potential, f ¼ fðx⃗; v⃗Þ is the
phase-space distribution function, and (x⃗, v⃗) are the phase
space coordinates of tracer stars.
Working in the dwarf galaxy’s spherical coordinate

system ðr; θ;ϕÞ and assuming spherical symmetry and
steady state, we multiply Eq. (A6) by the radial velocity vr
and integrate over all velocity components to obtain the
spherical Jeans equation

1

ν

�
∂

∂r
ðνσ2rÞ þ

2βðrÞ
r

ðνσ2rÞ
�
¼ −

∂ϕ

∂r
¼ −

GMð< rÞ
r2

; ðA7Þ

where ν ¼ R
d3v⃗fðx⃗; v⃗Þ is the number density of the tracer

stars, σi is the velocity dispersion σi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv2i i − hvii

p
for

i ∈ ðr; θ;ϕÞ, and βðrÞ ¼ 1 − ðσ2θ þ σ2ϕÞ=ð2σ2rÞ is the veloc-
ity anisotropy profile. The gravitational potential ϕ is

FIG. 5. A schematic illustration of our method for inferring DM density profiles of dwarf galaxies from observed stellar kinematics.
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assumed to be dominated by DM and may be written as
ϕ ¼ −GMð< rÞ=r, where G is the gravitational constant
and Mð< rÞ is the enclosed mass of DM. The Jeans
equation (A7) has therefore the solution

σ2ðrÞνðrÞ ¼ 1

gðrÞ
Z

∞

r

GMð< r0Þνðr0Þ
r02

gðr0Þdr0

where gðrÞ ¼ exp

�
2

Z
r

0

βðr0Þ
r0

dr0
�
: ðA8Þ

Projecting Eq. (A8) along the line of sight using the Abel
transformation sðrÞ → SðRÞ for the spherically symmetric
function sðrÞ,

SðRÞ ¼ 2

Z
∞

R

sðrÞrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − R2

p ; ðA9Þ

we obtain

σ2pðRÞIðRÞ ¼ 2

Z
∞

R

�
1 − βðrÞR

2

r2

�
νðrÞσ2rðrÞrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − R2
p dr; ðA10Þ

where σp is the projected velocity dispersion profile and
IðRÞ is the projected number density of tracer stars, also
known as the surface brightness or the light profile. In our
analysis, we parametrize the DM density profile using the
GNFW profile in Eq. (A3). The light profile IðRÞ is the
projection along the line of sight of the 3D Plummer profile
in Eq. (A5) and is given by

IðRÞ ¼ L
πr2⋆

�
1þ R2

r2⋆

�−2
; ðA11Þ

which has two free parameters: the total luminosity L and
the scale length r⋆.
The Jeans analysis requires two separate fits: fitting the

light profile and subsequently fitting the DM profile. We
first fit L and r⋆ using the priors in Table I. We approximate
the posteriors as Gaussian distributions and use them as the
priors for L and r⋆ in the second fit. To compare the
performance between Jeans analysis and our machine
learning framework, the DM priors are set to be the same
as those used to generate the training datasets for the GNN
and normalizing flow method, and are summarized in
Table I.
For the initial fit of the light profile, we bin the data in

log10-spaced bins in the projected radius R. The number of
bins is chosen to be ∼

ffiffiffiffiffiffiffiffiffiffi
Nstars

p
, where Nstars is the number of

stars. Similarly to Ref. [30], we assume Poisson uncer-
tainties on the number of stars in each bin. Let niðθÞ and n̂i
be the predicted and mean number of stars (with θ is the
parameters of the light profile model) in ith bins. We
construct the binned likelihood [83]

lnLPlummer ¼ −
1

2

XNstars

i¼1

ðn̂i − niðθÞÞ2
Vi − V 0

iðbni − niðθÞÞ
; ðA12Þ

where V ¼ σloσhi and V 0 ¼ σhi − σlo; here, σlo and σhi are
the asymmetric Poisson uncertainties. We refer to Ref. [30]
for further details. As described in the main text, we sample
the posterior with nested sampling [63,64] using the
DYNESTY module [65]. We use nlive ¼ 500 live points and
a convergence tolerance of Δ lnZ ¼ 0.1 on the estimated
remaining contribution to the log-evidence. In Fig. 6, we
show the initial Plummer fit for the two test galaxies
presented in the result of the main text. The posteriors for
L and r⋆ are well constrained and agree well with the true
Plummer profile.
As mentioned, we approximate the posteriors of L and r⋆

as Gaussian distributions and use them as priors in the
second fit of the DM profile. Unlike the initial Plummer fit,
for the Jeans analysis, we construct an unbinned Gaussian
likelihood. The likelihood is given by Ref. [84],

LJeans ¼
YNstars

i¼1

ð2πÞ−1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2pðRiÞ þΔvi2

q exp

�
−
1

2

� ðvi − vÞ2
σ2pðRiÞ þΔvi2

��
;

ðA13Þ

where σpðRÞ is the projected velocity dispersion profile in
Eq. (A10), v̄ is the mean velocity of tracer stars, and vi and
Δvi is the line-of-sight velocity and its measurement error
for star i. We treat the mean velocity v̄ as a nuisance
parameters and fit it together with the DM and light profile,
using the prior distribution in Table I. We sample the joint
DM and light profile posteriors using DYNESTY [65] with
the same sampler configuration as in the initial Plummer fit.

TABLE I. Prior ranges for the DM and stellar parameter for the
Jeans analysis and our method.

Parameter
Prior

distribution

DM density profile
log10ðρ0=ðM⊙ kpc−3Þ Uð5; 8Þ

log10ðrs=kpcÞÞ Uð−1; 0.7Þ
γ Uð−1; 2Þ

Light profile
(GNNþ Flows)

r⋆=rs Uð0.2; 1Þ
ra=r⋆ Uð0.5; 2Þ

Light profile (Jeans
analysis)

log10ðL=L⊙Þ Uð−2; 5Þ
log10ðr⋆=kpcÞ Uð−3; 3Þ

ra=r⋆ Uð0.5; 2Þ
v̄=ðkm s−1Þ Uð−100; 100Þ
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3. Details on the J-factor calculation

In this section, we outline the details on the annihilation
J-factor calculation. The J factor is defined as the integral
along the line-of-sight s and over solid angle Ω of the
squared DM density corresponding to a source target,

J ¼
Z

ds
Z

dΩρ2ðs;ΩÞ: ðA14Þ

We transform the coordinate system in the Eq. (A14) from a
spherical coordinate system centered at the Earth’s location
to a spherical coordinate system centered at the dwarf

galaxy considered. Let r⃗0 be the position from the center of
the galaxy; the J factor in this coordinate system is given by

J ¼
Z

ds
Z

dΩρ2ðs;ΩÞ ¼
Z

dV
ρ2ðs;ΩÞ

s2

¼
Z

dV 0 ρ2ðr0;Ω0Þ
r02 − 2dcr0 cos θ0 þ d2c

; ðA15Þ

where dc ¼ jr⃗j is the comoving distance and r⃗ · r⃗0 ¼
dcr0 cos θ0. Note that the volume elements between the
two coordinate systems are equal, dV ¼ dV 0, since the
transformation is only a translation. We integrate Eq. (A15)
up to the virial radius rvir, defined as the radius within
which the mean density of the halo is equal to a specified
overdensity factor times the critical density of the Universe,
ρðr < rvirÞ ¼ Δvirρc. As per common convention, we take
Δvir ¼ 200. We assume the distant-source approximation
dc ≫ rvir > r0, justified for most Milky Way dwarf gal-
axies, which allows us to write J as a volume integral in
spherical coordinates [85]

J¼
Z

dV 0 ρ2ðr0;Ω0Þ
r02 − 2dcr0 cosθ0 þd2c

≈
1

d2c

Z
dV 0ρ2ðr0Þ: ðA16Þ

Plugging the GNFW density profile Eq. (A3) into the above
expression, we find

J ¼ 1

d2c

Z
dV 0ðρGNFWDM Þ2ðr0Þ ¼ 4πρ2sr2s

d2c

Z
rvir

0

dr0
�
r
rs

�
2−2γ

�
1þ r

rs

�
2γ−6

; ðA17Þ

¼ 4πρ2sr3s
d2c

�
c3−2γvir ð1þ cvirÞ2γ−5ð20þ 4γ2 þ 2cvirð5þ cvirÞ − 2γð9þ 2cvirÞÞ

ð5 − 2γÞð4 − 2γÞð3 − 2γÞ
�
; ðA18Þ

where cvir ≡ rvir=rs is the virial concentration of the dwarf
galaxy. Note that the integration only converges when
γ < 1.5, which is the case for the DM profiles shown in the
main text.

4. Prior distributions on the parameters of interest

The prior distributions for both our method and the Jeans
analysis are shown in Table I. The priors on the DM density

FIG. 6. The initial Plummer fit for the two test galaxies presented in the result of the main text. The left panel shows the 68% and 95%
credible intervals of the posterior distributions of L and r⋆. Both galaxies have the same light profile (L ¼ 100 L⊙ and r⋆ ¼ 0.25 kpc)
but different DM profiles: cored DM profile (red) versus cuspy DM profile (blue). The right panel shows the best fit, the truth Plummer
profile, and the binned data with Poisson uncertainties for both galaxies. The dark blue and light blue bands show the middle-68% and
95% credible intervals of the reconstructed profile.
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profile parameters are the same between the Jeans analysis
and our method. As described in Sec. A 2, the Jeans
analysis consists of an initial fit of the light profile
parameters L and r⋆, and a subsequent joint fit of both
the DM and light profile parameters.

APPENDIX B: ADDITIONAL RESULTS

1. Systematic variations on the analysis

We explore variations on the assumptions made in our
baseline analysis, including the effect of varying the mean
number of stars μstars and line-of-sight velocity measure-
ment error Δv. We also examine the performance of
different graph convolution schemes.

a. Variations on the number of stars

We generate three datasets (including the one presented
in the main text) with the same velocity measurement error
Δ ¼ 0.1 km=s and different mean number of stars:
μstars ¼ 20, 100, 1000. As in the baseline case, each dataset
contain 80 000 training samples, 10 000 validation sam-
ples, and 10 000 test samples. For each dataset, we train a
GNN and normalizing flow with the same hyperparameters
as described in the main text and plot the results on the test
samples in Fig. 7. We take the marginal medians as the
predicted DM parameters, bin them based on their truth
values, and show the median (solid blue line), middle-68%
(blue bands), and middle-95% (light blue bands) contain-
ment regions. The baseline μstars ¼ 100 stars (middle
column) case is the same as that in the main text and is
shown here for comparison.
The performance on the scale radius rs (middle row) and

density normalization ρs (bottom row) is similar for all
three cases. For the inner slope γ (top row), we see that
increasing the number of stars helps increase the accuracy
of the marginal medians. This is expected because the
underlying phase-space distribution is more completely
sampled for a larger number of observed tracer stars. We
observed a similar increase in prediction accuracy with
increasing sample size in Ref. [30]. The marginal medians
for the μstars ¼ 20 case are slightly biased towards the tails
of the γ prior distribution. This is potentially due to clipping
caused by a finite prior range that prevents the marginal
median from being centered around the true value when
constraining power is low.

b. Variations on measurement uncertainty

We generate three datasets with the same mean number
of stars μstars and different velocity measurement errors
Δv ¼ 0.1; 1.0; 2.5 km=s. Similar to our baseline case of
Δv ¼ 0.1 km=s, each dataset has 80 000 training samples,
10 000 validation samples, and 10 000 test samples, and we
train our pipeline on each dataset separately. The results of
this variation are shown in Fig. 8 in the same format as

Fig. 7 (with the baseline Δv ¼ 0.1 km=s case the same as
in the result of the main text).
Again, we observe that for the scale radius rs (middle

row) and the density normalization ρ0 (bottom row), the
performance is approximately constant across all varia-
tions. Similar to Ref. [30], as the measurement uncertain-
ties increase we observe a decrease in constraining power
of the central slope γ. This is to be expected because we did
not explicitly account for the uncertainties in the neural
network architecture—sampling from the noise model is
treated as a form of data augmentation, with larger error
magnitudes leading to increased sample variance and
reduced sample efficiency. We defer the explicit inclusion
of observational uncertainties in the neural network con-
struction to future work.

c. Variations on the graph convolution scheme

In Fig. 9 we show variations on the type of graph
convolutional layer used, otherwise keeping all hyper-
parameters (e.g., channel dimension) the same as the
baseline case. This case, labeled “ChebConv” and shown
in the left-most column, uses the graph convolution
prescription from Ref. [53].
The second column shows results using the graph

attention layer from Ref. [86], which uses the attention
mechanism to implicitly weigh neighboring nodes. The
final column shows results using the deep set architecture,
where node-wise features are obtained using a dense
network and aggregated through averaging, before finally
being passed through a dense layer as in the baseline case.
Relatively good recovery of all parameters can be seen in
these cases. Together, these results point to the fact that
aggregation of neighborhood information may not play a
key role in the success of our method on the examples
tested. We expect this fact to not hold on more realistic test
cases—in particular, the systems in this paper were chosen
to be relatively simple (spherical and dynamically equili-
brated) in order to enable a direct comparison with the
conventional Jeans analysis method. With these assump-
tions and our choice of stellar and DM profiles, the node-
wise features fR; vlosg can be assumed to be independent.
Finally, the third column of Fig. 9 shows results using the

graph convolutional layer from Ref. [87] with the default
configuration in PyTorch Geometric, showing poor recovery
of the inner slope γ.

2. Comparison of inner density slopes obtained using
Jeans analysis and GNN+Flow

In order to quantitatively compare the inferred inner
density slope γ posteriors for a large galaxy sample, we
compute and summarize the Jensen-Shannon (JS) diver-
gence [88,89] between 100 pairs of cored and cuspy γ
posteriors using our method as well as Jeans analysis.
Given two probability distribution functions PðxÞ and
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QðxÞ, defined over the same probability space X ∋ x, the
JS divergence is defined as

DJSðPkQÞ≡ 1

2
½DKLðPkMÞ þDKLðQkMÞ�; ðB1Þ

where MðxÞ ¼ PðxÞ þQðxÞ and DKL is the Kullback-
Leibler (KL) divergence, for which we use the definition

DKLðPkQÞ ¼
X
x∈X

PðxÞlog2
�
PðxÞ
QðxÞ

�
: ðB2Þ

The KL divergence of P from Q represents the expected
entropy gain from using Q as an approximation for truth
distribution P [90]. The JS divergence is based on the KL
divergence but has more desirable properties for the present
case, specifically being symmetric in the two posterior

FIG. 7. The predicted DM parameters versus truth DM parameters for three different runs. In each run, a GNN and normalizing is
trained and tested on galaxies with a mean number of stars μstars ¼ 20 ðleftÞ, 100 (center), 1000 (right) stars. The line-of-sight velocity
measurement error is set to beΔv ¼ 0.1 km=s. The μstars ¼ 100 case (middle column) is the same case as shown in the result of the main
text. The median (solid blue line), middle-68% percentile (blue band), and middle-95% (light blue band) containment regions of each
bin are shown. The diagonal dashed red line shows the locus of equality between true and predicted values.
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distributions. Note that using a log2 definition of the
constituent KL divergences, the JS divergence is con-
strained to lie within the range DJS ∈ ½0; 1�, with 0
corresponding to two identical distributions and 1 two
nonoverlapping distributions.
We generate 100 galaxies with cored DM profiles (γ ¼ 0)

and 100 galaxies with cuspy profiles (γ ¼ 1). These galaxies
have the same DM scale radius rs ¼ 1 kpc, density nor-
malization ρ0 ¼ 107 M⊙=kpc3, and light profile parameters
as the two galaxies presented in the result of the main text.
We obtain samples the DM parameter posteriors for each

galaxy and calculate DJS using Eq. (B1) for each pair of
cored and cuspy galaxies (in total, there are 10 000 pairs).
We show the distribution of the JS divergences DJS between
the γ ¼ 0 posterior and γ ¼ 1 posterior for the Jeans analysis
and for our method in Fig. 10. The median and middle-68%
containment region values are DJeans

JS ¼ 0.417þ0.288
−0.280 and

DGNN
JS ¼ 0.629þ0.196

−0.278 . Our method generically produces
higher values of DJS compared to the Jeans analysis,
corresponding to a larger contrast between the cored and
cuspy γ posteriors and thus increased ability to distinguish
between the two scenarios given a set of observations.

FIG. 8. Same as Fig. 7, but with different line-of-sight velocity errors Δv. The mean number of stars μstars is 100 stars. The
Δv ¼ 0.1 km=s case (left column) is the same case as shown in the result of the main text.
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3. Comparison of J factors inferred using Jeans analysis
and GNN+Flow

As mentioned in the main text, we calculate the J factors
(normalized to distance of 100 kpc) for 100 galaxies
randomly sampled from our test set. In this section, we
plot the posterior distribution of the J factor for a few
examples for the Jeans analysis and our method in Fig. 11. In
all cases shown, the GNN and normalizing flow can predict
the J factor with a similar or higher accuracy compared to
the Jeans analysis.

4. Test of statistical coverage of the inferred posteriors

Simulation-based inference methods such as those
employed in this work can be susceptible to producing
overconfident posteriors [91]. In this section, we examine
the quality of the posterior distributions produced by our
simulation-based inference pipeline following the prescrip-
tion in Ref. [91].
Using the same notation as in the main text, let θ be the

parameters of interest (i.e., the DM and stellar parameters)

FIG. 10. The JS divergence DJS between the γ ¼ 0 and γ ¼ 1
posteriors for the Jeans analysis (red) and the GNN and
normalizing flow model (blue). As evidenced from the higher
values of the DJS, compared to the Jeans analysis, the GNN and
normalizing flow produces γ ¼ 0 and γ ¼ 1 more distinct from
each other.

FIG. 9. Same as Fig. 7, but with variation in the type of graph convolutional layer. Each network is trained and tested on the dataset
presented in the main text, i.e., μstars ¼ 100 stars and Δv ¼ 0.1 km=s. The ChebConv case (left column) refers to the baseline graph-
convolutional scheme presented in the main text.
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and x be the observable (i.e., the graph representation of a
galaxy constructed from its the stellar kinematics). We
denote our learned posterior density estimator as p̂ðθjxÞ.
For a confidence level 1 − α, the expected coverage prob-
ability is

Eðθ;xÞ∼pðθ;xÞ½1Θðθ ∈ Θp̂ðθjxÞð1 − αÞÞ�; ðB3Þ

where Θp̂ðθjxÞð1 − αÞ gives the 1 − α highest posterior
density interval of the estimator p̂ðθjxÞ and 1ΘðÞ is an
indicator function mapping samples that fall within the
highest posterior density interval to unity. Given N samples
from the joint distribution ðθ⋆; xÞ ∼ pðθ; xÞ, the empirical
expected coverage for the posterior estimator p̂ðθjxÞ is
defined as

1

N

XN
i¼1

1Θðθ⋆ ∈ Θp̂ðθjxÞð1 − αÞÞ: ðB4Þ

The nominal expected coverage is the expected coverage
in the case when p̂ðθjxÞ ¼ pðθjxÞ and equals to the

confidence level 1 − α. In general, we want our estimator
to have an empirical expected coverage probability larger
than or equal to the nominal expected coverage probability
at all confidence levels. Such estimators will produce
conservative posteriors, in contrast to overconfident pos-
teriors which may spuriously exclude allowable regions of
parameter space.
In Fig. 12, we plot the empirical expected coverage

probability for the marginal posteriors as produced by the
baseline model presented in the main text (i.e., μstars ¼ 100

and Δv ¼ 0.1 km=s) against the nominal confidence levels.
The dashed diagonal black line represents the nominal
expected coverage probability. A conservative estimator
will lie above the diagonal line, while an overconfident
estimator will lie below it. In general, the posteriors
produced by our model lie very close to the well-calibrated
regime, although the posteriors for the stellar radius r⋆ are
slightly overconfident. We note that methodological
improvement in calibration quality of posteriors produced
using forward-modeling approaches is an ongoing, active
area of research [92].

FIG. 11. Posterior distributions of the J factors predicted by the Jeans analysis (red) and by the GNN and normalizing flow (blue).
Each panel show theΔ log10 J ¼ log10 Jpredict − log10 Jtruth posteriors of an example galaxy. The dashed black line represents the truth J-
factor value (i.e., Δ log10 J ¼ 0).
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5. Robustness to observational projection

Typically, only line-of-sight velocities and angular coor-
dinates of tracer stars are observationally accessible,
presenting the challenge of working with incomplete
phase-space information when inferring the DM density
profile. A test of our method is then its susceptibility to the
specific direction from which a dwarf galaxy is viewed—its
observational projection. Since different projections corre-
spond to the same latent DM parameters, it is desirable for
different projections to produce similar summary repre-
sentations, and therefore similar posterior distributions.
Since this is not explicitly baked into the network,
approximate projective symmetry can be learned implicitly
using the training sample.
We take the galaxies with the same DM profiles

presented in the main text and project them onto orthogonal
planes. For each galaxy, we thus obtain three orthogonal
projections (including the original projection). In Fig. 13,
we show the 68% contour line of the posterior DM
parameters for three orthogonal projections of two galaxies
(one with a cored DM profile and one with a cuspy DM
profile) and the graph representations of the projections.
For each projection, its graph representation matches the

FIG. 12. The expected coverage of the marginal DM and stellar
parameters posteriors by the model presented in the main text
(μstars ¼ 100, Δv ¼ 0.1 km=s). If an estimator produces perfectly
calibrated posteriors, then its empirical expected coverage prob-
ability is equal to the nominal expected coverage probability
(dashed diagonal black line). The estimator is conservative
(overconfident) if it produces an empirical expected coverage
probability above (below) the diagonal line.

FIG. 13. Example corner plots of the posterior DM parameters of two test galaxies, each with three orthogonal projections. The left
(right) panel shows the posteriors for a galaxy with a cored (cuspy) DM profile. The contour lines show the 68% containment region,
with each color representing a different projection. For each projection, its graph representation is also shown (with the edge color
matching the contour color) on the upper right corner.
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color of the contour line of the DM posteriors. It can be
seen that even though the graph representations may vary
significantly between projections (e.g., the positions of
each node may shift, forming new edge connections or

breaking up old ones), the DM posteriors remain consis-
tent. Note that we do not expect the DM posteriors to be
identical, since the information given to the GNN is not the
identical between projections.
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