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Pulsar timing arrays (PTAs) detect low-frequency gravitational waves (GWs) by looking for correlated
deviations in pulse arrival times. Current Bayesian searches use Markov chain Monte Carlo (MCMC)
methods, which struggle to sample the large number of parameters needed to model the PTA and GW
signals. As the data span and number of pulsars increase, this problem will only worsen. An alternative
Monte Carlo sampling method, Hamiltonian Monte Carlo (HMC), utilizes Hamiltonian dynamics to
produce sample proposals informed by first-order gradients of the model likelihood. This in turn allows it to
converge faster to high dimensional distributions. We implement HMC as an alternative sampling method
in our search for an isotropic stochastic GW background, and show that this method produces equivalent
statistical results to similar analyses run with standard MCMC techniques, while requiring 100–200 times

fewer samples. We show that the speed of HMC sample generation scales as OðN5=4
psr Þ where Npsr is the

number of pulsars, compared to OðN2
psrÞ for MCMC methods. These factors offset the increased time

required to generate a sample using HMC, demonstrating the value of adopting HMC techniques for PTAs.

DOI: 10.1103/PhysRevD.107.043013

I. INTRODUCTION

Pulsar timing arrays (PTAs) [1–3] seek to detect low-
frequency gravitational waves (GWs) by looking for spatial
correlations induced in the times of arrival (TOAs) pulses
from millisecond pulsars. PTAs are most sensitive in the
nanohertz frequency regime (∼1–100 nHz), where the
dominant source of GWs is expected to be a stochastic
gravitational wave background (GWB) originating from
a cosmic population of supermassive black hole binaries
(SMBHBs) [4–7]. The North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [8]
has been collecting pulsar TOA data since 2004.
NANOGrav, along with the European Pulsar Timing
Array [9], Parkes Pulsar Timing Array [10], and the
Indian Pulsar Timing Array Project [11] form the
International Pulsar Timing Array (IPTA) [12].
Detection of low-frequency GWs provides a valuable tool

for studying parts of the dynamical universe not accessible
through electromagnetic observations. Constraining the
GWB shape and strength can provide useful constraints
on properties of the SMBHB population including the black
hole–host galaxy scaling relations [13,14] and the astro-
physical environments of SMBHBs emitting GWs [15–19].
The GWB could also contain contributions from more

speculative sources such as primordial GWs from
inflation [20,21] and networks of cosmic strings [22,23].
GW signals can be extracted as a correlated signal from

pulsar timing data only after subtracting the pulsar’s timing
model and accounting for underlying sources of noise in
both the pulsar and observing instruments. These analyses
are frequently done using Bayesian techniques [24–27],
which we outline in Sec. II. In order to perform the
Bayesian searches, NANOGrav makes use of the parallel-
tempering Markov chain Monte Carlo (MCMC) code
PTMCMCSAMPLER [28], which includes a variety of jump
proposal schemes such as differential evolution, prior
draws, and adaptive Metropolis.
MCMC methods work adequately for a large portion of

statistical models, but simple MCMC algorithms such as
random-walk Metropolis [29] or Gibbs sampling [30]
become slow as the size and complexity of the model
grow and take considerably longer to converge. Both of the
aforementioned methods use random-walk proposals to
generate samples and explore the parameter space, which
tend to be increasingly inefficient when the target distri-
bution includes correlations among the parameters [31].
Hamiltonian Monte Carlo (HMC) [31,32] removes the
requirement to sample the model randomly, and replaces
it with a simulation of Hamiltonian dynamics on the
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distribution itself. This scheme allows samples to be drawn
at much further distances from one another, and explores
the full parameter space in a more efficient way. For a target
distribution of dimension d, the cost of drawing an
independent sample with HMC goes roughly as Oðd5=4Þ,
compared to Oðd2Þ for random-walk Metropolis [33].
The no-u-turn sampler (NUTS) [34] algorithm provides
a basis for performing analysis with HMC without pretun-
ing the sampling.
The HMC algorithm was initially developed for the

problem of performing lattice field theory simulations of
quantum chromodynamics [32]. The earliest approach
applying HMC to PTA science was in the development
of a model-independent method for performing Bayesian
analyses on pulsar timing data [35]. The technique worked
extremely well when applied to the IPTA Mock Data
Challenge.1 When applied to real data, however, the
sampling could not fully explore the hierarchical model
and became stuck in “Neal’s funnel” [36]. Applying data-
aware coordinate transformations using the Cholesky
decomposition helped deal with hierarchical funneling,
and consequently there was a successful application of
HMC to the targeted problem of outlier excision from PTA
datasets [37]. The trade-off was that the additional trans-
formations made sampling the hierarchical likelihood
slower than the typical marginalized likelihood that was
already used. As a result, HMC was not further explored in
this context and has since remained largely underutilized
towards the broad array of PTA science.
In this paper, we present a method for performing PTA

GW searches using HMC as the underlying sampling
algorithm. This represents the first attempt at applying
HMC to the marginalized PTA likelihood, where we can
avoid the funneling that plagues hierarchical models while
still leveraging the benefits of HMC in exploring high-
dimensional distributions. We test this method on the
NANOGrav 11-year dataset [38], as well as realistic
simulated data with similar red and white noise to the
NANOGrav 11-year dataset. We demonstrate that perform-
ing a Bayesian GWB search with HMC results in a
significant reduction in required sample generation to give
equivalent results to current methods.
We also show that the additional gradient calculations

necessary for HMC to operate scale roughly the same as the
current likelihood evaluation with respect to the number of
pulsars in a given dataset. Additionally we demonstrate that
when comparing the time to generate independent samples,
HMC outperforms traditional MCMC methods for PTA
models of varying size in accordance with the expected
scaling. This is a necessary consideration as the sizes of

PTAs will continue to grow and with that the number of
parameters needed to sample over.
This paper is organized as follows. In Sec. II, we describe

the methods, signal models, and software used. In Sec. III
we present the results of a GWB search using HMC, and
compare the accuracy and efficiency of this method for
both real and simulated PTA data. We conclude in Sec. IV
and discuss how this method could be utilized for future
PTA work.

II. METHODOLOGY AND SOFTWARE

In this section, we provide a brief outline of a typical
PTA Bayesian GW search. We then give an overview of the
HMC and NUTS algorithms, and discuss how to apply
these methods to existing PTA work.

A. PTA signal model

We now discuss the PTA likelihood function. Following
the outline provided in [27], we start by considering a
single pulsar and its timing residual vector δt with length
equal to the number of TOAs in our dataset, NTOA. This
timing residual data can be decomposed into individual
components:

δt ¼ Mϵþ Faþ Ujþ n: ð1Þ

Each term describes a different inaccuracy or source of noise
that contributes to the residual data. The termMϵ represents
inaccuracies stemming from the subtraction of the pulsar’s
timing model, withM the timing model design matrix, and ϵ
the vector of timing model parameter offsets. The effects due
to low-frequency (“red”) noise are encoded in the term Fa.
We choose to define this in a rank-reduced basis where F
represents our matrix of basis functions, in this case
alternating sine and cosine functions, and a represents a
set of Fourier coefficients. The term Uj describes noise that
is completely uncorrelated in time but completely correlated
across observations of a similar epoch. The matrix U maps
betweenNTOA residual data andNepoch observation sessions,
and j accounts for the correlated noise in each epoch. The
final term, n, includes any other high-frequency (“white”)
noise that cannot be accounted for in the previous terms,
such as radiometer noise.
Previous Bayesian analysis schemes [39–43] have

described the white noise with EFAC (constant multiplier
to TOA uncertainties) and EQUAD (white noise added in
quadrature to EFAC) parameters and employed a power-
law model to describe the red noise. The sum of these
white noise covariances we describe via a matrix N. The
parameters describing ϵ, a, and j we group as follows:

T ¼ ½MFU �; b ¼

2
64
ϵ

a

j

3
75: ð2Þ1The first IPTA Mock Data Challenge was developed by

Fredrick Jenet, Kejia Lee, and Michael Keith and administered
in 2012.
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We place a Gaussian prior on these parameters with
covariance:

B ¼

2
64
∞ 0 0

0 φ 0

0 0 J

3
75; ð3Þ

where ∞ represents a diagonal matrix of infinities corre-
sponding to unconstrained uniform priors on all timing
model parameters. The parameters that describe J we refer
to as ECORR and correspond to the epoch-correlated white
noise signals per receiving back end. The matrix φ defines
the parameters involving red noise signals, which includes
low-frequency noise intrinsic to each pulsar, as well as the
stochastic GWB. For this paper, we performed our analysis
by modeling the GWB using a fiducial power-law spectrum
of the characteristic GW strain hc and cross-power spectral
density Sab:

hcðfÞ ¼ Agw

�
f
fyr

�
α

; ð4Þ

SabðfÞ ¼ Γab
A2
gw

12π2

�
f
fyr

�
−γ
f−3yr ; ð5Þ

where γ ¼ 3–2α. For a background generated by the GW
emission from the evolution of a population of inspiraling
SMBHBs in circular orbits, we have α ¼ −2=3, which
implies γ ¼ 13=3 [44]. The function Γab is called the
overlap reduction function (ORF) and describes the
average correlations between any two pulsars a and b
as a function of their angular separation. For an isotropic,
stochastic GWB, this ORF is given by the Hellings-
Downs correlation [45]:

Γab ¼
3

2
xab ln xab −

xab
4

þ 1

2
þ δab

2
; ð6Þ

where xab ¼ ð1 − cos ξabÞ=2 for two pulsars with angular
separation ξab.
We analytically marginalize over the timing model

parameters to reduce the overall dimensionality of our
posterior [35,46] and are left with the form of the likelihood
that is used for the analysis in this paper:

PðδtjϕÞ ¼ exp ð− 1
2
δtTC−1δtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det 2πC
p ; ð7Þ

where C ¼ N þ TBTT . We define ϕ as the set of all varying
parameters in our model. We compute the likelihood and
perform Bayesian searches using the NANOGrav package
ENTERPRISE [47].

B. Hamiltonian Monte Carlo

We now provide a description of the HMC algorithm. In
HMC [31,32], we start by introducing an auxiliary momen-
tum variable pi alongside each target parameter qi. In most
implementations, the momenta are chosen to be indepen-
dent of the qi and follow a zero-mean Gaussian distribu-
tion, with a covariance matrixM that is typically taken to be
the identity. The log of the joint density of p and q defines
our Hamiltonian:

Hðp;qÞ ¼ UðqÞ þ KðpÞ ¼ −LðqÞ þ 1

2
pTM−1p; ð8Þ

where LðqÞ≡ logPðδtjϕÞ is the log of the likelihood
function for the distribution of our target parameters q.
Analogous to Hamiltonian dynamics, we have a potential
energy term UðqÞ and a kinetic energy term KðpÞ. We then
simulate the evolution of this system over time according to
Hamilton’s equations:

dqi
dt

¼ ∂H
∂pi

;
dpi

dt
¼ −

∂H
∂qi

: ð9Þ

This can be solved numerically using a symplectic
integrator such as a “leapfrop” method, which for an
integration step size ε uses an update scheme:

ptþε=2 ¼ pt þ
�
ε

2

�
∇qLðqtÞ; ð10aÞ

qtþε ¼ qt þ εptþε=2; ð10bÞ

ptþε ¼ ptþε=2 þ
�
ε

2

�
∇qLðqtþεÞ; ð10cÞ

where superscripts denote the time at which the particular
quantity is evaluated. The standard method for producing
a chain of samples using HMC then proceeds as follows:
We first resample our momenta distribution. Then for a set
number of leapfrog steps L, we use Eq. (10) to evolve our
system through time and propose some final position and
momentum vectors q̃ and p̃. This proposal is accepted or
rejected according to the Metropolis algorithm [29].
Mapping the path of the leapfrog integrator leads

to a useful sanity check of HMC: trajectory divergences.
These divergences occur when the trajectory taken via
Hamiltonian simulation departs from the true trajectory,
and risk biasing estimates or reducing HMC to random-
walk behavior [48]. By tracking the trajectories and alerting
the user of large divergences, HMC offers another diag-
nostic to detect unsuitably parametrized models that is not
possible with Metropolis-Hastings (MH) MCMC methods.
There are limitations to HMC and the models under which

it can be used properly. Due to its origins in Hamiltonian
dynamics, HMC can only operate in continuous state spaces
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and contains no internal recourse to deal with discrete
variables. In such cases, the discrete variables can be handled
with separate algorithms such as Gibbs sampling [30]. HMC
also requires that the log density of the target distribution
is differentiable almost everywhere with respect to the
model parameters, with the exception coming at points
of probability 0 [31]. Additionally, HMC struggles when
there is strong multimodality in the target distribution due
to the modes being separated by regions of very low
probability [49]. The PTA models used in this paper satisfy
the above conditions, and HMC remains a valid choice of
underlying sampling algorithm.

C. No-u-turn sampler

The performance of the HMC algorithm is particularly
sensitive to two user-defined parameters: the number of
leapfrog steps L and integration step size ε, defined in the
above section. If these parameters are not properly tuned,
the algorithm may waste computation time or begin to
exhibit unwanted random walk behavior and in some cases
may not even be ergodic [31]. In general, tuning these
parameters appropriately would require multiple prelimi-
nary runs.
The no-u-turn sampler (NUTS) [34] offers an extension

to the HMC algorithm that dynamically tunes the number
of leapfrog steps L. NUTS uses a recursive doubling
algorithm, similar to the one outlined in [36], to determine
when the generated proposal trajectory begins to double
back on itself, or make a “u turn.” The algorithm builds a
binary tree, simulating Hamiltonian dynamics forwards and
backwards randomly in time for 2j steps, with j the height
of the full tree. If we define qþ, pþ and q−, p− as the
position-momenta pairs of the left- and rightmost nodes of
the bottom subtree, then the stopping condition for NUTS
can be written as

ðqþ − q−Þ · p− < 0 or ðqþ − q−Þ · pþ < 0: ð11Þ

The above procedure adaptively tunes the parameter L
for each iteration in the chain. The step size parameter ε in
NUTS is set using the method of stochastic optimization
with varying adaptation [50]. In particular, Hoffman and
Gelman utilize the primal-dual averaging algorithm pro-
posed by [51]. With L and ε automatically tuned, NUTS
can be run without any human intervention.

D. Coordinate transformations and software

Previous approaches to pulsar timing analyses with
HMC utilized a hierarchical PTA likelihood. Initially these
methods did not include coordinate transformations on
the data, and as a result became stuck with hierarchical
funneling. This funneling originates from the fact that
within hierarchical models, random variables are very
highly correlated when the data are sparse [52]. One can
reduce the correlations between the random variables, and

hence the funneling, by adopting a noncentered reparamet-
rization of the data [53]. In regards to the hierarchical PTA
likelihood, such a reparametrization using the Cholesky
decomposition allowed HMC sampling to proceed but at
the cost of slowing down the likelihood.
In this paper we are focused entirely on the marginalized

PTA likelihood and can therefore leave behind the coor-
dinate transformations designed for hierarchical models.
We do employ a set of transformations designed to improve
the performance of the NUTS algorithm. First we perform
an interval transform, moving all parameters with bounded
priors from their interval ½a; b� to the whole real line. We
then whiten the data using Cholesky whitening to move to a
set of transformed variables whose covariance matrix is the
identity. This is accomplished through the Hessian calcu-
lated around the maximum a posteriori parameter vector.
Neither transformation considerably alters the likelihood
computation speed.
When determining the speed and efficiency of the HMC

and NUTS pipeline, one must depend almost entirely on the
ability to calculate gradients of the likelihood and do so as
quickly as possible. Numerical derivatives are comparably
easier to write but slow in practice and prone to errors from
approximations. By-hand analytic derivatives are fast but
difficult to write into concise code for all but the simplest
of models. An excellent solution for arbitrary likelihood
functions and their gradients is the package JAX [54], which
leverages both automatic differentiation and just-in-time
compilation to efficiently differentiate native PYTHON code
and turn an otherwise slow gradient function into incredibly
fast machine executables. The use of this technique is rather
new, with JAX only recently becoming a mature code base,
and consequently this marks the first time JAX and
automatic differentiation have been utilized for HMC
sampling of PTA data.
Summarizing the software used for the analyses to

follow in this paper, the signal models and likelihood used
in our analyses come from NANOGrav’s flagship PTA
analysis suite ENTERPRISE [47]. We utilize the automatic
differentiation capabilities in JAX [54] to calculate the
likelihood derivatives required for HMC to operate. We
perform two coordinate transformations on our data to
better interface with the NUTS algorithm. Lastly, for the
sampling we use a custom-built NUTS code that is freely
and openly available in PICCARD.2 The combination of
these three codes leads to an end-to-end pipeline for
performing PTA analyses with HMC sampling.

III. RESULTS

In this section, we study the HMC sampling method both
in its ability to accurately perform Bayesian searches for a
stochastic GWB using PTA data, as well the efficiency of

2https://www.github.com/vhaasteren/piccard.

GABRIEL E. FREEDMAN et al. PHYS. REV. D 107, 043013 (2023)

043013-4

https://www.github.com/vhaasteren/piccard
https://www.github.com/vhaasteren/piccard
https://www.github.com/vhaasteren/piccard


such a method when compared against the existing tech-
niques employed by NANOGrav.
The GWB model that is analyzed in this paper arises

from a PTA consisting of data from 45 pulsars. The
parameters encompassing the signal model closely mimic
those outlined in Sec. II A.We fix white noise parameters to
their maximum likelihood values as obtained from indi-
vidual pulsar noise runs. We model pulsar-intrinsic red
noise with a power-law power spectral density (PSD)
containing two search parameters log10Ared∈U½−18;−11�
and γred ∈ U½0; 7�. We model the GWB as a power-law
PSD process that is common amongst all the pulsars.
The corresponding parameters are an amplitude with log-
uniform prior ACP ∈ U½−18;−12� and a spectral index γCP
that we fix to 13=3. We do not include spatial correlations
in our GWB model. This results in a total of 2Npsr þ 1

varying parameters in the model.
We also generate a set of simulated PTA datasets using

LIBSTEMPO [55]. We inject both per-pulsar white and red
noise parameters at their maximum likelihood values. The
injected values again originate from individual pulsar noise
runs, where all parameters for a given pulsar are allowed to
vary. Again we include a common process signal repre-
senting the GWB with both a fixed amplitude and spectral
index at log10 ACP ¼ −14.7 and γCP ¼ 13=3, and do not
include interpulsar spatial correlations. We repeat the above
procedure for 100 realizations of the GWB which results in
a collection of 100 realistic simulated PTA datasets. When
analyzing the simulated data, we use a similar signal model
to the one described above but this time allow the common-
process spectral index to vary as γCP ∈ U½0; 7�.
Runs conducted with the MH MCMC algorithm use

the PTMCMCSAMPLER [28] code. The sampler is set up
in similar fashion to the NANOGrav 11-year GWB
search [56]. We include adaptive Metropolis and differ-
ential evolution jump proposals. For all varying parameters
present in the model, we also add prior draw jump
proposals. We do not utilize parallel tempering in this work.

A. NANOGrav 11-year data comparison

We perform a stochastic GWB search with both the
HMC and MH MCMC algorithms on the NANOGrav
11-year dataset [38]. This dataset encompasses the timing
data for 45 millisecond pulsars. Figure 1 shows the
posterior distributions for the background amplitude ACP
calculated using both Monte Carlo methods. We calculate
95% upper limits on ACP and estimate uncertainties with
bootstrap methods [57]. The HMC algorithm produces
results that are consistent with the base MHMCMC search,
with corresponding 95% upper limits ACP;HMC < 1.72ð4Þ ×
10−15 and ACP;MH MCMC < 1.74ð3Þ × 10−15.
The MH MCMC sampling routine was run for a total

number of samples MMH MCMC ¼ 1,000,000, whereas the
HMC routine was run forMHMC ¼ 8,000. The wall time for
the MH run was approximately 4 hours, compared to just

under 4 hours for the HMC run. Both sets of chains are
checked for convergence using the Gelman-Rubin R-hat
convergence test [34]. It is worth reinforcing that the
benefit of generating fewer samples is partially outweighed
by the increased computational cost of proposing a new
HMC sample. We explore the scaling of sample generation
time in Sec. III C.
We also perform a direct comparison to the upper limit

calculated in the NANOGrav 11-year GWB search [56]. In
order to do such a comparison, we alter our signal model
slightly to match that of the 11-year analysis and adjust the
common-process amplitude from a log uniform to a uni-
form prior ACP ∈ ½10−18; 10−12�. Performing this analysis
with the HMC pipeline, again with M ¼ 8, 000 samples,
recovers a 95% upper limit of ACP;HMC < 1.64ð3Þ × 10−15.
This is in relative agreement with the result in [56] of
ACP < 1.61ð2Þ × 10−15 for a similar model with identical
Jet Propulsion Laboratory (JPL) ephemeride DE436.
We further compare the efficiency of HMC sampling by

looking at the autocorrelation lengths of the two sets of
chains, measuring how far one must jump through the
chain to find the next statistically significant sample. The
autocorrelation lengths are calculated per parameter in
the model. This was calculated for each set of chains
generated with the two Monte Carlo sampling methods,
and the results are shown in Fig. 2. We find that the HMC
chains have autocorrelation lengths between 1 and 2 orders
of magnitude smaller than those of identical parameters in
the MH MCMC chains. This behavior is expected, as the
HMC algorithm is designed to take larger, more-informed

FIG. 1. Posterior probability distributions for the amplitude
log10 ACP of a common-process signal run using either MH
MCMC or HMC as the primary sampling method, computed
using the NANOGrav 11-year dataset. The common-process
amplitude parameter is set with a log-uniform prior, the common-
process spectral index is fixed at 13=3, and no spatial correlations
are included. Vertical lines represent 95% upper limits calculated
for posteriors generated using HMC [blue; ACP;HMC < 1.72ð4Þ×
10−15] and MH MCMC [red; ACP;HMC < 1.74ð3Þ × 10−15],
though the two lines will be difficult to individually resolve
due to the similarity in upper limits. We conclude that the
two procedures produce consistent posteriors when applied to
identical models.
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steps to avoid random walklike behavior and produce a
higher ratio of independent samples.

B. Simulated data and parameter recovery

We also aim to test that the HMC algorithm behaves
similarly to the standard MH MCMC technique when
considering statistical coverage of a standard PTA model.
To determine the capability of the sampling methods to
accurately recover injected parameters, we consider 100
simulated PTA datasets and seek to verify if in p% of the
realizations the injected parameter values fall within the p%
credible region of the posteriors. We run standard Bayesian
searches on all realizations using both sampling methods.
The results of the parameter recovery test described

above are summarized in Fig. 3, with a particular focus on
the two parameters describing the GWB. The HMC
sampler recovers the injected GWB parameter values with
the same consistency as the traditional analysis. Neither
method recovers the injected parameters exactly, and
therefore no line in Fig. 3 falls directly on the vertical line
at x ¼ 0. This is due to an inherent model mismatch present
when simulating data with LIBSTEMPO and recovering the
posteriors separately with ENTERPRISE. The simulated
GWB is generated with more frequencies than is searched
over during the analysis, leading to a natural bias in
recovery.3

C. Scaling of gradient computation speed

The time per HMC sample generation is dominated by
the time to calculate the gradient of the log-likelihood

necessary for leapfrog integration. The evaluation time for
the base likelihood calculation present in ENTERPRISE is
calculated by averaging the evaluation time for 50 calls of
the log-likelihood function. We first use a PTAwith only a
single pulsar, and repeat the above step adding one addi-
tional pulsar at a time up to Npsr ¼ 45. This produces an
idea of how the base likelihood evaluation time, and by
extension the MCMC sample generation time, scales with
the number of pulsars present in a PTA (Fig. 4: dashed
red line).
In order to accurately scale the computation time

necessary to draw a sample with NUTS, we must account
for the dynamic tuning of the HMC hyperparameter L and
note that we likely require multiple evaluations of the log
likelihood and gradient to generate a sample. First we

FIG. 2. Autocorrelation lengths for 91 parameters (2Npsr
individual pulsar red-noise parameters and a common process
signal parametrized with an amplitude ACP and spectral index
γCP ¼ 13=3) present in a standard GWB model. The autocorre-
lation lengths are calculated from two sets of chains generated
from sampling this model: one sampled with HMC (blue) and one
with MH MCMC (red). Each mark represents the approximate
number of steps one must jump through that particular param-
eter’s chain to reach an independent sample.

FIG. 3. p-p comparison of GWB parameter recovery for both
the HMC and MH MCMC sampling methods operating on
simulated PTA data. The x axis shows the difference between the
fraction of realizations with which the injected values fall within
the p% credible region of the posteriors and the p% credible
region on the y axis. The vertical dark gray line at x ¼ 0
represents a perfect recovery of the injected parameter values.
The light gray lines represent 1σ, 2σ, and 3σ deviations.

FIG. 4. Wall time for calculating implementations of both the
log of the PTA likelihood as well as its gradient, scaled by the
number of pulsars present in a given model. The red dashed line
represents the log-likelihood evaluation as present in the standard
PTA analysis suite ENTERPRISE. The solid blue line shows the
evaluation of the log likelihood and gradient function after being
precompiled with JAX. The cyan triangles denote the evaluation
times present in the blue line multiplied by a value Leff
representing the effective number of gradient evaluations required
to generate a new HMC sample.

3For further details, see documentation for GWB simulation in
the TOASIM module of LIBSTEMPO.
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consider the evaluation time of the log likelihood and
gradient function compiled with JAX, and scale per pulsar
following the same procedure defined above (Fig. 4: solid
blue line). We then take the 45 separate PTA objects and
run standard GWB analyses, with models defined in
Sec. III, through the HMC pipeline for M ¼ 10, 000
samples. The height j of the NUTS binary tree defines a
total of L ¼ 2j þ 1 gradient evaluations per new sample.
By averaging this over the full run, we can approximate an
Leff and more accurately scale the time per HMC sample
generation (Fig. 4: cyan triangles).
Finally, we look at the time to generate independent

samples in our chain and how it scales with increasing PTA
size. This is ultimately the most important metric for testing
the efficiency of HMC as independent samples and thinned
Markov chains are what inevitably drive the statistical
inferences made on the data. Independent samples in this
context are defined here as samples that are separated by
one autocorrelation length.
We take the 45 PTA objects of increasing Npsr and

generate Markov chains with HMC andMHMCMC of size
M ¼ 8,000 and M ¼ 1,000,000, respectively. Taking the
median autocorrelation length of each chain and the base
sampling speed calculated previously, we create a scaling
of the wall time for both sampling methods in making
independent samples for PTA models of increasing size.
The results are summarized in Fig. 5. It shows that in the
long run HMC will outperform MH MCMC techniques in
making statistically relevant samples, despite the likely
increase in upfront computational cost.

IV. CONCLUSIONS

In this paper, we have implemented an efficient method
for sampling the high dimensional distributions present in
PTA GW Bayesian searches using the HMC algorithm.

This method leverages a hybrid technique comprised of
parts from both traditional stochastic Monte Carlo schemes
as well as deterministic sampling methods derived from
Hamiltonian dynamics. We show that utilizing HMC
results in a reduction of approximately 2 orders of
magnitude in the number of samples drawn to produce
equivalent results to the existing Bayesian searches per-
formed on PTA datasets.
The efficiency of this technique is largely defined by

the speed at which derivatives of the log likelihood can be
computed for the purpose of simulating Hamiltonian
dynamics. We have shown that the current implementa-
tion of this calculation scales similarly to the present
log-likelihood calculation with respect to the number
of pulsars in a dataset, and improves upon traditional
MCMC methods when comparing the production of
independent samples of the distribution. This improve-
ment in performance scaling is paramount because PTAs
will continuously grow and add more pulsars to their data
collection. The 11-year dataset featured in this paper
contains 45 pulsars. Future NANOGrav datasets will have
≥ 60 pulsars and future IPTA datasets may contain close
to ∼100 pulsars. Increasing the data volume will further
strain our computational capabilities to perform large
parameter GW searches. HMC provides a way of resolv-
ing these limitations in a way that is more favorable to
future PTA analyses.
It is worth emphasizing that theOðd5=4Þ scaling of HMC

is not just with respect to the number of pulsars, but with
respect to the total number of parameters. We analyzed a
model with 2Npsr þ 1 parameters (with the GWB spectral
index held fixed), but this represents only one of many
different approaches for GW searches in PTAs. For
example, one can parametrize the GWB with a free
spectrum model, increasing its number of parameters from
2 to 30. Likewise, one can parametrize the individual pulsar
red noise in a similar fashion, increasing the parameter
count from 2 to 30 per pulsar. The favorable scaling of
HMC opens the door for more flexible models that are
currently prohibitive with current MH MCMC runs.
Currently we have only applied the HMC algorithm to

the problem of sampling a stochastic GWB model. PTAs
are also sensitive to certain deterministic GW signals, and
work towards tailoring this method to such searches is
under development. This technique is particularly promis-
ing for searches for GWs from individual SMBHBs
because of the large number of parameters necessary to
describe the GW signal (2Npsr þ 8 for a circular binary,
more if the source is eccentric). In general, this technique
can be adapted to the full suite of PTA searches, provided
the underlying models adhere to the limitations outlined in
Sec. II B. The ultimate goal is a general purpose pipeline
for performing any such PTA analysis that leverages the
benefits of the HMC algorithm towards exploring compli-
cated, high-dimensional models.

FIG. 5. Wall time to produce an independent sample in Markov
chains generated using HMC and MH MCMC methods, scaled
by the number of pulsars Npsr present in the model. The total
number of parameters in a given model is d ¼ 2Npsr þ 1. The
solid black represents the expected scaling for HMC of Oðd5=4Þ.
The dashed gray line denotes the expected scaling for MH
MCMC of Oðd2Þ.
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