
Dynamical thin disks

John Ryan Westernacher-Schneider *

Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, Netherlands

(Received 26 December 2022; accepted 19 January 2023; published 3 February 2023)

Thin disk accretion is often modeled in highly dynamical settings using the two-dimensional equations
of viscous hydrodynamics, with viscosity representing unresolved turbulence. These equations are
supposed to arise after vertical integration of the full three-dimensional equations of hydrodynamics,
under the assumption of a geometrically thin disk with mirror symmetry about the midplane. However, in
the dynamical context, vertical dynamics are neglected by incorrectly assuming instantaneous vertical
hydrostatic equilibrium. The resulting errors in the local disk height couple to the horizontal dynamics
through the α-viscosity prescription and disk height-dependent gravitational softening models. Further-
more, the viscous terms in the horizontal equations are only complete if they are inserted after vertical
integration, as if the system is actually two-dimensional. Since turbulence breaks mirror symmetry, it is
more physically correct to insert a turbulence model at the three-dimensional level and impose mirror
symmetry only on average. Thus, some viscous terms are usually missing. With these considerations in
mind, we revisit the vertical integration procedure, restricting ourselves to the regime of a Newtonian, non-
self-gravitating disk. We obtain six evolution equations with only horizontal dependence, which determine
the local vertical position and velocity of the disk surface, in addition to the usual surface densities of mass,
horizontal momentum, and energy. This “2.5-dimensional” formulation opens the door to efficiently study
vertical oscillations of thin disks in dynamical settings, and to improve the treatment of unresolved
turbulence. As a demonstration, by including viscous stress at the three-dimensional level, we recover
missing viscous terms which involve the vertical variables. We also propose a resummation of the vertically
integrated gravitational force, which has a strikingly similar radial profile to a gravitational softening model
advocated for in protoplanetary disk studies.

DOI: 10.1103/PhysRevD.107.043003

I. INTRODUCTION

The treatment of geometrically thin disks [1] historically
embodied approximations about the vertical structure
which go beyond thinness, including not-so-obvious ones
such as the negligibility of vertical velocity and horizontal
gradients of the disk scale height. This situation was
pointed out early on (e.g. [2]), and the mathematical
consistency of the approach was addressed clearly in [3].
This partly gave rise to the separate notion of a “slim”
disk [4]. The horizontal and vertical dynamics cannot be
decoupled even for an eccentric steady disk [5], let alone
more dynamical scenarios like binary accretion.
For over 20 years, and continuing today, the original

thin disk approach has been pushed beyond its regime
of validity to study binary accretion (e.g. [6]). Due to its
computational cost efficiency, and the large parameter
space of binary accretion, two-dimensional simulations
are unlikely to fall out of favor for the foreseeable
future. Thus, improving the two-dimensional treatment
is worthwhile.

Turbulence is an essential aspect driving astrophysical
accretion [1]. In this work, we take the view that a
turbulence model ought to be introduced at the three-
dimensional level, since mirror symmetry about the disk
midplane is only plausibly manifested in an averaged sense
(i.e. manifested at the level of a turbulence closure model).
This is not the view always taken in the literature on thin
disk turbulence, see e.g. [7].
In this work, we seek to raise awareness of these issues.

Restricting to the Newtonian, non-self-gravitating regime,
we revisit the derivation of vertically integrated equations
of motion assuming the disk is geometrical thin, mirror
symmetric about the midplane on average, has finite
vertical extent, and allows for multiple gravitating masses
coplanar with the disk. The resulting equations are
appropriate for shockwaves, large gradients, and other
dynamical, nonaxisymmetric hydrodynamic phenomena
characteristic of the binary accretion problem. We maintain
only horizontal dependence of the variables, with the
price being the evolution of two additional variables (the
vertical position and velocity of the disk surface), as well
as additional viscous terms involving the new variables.
These equations should be useful for studying vertical*john.westernacher.schneider@gmail.com
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oscillation phenomena, and to improve the treatment of
unresolved turbulence.
We use some inspiration from [3], which provided a

careful mathematical appreciation of geometrically thin
disks in the case where the vertical velocity is nonzero at
leading order but the disk is steady. But we also would like
to point out work treating thin disks in an asymptotic
expansion in a characteristic aspect ratio (e.g. [8–10]).
This approach seems particularly instructive, and has been
applied to study two-dimensional flows in axisymmetry
(e.g. [9]), even including a treatment of magnetohydrody-
namics (MHD) [11]. Such an approach may also be fruitful
for our current context of reducing nonaxisymmetric
problems to purely horizontal dependence, and may be
useful for including, in a systematic way, additional physics
such as radiative transfer (e.g. [12,13]), MHD, and asso-
ciated advanced turbulence models (e.g. [5,14–16]). We
leave improvements of the cooling prescription, which
might take steep horizontal gradients of the disk height into
account, to future work.
Also note that axisymmetric versions of some of our

results (e.g. the disk height evolution equation) appear
in [17]; they consider a dynamical equation for the vertical
velocity, but with a prescribed Gaussian vertical pressure
profile and no turbulent viscosity terms. Nontrivial vertical
dynamics were also considered in specialized coordinates
to study eccentric disk evolution in [5]. In work on
eccentric tidal disruption event disks, vertical dynamics
has also been considered (see e.g. [18]). In this work, we
leave the horizontal coordinates arbitrary.
Vertically integrated gravity models often have a free

parameter (the “softening length”) which regulates the
divergence at point masses and represents finite disk
thickness. To eliminate the softening length as a free
parameter in simulations, we propose a resummation of
vertically integrated gravity which depends on the local
disk height H (measured from the midplane). For small
aspect ratios, this proposal bears a striking resemblance to
Plummer models with softening length ∼ 0.6H, which is a
model advocated for in protoplanetary studies based on
comparisons to three-dimensional calculations (e.g. [19]).
In § II, we provide mathematical preliminaries and the

final “2.5-dimensional” equations; we derive them in
subsequent sections.

II. PRELIMINARIES AND FINAL EQUATIONS

Consider a disk of gas situated in the plane z ¼ 0 in a
coordinate system fu; w; zg, where fu; wg represent arbi-
trary horizontal coordinates independent of z, e.g. Cartesian
fx; yg or cylindrical fr; θg, and z is the Cartesian vertical
coordinate. In everything that follows, r will denote the
cylindrical radial coordinate. In index notation, we denote
spatial directions with indices fi; j; k;…g and the hori-
zontal directions with capital indices fI; J; K;…g. In terms

of metric language, our coordinate assumptions mean a flat
space with a line element

ds2 ¼ gIJdxIdxJ þ dz2; ð1Þ

where the horizontal metric coefficients gIJ are independent
of z. The origin is the center of mass of a system of point
masses whose orbits also lie in the plane z ¼ 0. We assume
the disk has reflection symmetry about the z ¼ 0 plane in
an averaged sense by inserting a viscous turbulence model
at the three-dimensional level, with all the fluid variables
representing appropriately defined mean values (e.g. Favre
averages [20]). Reflection symmetry implies that scalar
quantities and horizontal velocities are even functions
about z ¼ 0, whereas the vertical velocity vz is an odd
function about z ¼ 0.
At a given ðt; u; wÞ, where t is time, the disk extends

vertically to z ¼ �Hðt; u; wÞ, where H is the local disk
height. H=r is the local aspect ratio. The disk is thin in the
sense that z=r ≪ 1 inside it, so z=r is a sensible small
parameter to facilitate perturbative solutions. The surfaces
at z ¼ �Hðt; u; wÞ are treated as fluid-vacuum interfaces.
We thus weight the pressure and density by a distributionW
built from step functions Θ,

W ¼ ΘðzþHðt; u; wÞÞ − Θðz −Hðt; u; wÞÞ: ð2Þ

W is zero in vacuum and unity inside the disk. Its purpose
is to truncate vertical integrals in a computationally
elegant way. Note that under conditions of vertical hydro-
static balance, a polytropic equation of state in z yields
fluid-vacuum interfaces, whereas the specific case of a
Γ ¼ 1 polytrope has infinite vertical extent. Morally
speaking, one could view the vacuum boundary as an
approximate notion, with H actually being a scale height.
With mirror symmetry, our ansatz for the fluid variables
are therefore given by

ρ ¼ ½ρ0 þ ρ2ðz=rÞ2 þOðz=rÞ4�W; ð3Þ

P ¼ ½P0 þ P2ðz=rÞ2 þOðz=rÞ4�W; ð4Þ

vI ¼ vI0 þ vI2ðz=rÞ2 þOðz=rÞ4; ð5Þ

vz ¼ vz1ðz=rÞ þOðz=rÞ3; ð6Þ

where the integer subscripts denote the coefficients of
the respective terms in the power series in z=r. Such
coefficients are dependent upon time and horizontal
position only, whereas W depends on horizontal position
and time (via dependence on H) as well as on the vertical
coordinate.
We present the final equations now, and derive them in

subsequent sections. For cleanliness we separate the
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viscous terms, which should be understood as appearing
on the right-hand side of their respective equations of
motion. vH ≡ vzjH is the vertical velocity evaluated at
z ¼ H. The zeroth-order vertically integrated mass density,
pressure, and energy density are Σ≡ ρ0H, P ≡ P0H,
E ≡ Σϵ0 þ ð1=2ÞΣv20. Subscripts n index the gravitating
point masses, all situated in the midplane z ¼ 0. Dn is the
in-plane distance from a field point to the nth point mass in
the system, and D̂n is the corresponding outward-pointing

horizontal unit vector. Ω̃2 is a multibody generalization of
the squared Keplerian frequency, equal to the sum of
squared Keplerian frequencies for individual bodies.
2DτIJ ≡ Σνð∇Iv0;J þ∇Jv0;I − ð2=3ÞgIJ∇KvK0 Þ þ Σλ∇KvK0
is the purely two-dimensional viscous stress tensor, with ν
and λ as the kinematic shear and bulk viscosities. Unless a
polytropic equation of state is imposed, the energy equation
must be supplemented by a cooling prescription, which we
leave to future work.

Mass∶ ∂tΣþ∇JðΣvJ0Þ ¼ 0;

Horizontal momentum∶ ∂tðΣv0;IÞ þ∇JðΣvJ0v0;IÞ ¼ −∂IP − Σ
X
n

GMn

D2
n

D̂n;

Energy∶ ∂tðEÞ þ∇J½ðE þ PÞvJ0� ¼ Σ
X
n

GM
D2

n
D̂n · v⃗0;

Vertical momentum∶ ∂tðΣvHÞ þ∇JðΣvJ0vHÞ ¼
2P
H

− ΣΩ̃2H;

Disk height∶
dH
dt

¼ ∂tH þ vJ0∂JH ¼ vH;

Resummation of gravity∶ Σ
X
n

GM
D2

n
→ Σ

X
n

GM
D2

n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðH=DnÞ2

p ;

Horizontal viscosity∶
Z

∞

0

dz∇jτ
j
I ≃∇Jð2DτJI Þ −∇I

�
Σ
H

�
2

3
ν − λ

�
vH

�
;

Energy viscosity∶
Z

∞

0

dz∇jðviτjiÞ ≃∇JðvIð2DτJI ÞÞ −∇J

�
Σ
H

�
2

3
ν − λ

�
vJ0vH

�
þ∇J

�
Σ
H
ν
vH
3
½H∇JvH − vH∇JH�

�
;

Vertical viscosity∶
Z

∞

0

dz∇jτ
j
z ≃∇J

�
1

2

Σ
H
νðH∇JvH − vH∇JHÞ

�
−
Σ
H

��
4

3
νþ λ

�
vH
H

−
�
2

3
ν − λ

�
∇JvJ0

�
:

III. VERTICAL DYNAMICS

In order to solve for the vertical structure, we must solve
the equation of momentum conservation along z,

∂tðρvzÞ þ∇jðρvjvzÞ ¼ ρgz − ∂zP; ð7Þ

where gz is the vertical gravitational acceleration −∂zΦ. For
cleanliness, we consider the viscous terms later.
For the gravity term, we sum the potentials of N point

masses situated in the plane,

Φ ¼ −
XN
n¼1

GMn

Rn
; ð8Þ

where G is Newton’s constant, Mn is the nth mass, and Rn
is the distance between the field point ðu; w; zÞ and the mass
location ðun; wn; 0Þ, given as

Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þD2

n

q
; ð9Þ

where Dn is the distance between the points ðu; w; 0Þ and
ðun; wn; 0Þ. The gravitational acceleration along z is

gz ¼ −∂zΦ;

¼ −
XN
n¼1

GMn

R2
n

∂zRn;

¼ −
XN
n¼1

GMn

D2
n

z
Dn

þO
��

z
Dn

�
2 z
r

�
; ð10Þ

≃ − Ω̃2z: ð11Þ

We defined Ω̃2 ≡P
N
n¼1ðGMn=D3

nÞ as a multibody gener-
alization of the squared Keplerian frequency. Plugging
everything into Eq. (7) and keeping lowest order terms yields

∂t

�
ρ0Wv1;z

z
r

�
þ∇J

�
ρ0WvJ0v1;z

z
r

�
þ ∂zðρ0Wv21;zðz=rÞ2Þ

¼ −ρ0WΩ̃2z − ∂zðP0WÞ: ð12Þ
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Next, integrate Eq. (12) vertically over z ∈ ½0;∞Þ. The ∂z
term on the left-hand side vanishes, and we obtain

∂tðΣvzjHÞ þ∇JðΣvJ0vzjHÞ ¼
2P
H

− ΣΩ̃2H; ð13Þ

where Σ≡Hρ0 and P ≡HP0 and vzjH is the vertical
velocity evaluated at the disk surface z ¼ H. Note ΣvzjH
is twice the vertically integrated vertical momentum.
When vzjH ¼ 0, hydrostatic balance is achieved:

H ¼
ffiffiffiffiffiffi
2P
Σ

r
1

Ω̃
: ð14Þ

But if H depends on time t, then vzjH cannot be zero.
Roughly speaking, we expect by definition that

∂tH ∼ vzjH: ð15Þ

Now suppose shocks are generated in the disk, and that they
tend to be smeared out by turbulent eddies (of size ∼H)
to a width ∼H. Since thin disks are highly supersonic,
those spatial variations would propagate horizontally at
roughly Keplerian speed vK (i.e. at speed ∼ vK þ cs ∼
vK þ vK=M ∼ vK where M ¼ vK=cs is the Mach number
and cs is the sound speed). Thus, Oð1Þ-changes in H occur
on a timescale ∼H=vK , implying

∂tH ∼
H

H=vK
¼ vK ∼ vzjH: ð16Þ

Thus, the terms in Eq. (12) involving vzjH are dominant
when steep gradients are propagating.1 Thus, in inter-
mediate conditions, all terms can be of the same order. It is
therefore generally unjustified in a dynamical setting to
ignore the terms involving the vertical velocity.
The integrated vertical momentum equation is an evo-

lution equation for vzjH, but we still have a two-
dimensional dependence of the fluid variables. We must
also relate the fluid variables to H when vzjH ≠ 0. To
determine H, we can employ the free surface boundary
conditions, which include that the surface moves according
to the fluid velocity at z ¼ H:

dH
dt

¼ ∂tH þ vJ0∂JH ¼ vzjH: ð17Þ

Using the outward-pointing normal to the surface, N̂, this
equation of motion (17) can be derived by considering a
flat, infinitesimal segment of surface, with inclination with
respect to the vertical direction determined by N̂ · ẑ, moving
due to the full fluid velocity v⃗jH in the direction determined
by N̂ · v⃗jH by an amount N̂ · v⃗jHdt in time dt. Then at fixed

horizontal coordinates, the surface moves vertically by
an amount

dHN̂ · ẑ ¼ N̂ · v⃗jHdt: ð18Þ

The outward-pointing normal is given in Cartesian coor-
dinates as

N̂ ¼ ½−∂xH;−∂yH; 1�Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂xHÞ2 þ ð∂yHÞ2

q : ð19Þ

Using this form, Eq. (17) follows from Eq. (18). Note that
Eq. (17) is a nonaxisymmetric generalization of a formula
written down in [17] [see their Eq. (20)]. Those authors also
consider the dynamical equation for the vertical velocity
[their Eq. (17)], but with a prescribed Gaussian vertical
pressure profile (and thus no fluid-vacuum interface) and
no turbulent viscosity terms.
In a two-dimensional calculation, one could evolve

vzjHðt; u; wÞ and Hðt; u; wÞ using Eqs. (12) and (17),
respectively, in addition to the remaining fluid equations.
Standard shock-capturing methods can be applied readily
to Eq. (12), whereas we anticipate that Eq. (17) just needs a
slope-limited differencing operator applied to H.

A. Viscous terms

The viscous term in the vertical momentum equation
would appear on the right-hand side of Eq. (7) as ∇jτ

j
z,

where

τij ¼ ρ

�
ν

�
∇ivj þ∇jvi −

2

3
gij∇kvk

�
þ λgij∇kvk

�
; ð20Þ

and where we defined the kinematic viscosity ν and the
bulk viscosity per density λ (which we will simply call the
bulk viscosity). The bulk viscosity λ controls the trace of
the viscous stress tensor τij. It has been suggested that bulk
viscosity can represent radiative damping [21] or a stabi-
lizing influence similar to the finite relaxation timescale of
unresolved MHD turbulence [5].
In the vertical structure equation, on the right-hand side

we have

∇jτ
j
z¼∇Jτ

J
z þ∂zτ

z
z;

¼∇J½ρνð∇Jvzþ∂zvJÞ�

þ∂z

�
ρ

��
4

3
νþ λ

�
∂zvz−

�
2

3
ν−λ

�
∇JvJ

��
; ð21Þ

where we used ∇zτ
z
z ¼ ∂zτ

z
z and ∇zvz ¼ ∂zvz (since the

Christoffel symbols obey Γz
zj ¼ 0 ¼ Γj

zz). Integrating over
z ∈ ½0;∞Þ yields1Note ∂t ∼ vK∂J .
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Z
∞

0

dz∇jτ
j
z

≃∇J

�
1

2

Σ
H
ν

�
H∇JðvzjHÞ − vzjH∇JH þ 2vJ2

�
H
r

�
2
��

−
Σ
H

��
4

3
νþ λ

�
vzjH
H

−
�
2

3
ν − λ

�
∇JvJ0

�
ð22Þ

Owing to two derivatives, a higher order coefficient in the
power series for velocity now appears, i.e. vJ2. As long as v

J
2

is at most the same order as vJ0, the term involving vJ2
should be higher order. For example, in relaxed conditions,
where horizontal derivatives ∇ ∼ 1=r, Eq. (17) implies that
vzjH ∼ vJ0ðH=rÞ. Thus, all terms in the square brackets in
Eq. (22) are of the same order, and smaller than the terms in
curly brackets by ðH=rÞ2. In dynamic conditions, where
∇ ∼ 1=H and vzjH ∼ vJ0, the term involving vJ2 is smaller
than all other terms in Eq. (22) by ðH=rÞ2. Thus, so long as
vJ2 is at most the order of vJ0, we can neglect the vJ2 term.
This condition will certainly not hold in general, since
axisymmetric calculations have shown that horizontal
velocities can flip direction between z ¼ 0 and z ¼ H,
even resulting in coexisting midplane backflow and surface
inflow [9,22–25]. Any hope of accounting for this sort of
behavior in a vertically integrated context requires carrying
out expansions to sufficiently high order that the velocity
field can be reconstructed with enough vertical detail. Such
an approach would still be two dimensional, but with
additional expansion coefficients being evolved.

IV. HORIZONTAL DYNAMICS

A. Local conservation of mass

At lowest order, the continuity equation reads

∂tðρ0WÞ þ∇Jðρ0vJ0Þ ¼ −∂zðρ0WvzÞ; ð23Þ

where a source term comes from the three-dimensional
divergence, encoding the vertical dynamics. Integrating
over z ∈ ½0;∞Þ yields

∂tΣþ∇JðΣvJ0Þ ¼ 0: ð24Þ

B. Local conservation of momentum

At lowest order, the horizontal momentum equation
reads

∂tðρ0Wv0;IÞ þ∇Jðρ0WvJ0v0;IÞ þ ∂zðρ0Wvzv0;IÞ
¼ −∂IðP0WÞ þ ρ0WgI: ð25Þ

Integrating over z ∈ ½0;∞Þ yields

∂tðΣv0;IÞ þ∇JðΣvJ0v0;IÞ ¼ −∂IP − Σ
X
n

GMn

D2
n

D̂n; ð26Þ

where D̂n is a unit vector pointing away from the nth point
mass. At lowest order, the gravitational force has purely
Newtonian form. Often the gravitational force is instead
approximated as that arising from a Plummer potential,
which one could argue is a model of the gravitational force
at beyond leading order in z=r (see e.g. [19,26]).

C. Proposed resummation of the gravitational force

Set ρ ¼ ρ0W and leave the gravitational acceleration
exact, as

P
n GMnDn=R3

n, then integrate. This yields

ρ0
X
n

GM
D2

n
×
Z

H

0

dzð1þ ðz=DnÞ2Þ−3=2

¼ Σ
X
n

GM
D2

n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðH=DnÞ2

p : ð27Þ

Compared to a Plummermodelwith softening lengthaH, this
proposed force law is best fit by a Plummer model at small
aspect ratios when a ≃ 0.58, which is a similar softening
length that has been advocated for use when modeling non-
self-gravitating disks in planetary studies (e.g. a ≃ 0.6, see
Ref. [19] and references therein). The best-fitting value of a
decreases toward 0.51 as the aspect ratio goes to 1 and the thin
disk approach breaks down, see Fig. 1.
Regulating Eq. (27) at Dn ¼ 0 is another matter. One

can, for example, transition smoothly to a traditional
Plummer model with a fixed softening length at very small
radii, such as within numerical sinks which represent
accreting bodies.

D. Local conservation of energy

The energy equation reads

∂t

�
ρϵþ 1

2
ρv2

�
þ∇j

��
ρϵþ 1

2
ρv2 þ P

�
vj
�
¼ ρvjgj:

ð28Þ

At lowest order, we obtain

FIG. 1. Best fits of Eq. (27) with a Plummer model with
softening length aH for different aspect ratios.
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∂t

�
ρ0Wϵ0 þ

1

2
ρ0Wv20

�

þ∇J

�
W

�
ρ0ϵ0 þ

1

2
ρ0v20 þ P0

�
vJ0

�

þ ∂z

�
W

�
ρ0ϵ0 þ

1

2
ρ0v20 þ P0

�
vz
�
¼ ρ0WvJ0gJ: ð29Þ

Integration over z ∈ ½0;∞Þ yields

∂t

�
Σϵ0 þ

1

2
Σv20

�
þ∇J

��
Σϵ0 þ

1

2
Σv20 þ P

�
vJ0

�

¼ Σ
X
n

GM
D2

n
D̂n · v⃗0: ð30Þ

The gravitational acceleration term can also use the
resummed form given by Eq. (27). A radiative cooling
prescription should be inserted on the right-hand side. A
careful computation of radiative cooling, appropriate for
dynamic disk conditions, is left to future work.

E. Viscosity

Now we compute the vertical integration of the viscous
terms. The derivations are tedious but straightforward, so
we omit them. We define the purely horizontal vertically
integrated viscous stress as

2DτJI ≡ Σν
�
∇Jv0;I þ∇IvJ0 −

2

3
δJI∇KvK0

�
þ Σλ∇KvK0 :

ð31Þ

The viscous term on the right-hand side of the horizontal
momentum equation is

Z
∞

0

dz∇jτ
j
I ≃∇Jð2DτJI Þ −∇I

�
Σ
H

�
2

3
ν − λ

�
vzjH

�
: ð32Þ

For the energy equation, the viscous term on the right-
hand side is

Z
∞

0

dz∇jðviτjiÞ

≃ ∇JðvIð2DτJI ÞÞ−∇J

�
Σ
H

�
2

3
ν−λ

�
vJ0vzjH

�

þ∇J

�
Σ
H
ν
vz
3

				
H

�
H∇JðvzjHÞ−vzjH∇JHþ2vJ2

�
H
r

�
2
��

:

ð33Þ

Using the same arguments as in § III A, we neglect the vJ2
term which closes the system.

V. CONCLUSIONS AND OUTLOOK

The thin disk equations traditionally used in highly
dynamical calculations, such as binary accretion, neglect
vertical dynamics. Turbulence models are also typically
inserted after vertical integration, which does not respect
the fact that turbulence breaks mirror symmetry at the
three-dimensional level. Meanwhile, the two-dimensional
approach is computationally indispensable, since it allows
for efficient exploration of the large parameter space of thin
disk accretion problems.
In this work, we sought to raise awareness of these

issues. We revisited the reduction of a thin disk to two
dimensions, and obtained hydrodynamic equations of
motion suited for thin disks with shockwaves and other
dynamic phenomena. The resulting system is still effec-
tively two-dimensional in the variable dependence, and the
local vertical position and velocity of the disk surface are
new field variables. We demonstrated that insertion of a
turbulence model at the three-dimensional level results in
new viscous terms after vertical integration. We also
proposed a resummation of the horizontal gravitational
force, which acts to soften the force law (which is
physically required at next-to-leading order in the disk
aspect ratio) in a way which eliminates the softening length
as a free parameter. A Plummer model with softening
length ∼ 0.6H, which has been advocated for in proto-
planetary studies, bears a striking resemblance to our
proposed resummation of the gravitational force for small
aspect ratios, and differs increasingly as the aspect ratio
approaches unity. An improvement of radiative cooling,
appropriate for e.g. large gradients of the disk thickness, is
left to future work.
We plan to implement our new “2.5”-dimensional

system of equations in binary accretion simulations, and
check whether known results are sensitive to the neglect of
vertical dynamics and a proper three-dimensional treatment
of turbulence. Vertical oscillation phenomena in such
systems, and their observational signatures, will also be
explored. In the future, detailed vertical structure and
nontrivial meridional flow can likely be resolved with
effectively two-dimensional simulations if the equations of
motion are solved to sufficiently high order in the disk
aspect ratio, the expense of which is increased equation
complexity and the evolution of additional variables [the
higher-order coefficients in the (z=r)-expansions of the
fluid variables].
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