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The discovery of Standard-Model like Higgs at 125 GeV may raise more questions than the answers it
provides. In particular, the hierarchy problem remains unsolved, and the Standard Model Higgs quartic
self-coupling becomes negative below the Planck scale, necessitating new physics beyond the Standard
Model. In this work we investigate a popular scenario, extensions of the Standard Model with vectorlike
fermion fields, such as the ones present in models with extra dimensions or in Higgs composite models,
using a model independent approach. Since fermions decrease the Higgs quartic coupling at high energies,
only exacerbating the self-coupling problem, we introduce first an additional scalar, which by itself is
enough to overcome the vacuum stability limit, and then explore the effects of vectorlike fermions in
singlet, doublet and triplet representations. For each model, we identify the allowed fermion masses and
mixing angles with the third family fermions required to satisfy the vacuum stability condition, and
compare different representations. Allowed fermion masses emerge at around 1 TeV, raising hope that these
will be found at the LHC. We also examine corrections to oblique parameters S and T from additional
scalar and vectorlike quarks which also impose constraints on mixing and mass splitting of both sectors, but
these restrictions are relatively weak compared to the vacuum stability.
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I. INTRODUCTION

Ever since the Higgs boson was discovered at the CERN
Large Hadron Collider (LHC), confirming at last the last
remaining puzzle of the Standard Model (SM) [1], the
observed mass of the Higgs boson combined with the
mass of the top quark, mt, have caused concern because, as
the theory stands, it violates stability of the electroweak
vacuum [2]. In the SM there is a single Higgs h with
effective potential characterized by two parameters only, the
Higgs ðmassÞ2, κ2 and its self-coupling λ, V ¼ κ2h2 þ λh4.
The self-coupling λ can become negative at larger scales, so
the potential becomes unbounded from below, and there is
no resulting stability. Theoretical considerations indicate
that if the validity of the SM is extended to MPlanck, a
second, deeper minimum is located near the Planck scale
such that the electroweak vacuum is metastable, i.e., the
transition lifetime of the electroweak vacuum to the deeper
minimum is finite with lifetime ∼10300 years [2].

If the electroweak vacuum is metastable then Higgs
cannot play the role of inflaton [3]. Explanations involving
a long lived-universe, where vacuum instability is not
important, were proved to be faulty. Without vacuum
stability, fluctuations in the Higgs field during inflation
and in the hot early universe would have taken most of the
universe into an anti–de Sitter phase, yielding a massive
collapse, and the expansion of the universe would never
have occurred [4]. The result of this is that either the SM
must be incorrect or flawed in some way [5], or at the very
least, that new physics beyond the SM which alters the
Higgs potential so that it enhances its stability must exist at
higher energies. Thus extra degrees of freedom are needed
for the SM to explain the inflation of the Universe [3,6–8].
Minimal extensions of the SM which stabilize the Higgs

vacuum are the most common theories which attempt to
solve the Higgs mass problem. The correlation between the
Higgs mass and vacuum stability is highly dependent on
bosonic interactions. For instance, a model [9] with two
Higgs doublets and large soft Higgs mass terms, satisfying
the electroweak symmetry breaking conditions, has a stable
vacuum and decay branching ratios that are very close to
the SM ones, and this only one example.
The question remains if models with additional fermions,

present in most beyond the SM scenarios, can survive
stability constraints, and if so, what are the restrictions
imposed on their masses and mixing (if any) with the
SM particles.
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To investigate how the hierarchy problem may be fixed,
and what are the implications for vacuum stability, one
could proceed by assuming a theory which supersedes the
SM emerging at higher energies, such a supersymmetry.
(Note however that minimal supersymmetry has its own
difficulties with accommodating a Higgs boson of mass
125 GeV.) Or one could study the effect of adding particles
to the SM, coupled in the simplest way, and investigate the
conditions on their masses and couplings as emerging from
vacuum stability conditions, as a simple and elegant way to
obtain information about new particles and interactions
without assuming complicated frameworks.
The latter is the approach we wish to follow in this

article, and we investigate inclusion of one additional
generation of vectorlike fermions, i.e., fermions whose
left-handed and right-handed components transform
the same way under SUð3Þc×SUð2ÞL×Uð1ÞY. Unlike
sequential fourth-generation quarks, which are ruled out
by the one-loop induced Higgs production and decay
mechanisms (the gluon fusion production and diphoton
decay of the Higgs) [10], indirect bounds on vectorlike
quarks are much weaker. In particular, vectorlike fermions
can acquire a large Dirac mass without introducing a large
Yukawa coupling to the Higgs.
Vectorlike fermions appear in the context of many

models of New Physics [11]. In warped or universal extra
dimensional models, vectorlike fermions appear as KK
excitations of bulk fields [12], in Composite Higgs
models, vectorlike quarks emerge as excited resonances
of bound states that form SM particles [13,14], in little
Higgs models, they are partners of the ordinary fermions
within larger group representations and charged under the
group [15], and in nonminimal supersymmetric extensions
of the SM, they can increase the Higgs mass through loop
corrections without adversely affecting electroweak pre-
cision [16]. Vectorlike colored particles are consistent
with perturbative gauge coupling unification and are often
invoked to explain discrepancies in the data, such as the
tt̄H anomaly [17].
Vectorlike particles have been considered before in the

context of stabilizing the vacuum of the SM in [18,19], in
the context of baryogenesis [20], to account for the
anomalous magnetic moment of the muon and discrepan-
cies in the W boson mass [21], and to help explain the
observed excess at 750 GeV [22,23]. However, only
particular representations have been considered [24], and
a complete interplay of all possible vectorlike quark
representations and the SM does not exist at present. We
redress this here, and analyze the restrictions on the masses
and mixing angles for the all anomaly-free representations
of vectorlike quarks, as well as the associated boson field
which is added to the SM for vacuum stabilization. In
addition, we test the effects and restrictions induced by the
vectorlike fermions on the electroweak precision observ-
ables, S; T , and U.

Our work is organized as follows. In Sec. II we outline
briefly the vacuum stability problem in the SM, and in
Sec. II B its resolution with an additional singlet scalar. In
Sec. III we then introduce all anomaly-free vectorlike quark
representations, their interaction Lagrangians, and derive
their masses and mixing angles (assumed to be with the third
generation quarks only). We then proceed to analyze the
effects on vacuum stability of introducing singlet, doublet,
and triplet representations, respectively. In Sec. IV we give
the expressions and analyze the effects of the additional
fields on the electroweak precision observables. We con-
clude in Sec. V, and leave the expressions for the relevant
RGEs for the models studied to the Appendix.

II. VACUUM STABILITY IN THE SM

A. The Higgs potential

In the SM, interactions with the Higgs field are specified
by the Higgs potential, which has the form

VðϕÞ ¼ −
1

2
κ2Φ2 þ 1

4
λΦ4 þ ΔV; ð2:1Þ

with κ and λ the quadratic and quartic couplings, ΔV the
tree-level correction terms, and Φ the Higgs field given by

Φ ¼
�
Φþ

Φ0

�
¼

�
Φþ

ðvþ h0 þ iG0Þ= ffiffiffi
2

p
�
; ð2:2Þ

where v ¼ 246 GeV is the Higgs vacuum expectation
value (VEV). Vacuum stability requires V0ðϕÞ > 0, or
equivalently, λðμÞ > 0, with λ the running Higgs coupling
which depends on the scale, μ, at which the SM breaks
down. The issue is that the Higgs quadratic self-coupling is
renormalized not only by itself (λ increasing as the energy
scale increases), but also by the Higgs (Yukawa) coupling
to the top quark, which tends to drive it to smaller, even
negative values at high scales μ. At leading orders [25]

λðμÞ ≃ λðμ0Þ −
3m2

t

2πv4
log

�
μ

μ0

�
; ð2:3Þ

yielding an estimate for the energy scale where λ will
become negative [25]

log

�
μ

μ0

�
¼ 9.4þ 0.7ðmH − 125.15Þ − 1.0ðmt − 173.34Þ

þ 0.3

�
αsðMZÞ − 0.1184

0.0007

�
ð2:4Þ

with energy scales and masses measured in GeV. Taking
into account all the uncertainties in the measurements of
mH, mt, and αs, the scale at which the SM fails is
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μ ¼ 10ð9.4�1.1Þ GeV. Possible remedies include higher-
dimensional operators in the effective theory, or additional
symmetries (such as supersymmetry, which is associated to
a new scale), or addition of new particles to the SM.
More explicitly, the variation of the coupling λ with the

energy scale involves evaluation of the one-loop beta
function describing the running of λ is [25]

dλðμÞ
d ln μ

¼ 1

16π2

�
4λ2 þ 12λy2t − 36y2t − 9λg21 − 3λg22 þ

9

4
g22

þ 9

2
g21g

2
2 þ

27

4
g41

�
; ð2:5Þ

with g1, g2, g3 the coupling constants for Uð1ÞY; SUð2ÞL;
SUð3Þc, and yt the Yukawa coupling of the top quark.
The renormalization group equations for these parameters
are [26]

dgiðμÞ
d ln μ

¼ 1

16π2
big3i ; b ¼ ð41=10;−19=6;−7Þ ð2:6Þ

dytðμÞ
d ln μ

¼ yt
16π2

�
9

2
y2t −

9

4
g22 −

17

12
g21 − 8g23

�
; ð2:7Þ

with initial conditions

g21ðμ0Þ ¼ 4πα; g22ðμ0Þ ¼ 4πα

�
1

sin θW
þ 1

�
; g23ðμ0Þ ¼ 4παs

ytðμ0Þ ¼
ffiffiffi
2

p
mt

v
; λðμ0Þ ¼

3m2
H

v2
½1þ δλðμ0Þ�: ð2:8Þ

Here α; αs are the weak and strong coupling constants, sin θW ¼ 0.2312 is the Weinberg angle, and we set
μ0 ¼ MZ ¼ 91.188 GeV. The radiative decay constant is [27]

δλðμÞ ¼
GFM2

Z

8
ffiffiffi
2

p
π2

½ξf1ðξ; μÞ þ f0ðξ; μÞ þ ξ−1f−1ðξ; μÞ�; ð2:9Þ

with ξ ¼ m2
H=M

2
Z, GF ¼ 1.16635 × 10−5 GeV−2 and

f1ðξ; μÞ ¼ 6 ln
μ2

m2
H
þ 3

2
ln ξ −

1

2
Z

�
1

ξ

�
− Z

�
c2

ξ

�
− ln c2 þ 9

2

�
25

9
−

ffiffiffi
1

3

r
π

�

f0ðξ; μÞ ¼ 6 ln
μ2

M2
Z

�
1þ 2c2 − 2

m2
t

M2
Z

�
þ 3c2ξ
ξ − c2

þ 2Z

�
1

ξ

�
þ 4c2Z

�
c2

ξ

�
þ 3c2 ln c2

s2
þ 12c2 ln c2 −

15

2
ð1þ 2c2Þ

− 3
m2

t

M2
Z

�
2Z

�
m2

t

ξM2
Z

�
þ 4 ln

m2
t

M2
Z
− 5

�
;

f−1ðξ; μÞ ¼ 6 ln
μ2

M2
Z

�
1þ 2c4 − 24

m2
t

M2
Z

�
− 6Z

�
1

ξ

�
− 12c4Z

�
c2

ξ

�
− 12c4 ln c2 þ 8ð1þ 2c4Þ þ

�
Z

�
m2

t

ξM2
Z

�
þ ln

m2
t

M2
Z
− 2

�
ð2:10Þ

with

ZðzÞ ¼
�
2A tan−1ð1=AÞ; z > 1=4

A ln½ð1þ AÞ=ð1 − AÞ�; z < 1=4;
ð2:11Þ

A ¼j1 − 4zj1=2 ð2:12Þ

where c, s are abbreviations for cos θW; sin θW.
Examining the running of the coupling parameters in this

mode shows that the scalar couplings increase with increas-
ing energy scales, while the Higgs coupling λ decreases and
becomes negative at around 1010 GeV.

B. Introducing an additional boson

In this section, we consider the simplest remedy to the
stability problem by extending the particle content of the
SM by an extra (singlet, as it is simplest) scalar boson
which interacts solely with the SM Higgs, and we examine
the constraints placed on its mass and its mixing angle with
the SM Higgs boson on experimental and theoretical
grounds. We leave Higgs vacuum stability condition, the
main motivations of this work, to be analyzed in detail in
the last discussion in this section. We refer to this scenario
as HSM.
The addition of a boson provides a positive boost to the

coupling parameter, counteracting the effect of the top
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quark and contributing toward repairing the Higgs vacuum
stability [28].
In this scenario, the Higgs doublet Φ from Eq. (2.2)

interacts with the new scalar singlet χ

χ ¼ ðuþ χ0Þ; ð2:13Þ

where u is the singlet VEV, through

Vðϕ; χÞ ¼ −κ2HΦ†Φþ λHðΦ†ΦÞ2 − κ2S
2
χ2 þ λS

4
χ4

þ λSH
2

ðΦ†ΦÞ2χ2: ð2:14Þ

After symmetry breaking, the singlet and doublet
Higgs mix

MH;S ¼
�
2λHv2 λSHvu

λSHvu 2λSu2

�
; ð2:15Þ

yielding mass eigenvalues:

m2
H;S ¼ λHv2 þ λSu2 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλSu2 − λHv2Þ2 þ λ2SHu

2v2
q

ð2:16Þ

and the eigenvectors

�
H

S

�
¼

�
cosφ sinφ

− sinφ cosφ

��Φ
χ

�
: ð2:17Þ

As in the SM, we require λH > 0 for a stable SM
vacuum, and λS > 0 for the new particle. In addition we
impose that the potential is positive for asymptotically large
values of the fields,

λH > 0; 0 < λS < 4π; jλSHj > −2
ffiffiffiffiffiffiffiffiffiffi
λSλH

p
: ð2:18Þ

In addition we require that λSH is perturbative, thus
bounded by jλSHj > 4π. The quartic couplings can be
expressed in terms of the physical masses as:

λH ¼ m2
H cos2 φþm2

S sin
2 φ

2v2
;

λS ¼
m2

S cos
2 φþm2

H sin2 φ
2v2

;

λSH ¼ m2
S −m2

H

2uv
sin 2φ; ð2:19Þ

with mH;mSðv; uÞ the masses (VEVs) of the physical
fields, respectively and φ their mixing angle. Requiring
perturbativity up to Planck scales, we apply the Yukawa
and Higgs sector RGEs:

dy2t
d ln μ2

¼ y2t
16π2

�
9y2t
2

−
17g21
20

−
9g22
4

− 8g23

�
;

dλH
d ln μ2

¼ 1

16π2

�
λH

�
12λH þ 6y2t −

9g21
10

−
9g22
2

�
þ
�
λ2SH
4

− 3y4t þ
27g41
400

þ 9g42
16

þ 9g21g
2
2

40

��
;

dλS
d ln μ2

¼ 1

16π2
ð9λ2S þ λ2SHÞ;

dλSH
d ln μ2

¼ λSH
16π2

�
2λSH þ 6λH þ 3λS þ 3λS þ 3y2t −

9g21
20

−
9g22
4

�
; ð2:20Þ

Here λH and λS are the quartic self-couplings of Φ and χ,
and λSH the coupling describing their mixing. Equa-
tion (2.19) describe the coupling parameters at relatively
small energy scales, and therefore serve as initial conditions
to these RGEs.
Just as in the SM, we ignore the contributions of all

Yukawa couplings except for that of the top quark, and also,
we include electroweak radiative correction terms for
increased accuracy. To this end, we replace the top
Yukawa coupling and Higgs self-coupling boundary con-
ditions with [29]

yt ¼
ffiffiffi
2

p
mt

v
½1þ Δtðμ0Þ�;

λH ¼ m2
Hcos

2φþm2
Ssin

2φ

2v2
½1þ ΔHðμ0Þ�; ð2:21Þ

where ΔHðμÞ is the same correction as in the SM, and

Δtðμ0Þ ¼ ΔWðμ0Þ þ ΔQEDðμ0Þ þ ΔQCDðμ0Þ; ð2:22Þ

with
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ΔWðμ0Þ ¼
GFm2

t

16
ffiffiffi
2

p
π2

�
−9 ln

m2
t

μ20
− 4π

mH

mt
þ 11

�
;

ΔQEDðμ0Þ ¼
α

9π

�
3 ln

m2
t

μ20
− 4

�
;

ΔQCDðμ0Þ ¼
αs
9π

�
3 ln

m2
t

μ20
− 4

�
; ð2:23Þ

and we include the RGEs for the gauge couplings as in the
SM, Eq. (2.6).
Figure 1 illustrates the running of the coupling param-

eters for a typical set of parameter values. Notice that in this
model, the scalar couplings increase with increasing energy
scales, compensating for the SM Higgs coupling, which
becomes negative at around 1010 GeV. Therefore, the
addition of an extra scalar boson to the SM rescues the
theory from vacuum instability. Of course, we may inves-
tigate the mass and mixing angle of this singlet scalar with
the Higgs boson by eliminating all parameter values that do
not satisfy Higgs vacuum stability. For this we perform a
scan over a broad parameter space and disallow all
parameter values which do not satisfy the vacuum stability
conditions outlined in Eq. (2.18). The resulting allowed
parameter space is illustrated in Fig. 2. While the blue
points represent restrictions from vacuum stability bounds
only, the shaded red region represents the region excluded
by constraints from Higgs production and couplings (as
discussed below), which are dominant and are the only
parameters limiting the parameter space, especially for
lighter singlet masses, mS ≤ 700 GeV.
Note that, while the mass region allowed for the addi-

tional boson for u ¼ 1 TeV is quite restricted, for larger
VEVs it is quite large, and increasing with the new boson
VEV. However, in all cases, the mixing with the SM Higgs
boson is required to be nonzero (φ ≠ 0), consistent with the
observation of Higgs potential instability in the absence of
the additional boson.

The additional scalar is subjected to constraints from
particle physics and cosmology [30,31]. If the additional
scalar is heavier than the Higgs boson at 125 GeV, in HSM
the decay channel S → HH may exist, and act as an extra
constraint for the mixing regime. The ρ parameter and its
deviation from unity play an important role in measuring
the effects of new physics on the masses of electroweak
gauge bosons. Corrections to the mass of W-boson origi-
nate from the Higgs mediated loops, which enhance gauge
boson self-energies, and these are dependent on the masses
and the mixing between the scalar fields [32]. In the case
where the heavier of the two scalars is the mostly singlet S
with mS ≥ 125 GeV, the mixing angle sinφ agrees with
theoretical predictions up to 1σ. Although the region for
ΔMW

1 is less restricted compared to the other case (where
mH ¼ 125 GeV), this scenario is disfavored by collider
bounds and Higgs data. If the lighter scalar corresponds to
the SM Higgs boson with mH ¼ 125 GeV, larger heavy
singlet scalar masses impose smaller mixing angles
between the two scalars in order to fit ΔMW to 1σ level.
The minimum scale for the mass of heavier scalar in this
work is at least 500 GeV, which in return, corresponds to
sinφ ¼ 0.37 due only to the constraint on ΔMW .
The bounds on HSM are also constrained by electroweak

precision observables (EWPO). The singlet scalar contrib-
utes to the gauge boson self-energy diagrams at loop level,
generating a shift in the oblique parameters S, T, U [34].
Checking the results from EWPO fit [35] by taking into
account only the deviation of the oblique parameters with
respect to the SM [33], Fig. 3 shows that, for values of mS

below 1 TeV, the restrictions from the bounds from Higgs
signal strength are stronger than those from EWPO. For the
case considered in this work, where mS ≤ 2 TeV, the
parameter space corresponding to agreement between
oblique parameters and the EWPO fit imposes an upper
bound for sinφ < 0.4 around mS ¼ 500 GeV. The effects
arising from electroweak precision in HSM, at 1σ level [32]
are consistent with our later considerations of S, T, U
parameters in Sec. IV which indicate that, for mass of the
singlet Higgs at 1 TeV, the mixing angle must be sinφ < 0.2
from the requirement of consistency of new physics with
allowed deviations from the SM. These results are con-
sistent with those in Fig. 2.
An additional theoretical bound comes from perturbative

unitary. Two body scattering of scalars at tree level and loop
effects to the partial decay widths were derived for HSM
in [36]. Near the decoupling region sinφ ∼ 0, unitarity
alone puts a lower bound formS ≥ 1 TeV to one-loop level,
whereas otherwisemS can be as large as 7 TeV. In addition,

FIG. 1. The RGE running of the top Yukawa coupling and
scalar couplings for the scalar boson model with mS ¼ 1 TeV,
sinφ ¼ 0.1, u ¼ 2 TeV, and setting the starting point of the
running at μ0 ¼ mt.

1Please note that in this work we assumed MW ¼ 80.377�
0.012 GeV [33] and did not take into account the new CDF
measurement, awaiting further confirmation. Our results are thus
more conservative.
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a lower bound rising from unitarity can be computed at tree
level according to the mixing relation

m2
S sinφ

2 þm2
H cosφ2 ≥

4π
ffiffiffi
2

p

3GF
≃ 700 GeV2 ð2:24Þ

But in general, perturbative unitarity generates a more
flexible parameter space compared to other constraints.
The Higgs singlet also affects signal rates due to loop

effects on the Higgs decay widths through the channels
H → gg; γγ at leading order. Previous analyses used various
benchmark to test behaviors for different tan β, defined
as the ratio of the VEVs tan β ¼ u

v, and mS scales [37].
The mixing between scalars ranges in the interval sinφ ¼
ð0.31 − 0.20Þ, corresponding to mS ¼ ð200–800 GeVÞ.
The parameter space generated from the additional Higgs
production channel S → HH is in agreement with H →
diboson decays for sinφ ≤ 0.22 in the mass range
mS ¼ ð260–770 GeVÞ, corresponding to the minimum of
BRðS → HHÞ ¼ 0.17. The mixing is further constrained
with increasing mass values of the Higgs singlet, sinφ ≤
0.16, for mS ≤ 1 TeV [38].
Apart from the SM Higgs quartic coupling λH,

the couplings λS and λHS from Eq. (2.14) are inversely
proportional to tan β, which yields λi > 1 at tan β ∼ 1,
mS ≥ 900 GeV. So, λS and λHS reach the nonperturbativity
region for small tan β values. Taking relatively larger VEV
scales, the couplings are perturbative for tan β ¼ 5, 10,

FIG. 3. Allowed parameter space for the singlet scalar mass mS
and the maximum value of the mixing angle sinφ in HSM with
respect to various constraints in HSM.

FIG. 2. The allowed parameter space for the massmS and mixing angle φwith the SMHiggs for the additional scalar boson model, for
different vacuum expectation values: u ¼ 1 TeV (a); u ¼ 2 TeV (b); and u ¼ 4 TeV (c). The shaded region represents the region
excluded by constraints from the Higgs data.

FIG. 4. Electroweak corrections δEW to leading order of cross section of SM Higgs production via gluon fusion in HSM for different
VEV ratios, tan β ¼ u

v ¼ 5, 10, as a function of the additional singlet mass.
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which correspond to the singlet VEV scales, u ¼ 1, 2 TeV
throughout our work. Figure 4 shows the electroweak
corrections to the production gg → H while Fig. 5 shows
the decay H → γγ, indicating that the electroweak correc-
tion δEW becomes more consistent with the SM limit (blue
line) as tan β becomes larger. For tan β ¼ 10, u ∼ 2 TeV,
δEW further tends to the SM scale, however, variations in
sinφ become tan β suppressed.
Figure II B yields a strong constraint on the scalar

mixing, because for electroweak deviations δEW to con-
verge toward the SM limit, sinφ ≤ j0.2j at TeV scale.
Electroweak constraints are more relaxed from diphoton
decay Fig. 5. Deviations from the SM are not too severe on
sinφ when mS ≥ 800 GeV. Clearly, as tan β becomes
larger (and so does the singlet VEV u), the constraints
obtained from H → diboson channels are satisfied for
mS ¼ OðTeVÞ scale. On the other hand, the region with
small tan β in HSM is restricted from perturbativity and
relatively larger δEW inconsistencies.

The production and decay channels of the singlet scalar
are shown in Figs. 6 and 7, respectively. The processes
gg → S and S → γγ have no useful experimental bounds for
extracting various constraints on HSM. However the
corrections δEW are more dependent on the sign of sinφ
than on tan β. Similarly, smaller β values restrict the
perturbativity of λS and λHS for mS ≥ 900 GeV.
Cosmological constraints on models with additional

scalars are interested particularly in cases where the addi-
tional singlet is a dark matter candidate. Among the Higgs
related dark matter (DM) portal studies, only the scalar
portal is renormalizable. However, when it comes to scalar
portals, the coupling between different scalars can take
values in a relatively large interval. In HSM, λHS sets various
constraints on the freezing temperature Tf at which DM
decouples from cosmic heat reservoir [39]. Although addi-
tional DM candidates such as singlet fermions can be added
to any theory in order to decrease extremely divergent

FIG. 5. Electroweak corrections δEW to the partial decay width of the diphoton decay H → γγ in HSM for different VEV ratios,
tan β ¼ u

v ¼ 5, 10, as a function of the additional singlet mass.

FIG. 6. Electroweak corrections δEW to leading order of cross section of the singlet Higgs production via gluon fusion in HSM for
different VEV ratios, tan β ¼ u

v ¼ 5, 10, as a function of the singlet mass.
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characteristic of λHS in RGE level, mixing constraints are
still in agreement with other constraints; mS < 1 TeV
(without extra fermionic DM), and 200 < mS < 300 GeV
(with extra fermionic DM) as the Universe cools down
T < Tf [40]. Furthermore, if the singlet VEV u < 400 GeV,
tan β < 2 in order to allow perturbativity of λHS; this is
however outside the parameter region we considered.
Electroweak vacuum stability is affected by the renormal-
ization group equations for the coupling of λH to λHS in
Eq. (2.20), hence the connection between coupling evolu-
tions gives limited freedom to control the dependence of λHS
on mS. The combined cosmological constraints were
explored within the GAMBIT framework [41], and they
concluded that for 1 < mS < 4 TeV the singlet scalar portal
only can account for the relic abundance. A more recent
work [42] treats the electroweak stability problem by
analyzing the HSM potential and transition probability of
VEVs through radiation dominated era by an transcendental
function of temperature. In accordance with the results of
this work [42],mS might have to extend to TeV scale to have
a stable vacuum, though the exact lower value ofmS depends
on the scale of λHS.
Overall, our explored parameter space of SM with the

additional scalar is consistent with Higgs data, electroweak
constraints, and cosmological constraints. We showed that
regions with singlet masses and VEVs around the TeV
scale are much preferred. We now proceed to analyze the
effects of introducing vectorlike quarks to the model and
show that there, as we add more fermions, stability emerges
be the most stringent constraint.

III. VACUUM STABILITY IN THE SM
WITH VECTORLIKE FERMIONS

A. Theoretical considerations

Using the stable potential in the previous section, we
investigate the effect of introducing vectorlike fermions

into this SMþ additional scalar model. Unlike SM-like
(chiral) fermions which act as doublets under SUð2ÞL if
left-handed and as singlets if right-handed, and spoil the
agreement of loop-induced production and decays of the
SM Higgs, vectorlike fermions have the same interactions
regardless of chirality. They appear in many new physics
models, such as models with extra dimensions, and many
explanations put forward of deviations from SM physics
include vectorlike fermions. Thus it is important that, when
considering the addition of a vectorlike fermions to the SM,
the presence of a new scalar boson is essential to ensure the
stability of the Higgs potential, otherwise, as the fermions
decrease the effective self coupling, the singular divergence
of the Higgs quartic coupling would worsen compared to
the one in the SM. As before we require the Higgs sector
potential to be positive at asymptotically large values of the
fields, up to Planck scale. The question we need to address
is: what are the constraints on the masses of the vectorlike
fermions, and mixing angles with ordinary fermions, such
as to maintain vacuum stability.
The new states interact with the Higgs bosons through

Yukawa interactions. The allowed anomaly-free multiplet
states for the vectorlike quarks, together with their nomen-
clature, are listed in Table I [11,24,43]. The first two
representations are U-like and D-like singlets, the next
three are doublets (one SM-like, two non-SM like), and the

FIG. 7. Electroweak corrections δEW to leading order of the partial decay width of the diphoton decay S → γγ (bottom panel) in HSM
for different VEV ratios, tan β ¼ u

v ¼ 5, 10, as a function of the singlet mass.

TABLE I. Representations of vectorlike quarks, with quantum
numbers under SUð2ÞL × Uð1ÞY.
Name U1 D1 D2 DX DY T X T Y

Type Singlet Singlet Doublet Doublet Doublet Triplet Triplet

T B
�
T
B

	 �
X
T

	 �
B
Y

	 �
X
T
B

	 �
T
B
Y

	
SUð2ÞL 1 1 2 2 2 3 3

Y 2=3 −1=3 1=6 7=6 −5=6 2=3 −1=3
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last two are triplets. The various representations are distinguished by their SUð2ÞL and hypercharge numbers. In these
representations, the Yukawa and the relevant interaction terms between the vectorlike quarks and SM quarks are, in the
mixed ðH; SÞ basis

LSMþS ¼ −yuq̄LHcuR − ydq̄LHdR

LU1;D1
¼ −yTq̄LHcU1R

− yBq̄LHD1R
− yMðŪ1L

SU1R
þ D̄1L

SD1R
Þ −MUŪLUR −MDD̄LDR;

LD2
¼ −yTD̄2L

HcuR − yBD̄2L
HdR − yMðD̄2L

ScD2R
þ yBD̄2L

SD2R
Þ −MDD̄2L

D2R
;

LDX;DY
¼ −yTD̄XL

HuR − yBD̄YL
HcdR − yMðD̄XL

SDXR
þ yBD̄YL

ScDYR
Þ −MXD̄XL

DXR
−MYD̄YL

DYR
;

LT X;T Y
¼ −yTq̄LτaHcT a

XR
− yBq̄LτaHT a

YR
− yMðT̄ XL

τaScT a
XR

þ yBT̄ YL
τaST a

YR
Þ −MXT̄ XL

T XR
−MY T̄ YL

T YR
; ð3:1Þ

where Hc ¼ iσ2H⋆, Sc ¼ iσ2S, yu, yd, yT , and yB and the
Yukawa couplings of the SM-like Higgs field H, and yM is
the Yukawa coupling of the S field to vectorlike quarks.
After spontaneous symmetry breaking, the Yukawa inter-
actions generate mixing between the SM quarks and the
vectorlike quarks at tree level. The singlet vectorlike quark
and the triplet vectorlike quark exhibit similar mixing
patterns, while the doublet vectorlike quarks have a differ-
ent mixing pattern. To avoid conflicts with low energy
experimental data (flavor changing neutral interactions), we
limit the vectorlike quarks mixing with the third generation
of SM quarks only. This is reasonable also because of the
large mass gap between vectorlike fermions and the first
two generations of quarks. The mixing patterns will be
described below.
The gauge eigenstate fields resulting from the mixing

can be written in general as,

T L;R ¼
�

t

T

�
L;R

BL;R ¼
�
b

B

�
L;R

ð3:2Þ

The mass eigenstate fields are denoted as ðt1; t2Þ and
ðb1; b2Þ and they are found through biunitary transforma-
tions,

TL;R ¼
�
t1
t2

�
L;R

¼ Vt
L;R

�
t

T

�
L;R

BL;R ¼
�
b1
b2

�
L;R

¼ Vb
L;R

�
b

B

�
L;R

; ð3:3Þ

where

Vt
L;R ¼

�
cos θ − sin θ

sin θ cos θ

�
L;R

;

Vb
L;R ¼

�
cos β − sin β

sin β cos β

�
L;R

; ð3:4Þ

In the following we abbreviate cos θtL ≡ ctL, ... Through
these rotations we obtain the diagonal mass matrices

Mt
diag ¼ Vt

LM
tðVt

RÞ† ¼
�
mt1 0

0 mt2

�
;

Mb
diag ¼ Vb

LM
bðVb

RÞ† ¼
�
mb1 0

0 mb2

�
; ð3:5Þ

where Mt, Mb represent the 2 × 2 mass mixing matrix
between the t, T and b, B states, before diagonalization.
The eigenvectors now become, for instance, for the top
sector

m2
t1;t2 ¼

1

4
½ðy2t þ y2TÞv2 þ y2Mu

2�

×

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2ytyMvu

ðy2t þ y2TÞv2 þ y2Mu
2

�
2

s �
ð3:6Þ

with eigenvectors

�
t1
t2

�
L;R

¼
�

cos θL;R sin θL;R
− sin θL;R cos θL;R

��
t

T

�
L;R

; ð3:7Þ

where the mixing angles are

tan θL ¼ 2yTyMvu
y2Mu

2 − ðy2t þ y2TÞv2

tan θR ¼ 2ytyTv2

y2Mu
2 − ðy2t þ y2TÞv2

; ð3:8Þ

and similarly for the b-quark sector, with the replacement
t → b and θ → β. Note that, because of their charge
assignments, the X and Y fields do not mix with the other
fermions and are therefore also mass eigenstates.
Relationships between mixing angles and mass eigen-

states depend on the representation [43,44].
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For doublets∶ ðXTÞ∶ m2
X ¼ m2

Tðcos θRÞ2 þm2
t ðsin θRÞ2

ðTBÞ∶ m2
Tðcos θRÞ2 þm2

t ðsin θRÞ2 ¼ m2
Bðcos βRÞ2 þm2

bðsin βRÞ2
ðBYÞ∶ m2

Y ¼ m2
Bðcos βRÞ2 þm2

bðsin βRÞ2

For triplets∶ ðXTBÞ∶ m2
X ¼ m2

Tðcos θLÞ2 þm2
t ðsin θLÞ2

¼ m2
Bðcos βLÞ2 þm2

bðsin βLÞ2;

where sinð2βLÞ ¼
ffiffiffi
2

p m2
T −m2

t

ðm2
B −m2

bÞ
sinð2θLÞ:

ðTBYÞ∶ m2
Y ¼ m2

Bðcos βLÞ2 þm2
bðsin βLÞ2

¼ m2
Tðcos θLÞ2 þm2

t ðsin θLÞ2;

where sinð2βLÞ ¼
m2

T −m2
tffiffiffi

2
p ðm2

B −m2
bÞ
sinð2θLÞ; ð3:9Þ

and where

mT tan θR ¼ mt tan θL for singlets; triplets

mT tan θL ¼ mt tan θR for doublets

mB tan βR ¼ mb tan βL for singlets; triplets

mB tan βL ¼ mb tan βR for doublets: ð3:10Þ

For doublet models, while the Higgs mixing is the same
as in the previous section, the mixing between the top quark
t and the new vectorlike singlet T, characterized by the
mixing θL, results in the shift in the Yukawa couplings as
follows

ytðμ0Þ ¼
ffiffiffi
2

p
mt

v
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 θL þ x2t sin2 θL
p ;

yTðμ0Þ ¼
ffiffiffi
2

p
mT

v
sin θL cos θLð1 − x2t Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θL þ x2t sin2 θL

p ;

yBðμ0Þ ¼
ffiffiffi
2

p
mB

v
sin θL cos θLð1 − x2bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θL þ x2t sin2 θL

p ;

yMðμ0Þ ¼
mT þmBffiffiffi

2
p

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θL þ x2t sin2 θL

q
; ð3:11Þ

with xb ¼ mb=mB, and as before xt ¼ mt=mT . We use
these expressions as initial conditions to the RGE equa-
tions, Eq. (A7). We review the mass bounds on vectorlike
quarks, then proceed with our numerical analysis in
Sec. III C.

B. Experimental bounds on vectorlike quark masses

Searches for vectorlike quarks have been performed at
the LHC and various limits exist [45], all obtained assum-
ing specific decay mechanisms. The Run 2 results from the
LHC have improved previous limits from Run 1 by about

500 GeV [46]. All measurements assume top and down-
type vectorlike quarks to decay into one of the final states
involving Z, W or Higgs bosons with 100% branching
ratios. So far, lower limits around 800 GeV have been
obtained. The most recent search at ATLAS obtains, with
95% C.L., lower limits on the T mass of 870 GeV
(890 GeV) for the singlet model, 1.05 TeV (1.06 TeV)
for the doublet model, and 1.16 TeV (1.17 TeV) for the pure
Zt decay mode quark [47]. The current experimental lower
bound on the mass of the down-type vectorlike quark which
mixes only with the third generation quark is around
730 GeV from Run 2 of the LHC and around 900 GeV
from Run 1. The current lower bound for a vectorlike quark
which mixes with the light quarks is around 760 GeV from
Run 1. In our analyses, we set a lower limit on all masses of
800 GeV, to allow for the consideration of the largest
parameter space. We proceed with analyzing the represen-
tations in turn, showing the effects of the additional
fermions on the RGEs, and the mass and mixing angles
constraints on the fermions and additional boson for each.
All the relevant RGE for the Yukawa couplings, couplings
between the bosons, and gauge coupling constants are
given in the Appendix.

C. Numerical analysis

The evolution of the RGE’s under different vectorlike
fermion representations are illustrated in Fig. 8 for different
values of the VEVs of the new scalar field (u ¼ 1, 2,
4 TeV). In the case of u ¼ 1 TeV, we have taken the mass
of the scalar boson to be 0.8 TeV, because formS ¼ 1 TeV,
the Higgs sector couplings diverge, leading to singularities,
whereas in the case of u ¼ 2 TeV and u ¼ 4 TeV, we
chose mS ¼ 1 TeV because the smaller mass of 0.8 TeV is
not large enough to ensure a positive Higgs quartic
coupling. As required, all of the Higgs sector couplings
remain positive up to Planck scale. As expected, the
fermion Yukawa couplings tend to decrease with increasing
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energy, while the scalar bosonic couplings tend to increase.
As we discussed previously, the addition of extra scalar
bosons to the Standard Model helps maintain a positive
Higgs self-coupling at larger energy scales, while the
addition of extra fermions only aids in lowering it further.
A common trend with respect to the models is that the
Yukawa couplings are generally negatively affected by
added loops at higher energy scales, while the Higgs sector
couplings are generally affected positively (they tend to
increase with increasing energy). The obvious exception
here is the SM Higgs coupling, which strays dangerously
close to zero at high energy scales, and even becomes
negative for the additional singlet vectorlike fermion case.
The models that augment the scalar boson by vectorlike
representations vary significantly among each other in
predictions for the various couplings with the scalar
VEV u. Note in particular that for the first case, for the
singlet vectorlike case, where u ¼ 1, the Higgs couplings
increase, and λH becomes negative at μ ∼ 1011, rendering
the theory unstable, while if the additional scalar VEV is
increased to u ¼ 2, or 4 TeV, the problem is ameliorated.
The same problem recurs for the doublet and triplet models
(not shown), but the theory is safe for u ¼ 2 and 4 TeV.
Differences in the running RGE’s are more pronounced for
λS, the new boson self-coupling, and negligible for the
others. Note in particular, the difference between the values
in Figs. 1 and 8. For the doublet and triplet vectorlike
fermions, the RGE evolutions are similar, and the Higgs
self-coupling remains positive at all energies. The addi-
tional scalar quartic coupling does not lie close to the origin

as its interactions with fermions are small. There are some
variations among models in the new scalar coupling, and
the one describing the mixing with the SM Higgs. We have
put less emphasis on the vacuum stability bound for the
additional scalar, since its mass and VEVare unknown, and
thus limiting concrete information from a detailed study of
its vacuum stability bound.
Imposing the same conditions on the positivity of the

potential as in Eq. (2.18), we study the allowed masses and
mixing angles corresponding to each vectorlike fermion
representation. In Figs. 9 and 10 we perform a scan over
random values of the relevant vectorlike quarks between
300 and 2200 GeV, and for the mixing angles sin βL (in the
bottom sector) and sin θL (in the top sector) between -1 and
1. The allowed values of the scalar mass mS are plotted
against the mixing angle in the scalar sector, sinφ for
different values of the expectation values u (1, 2, and
4 TeV), providing an illustration of the possible quantitative
properties of the scalar boson in this model. The results are
given for all models. In Fig. 9 we plot the scans for singlet
vectorlike T (top row), singlet vectorlike B (second row),
ðT; BÞ doublet (third row), ðX; TÞ doublet (fourth row),
ðB; YÞ doublet (bottom row). And in Fig. 10 we consider the
ðX; T; BÞ triplet (top row), and ðT; B; YÞ triplet (bottom
row), providing an illustration of the possible quantitative
properties of the scalar boson in these models. We remark
from Figs. 9 and 10 that just as in the SM extension
containing only an extra scalar boson, considered in the
previous section, mass mixing between the two scalar
bosons is always required, and this mixing is significant,

FIG. 8. The RGE running of the Yukawa and scalar couplings for models with vectorlike fermions. Top panel: singlet vectorlike
representations, D1 and U1 fermion models. We have set mS ¼ 0.8 TeV, u ¼ 1 TeV, (left panel), mS ¼ 1 TeV and u ¼ 2 TeV (middle
panel), and mS ¼ 1 TeV and u ¼ 4 TeV (right panel). Bottom panel: the same for the doublet vectorlike models, for u ¼ 2 TeV, (left
panel) scalar þ vectorlike ðT; BÞ, (right panel) scalar þ vectorlike ðX; TÞ. For the doublet representations we took: mT ¼ 0.8 TeV,
mB ¼ 1 TeV, mX ¼ 1 TeV, mS ¼ 1 TeV, μ0 ¼ mt, and mixing angles sinφ ¼ 0.1 and sin θL ¼ 0.08.
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sinφ ≥ 0.2. Also, consistent with previous discussions,
increasing the VEV u enlarges the parameter space, which
is now quite restricted for u ¼ 1 TeV. As expected,
the addition of vectorlike fermions worsens the stability
of the potential, but larger VEVs (mass scales) survive. The
mixing in the singlet U1 model is the most effective
counterterm addition, in fact pretty much ruling out the

scenario where u ¼ 1 TeV (unless the additional scalar is
light, 600–1000 GeV), while the other representations
provide much milder bounds for the same VEV.
We now investigate the restrictions on the vectorlike

fermion masses and mixing from requiring the stability of
the Higgs potential. We concentrate first on the vectorlike
T, which has the same charge as the top quark, and which,

FIG. 9. The allowed parameter space for the scalar boson mass and mixing angle with the SM Higgs. In the (top panel) scalar þ
vectorlike T; (second panel) scalar þ vectorlike B; (third panel) in the scalar þ vectorlike ðT; BÞ model; (fourth panel) scalar þ
vectorlike ðX; TÞ fermion model; and (bottom panel) scalar þ vectorlike ðB; YÞ fermion model, for different vacuum expectation values
of the additional scalar: u ¼ 1 TeV (left panel); u ¼ 2 TeV (middle panel); and u ¼ 4 TeV (right panel).
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through mixing can affect changes in the Higgs potential,
both in the fermion and in the scalar sector. In order to
investigate this, we perform the same scan over random
values of mS and MU between 300 and 2200 GeV, and for
the mixing angles sinφ and sin θL between −1 and 1, and
show the results in Fig. 11. The first row shows the results
for the singlet T vectorlike quark, the second row shows
the results for the doublet vectorlike ðT; BÞ, the third for the
ðX; TÞ doublet, the fourth for the ðX; T; BÞ triplet and
the last for the ðT; B; YÞ triplet. Unlike the case of scalar
mixing, here the mixing between the top quark and the
vectorlike one is required to be small, in general, for most
cases, in the region sin θL ∈ ð−0.2; 0.2Þ (with some excep-
tions, where it can be larger, discussed below), and it can be
zero. The allowed masses of the T quark are restricted for
the scalar VEV u ¼ 1 TeV, and increase with increasing
VEVs, so that in the singlet T and doublet ðX; TÞ models
cases, practically no T masses are allowed for u ¼ 1 TeV,
while masses up to 1400 GeV are allowed for u ¼ 4 TeV.
For the SM like doublet ðT; BÞ, for u ¼ 1 TeV,
mT ≤ 800 GeV, for u ¼ 2 TeV, mT ≤ 1600 GeV, while
for u ¼ 4 TeV, mT spans the whole axis. Note that here,
like in the scalar sector, there are marked differences
between the scenarios. For the doublet ðX; TÞ, any mixing
between the T and t quark is allowed. We expect this case to
be somewhat similar to the singlet, however, the Yukawa
coupling of the X quark lowers the Higgs coupling further,
the parameter space continues to be severely constrained,
and the mass is allowed in a narrow region near mT ¼
1 TeV for all values of the additional singlet. Here, as an
exception to small mixing, the constraints on the mixing
with the top are lifted. The case with triplets ðX; T; BÞ,
affected by both the X and B vectorlike quarks, exhibits a

behavior independent of the singlet VEV. Masses again are
favored to be near mT ¼ 1 TeV (we rule out light masses,
∼500 from direct searches) and the mixing is allowed to be
small or large. The strong enhancements are for the cases
where the t and T mix. The mixing is expected to be
stronger than between B and b quarks, due to the
differences between mass of the top and of the bottom
(making the denominator in Eq. (3.8) smaller). It is
interesting to note here the effect of the X vectorlike quark,
which, while not mixing with SM quarks, is nevertheless
important for the mass of the T vectorlike quark [seen
clearly if we compare the singlet T model with the doublet
ðX; TÞ, and the doublet ðT; BÞ model with the trip-
let ðX; T; BÞ].
The scans in Fig. 12 illustrate the allowed masses and

mixing angles of the B vectorlike quark with the bottom
quark for the SM augmented by the additional scalar. We
show, in the top panel, the vectorlike singlet Bmodel, in the
second panel, the vectorlike ðT; BÞ model, in the third
panel, the vectorlike ðB; YÞ model, in the fourth panel, in
the vectorlike ðX; T; BÞ triplet, and in the bottom panel, the
ðT; B; YÞ triplet. We again perform the same scan over the
mB andmS masses and mixing angles sin βL constrained by
vacuum stability requirement, and plot the resulting mB
against the mixing the b-sector sin βL. The effect of the B
quark is markedly different from that of the T quark due to
weaker constraints on its angle (the denominator in tan βL is
larger than tan θL). For the B singlet model, the mixing and
mass range are restricted, especially for u ¼ 1 TeV, while
for the ðT; BÞ model the mass restrictions are lifted, but the
mixing limits still remain. For the ðB; YÞ doublet and for the
ðT; B; YÞ triplet model, the situation is very similar to that
of the T mass and mixing in these models: the mixing is

FIG. 10. (Continued) The allowed parameter space for the scalar boson mass and mixing angle with the SM Higgs. In the (top panel)
the scalar þ triplet ðX; T; BÞ model, and for (bottom panel) the scalar + ðT; B; YÞ triplet model, for different vacuum expectation values
of the additional scalar: u ¼ 1 TeV (left panel); u ¼ 2 TeV (middle panel); and u ¼ 4 TeV (right panel).
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restricted everywhere except around 1000 GeV, and this
result is independent on the scalar VEV.
Finally, we investigate constraints on the vectorlike

fermions with non-SM like hypercharge, X, with charge
5=3, and Y, with charge −4=3. As the additional vectorlike

quarks X and Y do not mix with SM particle, a plot of mass
against the mixing angle does not make sense, Instead, in
Fig. 13, the allowed values of the scanned fermion massmX
is plotted against mT , and mY is correlated with mB. Note
that in the ðX; TÞ quark doublet, the X and T masses are

FIG. 11. The allowed parameter space for the T fermion mass and mixing angle with the top quark for: (top panel) in the scalar þ
singlet vectorlike T model; (second panel) in scalar þ vectorlike ðT; BÞmodel; (third panel) for the T fermion mass and mixing angle in
the scalar þðX; TÞ fermion doublet model, (fourth panel) for the scalar þðX; T; BÞ triplet, and (bottom panel) for the triplet ðT; B; YÞ
model, for different vacuum expectation values, u ¼ 1 TeV (left panel); u ¼ 2 TeV (middle panel); and u ¼ 4 TeV (right panel).
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strongly correlated (as seen from the third row of Fig. 11)
and the expected mX is required to be close to 1000 GeV
regardless ofmT values. We see that, similarly, in the ðB; YÞ
doublet model, mY must have an allowed mass of approx-
imately 1000 GeV, regardless of mB, or the VEV u, unless
both mX and mY would be much lighter (100–200 GeV) in

agreement with our earlier results. This seems to severely
constrain models with vectorlike quarks with exotic
hypercharges.
For completeness, all the relevant RGE for the Yukawa

couplings, couplings between the bosons and coupling
constants are included in the Appendix.

FIG. 12. The allowed parameter space for the B fermion mass and mixing angle in: (top panel) the vectorlike singlet Bmodel, (second
panel) the vectorlike ðT; BÞ model, (third panel) the vectorlike ðB; YÞ model, (fourth panel) the vectorlike ðX; T; BÞ triplet, and (bottom
panel) the ðT; B; YÞ triplet, for different vacuum expectation values of the additional scalar: u ¼ 1 TeV (left panel); u ¼ 2 TeV (middle
panel); and u ¼ 4 TeV (right panel).
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IV. ELECTROWEAK PRECISION
MEASUREMENTS

Constraints on possible new physics also emerge from
precision electroweak measurements. The extra singlet
scalar and vectorlike states induce modifications to the
vacuum polarizations of electroweak gauge bosons at loop
level, which are parametrized by the oblique parameters
S; T , and U. For a large class of new physics models,
corrections to precision electroweak observables are uni-
versal, in the sense that they are revealed only in self-
energies of electroweak gauge bosons. There are solid
constraints from these oblique corrections, pushing the
scale of new physics around 1 TeV. The oblique parameters
can be calculated perturbatively for any model from the
gauge boson propagators, and are defined as [48].

S ¼ 16πℜ½Π̄3Q
γ ðm2

ZÞ − Π̄33
Z ð0Þ�;

T ¼ 4
ffiffiffi
2

p
GF

αe
ℜ½Π̄3Qð0Þ − Π̄11ð0Þ�;

U ¼ 16πℜ½Π̄33
Z ð0Þ − Π̄11

W ð0Þ� ð4:1Þ

The current experimental values are obtained by fixing
ΔU ¼ 0 are ΔT ¼ 0.08� 0.07, ΔS ¼ 0.05� 0.09. The
overall calculation of S; T , and U parameters via loop
contributions can be separated into contributions from
scalars and from fermions. Complete expressions for the
contributions from the additional scalar and all fermion
representations are given in the Appendix.

FIG. 13. The correlated parameter space for the X and T quark masses in the ðX; TÞ quark doublet model (top panel) and in the
ðX; T; BÞ triplet model (second panel), and for the Y and B quark masses for the ðB; YÞ doublet model (third panel), and for the ðT; B; YÞ
triplet model (bottom panel) for different vacuum expectation values.
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A. Contributions to the S and T -parameters
from scalar sector

Rewriting Eq. (4.1) explicitly in terms of the scalar loop contributions to the gauge boson two point functions

SSH ¼ 16π

m2
Z
ℜ

�
c2w
egz

ðΠzγðm2
ZÞ − Πzγð0ÞÞ þ

s2wc2w
e2

ðΠγγðm2
ZÞ − Πγγð0ÞÞ þ

1

g2z
ðΠZZðm2

ZÞ − ΠZZð0ÞÞ
�
;

TSH ¼ 1

αe
ℜ

�
−
ΠWWð0Þ
m2

W
þ ΠZZð0Þ

m2
Z

þ 2sw
cw

ΠγZð0Þ
m2

Z
þ s2w
c2w

Πγγð0Þ
m2

Z

�
;

USH ¼ 16πℜ

�
1

m2
Z

�
1

g2z
ðΠZZðm2

ZÞ − ΠZZð0ÞÞ þ
2s2w
egz

ðΠzγðm2
ZÞ − ΠZγð0ÞÞ þ

s4w
e2

ðΠγγðm2
ZÞ − Πγγð0ÞÞ

�

þ 1

g2m2
W
ðΠWWðm2

WÞ − ΠWWð0ÞÞ
�

ð4:2Þ

Although pure scalar contributions to ΔS and ΔT relatively fit better with the experimental bounds as the scalar mixing
angle is increased (Fig. 14), we are particularly interested in numerical values at sinφ ∼ 0.1 and mS ∼ 1 TeV since the
constraints coming from vacuum stability are more restricted. Loop contributions from scalars to vector gauge boson two
point functions are modified via scalar mixing and given in [49].
Moreover, in Fig. 14, it is seen that the whole scalar parameter spacemS; sinφ is allowed, considering only the constraints

from oblique parameters.

B. VLQ contributions to the S and T parameters

The oblique correction parameter T for vectorlike quarks is given as [50]

T ¼ Nc

16πs2wc2w

�X
α;i

½ðjVL
αij2 þ jVR

αij2Þθþðyα; yiÞ þ 2ReðVL
αiV

R�
αi Þθ−ðyα; yiÞ�

−
X
α;β

½ðjUL
αβj2 þ jUR

αβj2Þθþðyα; yβÞ þ 2ReðUL
αβU

R�
αβ Þθ−ðyα; yβÞ�

−
X
i;j

½ðjDL
ijj2 þ jDR

ijj2Þθþðyi; yjÞ þ 2ReðDL
ijD

R�
ij Þθ−ðyi; yjÞ�

�
; ð4:3Þ

where the fermion ratio functions θ� are given as

FIG. 14. The contribution to the T (orange) and S (blue) parameters in the SM augmented by a singlet scalar, as a function of the
singlet scalar mass. We take u ¼ 1 TeV for our consideration to remain in the vicinity of vacuum stability constraints.
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θþ ¼ y1 þ y2 −
2y1y2
y1 − y2

ln
y1
y2

;

θ− ¼ 2
ffiffiffiffiffiffiffiffiffi
y1y2

p �
y1 þ y2
y1 − y2

ln
y1
y2

− 2

�
; ð4:4Þ

where yi ¼ ðmi
mZ
Þ2, and for the S parameter,

FIG. 15. The contributions to the T (blue) and S (orange) parameters in the singlet representations, as functions of the vectorlike
quark mass.

FIG. 16. The contributions to the T (blue) and S (orange) parameters in the doublet representations as functions of the vectorlike
quark mass.

FIG. 17. The contributions to the T (blue) and S (orange) parameters in the triplet representations, as functions of the vectorlike
quark mass.
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S ¼ Nc

2π

�X
α;i

½ðjVL
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αij2Þψþðyα; yiÞ þ 2ReðVL
αiV

R�
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ijD

R�
ij Þχ−ðyi; yjÞ�

�
; ð4:5Þ

where VL;R
αi ; UL;R

αβ , and DL;R
ij can be found in [43], and the functions ψ�,χ� are given respectively by

ψþ ¼ 22yα þ 14yi
9

−
1

9
ln
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18
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18
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2

�
ð4:6Þ
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2

−
ðy1 − y2Þ2

3
þ
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�
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�
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2

− fðy1; y2Þ
�
: ð4:7Þ

We now scan over different vectorlike fermion masses via
approximate expressions with only leading order terms A 3.
We show the results for the oblique parameters for the

vector-like quarks in the singlet representation in Fig. 15, in
the doublet representation in Fig. 16, and in the triplet
representation in Fig. 17. The S-parameter agrees with the
experimental bounds for small mixing angles, and does not
bring tighter constraints on the masses of vectorlike quarks.
However, the T -parameter becomes negative for small
mixing angles for the D1 and DX representations. This
feature in return might exclude some regions of the
parameter space once combined with the contributions from
the SMþ additional scalar, and imposes further conditions
on the mass of singlet scalar. Apart from the vacuum stability
constraints that connects the two sectors, this unique feature
of electroweak precision accounts for the destructive inter-
ference between parameter spaces of scalars and vectorlike
fermions. Similar studies have been carried out in the
literature [51] to impose more restricted constraints on
parameter spaces of additional scalars. Checking the
Eq. (A21) for ΔT, the logarithmic term suppress the linear
term in the small mixing domain of D1. Similarly, for DX,
the first term in Eq. (A23) is inversely proportional to
vectorlike quark mass, which is rapidly suppressed by the
second term, growing with opposite sign with respect to
mass of vectorlike quark. Numerical values for ΔT and ΔS
atmVLQ ∼ 1 TeV agree with the experimental limits in small
mixing throughout all representations. However, it is shown
from the mutual regions satisfying S; T-parameters and

vacuum stability parameter spaces that, in general, vectorlike
quark masses and mixings are inversely proportional to each
other. Moreover, in the mixing interval sin θL;R > 0.3,
although not shown here, ΔT and ΔS dangerously stray
away from the experimental bounds, yielding more restric-
tions on mS, as seen in Fig. 14. Therefore, negative
contributions to ΔT and ΔS are very likely to be compen-
sated with relatively heavier scalars in various models.

V. CONCLUSIONS

In this work, we presented a detailed analysis of the
stability conditions on the Higgs potential under the
presence of extra vectorlike fermions. Since these have
the same couplings for left and right components, they do
not affect the loop-induced decays of the SM Higgs boson,
and indeed, can have arbitrary bare masses in the
Lagrangian. We asked the question of whether they can
have an effect on the Higgs sector, in particular, we
concentrated on one of the outstanding problems in the
SM, vacuum stability of the Higgs potential. While vector-
like fermions appear in many beyond the SM models, here
we have taken a model-independent approach. We allowed
mixing of the vectorlike fermions with the third generation
chiral fermions only, and we considered all possible
anomaly-free possibilities for the vectorlike representations,
with the additional fermions allowed to be in singlet,
doublet, or triplet representations.
As all other fermions, their effect on the RGE’s of the

Higgs self-coupling constant is to lower it further,
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worsening the vacuum stability. An additional boson is
introduced to alleviate this problem (representing an addi-
tional Higgs boson which would naturally appear in most
new physics models). Its presence is essential, and by itself
it remedies the stability problem. The allowed additional
scalar mass varies with its assigned VEV, but for all
scenarios the mixing with the SM Higgs is required to
be nonzero. We analyze constraints on the parameter space
coming from theory, experiment and cosmology, and
accordingly, we require the singlet mass to be preferably
in the OðTeVÞ scale. Thus this work focuses on TeV scale
with small mixing because once vectorlike quarks are
introduced, stability becomes the most restrictive theoreti-
cal constraint. Even in bare HSM (without vectorlike
quarks), stability is one of the most stringent ones. In
addition, the singlet scalar VEVmust be in the TeV scale as
well, as smaller VEVs spoil pertubativity and severely
restrict the parameter space.
Additional fermionic representations survive for scalar

VEVs u ¼ 1, 2 or 4 TeV, and the agreement improves with
increasing the scalar VEVs, indicating that higher scale
physics is more likely to improve the vacuum stability
problem. For most models, u ¼ 1 TeV is highly restricted,
and likely ruled out, especially for toplike vector fermions,
or in doublet models where this fermion is the only one
mixing with the SM top. The situation worsens for the
ðX; TÞ doublet model, where for all values of the VEV u,
the massmT hovers around 1000 GeVand is independent of
the mixing. For triplet representations, the parameter spaces
for T − t mixing have similar characteristics in imposing a
small vectorlike quark mass limit, regardless of the value
for the singlet VEV. Compared to the doublet ðT; BÞ
representation, large mixing angles are permitted, for a
relatively wide allowed mass spectrum. Comparatively, the
model ðX; T; BÞ is more sensitive to large vectorlike quark
masses, and shrinks the mixing angles to a small range as
mT becomes large, whereas the model ðT; B; YÞ allows for
more parameter space for masses and mixing angles space
for various singlet VEVs. The differences in parameter
spaces can be attributed to the fact that although the
vectorlike quark X does not mix with the SM particles,
its Yukawa term appears in the RGE for yT, which is unique
to the ðX; T; BÞ model.
Vacuum stability is improved if the bottomlike fermion is

also present, and allowed to mix with the b quark. The
mixing angles are in general small (an exception are
extreme cases where the mass is extremely restricted and
the mixing completely free). However the difference
between models with toplike or bottomlike quarks offer
a way to distinguish between them, complimentary to
collider searches.
Compared to T vectorlike quarks, constraints on the

B-like fermion masses and mixing angles are much more

relaxed. For the ðT; BÞ doublet model, the restrictions affect
mostly mT and are relaxed for mB (the mixing with the b
quark is required to be small). While the mixing can be
larger for the ðB; YÞ and ðT; B; YÞ models, and for
mB ¼ 1000 GeV, the mixing with the bottom quark is
unrestricted. (On the other hand, the models (T, B, Y) and
(B, Y) have almost identical parameter spaces for B
mixings regardless of the singlet VEV. The mixings are
constrained everywhere exceptmB ¼ 1000 GeV. Although
its possible, the model ðT; B; YÞ is relatively less sufficient
to impose mass values for mB around 1000 GeV for
u ¼ 1 TeV. And finally, B mixings become less relaxed
as the mass of vectorlike quark gets larger for the models
ðT; BÞ and ðX; T; BÞ.) The vectorlike quarks carrying non-
SM hypercharge do not mix with quarks, and seem to be
required to have masses of around 1000 GeV, irrespective
of the model, other vectorlike fermion masses, or sca-
lar VEV.
Compared to vacuum stability restrictions, electroweak

precision constraints are more relaxed. Although the S-
parameter does not introduce strong restrictions on param-
eter space, the T -parameter evolves in negative direction in
different models. Combined with scalar contributions to S
and T -parameters, deviations from the experimental pre-
cision data might impose further restrictions on additional
scalars and mixings with Higgs.
In conclusion, models where T-quark is unaccompanied

by a B-quark yield very restrictive constraints for the
masses mT and mixing angles sin θL. As well, additional
vectorlike fermions with hypercharge 5=3 or −4=3 are
shown to restricted the additional fermions to masses close
to 1 TeV, for the sampled range of the parameter space,
which, in association with their exotic charges, renders
them predictable, making it easy to confirm or rule out the
existence of these fermions. Our considerations which
constrain the masses and mixings of vectorlike fermions
are complimented by analyses on the parameters of models
with vectorlike quarks from electroweak fits to the param-
eters in these models.
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APPENDIX

1. RGEs for SM+ additional
boson+ vectorlike quarks

We give below the renormalization group equations
for the models studied in the text. The original expressions
appeared in [52], and more expressions are included in
[18,22,23].
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a. Singlet U1ðTÞ, Y = 2=3

The relevant RGE for the Yukawa couplings are

dy2t
d ln μ2

¼ y2t
16π2

�
9y2t
2

þ 9y2T
2

−
17g21
20

−
9g22
4

− 8g23

�
;

dy2T
d ln μ2

¼ y2T
16π2

�
9y2t
2

þ 9y2T
2

þ y2M
4

−
17g21
20

−
9g22
4

− 8g23

�
;

dy2M
d ln μ2

¼ y2M
16π2

�
y2T þ 9y2M

2
−
8g21
5

− 8g23

�
: ðA1Þ

The Higgs sector RGEs, describing the interactions between the two bosons are

dλH
d ln μ2

¼ 1

16π2

�
λH

�
12λH þ 6y2t þ 6y2T −

9g21
10

−
9g22
2
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40

�
;

dλS
d ln μ2

¼ 1

16π2
ð9λ2S þ λ2SH þ 12y2MλS − 12y4MÞ;

dλSH
d ln μ2

¼ 1

16π2

�
λSH

�
2λSH þ 6λH þ 3λS þ 3y2t þ 3y2T þ 6y2M −
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−
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4

�
− 12y2Ty

2
M

�
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b. Singlet D1ðBÞ, Y = − 1=3
The relevant RGE for the Yukawa couplings are

dy2t
d ln μ2

¼ y2t
16π2
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9y2t
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−
17g21
20

−
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4
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The Higgs sector RGEs, describing the interactions between the two bosons are

dλH
d ln μ2

¼ 1

16π2
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Finally, the coupling constants gain additional terms due to the new fermion, for both models U1, D1 with singlet fermions
as follows:

dg21
d ln μ2

¼ g41
16π2

�
41
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�
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dg22
d ln μ2
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�
: ðA5Þ
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c. Doublet D2 ðT; BÞ; Y = 1=6

The relevant RGE for the Yukawa couplings are
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d ln μ2

¼ y2t
16π2
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The Higgs sector RGEs, describing the interactions between the two bosons are
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d. Doublet DX ðX; TÞ; Y = 7=6

The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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e. Additional non SM-like quark doublet DY ðB;YÞ; Y = − 5=6
The relevant RGE for the Yukawa couplings are
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The Higgs sector RGEs, describing the interactions between the two bosons are
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The coupling constants gain additional terms due to the new fermion in all doublet models as follows:
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f. Triplet T X ðX; T; BÞ; Y = 2=3

The relevant RGE for the Yukawa couplings are
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8g21
5

−
9g22
4

− 8g23

�
: ðA13Þ
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The Higgs sector RGEs, describing the interactions between the two bosons are

dλH
d ln μ2

¼ 1

16π2

�
λH

�
12λH þ 6y2t þ 6y2T þ 6y2X −

9g21
5

− 9g22

�
þ λ2SH

4
− 3y4t − 3y4T − 3y2X − 6y2t y2T þ 27g41

200
þ 9g42

8
þ 18g21g

2
2

40

�
;

dλS
d ln μ2

¼ 1

16π2
ð9λ2S þ λ2SH þ 12y2MλS − 12y4MÞ;

dλSH
d ln μ2

¼ 1

16π2

�
λSH

�
2λSH þ 6λH þ 3λS þ 6y2t þ 6y2T þ 6y2X þ 6y2M −

9g21
10

−
9g22
2

�
− 6y2Ty

2
M − 6y2By

2
M − 6y2Xy

2
M

�
; ðA14Þ

g. Triplet T Y ðT;B;YÞ;Y = − 1=3
The relevant RGE for the Yukawa couplings are

dy2t
d ln μ2

¼ y2t
16π2

�
3y2B
2

þ 9y2t
2

þ 9y2T
2

þ 9y2Y
2

þ y2M
2

−
17g21
20

−
9g22
4

− 8g23

�
;

dy2T
d ln μ2

¼ y2T
16π2

�
3y2B
2

þ 9y2t
2

þ 9y2Y
2

þ 9y2T
2

þ y2M
2

−
17g21
20

−
9g22
4

− 8g23

�
;

dy2B
d ln μ2

¼ y2B
16π2

�
3y2t
2

þ 3y2T
2

þ 9y2B
2

þ 9y2Y
2

þ y2M
4

−
17g21
20

−
9g22
4

− 8g23

�
;

dy2Y
d ln μ2

¼ y2Y
16π2

�
3y2t
2

þ 9y2B
2

þ 9y2Y
2

þ 9y2T
2

þ y2M
2

−
17g21
20

−
9g22
4

− 8g23

�
;

dy2M
d ln μ2

¼ y2M
16π2

�
y2T þ y2B þ y2Y þ 15y2M

2
−
2g21
5

− 8g23

�
: ðA15Þ

The Higgs sector RGEs, describing the interactions between the two bosons are:

dλH
d ln μ2

¼ 1

16π2

�
λH

�
12λH þ 6y2t þ 6y2B þ 6y2T þ 6y2Y −

9g21
5

−
9g22
2

�
þ λ2SH

4
− 6y4t − 6y4T − 6y4Y − 3y2B − 6y2t y2T

þ 27g41
200

þ 9g42
8

þ 18g21g
2
2

40

�
;

dλS
d ln μ2

¼ 1

16π2
ð9λ2S þ λ2SH þ 12y2MλS − 12y4MÞ;

dλSH
d ln μ2

¼ 1

16π2

�
λSH

�
2λSH þ 6λH þ 3λS þ 6y2t þ 6y2T þ 6y2B þ 6y2Y þ 6y2M −

9g21
10

−
9g22
2

�
− 6y2Ty

2
M − 6y2Yy

2
M − 6y2By

2
M

�
;

ðA16Þ

The coupling constants gain additional terms due to the new fermions in both triplet models as follows:

dg21
d ln μ2

¼ g41
16π2

�
41

10
þ 16

5

�
;

dg22
d ln μ2

¼ g42
16π2

�
−
19

6
þ 4

�
;

dg23
d ln μ2

¼ g43
16π2

ð−7þ 2Þ: ðA17Þ
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2. Oblique parameters S and T in the scalar sector

We give below the conventional shifts in oblique parameters S and T from the SM. The original expressions appeared
in [18] with only one singlet representation. Additional contributions to two point functions are also included in [49] for
further analysis.
The explicit expressions for theΔS andΔT parameters for the SHM, including the extra singlet scalar representation, but

without the vectorlike quarks, are

ΔT ¼ TSH − TSM ¼ −
3s2ϕ

16πc2w
ð½tS� − ½tH�Þ; ðA18Þ

where

½tS� ¼ ððm2
S −m2

ZÞðm2
S −m2

WÞÞ−1
�
m4

S lnðm2
SÞ −

ðm2
S −m2

WÞm2
Z lnðm2

ZÞ −m2
W lnðm2

WÞc2wðm2
S −m2

ZÞ
s2w

�

and similarly for ½tH� function, with the replacement mS → mH.

ΔS ¼ SSH − SSM ¼ s2ϕ
12π

�
2 ln

�
mS

mH

�
þ ½sS� − ½sH�

�
ðA19Þ

where

½sS� ¼
m4

Zð9m2
S þm2

ZÞ
ðm2

S −m2
ZÞ3

ln

�
m2

S

m2
Z

�
−
m2

Zð4m2
S þ 6m2

ZÞ
ðm2

S −m2
ZÞ2

and similarly for ½sH� function, with the replacement mS → mH.

3. Vectorlike quark contributions to the S and T parameters

a. Singlet U1ðTÞ, Y = 2=3

ΔT ¼ m2
t NcðstLÞ2

16πc2ws2wm2
Z

�
x2TðstLÞ2 − ðctLÞ2 − 1þ 4ðctLÞ2

m2
T

m2
T −m2

t
lnðxTÞ

�
;

ΔS ¼ NcðstLÞ2
18π

� ðctLÞ2
ðxT − 1Þ3 ½2 lnðxTÞð3 − 9x2T − 9x4T þ 3x6TÞ þ 5 − 27x2T − 27x4T − 5x6T � − 2 lnðxTÞ

�
ðA20Þ

b. Singlet D1ðBÞ, Y = − 1=3

ΔT ¼ m2
t NcxB

16πc2ws2wm2
ZðxB − 1Þ ½ðs

b
LÞ4ðxB − 1Þ − 2ðsbLÞ2 lnðxBÞ�;

ΔS ¼ NcðsbLÞ2
18π

�
2 ln

�
mb

mB

�
ð3ðsbLÞ2 − 4Þ − 5ðcbLÞ2

�
ðA21Þ
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c. Doublet D2 ðT;BÞ; Y = 1=6

ΔT ≃
m2

t NcðstRÞ2
8πc2ws2wm2

Z
½2 lnðxTÞ − 2�;

ΔS ≃
Nc

18π
½ðsbRÞ2ð2 lnðxTÞ − 2 lnðxbÞ − 2Þ þ ðstRÞ2ð4 lnðxTÞ − 7Þ� ðA22Þ

d. Doublet DX ðX;TÞ;Y = 7=6

ΔT ≃
m2

t NcðstRÞ2
8πc2ws2wm2

ZðxT − 1Þ
�
ln

�
ðctRÞ2 þ

ðstRÞ2
xT

�
− lnðxTÞ½xT þOðx−4T Þ�

�
;

ΔS ≃
NcðstRÞ2
18π

�
3þ lnðxTÞ þO

�ðstRÞ4
xB

��
ðA23Þ

e. Doublet DY ðB;YÞ;Y = − 5=6

ΔT ≃
m2

t NcxB
128πc2ws2wm2

Z
½−16cbRð−3þ c2bR cotbR lnðcbRÞÞ þ sbRð−13 − 20c2bR þ 4c2bR Þ�;

ΔS ≃
Nc

144π
½−3 lnðxBÞ þ 20 lnðcbRÞ þ lnðxbÞ þ 19þ c4bR ð5þ 3 lnðxbÞÞ þ 4c2bR ð−6 − lnðxbÞÞ� ðA24Þ

f. Triplet T X ðX;T;BÞ;Y = 2=3

ΔT ≃
m2

t NcðstLÞ2
16πc2ws2wm2

Z
½6 lnðxTÞ − 10þOððstLÞ4; ðctLÞ4; x−4T Þ�;

ΔS ≃ −
NcðstLÞ2
18π

½9 − 6 lnðxTÞ þ 4 lnðxbÞ þOððctLÞ4; ðctLÞ2ðstLÞ2Þ� ðA25Þ

g. Triplet T Y ðT;B;YÞ;Y = − 1=3

ΔT ≃ −
m2

t NcðstLÞ2
16πc2ws2wm2

Z
½2 lnðxTÞ − 6þOððstLÞ4; ðctLÞ2ðstLÞ2; x−3T Þ�;

ΔS ≃
NcðstLÞ2
18π

½2 lnðxTÞ þ 4þOððctLÞ4; ðstLÞ4; ðctLÞ2ðstLÞ2Þ�; ðA26Þ
where xi ¼ mF

mt
for all representations.
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