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The rate of dilepton emission from a magnetized hot hadronic medium is calculated in the framework of
real time formalism of finite temperature field theory. We evaluate the one-loop self-energy of neutral rho
mesons containing thermomagnetic propagators for the charged pions in the loop. The in-medium
thermomagnetic spectral function of rho obtained by solving the Dyson-Schwinger equation is shown to be
proportional to the dilepton production rate. The study of the analytic structure of the neutral rho-meson
spectral function in such a medium shows that in addition to the usual contribution coming from the
Unitary cut beyond the two-pion threshold there is a nontrivial yield in the low invariant-mass region
originating due to the fact that the charged pions occupy different Landau levels before and after scattering
with the neutral rho meson and is purely a finite magnetic-field effect.
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I. INTRODUCTION

The primary objective of modern heavy ion collision
(HIC) experiments at Large Hadron Collider (LHC) and
Relativistic Heavy Ion Collider (RHIC) is to study hot and
dense nuclear matter. The collision of two nuclei at ultra-
relativistic energies leads to the liberation of the funda-
mental constituents of the nucleons forming a deconfined
state of quarks and gluons in local thermal equilibrium.
This form of the nuclear matter is known as the quark-gluon
plasma (QGP), which, as suggested by the phenomeno-
logical studies, is the most perfect fluid created in nature
[1–3]. The fireball produced in HICs, cools via rapid
expansion under its own pressure gradient going through
various stages of evolution. However, the possibility of
direct observation is strongly hindered as the QGP is very
transient (∼few fm=c). Thus, to extract microscopic as well
as bulk properties of QGP, one has to rely on indirect

probes and observables such as spectra of electromagnetic
probes (photon and dileptons), heavy quark production,
quarkonia suppression, jet-energy loss, collective flow, J=ψ
suppression, etc. (see Refs. [4–7] for a broad overview).
Among these, electromagnetic probes [8–16], owing to
large mean free paths, tend to leave the system without
much interaction and, therefore are expected to carry the
information of the stage from where they are produced.
This is the major advantage of the electromagnetic probes
over hadrons which are emitted from the freeze-out hyper-
surface after undergoing rescattering.
The study of different n-point current-current correlation

functions or in-medium spectral functions of local currents
is one of the primary theoretical tools to examine various
properties of QGP. The electromagnetic spectral function is
one such example which is obtained from the vector-vector
current correlator which, in turn, is connected to the
dilepton production rate (DPR) from the hot and dense
medium [10,11,14–17]. In the QGP medium, the asymp-
totically free quarks can interact with an antiquark to
produce a virtual photon, which decays into a dilepton.
The emission rate resulting from these reactions has been
extensively studied in Refs. [9,12,13]. However, there exist
several other sources of dileptons (thermal and nonthermal)
in HIC experiments [4,13,14,18] which provide a substan-
tial background. Among these, the contribution from the
Drell-Yan process is well understood in the framework of
perturbative quantum chromodynamics (QCD) [4,14,19–21].
Dileptons can also be produced from the decays of hadron
resonances, such as, π0; ρ;ω; J=ψ , for which the yield can
be estimated experimentally by invariant mass analysis [4].
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However, the task to disentangle the photons and dilepton
from the hadronic medium, produced after the phase
transition/crossover, is a more daunting task. Therefore,
a proper theoretical estimation of the photon and/or
dilepton yield from hot and dense hadronic medium along
with the possible modification of the hadronic properties
below the critical temperature of the phase transition is of
major importance to detect the electromagnetic signals
from QGP. A significant amount of research has been
carried out to evaluate the dilepton emission rate from hot
and dense hadronic phase and it has been observed that the
emission rate in the low invariant-mass region is substan-
tially modified [8,11,17,22,23].
Recent studies suggest that in noncentral or asymmetric

collisions of two heavy nuclei, very strong magnetic fields
of the order ∼1018 Gauss or larger might be generated due
to the receding spectators [24,25]. The produced magnetic
field decays very rapidly within few fm=c. However, it is
found that both the QGP as well as hadronic medium
possess finite electrical conductivity [26–29] which is
expected to modify the decay process of this transient
field according to relativistic magneto-hydrodynamics
[30–35]. Beside this, strong magnetic fields may also exist
in several other physical systems. For example, in the
interior of magnetars [36,37], magnetic field ∼1015 Gauss
can be present. Moreover, it is conjectured that in the early
Universe during the electroweak phase transition, magnetic
fields as high as ∼1023 Gauss might have been produced
[38,39]. Since the strength of these magnetic fields is
comparable to the typical QCD energy scale (eB ∼ Λ2

QCD),
significant modifications can be found in various micro-
scopic and bulk properties of the hadronic matter. For
example, shear and bulk viscosity of magnetized hadronic
matter using different methods has been studied in
Refs. [40–43]. Estimation of the electrical and the Hall
conductivity of a hot and dense hadron gas in presence of
uniform background field has been done in Refs. [44,45].
In Ref. [46], the magnetic field dependence of thermo-
electric coefficients such as Seebeck, Nernst, etc. of a
hadron gas are examined.
The modification of the DPR in the presence of a

uniform background magnetic field from the QGP medium
has been extensively studied in the literature using different
approaches [47–57]. However, as the system cools down, it
is expected that hadronic matter will be generated from
QGP via a phase transition or crossover which has sub-
stantial contribution in the dilepton emission in the low
invariant-mass region. As discussed earlier, the presence of
an external magnetic field leads to nontrivial modifications
in transport properties of the hadronic matter. Hence, it will
be interesting to examine the effect of background mag-
netic field on the DPR from a hot and dense hadronic
medium. An estimation of which is not readily available
in the literature. The most important component in the
calculation of DPR which determines the thresholds as well

as the intensity of emission of dileptons is the imaginary
part of the electromagnetic vector-current correlator [14,15].
The latter quantity will be significantly modified owing
to the thermomagnetic modification of the propagators of
charged mesons. This will in turn modify the DPR from
magnetized hadronic matter.
In this work, we study the DPR from magnetized hot

hadronic matter in terms of the spectral function of the
neutral rho meson which is obtained from the electromag-
netic vector current correlation function evaluated using the
real-time formalism (RTF) of thermal field theory (TFT).
The general formalism for the DPR is derived in the next
section. In Sec. III the DPR is expressed in terms of the rho
spectral function at finite temperature. This is extended to
the case of nonzero magnetic field in Sec. IV making no
approximations on the strength of the field. Section V
contains the numerical results and we summarize in
Sec. VI. Some details are provided in the Appendix.

II. FORMALISM

The formalism to obtain the dilepton production rate
(DPR) from a thermal system of hadrons has been discussed
by many authors (see e.g. Refs. [9,10,15,23,58–62]). Here
we outline some essential steps following Ref. [23]. The
emission rate of dileptons with four-momenta qμ ¼ ðq0; qÞ
per unit space-time four-volume can be written as

dN
d4xd4q

¼ α2

6π3q2
e−βq0Lðq2Þð−gμνMþμνÞ; ð1Þ

where Lðq2Þ ¼ ð1þ 2m2
0

q2 Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

0

q2

q
, m0 is the leptonic mass

and Mþμν is the Fourier transform of two-point vector-
current correlator

Mþμν ¼
Z

d4xeiq:xhJμhðxÞJνhð0Þi ð2Þ

in which h� � �i denotes thermal ensemble average and JμhðxÞ
is the electromagnetic current of hadrons. The quantityMþμν

can be calculated using standard techniques of finite temper-
ature field theory as follows.
In the RTF of TFT, the two-point correlation functions

assume a 2 × 2 matrix structure on account of the shape of
the contour in the complex-time plane [23,63]. We start
with the Fourier transform of the time-ordered two-point
function

Mμν
ab ¼ i

Z
d4xeiq:xhTcfJμhðxÞJνhð0Þgiab ð3Þ

where Tc indicates time ordering with respect to the time
contour c. The thermal indices a; b ∈ f1; 2g correspond to
the fact that the two points can be chosen on either of the
two horizontal segments of the contour c. The quantity in
Eq. (3) can be expressed in diagonal form as
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Mμν ¼ U

�
M̄μν 0

0 −M̄�μν

�
U ð4Þ

by means of the matrix U ¼ ð
ffiffiffiffiffiffiffi
nþ1

p ffiffi
n

p
ffiffi
n

pffiffiffiffiffiffiffi
nþ1

p Þ where n ¼ 1
eβjq0 j−1

is a thermal distributionlike function in which β ¼ 1=T is
the inverse temperature. The diagonal element M̄μν appear-
ing on the right-hand side of Eq. (4) is an analytic function
and is obtainable from any one of the components of Mμν

ab.
It is related, say for example to the 11-component as

ReM̄μνðqÞ ¼ ReMμν
11ðqÞ;

ImM̄μνðqÞ ¼ tanh

�jq0j
2T

�
ImMμν

11ðqÞ: ð5Þ

Now, using a spectral representation [23], one can relate the
quantityMþμν appearing in Eq. (2) with the imaginary part
of the analytic function M̄μν as

MþμνðqÞ ¼ 2eβq0

eβq0 − 1
ImM̄μνðqÞ ¼ ϵðq0Þ 2eβq0

eβq0 þ 1
ImMμν

11ðqÞ
ð6Þ

where ϵðq0Þ is the sign function. Substituting Eq. (6) into
Eq. (1), we get the DPR in terms of M̄μν as

dN
d4xd4q

¼ α2

3π3q2
1

eβq0 − 1
Lðq2Þð−gμνImM̄μνðqÞÞ: ð7Þ

In order to calculate Mμν
11, we now require the explicit

form of the hadronic local vector current JμhðxÞ.
Considering only the isovector rho mesons in VDM
[16,23,59,64,65], the hadronic current can be expressed as

JμhðxÞ ¼ JμðρÞðxÞ ¼ Fρmρρ
μðxÞ; ð8Þ

where ρμðxÞ is the Heisenberg field corresponding to the ρ0
meson and the coupling Fρ ¼ 156 MeV is obtained from
the decay rate Γρ0→eþe− ¼ 7.0 keV [23]. Substituting
Eq. (8) into Eq. (3), and applying the Wick’s theorem,
we arrive at

ImMμν
11ðqÞ ¼ F2

ρm2
ρImDμν

11ðqÞ; ð9Þ

where Dμν
11ðqÞ is the 11-component of the exact thermal

propagator of the ρ0 meson. Making use of Eqs. (9) and (6),
Eq. (7) can be written as

dN
d4xd4q

¼ α2

π3q2
1

eβq0 − 1
Lðq2ÞF2

ρm2
ρ

�
−
1

3
gμνImD̄μνðqÞ

�
;

ð10Þ

where, D̄μν is the diagonal element corresponding to the
real time interacting ρ0 propagator and is related to Dμν

11ðqÞ

by means of relation analogous to Eq. (5). The term within
the large parenthesis on the right-hand side of Eq. (10) can
be identified as the in-medium spectral function of the ρ0

meson i.e., Aðq;TÞ ¼ − 1
3
gμνImD̄μνðqÞ. Thus, in terms of

spectral function, the DPR in Eq. (10) can be written as

dN
d4xd4q

¼ α2

π3q2
fBEðq0ÞLðq2ÞF2

ρm2
ρAðq;TÞ; ð11Þ

where fBEðxÞ ¼ ðex=T − 1Þ−1 is the Bose-Einstein thermal
distribution function. Our next task is to calculate the
ρ0-meson spectral functionAðq;TÞ in a thermal medium in
the presence of external magnetic field. For the sake of
completeness and continuity, we will first calculateAðq;TÞ
in absence of magnetic field in the next section. Later in
Sec. IV, we will evaluate Aðq;T; eBÞ for a general
thermomagnetic background.

III. RHO SPECTRAL FUNCTION AND DPR IN
ABSENCE OF MAGNETIC FIELD

As discussed in the last section, the essential quantity in
the DPR which contains the dynamics of the hadronic
medium is (imaginary part of) the exact rho-meson propa-
gator or the in-medium spectral function. The diagonal
component of the real time exact ρ0 propagator D̄μν can be
obtained in terms of the bare ρ0-propagator D̄μν

ð0Þ and the

analytic thermal self-energy function Π̄αβ by solving the
following Dyson-Schwinger equation [23,63]:

D̄μν ¼ D̄μν
ð0Þ − D̄μα

ð0ÞΠ̄αβD̄βν; ð12Þ

where

D̄μν
ð0ÞðqÞ ¼

�
−gμν þ qμqν

m2
ρ

�
−1

q2 −m2
ρ þ iϵ

: ð13Þ

The analytic thermal self-energy function Π̄αβ (which is the
diagonal element of U−1ΠαβU−1 in thermal space), can be
obtained from the 11-component Παβ

11 by means of relations
analogous to Eq. (5). The latter is now evaluated in
perturbation theory using the effective-field theoretic
Lagrangian [66]

Lint ¼ −gρππð∂μρνÞ · ð∂μπ × ∂
νπÞ; ð14Þ

where, ρμ and π are the isovector fields corresponding to
the rho mesons and pions respectively, and, gρππ ¼
20.72 GeV−2 is the value of the coupling constant deter-
mined from the decay width Γρ→ππ ¼ 155.8 MeV.
Using Eq. (14), the expression for the 11-component of

the one-loop self-energy matrix of ρ0 obtained by applying
Feynman rules to the graph shown in Fig. 1 is given by
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Πμν
11ðq;TÞ ¼ i

Z
d4k
ð2πÞ4N

μνðq; kÞD11ðkÞD11ðp ¼ qþ kÞ;

ð15Þ

where

Nμνðq; kÞ ¼ g2ρππ½q4kμkν þ ðq · kÞ2qμqν − q2ðq · kÞ
× ðqμkν þ qνkμÞ� ð16Þ

contains the factors coming from the interaction vertices
and D11ðkÞ is the 11-component of the real-time thermal-
pion propagator expressed as [23,63]

D11ðkÞ ¼
−1

k2 −m2
π þ iϵ

þ 2πiηðk · uÞδðk2 −m2
πÞ: ð17Þ

in which ηðxÞ ¼ ΘðxÞfBEðxÞ þ Θð−xÞfBEð−xÞ, uμ is the
medium four-velocity and mπ is the pion rest mass. In the
local rest frame (LRF) of the medium, uμLRF ≡ ð1; 0Þ. As
mentioned earlier, the analytic thermal self-energy function
Π̄μνðqÞ can be obtained from Πμν

11ðqÞ using the relations

ReΠ̄μνðq0; qÞ ¼ ReΠμν
11ðq0; qÞ;

ImΠ̄μνðq0; qÞ ¼ tanh

�jq0j
2T

�
ImΠμν

11ðq0; qÞ: ð18Þ

On substituting Eq. (17) into Eq. (15) and performing the
dk0 integration we get the real and imaginary parts of
ρ0-meson thermal self-energy function using Eq. (18) as

ReΠ̄μνðq0; q;TÞ ¼ ReΠμν
Pure-VacðqÞ þ

Z
d3k
ð2πÞ3 P

�
fk
2ωk

�
Nμνðk0 ¼ −ωkÞ

ðq0 − ωkÞ2 − ðωpÞ2
þ Nμνðk0 ¼ ωkÞ
ðq0 þ ωkÞ2 − ðωpÞ2

�

þ fp
2ωp

�
Nμνðk0 ¼ −q0 − ωpÞ
ðq0 þ ωpÞ2 − ðωkÞ2

þ Nμνðk0 ¼ −q0 þ ωpÞ
ðq0 − ωpÞ2 − ðωkÞ2

��
; ð19Þ

ImΠ̄μνðq0; q;TÞ ¼ − tanh

�jq0j
2T

�
π

Z
d3k
ð2πÞ3

1

4ωkωp
½ð1þ fk þ fp þ 2fkfpÞ

× fNμνðk0 ¼ −ωkÞδðq0 − ωk − ωpÞ þ Nμνðk0 ¼ ωkÞδðq0 þ ωk þ ωpÞg
þ ðfk þ fp þ 2fkfpÞfNμνðk0 ¼ −ωkÞδðq0 − ωk þ ωpÞ þ Nμνðk0 ¼ ωkÞδðq0 þ ωk − ωpÞg�; ð20Þ

where, ωk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþk2
p

, ωp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþp2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþðqþkÞ2
p

,
fk ¼ fBEðωkÞ, fp ¼ fBEðωpÞ, and P denotes the Cauchy
principal value integration. In Eq. (19), the quantity
ReΠμν

Pure-VacðqÞ is given by

Πμν
Pure-VacðqÞ

¼ i
Z

d4k
ð2πÞ4

Nμνðq; kÞ
ðk2 −m2

π þ iϵÞfðqþ kÞ2 −m2
π þ iϵg ð21Þ

which is the temperature independent pure vacuum con-
tribution to the self-energy. We also note that one of the
integrations dðcos θÞ of Eq. (20) can be analytically
performed using the Dirac delta functions present in the
integrand. The arguments of delta functions in Eq. (20)
correspond to energy-momentum conservation and they are

nonvanishing in certain domains of energy (q0) for a given
three momentum q. They are responsible for producing
branch cuts of the self-energy function in the complex q0

plane. The branch cuts due to the four Dirac delta functions
in Eq. (20) are termed as Unitary-I, Unitary-II, Landau-II,
and Landau-I cuts respectively as they appear in the
equation. The nonvanishing kinematic domains for the
Unitary-I and II are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

π

p
< q0 < ∞ and −∞ <

q0 < −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

π

p
, respectively. For the two Landau cuts,

the same is given by jq0j < jqj. The cut structure of the self-
energy function is shown in Fig. 2. The cuts represent
different physical processes such as decay or scattering.
The Unitary-I cut corresponds to the decay ρ0 → πþπ−
(and the time reversed process) and the Landau cuts
indicate the scattering of ρ0 off pions in the medium. In
the physical timelike region (defined by q0 > 0 and
q2 > 0), only the Unitary-I cut contributes. It may be

FIG. 1. Feynman diagram for one-loop self-energy of ρ meson.
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noted that if the loop particles were of different masses, a
nontrivial Landau cut would have appeared in the physical
timelike region. The kinematic domain for such nontrivial
Landau cut would be jqj < q0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Δm2

p
where Δm is

the mass difference between the two loop particles (in our
case Δm ¼ 0).
Having obtained the self-energy, we now proceed to

obtain the exact propagator by solving Eq. (12). It is
convenient to decompose the self-energy tensor into
independent covariants as [67]

Π̄μνðTÞ ¼ ΠTP
μν
T þ ΠLP

μν
L ; ð22Þ

where

Pμν
T ¼

�
gμν −

qμqν

q2
−
ũμũν

ũ2

�
; Pμν

L ¼ ũμũν

ũ2
ð23Þ

in which ũμ ¼ uμ − ðq·uq2 Þqμ is a vector orthogonal to qμ. The
form factors ΠT and ΠL appearing on the right-hand side of
Eq. (22) comes out to be

ΠT ¼ 1

2

�
gμνΠμν −

1

ũ2
uμuνΠμν

�
; ΠL ¼ 1

ũ2
uμuνΠμν:

ð24Þ

Using Eqs. (13) and (22), Eq. (12) is solved to get the
interacting ρ0-meson propagator as

D̄μνðTÞ ¼ Pμν
T

q2 −m2
ρ þ ΠT

þ Pμν
L

q2 −m2
ρ þ ΠL

−
qμqν

q2m2
ρ

ð25Þ

whose imaginary part gives the in-medium spectral func-
tion of the rho meson as

Aðq;TÞ ¼ −
1

3
gμνImD̄μν

¼ 1

3

�
2ImΠT

ðq2 −m2
ρ þ ReΠTÞ2 þ ðImΠTÞ2

þ ImΠL

ðq2 −m2
ρ þ ReΠLÞ2 þ ðImΠLÞ2

�
: ð26Þ

Having obtained the spectral function Aðq;TÞ, it is now
straightforward to calculate the DPR by substituting

Eq. (26) into Eq. (11). We note that the kinematic domain
for dilepton production is shown in Fig. 2 by the blue line
(Unitary-I cut) where the spectral function is nonzero, and
there is no contribution to dilepton production from the
Landau cuts for physical dileptons having q0 > 0 and
q2 > 0. For comparison, the DPR from the hadronic matter
commonly obtained in the literature (for example in
Refs. [10,22] by C. Gale and J. Kapusta) is provided in
Appendix A.

IV. RHO SPECTRAL FUNCTION AND DPR IN
PRESENCE OF MAGNETIC FIELD

Let us now consider a constant background magnetic
field B along the positive ẑ direction in addition to finite
temperature. In such a thermomagnetic background, the
11-component of one-loop self-energy of neutral rho
meson in Eq. (15) modifies to

Π̄μν
11ðq;T;eBÞ¼ i

Z
d4k
ð2πÞ4N

μνðq;kÞDB
11ðkÞDB

11ðp¼ qþkÞ;

ð27Þ

where, e is the electronic charge of a proton, DB
11ðkÞ is the

11-component of the real-time charged pion propagator in
the Schwinger representation given by [67,68]

DB
11ðkÞ ¼

X∞
l¼0

2ð−1Þle−αkLlð2αkÞ

×
�

−1
k2k −m2

l þ iϵ
þ 2πiηðk · uÞδðk2k −m2

l Þ
�
: ð28Þ

Here l is the Landau-level index, αk ¼ −k2⊥=eB, LlðzÞ is
Laguerre polynomial of order l, ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2lþ 1ÞeB
p

is the effective Landau level dependent pion mass,
kμk;⊥ ¼ gμνk;⊥kν with gμνk ¼ diagð1; 0; 0;−1Þ and gμν⊥ ¼
diagð0;−1;−1; 0Þ. Note that in this convention k2k ¼ ðk20 −
k2zÞ and k2⊥ ¼ −ðk2x þ k2yÞ < 0.
Now, substituting Eq. (28) into Eq. (27) and performing

the dk0 integration and using Eq. (18), we get the real and
imaginary parts of the ρ0 self-energy as

FIG. 2. Analytic structure of Π̄μνðq0; qÞ in complex plane of q0 for a given q. Unitary-I (denoted by blue line) corresponds to the
domain of physical dilepton production.
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ReΠ̄μνðq0; q;T; eBÞ ¼ ReΠ̄μν
Vacðq; eBÞ þ

X∞
n¼0

X∞
l¼0

Z
d3k
ð2πÞ3 P

�
flk
2ωl

k

�
Ñμν

nl ðk0 ¼ −ωl
kÞ

ðq0 − ωl
kÞ2 − ðωn

pÞ2
þ Ñμν

nl ðk0 ¼ ωl
kÞ

ðq0 þ ωl
kÞ2 − ðωn

pÞ2
�

þ fnp
2ωn

p

�
Ñμν

nl ðk0 ¼ −q0 − ωn
pÞ

ðq0 þ ωn
pÞ2 − ðωl

kÞ2
þ Ñμν

nl ðk0 ¼ −q0 þ ωn
pÞ

ðq0 − ωn
pÞ2 − ðωl

kÞ2
��

; ð29Þ

ImΠ̄μνðq0; q;T; eBÞ ¼ − tanh

�jq0j
2T

�X∞
n¼0

X∞
l¼0

π

Z
d3k
ð2πÞ3

1

4ωl
kω

n
p
½f1þ flk þ fnp þ 2flkf

n
pg

× fÑμν
nl ðk0 ¼ −ωl

kÞδðq0 − ωl
k − ωn

pÞ þ Ñμν
nl ðk0 ¼ ωl

kÞδðq0 þ ωl
k þ ωn

pÞg þ fflk þ fnp þ 2flkf
n
pg

× fÑμν
nl ðk0 ¼ −ωl

kÞδðq0 − ωl
k þ ωn

pÞ þ Ñμν
n;lðk0 ¼ ωl

kÞδðq0 þ ωl
k − ωn

pÞg�; ð30Þ

where ωl
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ m2

l

q
, ωn

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ m2

n

p
, flk ¼ fBEðωl

kÞ, fnp ¼ fBEðωn
pÞ, and Ñμν

nl ðq; kk; k⊥Þ ¼
4ð−1Þnþle−αk−αpLlð2αkÞLnð2αpÞNμν. The expression for ReΠ̄μν

Vacðq; eBÞ is given in Appendix B. Now performing the
d2k⊥ integrations of Eqs. (29) and (30), one obtains

ReΠ̄μνðq;T; eBÞ ¼ ReΠ̄μν
Vacðq; eBÞ þ

X∞
n¼0

X∞
l¼0

Z
∞

−∞

dkz
2π

P
�
flk
2ωl

k

�
Nμν

nl ðq; k0 ¼ −ωl
k; kzÞ

ðq0 − ωl
kÞ2 − ðωn

pÞ2
þ Nμν

nl ðq; k0 ¼ ωl
k; kzÞ

ðq0 þ ωl
kÞ2 − ðωn

pÞ2
�

þ fnp
2ωn

p

�
Nμν

nl ðq; k0 ¼ −q0 − ωn
p; kzÞ

ðq0 þ ωn
pÞ2 − ðωl

kÞ2
þ Nμν

nl ðq; k0 ¼ −q0 þ ωn
p; kzÞ

ðq0 − ωn
pÞ2 − ðωl

kÞ2
��

; ð31Þ

ImΠ̄μνðq;T;eBÞ ¼ − tanh

�jq0j
2T

�
π
X∞
n¼0

X∞
l¼0

Z þ∞

−∞

dkz
2π

1

4ωl
kω

n
p
½ð1þ flk þ fnp þ 2flkf

n
pÞfNμν

nl ðq;k0 ¼ −ωl
k; kzÞδðq0 −ωl

k −ωn
pÞ

þNμν
nl ðq;k0 ¼ ωl

k; kzÞδðq0 þωl
k þωn

pÞgþ ðflk þ fnp þ 2flkf
n
pÞfNμν

nl ðq;k0 ¼ −ωl
k; kzÞδðq0 −ωl

k þωn
pÞ

þNμν
nl ðq;k0 ¼ ωl

k; kzÞδðq0 þωl
k −ωn

pÞg�; ð32Þ

where

Nμν
nl ðq; kkÞ ¼

Z
d2k⊥
ð2πÞ2 Ñ

μν
nl ðq; kk; k⊥Þ: ð33Þ

The dkz integration in Eq. (32) can now be performed using the Dirac delta function and we get

ImΠ̄μνðq;T;eBÞ¼− tanh

�jq0j
2T

�X∞
n¼0

X∞
l¼0

1

4λ1=2ðq2k;m2
l ;m

2
nÞ

X
kz∈fk�z g

½ð1þflkþfnpþ2flkf
n
pÞ

×

�
Nμν

nl ðq;k0¼−ωl
k;kzÞΘ

	
q0−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2zþðmlþmnÞ2

q 

þNμν

nl ðq;k0¼ωl
k;kzÞΘ

	
−q0−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2zþðmlþmnÞ2

q 
�

þðflkþfnpþ2flkf
n
pÞfNμν

nl ðq;k0¼−ωl
k;kzÞΘðq0−minðqz;E�ÞÞΘð−q0þmaxðqz;E�ÞÞ

þNμν
nl ðq;k0¼ωl

k;kzÞΘð−q0−minðqz;E�ÞÞΘðq0þmaxðqz;E�ÞÞg�; ð34Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx is the
Källén function, k�z ¼ 1

2q2k
½−yqz�jq0jλ1=2ðq2k;m2

l ;m
2
nÞ�, y ¼

ðq2k þm2
l −m2

nÞ, and E� ¼ ml−mn
jml�mnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ðml �mnÞ2

p
.

Eq. (32) contains four Dirac delta functions similar to
Eq. (20) representing the Unitary and Landau cuts. Because
of dimensional reduction, they contain only the longi-
tudinal dynamics. Unlike the vanishing eB case, here a

nontrivial Landau cut contribution may appear in the
(physical) timelike kinematic domain (even if the loop-
particles have the same masses). This happens when the
pions in the loop occupy different Landau levels. Physically
this means that a rho meson can be absorbed by means of
scattering with a pion in lower Landau level producing a
pion in higher Landau levels in the final state (and the time
reversed process). The contributions from Unitary-I and
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Unitary-II are nonvanishing in the kinematic regionsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ 4ðm2

π þ eBÞ
p

< q0 < ∞ and −∞ < q0 <
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ 4ðm2

π þ eBÞ
p

, respectively. On the other hand,
the nonvanishing kinematic domain for both the Landau
cuts is jq0j < maxðqz; E�Þ.
The analytic structure of the self-energy is easier to

understand if we consider the case of q⊥ ¼ 0. In this
situation, Eq. (34) will be simplified as l will lie between
(n − 1) to (nþ 1) for a given value of n, so that

Nμν
nl ðqk; q⊥ ¼ 0; kkÞ

¼ 4g2ρππð−1Þnþ1
eB
8π

½fkμkkνkq4k þ qμkq
ν
kðqk:kkÞ2

− ðkμkqνk þ kνkq
μ
kÞq2kðqk:kkÞgδnl þ q4kg

μν
⊥
eB
4

× fnδn−1l − ð2nþ 1Þδnl þ ðnþ 1Þδnþ1
l g�: ð35Þ

As a result, kinematic domain of Landau cuts will be
modified and the nonvanishing region for both the Landau

cuts is jq0j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 3eB
p

Þ2
q

. The
cut structure of the thermomagnetic self-energy function is
shown in Fig. 3.
In order to solve the Dyson-Schwinger equation for the

complete ρ0-propagator, we use the following Lorentz
decomposition of the self-energy at finite temperature
under external magnetic field [67]

Π̄μνðT; eBÞ ¼ ΠAP
μν
A þ ΠBP

μν
B þ ΠCP

μν
C þ ΠLP

μν
L ð36Þ

where the basis tensors are

Pμν
A ¼

�
gμν −

qμqν

q2
−
ũμũν

ũ2
−
b̃μb̃ν

b̃2

�
; ð37Þ

Pμν
B ¼ b̃μb̃ν

b̃2
; Pμν

L ¼ ũμũν

ũ2
; ð38Þ

Pμν
C ¼ 1ffiffiffiffiffiffiffiffiffiffi

ũ2b̃2
p ðũμb̃ν þ ũνb̃μÞ: ð39Þ

In Eqs. (37)–(39), b̃μ ¼ bμ − ðq·bq2 Þqμ − ðb·ũũ2 Þũμ, where, bμ ¼
1
2B ε

μναβFext
να uβ in which Fext

να is the electromagnetic field-
strength tensor corresponding to the external magnetic
field. It may be noted that in LRF, bμLRF ≡ ð0; ẑÞ points
along the direction of external magnetic field. Also, the
vector b̃μ is orthogonal to both qμ and ũμ. The form factors
in Eq. (36) comes out to be

ΠL ¼ 1

ũ2
uμuνΠ̄μν ð40Þ

ΠC ¼ 1ffiffiffiffiffiffiffiffiffiffi
ũ2b̃2

p fuμbνΠ̄μν − ðb · ũÞΠLg ð41Þ

ΠB ¼ 1

b̃2

�
bμbνΠ̄μν þ ðb · ũÞ2

ũ2
ΠL − 2

b · ũ
ũ2

uμbνΠ̄μν

�
ð42Þ

ΠA ¼ ðgμνΠ̄μν − ΠL − ΠBÞ: ð43Þ

Thus, using Eqs. (13) and (36), Eq. (12) is solved to get the
complete thermomagnetic ρ0-meson propagator as

D̄μνðT; eBÞ ¼ Pμν
A

q2 −m2
ρ þ ΠA

þ ðq2 −m2
ρ þ ΠLÞPμν

B

ðq2 −m2
ρ þ ΠBÞðq2 −m2

ρ þ ΠLÞ − Π2
C
−

ΠCP
μν
C

ðq2 −m2
ρ þ ΠLÞðq2 −m2

ρ þ ΠBÞ − Π2
C

þ ðq2 −m2
ρ þ ΠBÞPμν

L

ðq2 −m2
ρ þ ΠBÞðq2 −m2

ρ þ ΠLÞ − Π2
C
−

qμqν

q2m2
ρ
: ð44Þ

It turns out that the consideration of vanishing transverse
momentum q⊥ ¼ 0 simplifies the form factors signifi-
cantly; in particular, we get ΠAðq⊥ ¼ 0Þ ¼ ΠBðq⊥ ¼ 0Þ ¼
ΠT (say) and ΠCðq⊥ ¼ 0Þ ¼ 0. The imaginary part of D̄μν

in Eq. (44) gives the thermomagnetic spectral function of
rho meson as Aðq;T; eBÞ ¼ − 1

3
gμνImD̄μν which is to be

plugged into Eq. (11) to calculate the DPR. We emphasize
that in case of nonzero magnetic field, physical dileptons

FIG. 3. Analytic structure of Π̄ðq0; qz;T; eBÞ in complex plane of q0 for a given value of qz. Here, q̃0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 3eB
p

Þ2
q

. Unitary-I and some portion of the Landau cuts (denoted by blue line) corresponds to the
domain of physical dilepton production.
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(having q0 > 0 and q2 > 0) can be produced from both the
Unitary-I and Landau cuts (as shown by blue region in
Fig. 3) where the spectral function is nonzero.

V. NUMERICAL RESULTS

In this section, numerical results for several quantities,
such as, imaginary part of ρ0 self-energy and complete ρ0-
propagator, dilepton production rate etc. are presented in
different physical scenarios. It should be noted that while
calculating the components of ImΠ̄μν in presence of non-
zero magnetic field, we have to perform sum over infinite
number of Landau levels [see Eq. (34)]. However, for all
numerical results, we have taken up to 500 Landau levels
which ensures the convergence of the sum. We present our
results for T ¼ 130 and 160 MeV which are representative
temperatures of the hadronic phase. Since the hadronic
phase is formed in the late stage of the evolution, a weaker
magnetic field eB ¼ 0.02 GeV2 has been considered in
the numerical results. However, some higher values e.g.
eB ¼ 0.03; 0.05 GeV2 are also considered to show the
dependency of the magnetic field on the numerical results

as our calculation is valid for arbitrary values of magnetic
field. The representative values q⊥ ¼ 150 MeV and qz ¼
150 MeV are chosen which are of the same order as the
temperature. We also show results of DPR for different
values of q⊥ and qz. We have taken rest mass of pion
as mπ ¼ 140 MeV.
We first consider the case of zero transverse momentum,

i.e., q⊥ ¼ 0 and longitudinal momentum qz ¼ 150 MeV
in Figs. 4–6. In Figs. 4(a) and 4(b), we have shown
the contribution of the Unitary cut in ImΠT and ImΠL,

respectively as function of
ffiffiffiffiffi
q2k

q
at temperature T ¼

130 MeV for different values of external magnetic field.
From Fig. 4(a), it is evident that ImΠUnitary

T consists of
spikelike structures separated from each other by a finite
value for nonzero values of eB and the form factor
oscillates about the eB ¼ 0 plot. The appearance of these
spikes is due to the so called “threshold singularities” at
each Landau level [51,67,69,70]. Mathematically this can
be understood from Eq. (34) where the Källén function
appearing in the denominator goes to zero at each threshold
of the Unitary cut defined in terms of the unit step

FIG. 4. Unitary cut contributions in (a) ImΠT and (b) ImΠL at T ¼ 130 MeV, (c) ImΠT and (d) ImΠL at T ¼ 130 and 160 MeVas a
function of qk for qz ¼ 150 MeV, q⊥ ¼ 0.0 for different eB values.
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functions. As discussed below Eq. (34), the threshold for
the Unitary cut for different values of eB can be determined
from the following condition,

ffiffiffiffiffi
q2k

q
> 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
q

: ð45Þ

Furthermore, Eq. (45) also predicts that the threshold of the

Unitary cut should shift towards higher values of
ffiffiffiffiffi
q2k

q
as

eB increases which is evident from Fig. 4(a). In Fig. 4(b),

we have plotted ImΠUnitary
L as function of

ffiffiffiffiffi
q2k

q
. Unlike

ImΠUnitary
T , ImΠUnitary

L does not contain any spikelike
structure. This is due to an extra factor of Källén function
coming from the component N00

nl (which contributes to
ImΠL), canceling the same in the denominator of Eq. (34).
Similar to ImΠUnitary

T , it can also be seen that with nonzero
values of eB, ImΠUnitary

L is approximately same as the

eB ¼ 0 curve but the oscillation frequency is much
smaller as compared to ImΠUnitary

T . Moreover, analogous
to Fig. 4(a), the threshold of the unitary cut moves towards

higher values of
ffiffiffiffiffi
q2k

q
with the increase in magnetic field as

clearly shown in the inset plot. In Figs. 4(c) and 4(d)
we have presented the variation of ImΠUnitary

T and ImΠUnitary
L

with
ffiffiffiffiffi
q2k

q
for a fixed value of the background field

(eB ¼ 0.02 GeV2) for two different values of T. In both
the figures, the corresponding curves for eB ¼ 0 case
are shown for comparison. It is evident that for different
values of temperature the qualitative behavior of both
ImΠUnitary

T and ImΠUnitary
L remains similar. However, there

is an increase in the magnitude of both the contribution
of the Unitary cut in ImΠT and ImΠL for higher value
of T owing to the availability of larger thermal phase
space.
As pointed out earlier while discussing the detailed

analytic structure of the self-energy of a ρ0 meson, a
nontrivial Landau cut contribution might be generated in
the presence of an external magnetic field even if the loop
particles carry equal mass. In this case, the nonzero Landau
cut contribution will only appear in ImΠT as can be
understood from Eq. (B5) or Eq. (35) where gμνN

μν
nl (which

contributes to ImΠT) contains two additional Kronecker
delta functions δn∓l

l as well as δnl . However, from Eq. (B6)
or Eq. (35), it is evident that such feature is absent in the
expression of N00

nl (which contributes in ImΠL). In Fig. 5,
we have depicted the contribution of the Landau cuts in

ImΠT as a function
ffiffiffiffiffi
q2k

q
at T ¼ 130 and 160 MeV for

different values of magnetic field. Comparing with
Figs. 4(a) and 4(c), it can be observed that the magnitude
of ImΠLandau

L is ∼ × 10−4 smaller compared to ImΠUnitary
T

and the Landau cut contributions also contain the threshold
singularities. Now again as discussed below Eq. (35), the

FIG. 5. Landau cut contributions in ImΠT as a function of qk at
qz ¼ 150 MeV for T ¼ 130 and 160 MeV for different eB
values.

FIG. 6. The variation of (a) Landau cut and (b) Unitary cut contributions in the complete ρ0 propagator as a function of qk at
qz ¼ 150 MeV for different eB-values at T ¼ 130 and 160 MeV.
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kinematic domain for the Landau cut can be determined
from the following condition

ffiffiffiffiffi
q2k

q
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 3eB
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
q

: ð46Þ

This explains the fact that the Landau cut contributions in

ImΠT extend towards higher values of
ffiffiffiffiffi
q2k

q
with the

increase in eB as evident from Fig. 5. Moreover, for higher
T value, due to the enhancement of the thermal factor,
which in turn increases the available thermal phase space,
the magnitude of ImΠLandau

L is larger. It should be noted that
both the Unitary and Landau cut threshold, determined by
Eqs. (45) and (46) respectively, are independent of the
temperature of the medium. All the observations made in
Figs. 4 and 5 are in agreement with the results obtained
in [67].
It is clear from Eq. (44) and discussion below that, for the

vanishing transverse momentum of ρ0, the complete
propagator of a ρ0 meson consists of three structure factors
in a magnetized medium. Out of these, two are found to be
degenerate, implying two distinct structure factors for the
propagation of ρ0. A detailed study of these structure
factors can be found in [67]. In Figs. 6(a) and 6(b), we
illustrate the variation of Landau and Unitary cut contri-
butions respectively in the complete ρ0-meson propagator

as a function of
ffiffiffiffiffi
q2k

q
for different eB-values at T ¼ 130

and 160 MeV, q⊥ ¼ 0.0 and qz ¼ 150 MeV. Both the plots
contain spikelike structure owing to the threshold singu-
larities at each Landau level as discussed earlier. The
increase (decrease) in Landau (Unitary) cut threshold with
increase in magnetic field can be explained in a similar
fashion using Eq. (46) (Eq. (45). From Fig. 6(b), it can be
seen that for a particular value of background field, the
overall width of ImD̄Unitary broadens with the increase in
temperature. This corresponds to the enhancement of the

decay process ρ0 → πþπ− in that medium indicating that ρ0

meson becomes more unstable at high temperature (see
Ref. [67] for more details). For nonzero transverse momen-
tum of ρ0 meson, the complete ρ0 propagator has four
structure factors in thermomagnetic medium [see Eq. (44)].
Figure 7(a) depicts ImD̄ as a function of

ffiffiffiffiffi
q2

p
at nonzero

value of q⊥ and qz for different values of background
magnetic field. With finite value of q⊥, the threshold of
unitary cut shifts towards the lower invariant mass and the
threshold of Landau cut shifts towards the higher invariant-
mass region leading to a continuous spectrum in ImD̄
which is an interesting observation at nonvanishing trans-
verse and longitudinal momenta of ρ0. There is an overall
increase in ImD̄ with increasing temperature in lowerffiffiffiffiffi
q2

p
ð<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm2

π þ eBÞ þ q2⊥
p

Þ region. However, the nature
of ImD̄ [in Fig. 7(b)] is same as ImD̄Unitary [in Fig. 6(b)] in
higher

ffiffiffiffiffi
q2

p
ð>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm2

π þ eBÞ þ q2⊥
p

Þ domain.
Now, we turn our attention to the dilepton production

rate (DPR) from the hot hadronic matter in the presence of
a background magnetic field. In Figs. 8(a) and 8(b), we
have presented DPR as a function of the invariant mass at
q⊥ ¼ 0.0, qz ¼ 150 MeV and temperatures 130 and
160 MeV respectively, for different values of the magnetic
field. The corresponding curves in absence of the back-
ground field (gray dotted line) are also shown for
comparison which is consistent with the earlier observa-
tions by C. Gale and J. Kapusta in Refs. [10,22]. It can be
noticed that in both the figures, when the magnetic field is
turned on, DPR receives contributions from both Landau
cut as well as Unitary-I cut which is understandable from
the discussions below Eq. (34) and Eq. (35). Since the
mass of the leptons are much smaller compared to that of π
mesons, the threshold invariant mass for dilepton pro-
duction for all eB values coincides with Unitary-I cut
threshold of ImD̄ as evident from Figs. 8(a) and 8(b).
Moreover, as we have already justified that both Unitary
and Landau cut thresholds are independent of the

FIG. 7. The variation of the complete ρ0 propagator as a function of q at qz ¼ 150 MeV, q⊥ ¼ 150 MeV for different eB-values at
(a) T ¼ 130 MeV and (b) 160 MeV.
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temperature of the medium, the thresholds of Landau cut
contributions which is a purely magnetic field dependent
effect, also remain same as observed in Fig. 6(a) for
different values of eB. The appearance of nontrivial
Landau cut contributions, leads to significant enhance-
ment in the DPR in the lower invariant mass region which
was forbidden in the absence of the background field.
Furthermore, at vanishing transverse momentum, for
finite values of eB, dilepton production is kinematically
forbidden between the Landau and Unitary cut thresholds
which can be observed in both the figures [Figs. 8(a)
and 8(b)]. The width of this forbidden gap is independent
of T and increases with eB which can be understood
from Eqs. (45) and (46). Dilepton production considering
nonzero values of q⊥ and qz is presented in the Figs. 8(c)
and 8(d). Here, the most interesting observation is that
the dilepton production rate becomes continuous and the
forbidden gap (existing between Landau cut and Unitary
cut when q⊥ ¼ 0) vanishes. In addition, the DPR is
significantly enhanced in the low invariant-mass region
(Landau cut region). It may be noted that for vanishing q⊥,
a pion in Landau level (n) could interact with a pion at

Landau levels ðn − 1Þ; n; ðnþ 1Þ producing a ρ0 meson,
but there is no such restriction on Landau levels for
nonvanishing q⊥, which can be understood by Eq. (35)
and discussions below. The spikelike structures can be
seen over the whole range of allowed invariant mass
for dilepton production which is a manifestation of the
well-known phenomena of ‘threshold singularities’ as
discussed earlier. These singularities due to landau level
quantization of pions of magnetized hadronic matter
can be attributed to the functional dependency of the
dilepton production rate as discussed earlier. For given
values of the other parameters, we have found that for
eB ≠ 0, the overall dilepton production rate is about
the same as eB ¼ 0 at higher invariant mass, i.e.,ffiffiffiffiffi
q2

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm2

π þ eBÞ þ q2⊥
p

. On the other hand, the
dilepton production rate is enhanced in the low invari-
ant-mass region, i.e.,

ffiffiffiffiffi
q2

p
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðm2

π þ eBÞ þ q2⊥
p

(which
is absent for eB ¼ 0) as evident from Figs. 8(c) and 8(d).
Finally, it can be inferred that for higher values of
temperature, as a consequence of enhancement in the
availability of the thermal phase space, the overall
magnitude of the DPR increases which is evident from

FIG. 8. Dilepton production rate as a function of the invariant mass at qz ¼ 150 MeV for different values background magnetic field
for q⊥ ¼ 0 at (a) T ¼ 130 and (b) T ¼ 160 MeV, for q⊥ ¼ 150 MeV at (c) T ¼ 130 and (d) T ¼ 160 MeV (corresponding eB ¼ 0
curves (gray dotted line) are also shown for comparison).
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the comparison of Figs. 8(a) and 8(b) or Figs. 8(c)
and 8(d).
Figures 9(a) and 9(b) show dilepton production rate for

different values of q⊥ at qz ¼ 150 MeV and different
values of qz at q⊥ ¼ 150 MeV respectively considering
eB ¼ 0.02 GeV2 and T ¼ 160 MeV. A similar trend as in
Fig. 8(d) is observed in both high and low invariant-mass
regions. Moreover, Fig. 9(a) shows that, with the increase
of the value of q⊥, the Unitary cut threshold shifts towards
the lower invariant-mass region and the Landau cut thresh-
old shifts towards the higher invariant-mass region which is
understandable from the discussions below Eqs. (34) and
(35). So, there is a combined effect (of Landau and Unitary
cut) on the dilepton production rate for the whole range of
invariant mass when q2⊥ ≥ 4ðm2

π þ eBÞ. On the other hand,
Fig. 9(b) shows that DPR decreases with the increase in qz
due to the thermal suppression.

VI. SUMMARY AND CONCLUSION

In summary, we have presented an analysis of the
dilepton production rate from hot hadronic matter under
an external magnetic field. We have shown numerical
results for DPR as a function of invariant mass for different
values of transverse and longitudinal momenta of the
dileptons. The principal component in the DPR is the
thermomagnetic in-medium spectral function of the ρ0 i.e.,
the imaginary part of the complete interacting ρ0 propa-
gator which has been obtained by solving the Dyson-
Schwinger equation containing the one-loop self-energy.
The self energy of ρ0 in such a thermomagnetic background
is calculated employing the RTF of finite temperature field
theory and Schwinger proper-time formalism. The analytic
structure is investigated in the complex energy plane; in
addition to the usual contribution coming from the Unitary
cut beyond the two-pion threshold, we find a nontrivial
Landau cut in the physical kinematic region. The appear-
ance of such a nontrivial Landau cut is due to the fact that

the charged pions occupy different Landau levels before
and after scattering with the ρ0 meson which is purely a
finite magnetic field effect. Owing to the emergence of the
Landau cut, the DPR yield in the low invariant mass region
is nonzero whereas it is absent in the zero field case.
The most interesting finding is the continuous spectrum of
DPR owing to shifting of Unitary(Landau) cut thresholds
towards lower(higher) values of invariant mass for finite
values of q⊥. However, with vanishing transverse momen-
tum we observe that there exists a forbidden gap between
the Landau and Unitary cut thresholds where dilepton
production is not kinematically allowed. The width of the
forbidden gap is independent of T and increases with eB.
The enhancement of DPR, in low invariant mass region, is
more prominent in case of q⊥ ≠ 0 as compared to q⊥ ¼ 0
case. This is due to the fact that at q⊥ ¼ 0 a pion in
Landau level n could interact with a pion at Landau levels
ðn − 1Þ; n; ðnþ 1Þ producing a ρ0 meson, but no such
restriction exists for nonvanishing q⊥ resulting in enhanced
production in the latter case. Furthermore, with the increase
in temperature, the overall magnitude of the DPR is found
to increase due to the increase in the availability of the
thermal phase space.
It should be noted that dileptons are produced in all

stages of heavy ion collisions. In order to get the dilepton
spectrum relevant for experimental observation, one has to
integrate the DPR from quark matter as well as hadronic
matter over space and time. Although many calculations
of dilepton production rate from magnetized quark matter
exist in the literature, the emission rate from magnetized
hadronic matter evaluated for the first time in this work is
an essential contribution to obtain the full spectrum of
dileptons from relativistic heavy ion collision.
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FIG. 9. Dilepton production rate as a function of the invariant mass at T ¼ 160 MeV, eB ¼ 0.02 GeV2 (a) for different values of q⊥ at
qz ¼ 150 MeV, (b) for different values of qz at q⊥ ¼ 150 MeV.
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APPENDIX A: COMPARISON WITH THE
EXPRESSIONS OF DPR FOUND IN THE

LITERATURE AT B= 0

Let us change our Cartesian coordinate system to the
Milne coordinate system via the relation

ðq0; qÞ≡ ðq0; qx; qy; qzÞ
→ ðMT cosh y; qT cosϕ; qT sinϕ;MT sinh yÞ;

ðA1Þ

where qT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
is the transverse momentum,MT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ q2T
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q20 − q2z

p
is the transverse mass,M ¼

ffiffiffiffiffi
q2

p
is the invariant mass, and y ¼ tanh−1ðqz=q0Þ is the rapidity.
Then the infinitesimal four-momentum element d4q in the
Milne system can be written as d4q ¼ MdMMTdMTdϕdy.
Assuming azimuthal (ϕ) symmetry, the DPR in Eq. (11),
can be integrated to obtain

dN
d4xdM

¼
Z

∞

M
MTdMT

Z
2π

0

dϕ
Z

∞

−∞
dyM

dN
d4xd4q

¼ 2α2

π2M
F2
ρm2

ρLðM2Þ
Z

∞

M
dMT

×
Z

∞

−∞
dy

MT

eðMT cosh yÞ=T − 1
A: ðA2Þ

We now substitute the expression of the spectral functionA
from Eq. (26) into Eq. (A2) to obtain

dN
d4xdM

¼ 2α2

3π2M
F2
ρm2

ρLðM2Þ
Z

∞

M
dMT

×
Z

∞

−∞
dy

MT

eðMT cosh yÞ=T − 1

×

�
2ImΠT

ðq2 −m2
ρ þ ReΠTÞ2 þ ðImΠTÞ2

þ ImΠL

ðq2 −m2
ρ þ ReΠLÞ2 þ ðImΠLÞ2

�
: ðA3Þ

It has been observed that the difference between the
longitudinal and transverse polarization is very small up
to reasonably high temperatures [22,64] for the interaction
considered here, so that ImΠT ≈ ImΠL ≈MΓρðMÞ. Also,

considering approximation ReΠT;L ≈ 0, the dMTdy inte-
grals of Eq. (A3) can be analytically performed to get the
DPR due to pion annihilation following Refs. [10,22,64] as

dN
d4xdM

¼ 4α2

π2
F2
ρ

m2
ρ
MTK1ðM=TÞLðM2ÞjFπðMÞj2ΓρðMÞ

ðA4Þ

¼ σπðMÞ
ð2πÞ4

�
F2
ρ

4m2
ρ
g2ρππ

�
MTK1ðM=TÞ

�
1 −

4m2
π

M2

�
ðA5Þ

using the Boltzmann approximation where K1 is the

modified Bessel function, ΓρðMÞ ¼ g2ρππ
192πM

5ð1 − 4m2
π

M2 Þ3=2 is
the ρ0-meson decay rate in a vacuum [23],

jFπðMÞj2 ¼ m4
ρ

ðq2 −m2
ρÞ2 þ fMΓρðMÞg2 ðA6Þ

is the pion form factor [59,65], and σðMÞ is the pion
annihilation cross section given by

σπðMÞ ¼ 4πα2

3M2
LðM2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

M2

r
jFπðMÞj2: ðA7Þ

APPENDIX B: eB-DEPENDENT VACUUM
CONTRIBUTION

The expression for ReΠ̄μν
Vacðq; eBÞ in Eq. (29) is

Π̄μν
vacðq; eBÞ ¼ i

X∞
n¼0

X∞
l¼0

Z
d2kjj
ð2πÞ2

Z
d2k⊥
ð2πÞ2

×
Ñμν

nl ðq; kÞ
ðk2jj −m2

l þ iϵÞððqjj þ kjjÞ2 −m2
n þ iϵÞ

ðB1Þ

With q⊥ ¼ 0, the Π̄μν
vacðq; eBÞ can be written as [67]

Π̄μν
vacðqk; eBÞ ¼ Πμν

Pure-Vacðqk; eBÞ þ Πμν
B-Vacðqk; eBÞ; ðB2Þ

where the explicit form of Πμν
B-Vacðqk; eBÞ is

Πμν
B-Vacðqk; BÞ ¼

−g2ρππq2k
32π2

Z
1

0

dx

�
Δ
�
ln

�
Δ
2eB

�
− 1

�
ðq2kgμν − qμkq

ν
kÞ − 2eB

�
lnΓ

�
Δ
2eB

þ 1

2

�
− ln

ffiffiffiffiffiffi
2π

p �
ðq2kgμνk − qμkq

ν
kÞ

þq2k

�
Δþ eB

2
−
Δ
2

�
ψ

�
Δ
2eB

þ 1

2

�
þ ψ

�
Δ
2eB

þ xþ 1

2

���
gμν⊥

�
; ðB3Þ
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where ψðzÞ is the digamma function and Δ ¼ m2
π−

xð1 − xÞq2k − iϵ.

Δ ¼ m2
π − xð1 − xÞq2k − iϵ: ðB4Þ

For q⊥ ¼ 0, the expression Nμν
nl is found in Eq. (35). The

results below can be obtained from Eq. (35)

gμνN
μν
nl ðqk;kkÞ¼ ð−1Þnþl4g2ρππ

eB
8π

× ½fq4kk2k þðqk ·kkÞ2q2k−2q2kðqk ·kkÞ2gδnl
−
eB
2
q4kfð2nþ1Þδnl − ðnþ1Þδnþ1

l −nδnl g�;
ðB5Þ

N00
nl ðqk; kkÞ ¼ ð−1Þnþl4g2ρππ

eB
8π

× ½q4kk20þðqk · kkÞ2q20 − 2q2kðqk · kkÞq0k0�δnl :
ðB6Þ

The corresponding results for zero-magnetic field are
obtained from Eq. (16) as

gμνNμνðq; kÞ ¼ g2ρππ½kμkνq4 þ ðq · kÞ2q2 − 2q2ðq · kÞ2�;
ðB7Þ

N00ðq; kÞ ¼ g2ρππ½k20q4 þ ðq · kÞ2q20 − 2q2ðq · kÞq0k0�:
ðB8Þ
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