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In this work we present an attempt to describe the X1ð2900Þ found by the LHCb collaboration, in the
experimental data on the invariant mass spectrum of D−Kþ, as a three-meson molecular state of the KρD̄
system. We discuss that the interactions in all the subsystems are attractive in nature, with the ρD̄
interaction generating D̄1ð2420Þ and the Kρ resonating as K1ð1270Þ. We find that the system can form a
three-body state but with a mass higher than that of X1ð2900Þ. We investigate the KρD system too, finding
that the three-body dynamics generates an isoscalar state, which can be related toD�

s1ð2860Þ, and an exotic
isovector state. This latter state has a mass similar to that of the X0ð2900Þ and X1ð2900Þ states found by
LHCb, but a very small width (∼7.4� 0.9 MeV) and necessarily requires more than two quarks to describe
its properties. We hope that our findings will encourage experimental investigations of the isovector KρD
state. Finally, in the pursuit of finding a description for X1ð2900Þ, we study the πK̄�D� system where K̄�D�

forms 0þ, 1þ, and 2þ states. We do not find a state that can be associated with X1ð2900Þ.
DOI: 10.1103/PhysRevD.107.036016

I. INTRODUCTION

The motivation of the present work is to find a descrip-
tion for X1ð2900Þ, a state with open charm and strange
quantum numbers, discovered by LHCb [1,2]. The state
was found together with a spin-parity 0þ resonance,
X0ð2900Þ, in the D−Kþ invariant mass. We shall refer to
these states as X0 and X1 in the present paper. Such states
clearly require more than two quarks to describe their
quantum numbers: C ¼ −1; S ¼ 1, adding a new task to
understanding the nature of the explicitly non qq̄ states
found within the last two decades. The masses and widths
of the two states are determined in Refs. [1,2] as MX0

¼
2866�7MeV, ΓX0

¼57�13MeV, MX1
¼2904�5MeV,

and ΓX1
¼ 110� 12 MeV. The isospin of the states is not

yet well determined, though different suggestions have
been brought forward by different model calculations.

A variety of descriptions have also been proposed for the
structure of Xis, which, naturally, consist of a compact
tetraquark structure, or a molecular nature. Most works
agree on attributing an isoscalar D̄�K� quasibound state to
X0ð2900Þ [3–11]. An isoscalar compact tetraquark descrip-
tion has also been tested for X0 in Refs. [12–16] (as well as
for X1 in Refs. [13,17]), obtaining the mass but not always
the width [13] in good agreement with the data [1,2].
Further, a compact tetraquark nature has been disfavored in
Ref. [18] for both X0 and X1, on the basis of a relativistic
quark model. The authors of Ref. [19] suggest that X0 and
X1 can be explained as a superposition of a tetraquark and a
molecular component. A yet other possibility has been
investigated in Ref. [20], indicating that X0 and X1 can arise
from a triangular singularity in χc1K�D̄� and DsJD̄1K0

loops, respectively. In the given scenario, the authors of
Refs. [21–23] suggest methods and mechanisms to deter-
mine the nature of Xis.
From the above discussion, it can be noticed that X0 has

been studied more than X1. Since the latter one has spin-
parity 1−, it cannot be contemplated as a s-wave molecular
state of a pair of pseudoscalar/vector mesons. However, one
could consider studying a system of an axial and a vector
meson interacting in the s wave, which has indeed been
done in Refs. [24–27]. All these former works investigate
the D̄1K system by writing an effective field for D̄1ð2420Þ
and relying on the aspects of heavy quark symmetry,
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but they find different results. The interactions between D̄1

and K have been deduced in Ref. [24] through vector
meson exchange diagrams, which is found to be too weak
to bind the system. The same formalism is applied to the
D̄K1, DK1, and D1K systems, with K1 representing
K1ð1270Þ or K1ð1400Þ, but only DK1 is found to form
a bound state. A similar approach is considered in
Refs. [25–27] but the results obtained are different. It is
concluded in Ref. [25], considering D̄K1 and D̄�K� as
coupled channels, that a large cutoff is required to bind the
systems, while the authors of Ref. [26] conclude that,
within the uncertainties of their model, X1 can be inter-
preted as a D̄1K resonance/bound state. Yet another study is
reported in Ref. [27], where K matrices are evaluated with
kernels obtained from heavy meson chiral perturbation
theory, and an isosinglet, D̄1K molecular interpretation is
found to be favorable for X1, discarding a triangular
singularity description.
As a summary, it can be said that though a consensus

seems to appear on the description of X0, the nature of X1 is
far from clear and further investigations are required.
In the present work we investigate a possible explanation
for X1, in terms of a three-meson bound system: KρD̄ (or,
equivalently, K̄ρD). We solve three-body equations within
the static or fixed center approximation (FCA), considering
all interactions in s wave and considering ρD̄ to form a
cluster. We first solve Bethe-Salpeter equations for the
different subsystems, considering appropriate coupled chan-
nels, where ρD̄ and coupled channels generate D̄1ð2420Þ,
Kρ (and the respective coupled channels) generates
K1ð1270Þ, while KD̄ leads to a weakly attractive amplitude.
The Kρ and KD̄ amplitudes are used as an input to solve the
scattering equations for the three-meson system. Our for-
malism is different to that of Refs. [24–27], since we have
the simultaneous treatment of ρD̄ as D̄1ð2420Þ and Kρ as
K1ð1270Þ in the system. We investigate different total
isospins of the system, and find that a state could arise as
a consequence of the interactions in the isoscalar configu-
ration of the KρD̄ system. However, the mass of such state
would be higher than that determined for X1 in Refs. [1,2].
Further, we investigate the C ¼ S ¼ þ1 KρD system

too, where the KD interaction is attractive and forms
Dsð2317Þ. In this case, we find an isoscalar state, which
can be related withD�

s1ð2860Þ, and an isovector state, which
unavoidably requires more than two quarks to describe its
properties. The latter exotic state is a C ¼ S ¼ þ1 isovector
partner of X1ð2900Þ.
Finally, inspired by the study in Ref. [4], where bound

states of K̄�D� with spin-parity 0þ, 1þ, and 2þ have been
predicted, we investigate if a pion is added to K̄�D�,
the resultant three-body system leads to the formation of
bound state(s). It is important to mention that the masses
obtained for the 0þ, 1þ, and 2þ states are 2866, 2861, and
2775 MeV, respectively, in Ref. [4], and the 0þ state has

been associated with X0. Our special interest lies in
verifying if the K̄�D� state with JP ¼ 1þ of Ref. [4]
together with a pion forms a vector state, which could
be interpreted as the X1 found by LHCb [1,2]. Such a
question is motivated by the fact that the masses of X0 and
X1 differ by less than the mass of a pion. We do not find a
clear state formed around 2900 MeV in the πK̄�D� system.
The present paper is organized as follows. We first discuss

the interactions of ρD and coupled channels in detail in the
next section, showing that D1ð2420Þ is generated from
the underlying dynamics. We show that the properties of
D1ð2420Þ are well described in this model and discuss that
meson-meson interactions must give important contributions
to explain the nature of this axial state. In the subsequent
section, we discuss the formalism used to study the three-
body systems and present the results on KρD̄ and KρD
amplitudes. We dedicate Sec. IV on the discussions of the
study of the πK̄�D� system. Finally, we present a summary
and future perspectives of our present work.

II. DESCRIPTION OF D1ð2420Þ IN TERMS OF
MESON-MESON INTERACTIONS

The D1ð2420Þ meson is listed as the lowest mass
charmed axial meson in Ref. [28]. Its mass and width
are known with a reasonable precision, with the values
2422�0.6 and 31.3�1.9MeV, respectively. Interestingly,
there exists another axial meson with a very similar
nominal mass, D1ð2430Þ, but with the width of the order
of 314� 29 MeV. Keeping this large width in mind, it
should be difficult to decide which of the two aforemen-
tioned states is the lightest axial with charm, as also
discussed in Ref. [29]. Besides, it is important to recall
that in spite of having a very similar mass, same quantum
numbers, the two states have very different decay widths.
The main decay channel of D1ð2430Þ is πD� and due to a
large phase space available for the decay, the corresponding
decay width turns out to be large. Given the similarity in the
masses and quantum numbers of D1ð2420Þ and D1ð2430Þ,
but a large difference between their widths, one can infer
that the two states must have a different nature.
Indeed, on the basis of a coupled channel study of

pseudoscalar and vector mesons in Ref. [30], it was shown
that a state, with the properties like those of D1ð2420Þ,
arises from the underlying dynamics. It was also found that
the state coupled weakly to the πD� channel, which would
explain the small width of D1ð2420Þ. However, as we
discuss below, the work in Ref. [30] needs to be updated
such as to better agree with the experimental data. The
formalism in Ref. [30] was built using a Lagrangian based on
the SUð4Þ symmetry, broken to SUð3Þ by suppressing terms
in the Lagrangian where the interactions should be driven by
the exchange of charmed mesons. Different coupled chan-
nels were considered with a total charm þ1, and three poles
were found in the complex energy plane when calculating
the modulus squared of the two-body t matrix in I ¼ 1=2.
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The corresponding pole positions [30] are these: ð2311.24−
i115.68Þ, (2526.47 − 0.08), and ð2750.22 − i99.91Þ MeV.
The authors attempted to identify the pole at (2526.47−
0.08) MeVwith the stateD1ð2420Þ in Ref. [30], whose mass
and width are 2422.1� 0.6 and 31.3� 1.9 MeV, respec-
tively [28]. Even when the finite widths of the ρ and K�
mesons were considered in Ref. [30], and a width of 26MeV
was obtained for the state identified with D1ð2420Þ, the
mass remained about 100 MeV above the mass observed
experimentally.
In view of the discrepancy between the data and the

results presented in Ref. [30], we update the latter model
by (1) considering additional diagrams and (2) fine-
tuning the parameters of the theory, which are a decay
constant present in the potential and a subtraction con-
stant regularizing the divergent loop function in the
Bethe-Salpeter equation. We have verified that both the
aforementioned corrections are necessary to well describe
the properties of D1ð2420Þ and any one of the two
changes alone is not sufficient.
In the present work we consider box diagrams involving

the exchange of pseudoscalar mesons (pions), which were
not included in Ref. [30].
As shown in Ref. [31], considering a Lagrangian, like the

one used in Ref. [30], is compatible with considering
contributions from diagrams with the exchange of a vector
meson in the t-channel, as depicted in Fig. 1, with the
vertices determined from the local hidden symmetry
Lagrangian of Ref. [32], and taking the limit t → 0. This
fact illustrates that box diagrams, involving exchange of
pions (as shown in Fig. 2), are an alternative source of
contributions to the lowest order pseudoscalar-vector-
meson amplitudes, and were not considered in Ref. [30].

Before proceeding further, it is important to mention that
the pole associated with D1ð2420Þ in Ref. [30] was found
to couple strongly to only two channels: ρD andDsK̄�. The
couplings for the remaining channels were found to be
smaller by about a factor of 5 to 10. Thus, we essentially
need to consider box diagrams for the ρD and DsK̄�
channels.
Furthermore, DsK̄� → DsK̄� scattering, involving pseu-

doscalar meson exchange, proceeds through the mecha-
nism depicted in Fig. 3. As can be seen, the exchanged (η)
particles involved in the loop, contrary to the corresponding
ones in Fig. 2 (pions), are far from being on shell,1 and they
are heavier when compared to those present in the loop
shown in Fig. 2. It can be easily verified that the case for the
transition between ρD and K�D̄s is similar. Consequently,
we can say that an important contribution is expected to
arise only from the box diagram shown in Fig. 2.
To obtain the amplitude for the diagram in Fig. 2, we

need to determine the contributions from each vertex as
well as from the four propagators in the loop. In order to
proceed, we recall that the mesons D and ρ have isospin
1=2 and 1, respectively, and, hence, the ρD system can have
total isospin 1=2 or 3=2. We are interested in the ρD system
with total isospin 1=2 (to obtain a dynamically generated
state with the quantum numbers of D1ð2420Þ [28]), which
can be written as

jDρ; I ¼ 1=2; I3 ¼ 1=2i ¼ −
ffiffiffi
2

3

r
jD0ρþi þ

ffiffiffi
1

3

r
jDþρ0i;

ð1Þ

following the phase convention

jρi¼

0
B@
−jρþi
jρ0i
jρ−i

1
CA; jDi¼

� jDþi
−jD0i

�
; jD̄i¼

� jD̄0i
jD−i

�
: ð2Þ

Using Eq. (1), we can obtain the isospin 1=2 amplitude
for Dρ → Dρ as

FIG. 1. ρD interaction proceeding through the exchange of
vector mesons in the t channel.

FIG. 2. Box diagrams for the ρD → ρD transition in the isospin
basis, considering the exchange of pseudoscalar meson, π, in the t
channel.

FIG. 3. Box diagrams for the transition DsK̄� → DsK̄� pro-
ceeding through the exchange of pseudoscalar mesons in the t
channel.

1The threshold mDs
þmη is around 400 MeV far from mD�

s
,

while mη þmK̄ is about 151 MeV far from mK̄� .
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tI¼1=2
Dρ→Dρ ¼

2

3
tD0ρþ→D0ρþ þ 1

3
tDþρ0→Dþρ0 −

2
ffiffiffi
2

p

3
tD0ρþ→Dþρ0 :

ð3Þ

As can be seen from Eq. (3), to obtain the Dρ → Dρ t
matrix in isospin 1=2 we must determine the amplitudes
for the processes: D0ρþ → D0ρþ, Dþρ0 → Dþρ0,
Dþρ0 → D0ρþ.
The box diagrams leading to nonzero contributions for

the mentioned transitions are shown in Figs. 4 and 5 (with
the momenta labels as in Fig. 2).
We use the following vector-pseudoscalar-pseudoscalar

(VPP) Lagrangian

LVPP ¼ −igVPPhVμ½P; ∂μP�i; ð4Þ

to deduce the amplitudes for each of the diagrams presented
in Figs. 4 and 5, where the coupling is related to the pion
decay constant, gVPP ¼ mρ=ð2fπÞ, with fπ ¼ 93 MeV,

P¼

0
BBBBBB@

π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p πþ Kþ D0

π− − π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p K0 D−

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0 D−

s

D0 Dþ Dþ
s ηc

1
CCCCCCA
;

ð5Þ

and

Vμ ¼

0
BBBBBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ D̄�0

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0 D�−

K�− K̄�0 ϕ D�−
s

D�0 D�þ D�þ
s J=ψ

1
CCCCCCA

μ

: ð6Þ

Consequently, we get the following common expression
for the amplitudes of the diagrams in Figs. 4 and 5

−itCDρ→Dρ ¼ ξC
Z

d4q
ð2πÞ4 ðϵ⃗D� · q⃗Þ2ϵ⃗ρ · q⃗ϵ⃗0ρ · q⃗

�
1

q2 −m2
π þ iϵ

�
2 1

ðP2 − qÞ2 −m2
π þ iϵ

1

ðP1 þ qÞ2 −m2
D� þ iϵ

; ð7Þ

where ξC is a coefficient whose values are presented in Table I. It is important to mention here that the expression in Eq. (7)
is obtained considering P⃗1 ¼ P⃗2 ∼ 0⃗, which is a fair approximation at energies close to the threshold of the reaction, as in
our case. This latter consideration implies that P1 ∼ P0

1, P2 ∼ P0
2, and consequently q ¼ q0.

Using Eq. (3), along with the coefficients given in the Table I, we obtain the isospin projected amplitude as

−itbox;I¼1=2
Dρ→Dρ ¼ 16g4

Z
d4q
ð2πÞ4 q⃗ · ϵ⃗ρq⃗ · ϵ⃗0ρq⃗ · ϵ⃗D� q⃗ · ϵ⃗D�

�
1

q2 −m2
π þ iϵ

�
2
�

1

ðP1 þ qÞ2 −m2
D� þ iϵ

��
1

ðP2 − qÞ2 −m2
π þ iϵ

�
:

ð8Þ

FIG. 4. Box diagrams for the transitions D0ρþ → D�þπ0 → D0ρþ (left) and D0ρþ → D�0πþ → D0ρþ (right).

FIG. 5. Box diagrams for the transitions Dþρ0 → D�0πþ → Dþρ0 (left) and D0ρþ → D�0πþ → Dþρ0 (right).
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The integration over the q0 variable can be done analytically, by using Cauchy’s residue theorem, to get

tbox;I¼1=2
Dρ→Dρ ¼ 16

3
g4ϵ⃗ρ · ϵ⃗0ρ

Z
d3q
ð2πÞ3 jq⃗j

4F4ðq⃗Þ
�
MD�

MK�

�
2 1

2ωD�

�
1

2ωπ

�
3

×
1

P0
2 þ P0

1 − ωπ − ωD� þ iϵ

�
−

1

ωπ

�
1

P0
2 − 2ωπ þ iϵ

þ 1

P0
1 − ωπ − ωD� − iϵ

�

þ 1

ðP0
2 − 2ωπ − iϵÞ2 þ

1

ðP0
1 − ωπ − ωD� þ iϵÞ2

�
þ B; ð9Þ

where ωA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þMA

p
, with A ¼ π; D� and

B¼ 16

3
g4ϵ⃗ρ · ϵ⃗0ρ

Z
d3q
ð2πÞ3 jq⃗j

4F4ðq⃗Þ
�
MD�

MK�

�
2 1

2ωD�

�
1

2ωπ

�
3
�

1

P0
2þ 2ωπ

1

P0
1 −ωπ −ωD�

��
1

ωπ
þ 1

P0
2 þ 2ωπ

−
1

P0
1 −ωπ −ωD�

�
:

ð10Þ

Notice that we have included a form factor in Eq. (9), which
we take to be

FðqÞ ¼ exp

�ðq0Þ2 − q⃗2

Λ2

�
; ð11Þ

with q0 ¼ P0
1 − ωD�

s
, at each vertex and a factor

ðMD�=MK� Þ2 to account for the difference between the
coupling constants g for the D� → Dπ and K� → Kπ
vertices [33]. The value of the cutoff, Λ, is 1200 MeV.
The remaining d3q integral is done numerically by setting
the upper limit of jq⃗j to 2000 MeV for practical purposes.
We have verified that integrating to higher values of jq⃗j
does not change the results.
It may be noticed that B has no imaginary part because

the expression ðP0
2 þ 2ωπÞ−1 is always positive and

ðP0
1 − ωπ − ωD� Þ−1 is associated with D → π þD�, a

process which does not occur on shell. Due to the
mentioned fact, we do not have to worry about these terms
having singularities and do not need to include an imagi-
nary part (iϵ).
The resulting amplitude, tbox;I¼1=2

Dρ→Dρ , is added to the one
related to a vector exchange of Ref. [30]. With this new
amplitude we solve the Bethe-Salpeter equation, consid-
ering coupled channels as in Ref. [30]. Apart from adding

new diagrams, we have also adjusted the decay constant
and the subtraction constant α, which were set to

ffiffiffiffiffiffiffiffiffiffiffi
fDfπ

p
and −1.55, respectively, in Ref. [30].
Using fπ as the decay constant, α ¼ −1.45, at the

regularization scale μ ¼ 1500 MeV (which is the same
as in Ref. [30]), we find that the modulus squared
amplitude for Dρ in isospin 1=2, spin-parity JP ¼ 1þ,
peaks at ∼2428 MeV, with a total width of 33 MeV (see
Fig. 6). Our findings are in excellent agreement with the
mass and width values determined from the most recent
data obtained by the LHCb Collaboration [34], M ¼
2424.8� 0.1� 0.7 MeV, Γ ¼ 33.6� 0.3� 2.7 MeV,
and by the BES Collaboration, M ¼ 2427.2� 1.0�
1.2 MeV, Γ ¼ 23.2� 2.3� 2.3 MeV [35].
We can, thus, summarize this discussion by mentioning

that the addition of the amplitude obtained from the box

TABLE I. Coefficients ξC present in the expression for the box
diagrams in Eq. (7).

Transition ξC

D0ρþ → D�0πþ → D0ρþ 4g4

D0ρþ → D�0ρþ → Dþρ0 −4
ffiffiffi
2

p
g4

Dþρ0 → D�0πþ → Dþρ0 8g4

D0ρþ → D�þπ0 → D0ρþ 8g4

 0

 1

 2

 3

 4

 5

 6

 7

 2360  2380  2400  2420  2440  2460  2480  2500

|T
|2 (1

06 )

Total Energy (MeV)

FIG. 6. Modulus squared of the Dρ → Dρ t matrix, in isospin
1=2, JP ¼ 1þ. This result is obtained by considering the
amplitude of Ref. [30] together with the contribution obtained
from the box diagram shown in Fig. 2 and solving the Bethe-
Salpeter equation in a coupled channel approach.
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diagram increases the width of the state found in Ref. [30]
by about ∼7 MeV. Additionally, the model parameters
have been fine-tuned to better describe the properties of
D1ð2420Þ, like the mass, which now is 2428 MeV instead
of the value ∼2526 MeV found in Ref. [30].

III. THE KρD̄ AND KρD SYSTEMS

Inspired by the results obtained for the two-body system,
ρD, and recalling the fact that the Kρ, KD, and KD̄
interactions are attractive in nature, we find it encouraging
to explore the systems KρD and KρD̄ (the results obtained
for theDρ system must be equivalent to those for D̄ρ, given
the fact that ρ is its own antiparticle and a system and its
complex conjugate have equivalent descriptions).
To describe the three-body interactions of the KρD and

KρD̄ systems we solve three-body equations within the
static or fixed center approximation [36–38]. The fixed
center approximation consists of considering that one of the
particles (which is lighter than the other two) interacts with
a cluster of the other two strongly interacting particles,
which remains unaltered in the scattering. We have a
system at hand that is precisely suitable for the aforemen-
tioned treatment. The dynamics in the KρDðKρD̄Þ system
can be described in terms of the interaction of the meson K
with the cluster formed by ρDðρD̄Þ, which, as shown in
the previous section, generates the state D1ð2420Þ. In other
words, D1ð2420Þ can be interpreted as a ρD quasibound
state. The diagrams contributing to the scattering equations,
within such a reorganization of the three-body system, can
be drawn as shown in Fig. 7, where the kaon rescatters off
the constituents of the cluster.
The three-body T matrix is obtained by summing two

coupled, infinite, scattering series

T ¼ T31 þ T32; ð12Þ

with

T31 ¼ t31 þ t31GKT32; ð13Þ

T32 ¼ t32 þ t32GKT31; ð14Þ

where t3i represent the amplitude of the interaction of the
particle labeled as 3 (kaon, in this case) with the ith particle
in the cluster. The function GK represents the kaon
propagating in the cluster and is given by the following
expression [39]:

GK ¼
Z

d3q
ð2πÞ3

Fðq⃗Þ
ðq0Þ2 − q⃗2 −m2

K þ iϵ
; ð15Þ

with mK being the mass of kaon, and q0 being the on-shell
energy of the kaon in the rest frame of the cluster

q0 ¼ s −m2
K −M2

c

2Mc
; ð16Þ

where Mc is the mass of the cluster. In Eq. (15), Fðq⃗Þ is a
form factor related to the wave function of the constituents
of the cluster ρDðρD̄Þ, and which is introduced to take into
account the composite nature of the cluster

Fðq⃗Þ ¼ 1

N

Z
jp⃗j;jp⃗−q⃗j<Λ

d3p⃗fðp⃗Þfðp⃗ − q⃗Þ; ð17Þ

where

fðp⃗Þ ¼ 1

ωρðp⃗ÞωDðD̄Þðp⃗Þ
1

Mc − ωρðp⃗Þ − ωDðD̄Þðp⃗Þ
; ð18Þ

with N being a normalization factor defined such that
Fð0Þ ¼ 1, and ωA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

A þ p⃗2
p

, with A ¼ DðD̄Þ; ρ. The
cutoff Λ is taken to be ∼960 MeV, which is related to
the value of the subtraction constant used to regularize the
two-body loop functions in the Dρ and coupled channels

FIG. 7. Diagrams for three-body interactions in the KρD ðKρD̄Þ system when treating ρD̄ ðρD̄Þ as a cluster.
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generating D1ð2420Þ. We shall vary this value in the range
900–1000 MeV to estimate the model uncertainties.
As shown in the previous section, D1ð2420Þ [D̄1ð2420Þ]

is generated by the ρDðρD̄Þ and coupled channel inter-
actions and has a mass ∼2428 MeV. Hence, we use this
value as the mass of the cluster in Eqs. (15) and (18). The
D1ð2420Þ state also has a finite width, of approximately
33 MeV, which is considered in the formalism by replacing
Mc → Mc − i Γc

2
in Eq. (18).

To proceed with the calculations, we need to write
the three-body system in a well-defined isospin basis.
Within the fixed-center approximation, the three-body

system KρD can be described as an effective two-body
KD1ð2420Þ system. Since both D1ð2420Þ and K have
isospin 1=2, the three-body system can have a total isospin
0 or 1. Considering the sign convention defined in Eq. (2),
together with

jKi ¼
� jKþi
jK0i

�
; ð19Þ

we can write the KρD=KρD̄ systems with isospin 0 or 1
as follows:

jKρD; I ¼ 0; I3 ¼ 0i ¼ −
1ffiffiffi
6

p jKþρ0D0i − 1ffiffiffi
3

p jKþρ−Dþi − 1ffiffiffi
3

p jK0ρþD0i þ 1ffiffiffi
6

p jK0ρ0Dþi;

jKρD; I ¼ 1; I3 ¼ 1i ¼
ffiffiffi
2

3

r
jKþρþD0i − 1ffiffiffi

3
p jKþρ0Dþi;

jKρD̄; I ¼ 0; I3 ¼ 0i ¼ 1ffiffiffi
6

p jKþρ0D−i − 1ffiffiffi
3

p jKþρ−D̄0i þ 1ffiffiffi
3

p jK0ρþD−i þ 1ffiffiffi
6

p jK0ρ0D̄0i;

jKρD̄; I ¼ 1; I3 ¼ 1i ¼ −
ffiffiffi
2

3

r
jKþρþD−i − 1ffiffiffi

3
p jKþρ0D̄0i: ð20Þ

However, to calculate the three-body T matrix within
the FCA we must determine the t31 and t32 amplitudes,
which describe, respectively, the interaction between a
particle, labeled as 3 (in this case the kaon), with the
particles, labeled as 1 (ρ) and 2 (D, or D̄), of the
cluster, respectively. It is then more convenient to use
states written in terms of the isospin of the (31) or (32)
subsystems. To better explain the isospin dependence,
we consider the specific example of total isospin I ¼ 0

of the three-body system. For this purpose, we use
Clebsch-Gordan coefficients to rewrite the first equation

in the set labeled as Eq. (20) in terms of the isospin of
the Kρ system. We can write, for jKþρ0i,

jKþρ0i ¼
				K;I¼ 1

2
; I3 ¼

1

2



⊗ jρ; I¼ 1; I3 ¼ 0i;

¼
ffiffiffi
2

3

r 				Kρ; I¼ 3

2
; I3 ¼

1

2



þ 1ffiffiffi

3
p
				Kρ; I¼ 1

2
; I3 ¼

1

2



;

ð21Þ
and similar equations for jKþρ−i, jK0ρþi, jK0ρ0i.
Substituting such expressions in Eq. (20), we find

jKρD; I ¼ 0; I3 ¼ 0i ¼ 1ffiffiffi
2

p ½jKρ; I ¼ 1=2; I3 ¼ 1=2i ⊗ jD; I ¼ 1=2; I3 ¼ −1=2i

− jKρ; I ¼ 1=2; I3 ¼ −1=2i ⊗ jD; I ¼ 1=2; I3 ¼ 1=2i�; ð22Þ

which can be used to determine t31,

t31 ¼ hKρD;I ¼ 0; I3 ¼ 0jtjKρD;I ¼ 0; I3 ¼ 0i ¼ t1=2Kρ ;

ð23Þ

where t1=2Kρ is the two-body t matrix for the Kρ system in
isospin 1=2. For other total isospin values, t31 is a
combination of the Kρ two-body t matrices in isospin

1=2 and 3=2, with weights determined from products of
Clebsch-Gordan coefficients. Similarly, writing jKρD;
I ¼ 0; I3 ¼ 0i in terms of the isospin of the KD system,
we can evaluate t32, which, in general, can be written in
terms of combinations of the KD two-body t matrices in
isospin 1 and 0. To express this information, we introduce a
compact notation by writing

t31 ¼ hKρD; I; I3jtjKρD; I; I3i≡ ω⃗I
31 · ⃗t31; ð24Þ
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t32 ¼ hKρD; I; I3jtjKρD; I; I3i≡ ω⃗I
32 · ⃗t32; ð25Þ

where D ¼ D; D̄ when considering the system KρD or
KρD̄, respectively, and I is the total isospin of the three-
body system. The vectors ωI

31ð32Þ are the weight factors
related to Clebsch-Gordan coefficients, which are summa-
rized in Table II, and ⃗t31 and ⃗t32 are defined as follows:

⃗t31 ≡
 
t1=2Kρ

t3=2Kρ

!
⃗t32 ≡

 
t0KðD=D̄Þ
t1KðD=D̄Þ

!
: ð26Þ

It can be noticed that to determine t31 and t32 we need the
two-body t matrices of the Kρ, KD=KD̄ systems in the
different isospin configurations. These latter amplitudes are
obtained by solving Bethe-Salpeter equations, considering
all coupled channels relevant in each case, keeping all
interactions in the s wave.
To obtain the two-body tmatrices for theKρ and coupled

channels we follow Refs. [40,41], where the formalism is
built by considering vector mesons as fields transforming
homogeneously under the nonlinear realization of chiral
symmetry. The model shows that the amplitudes lead to the
formation of K1ð1270Þ, which is related to two poles in
the complex energy plane, and well describes the data on
the K−p → K−πþπ−p process.
For the KD (KD̄) subsystems and coupled channels

we consider as input for the Bethe-Salpeter equation an
amplitude obtained from a Lagrangian based on the heavy
quark spin symmetry [42]. In this case, the interactions in
the charm and strangeness þ1 isoscalar system generate
Dsð2317Þ while the isoscalar KD̄ interaction is found
to be weakly attractive in nature. It should be mentioned
that the strong relation between the KD system and
Dsð2317Þ has been confirmed by analysis of the lattice
data too [43–45].
As we have already mentioned, the interactions of the

three particles that compose the systems KρD and KρD̄
can be interpreted as the interaction of the kaon with a
cluster. If we compare the expression for the three-body S
matrix with that for an effective, two-body, kaon-cluster
scattering, then we find that in order for both S matrices
to be compatible we must redefine GK , t31, and t32, in
Eq. (14), as follows [46–48]

GK →
1

2Mc
GK; t31→

Mc

mρ
t31; t32→

Mc

mDðD̄Þ
t32: ð27Þ

Having described all inputs necessary for the determi-
nation of the three-body T matrices for the systems KρD
and KρD̄ in isospin 1 and 0, we are in a position to discuss
the results. Let us begin by discussing the results for the
KρD̄ system, which has the quantum numbers of X1

(JP ¼ 1−, C ¼ −1, S ¼ þ1) found by the LHCb collabo-
ration [1,2]. The results are shown in Fig. 8 for total isospin
zero and for three different values of the cutoff used to
calculate Eq. (15).
The results are depicted up to the energy corresponding

to the three-body threshold for twofold reasons. One is that
we are looking for a KρD̄ bound state, which can be
associated with the X1 state. Yet other reason is that D̄ and
ρ, recalling the their interaction leads to the formation of
D1ð2420Þ, as shown in Sec. II, are considered as static or
fixed scattering centers. It was shown in Ref. [46] that the
results in such a formalism are reliable at energies below
the three-body threshold. Discussions on the applicability
of the formalism can also be found in Refs. [49,50].
Coming back to the results shown in Fig. 8, it can be said
that a bump seems to appear for the value of cutoff
1000 MeV, with the mass ∼3085 MeV. Such a mass value,
however, does not agree with the one determined by LHCb
for the X1 state (2904� 5 MeV).
Let us now look at Fig. 9, which shows the KρD̄

amplitude in total isospin 1. Clearly, such a configuration
does not form a resonance and only a cusp is seen around
the opening of the KD̄1ð2420Þ threshold. We can, thus,
conclude that neither of the isospin configurations of
KD̄1ð2420Þ forms a state which can be related to the X1

state of the LHCb [1,2].
Let us now compare our results with those found

in Refs. [24–27]. It is reported in Ref. [24] that the
KD̄1ð2420Þ system does not bind, neither in the isoscalar

 0

 4

 8

 12

 16

 20

 2900  2950  3000  3050  3100

|T
|2 (1

04 )

Total Energy (MeV)

�=900 MeV
�=960 MeV
�=1000 MeV

FIG. 8. Modulus squared of the T matrix for the KρD̄ system
with total isospin 0.

TABLE II. ω31 and ω32 for the KρDðKρD̄Þ system for total
isospin 0 and 1.

Total isospin (I) ω⃗I
31 ω⃗I

32

0 (1,0) (0,1)
1 ð1=9; 8=9Þ ð1=3; 2=3Þ
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nor in the isovector configurations. Our results agree with
those in Ref. [24]. We find only a bump appearing in the
isoscalar KD̄1ð2420Þ system above its threshold but below
the three-body (KρD̄) threshold. Recall that Refs. [24–27]
treat D̄1ð2420Þ as an effective field and study a two-body
KD̄1ð2420Þ system. We, on the other hand, treat D̄1ð2420Þ
as a D̄ρ molecular state and study a three-body system,
KρD̄. Our findings also coincide with those in Ref. [25],
where only the isoscalar configuration is found to be
attractive and requires a very large cutoff to form a bound
state. As already stated before, we find a bumplike structure
in the isoscalar KD̄1ð2420Þ system above its threshold,
and not below. Our results, however, do not agree with
those in Refs. [26,27]. In Ref. [26], the KD̄1ð2420Þ system
is found to bind in both isospin configurations, with
the binding energy varying in the range −5 to −30 MeV
when changing the form factors and cutoff values. The
width of the isovector state is found to be narrower
(Γ ∼ 12–30 MeV) when compared with the isoscalar state
(Γ ∼ 60–100 MeV). Thus, it is concluded in Ref. [26] that
their isoscalar state can be related with X1. It is concluded
in Ref. [27] too that X1 can be interpreted as a KD̄1ð2420Þ
bound state. As discussed above, we do not find the
formation of a state below the KD̄1ð2420Þ and cannot
find a description for the X1 of Refs. [1,2].
Next we discuss the results obtained for theKρD system.

The difference in this case is that all the subsystems interact
strongly and lead to formation of a molecular state in one
of the two-body isospin configurations. The KD system
forms an isoscalar bound state, Dsð2317Þ; Kρ and coupled
channels generate K1ð1270Þ, and as discussed in the
previous section, D1ð2420Þ can be generated from ρD
and coupled channel interactions. We show the modulus
squared amplitude for the KρD system in total isospin 0 in
Fig. 10. A clear peak can be seen with a mass around
2872 MeV and a width of about 100 MeV. The quantum
numbers associated with this state are IðJPÞ ¼ 0ð1−Þ and it

has a mass and width in excellent agreement with the
known state D�

s1ð2860Þ [28], with M ¼ 2859� 27 MeV
and Γ ¼ 159� 80 MeV determined by LHCb [51]. It is
important to mention here that the state seen in Fig. 10 has a
finite width, even though its mass lies below the three-body
threshold. This is so because lighter channels likeKπDs are
implicitly present in the system. The presence of such open
channels arises through the imaginary part of the two-body
tmatrices, which have been calculated in a coupled channel
approach. To compare our results with other works, we
recall that the K1ð1270ÞD and KD1ð2420Þ systems were
studied separately (uncoupled to each other) in Ref. [24].
The formalism in this former work was built by writing an
effective field for the axial mesons and the K1ð1270ÞD
system was found to form a bound state with mass
3112 MeV, while KD1ð2420Þ was found to be weakly
attractive. In our case, the three-body system acts simulta-
neously as K1ð1270ÞD and KD1ð2420Þ effective systems.
Both the systems have similar mass and could be treated as
coupled channels in the formalism of Ref. [24]. It sounds
plausible that such a treatment could lower the mass of the
state found in the K1ð1270ÞD system in Ref. [24] since the
introduction of a coupled channel usually leads to a more
attractive interaction (see Sec. 6 of Ref. [52]).
Finally, we show the modulus squared amplitude for

the KρD system with total isospin 1. A narrow and well-
pronounced peak is seen in Fig. 11, which is very
interesting since the corresponding state must have quan-
tum numbers IðJPÞ ¼ 1ð1−Þ with charm and strangeness
þ1. Such a state cannot be described as a qq̄ state and the
higher charged components of the multiplet necessarily
require quarks with at least four different flavors in its wave
function. The state is, thus, explicitly exotic and would be
csq̄ q̄-like partner of the c̄ s̄ qq-like Xi states found by
LHCb [1,2]. The state in Fig. 11 has a mass of ∼2883 MeV
and width of ∼7.4� 0.9 MeV. It can be noticed that
though the mass of our KρD isovector state is similar to
Xis, its width is a lot narrower. In fact it might look
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FIG. 10. Modulus squared of the T matrix for the KρD system
with total isospin 0.
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FIG. 9. Modulus squared of the three-body T matrix for the
KρD̄ system with total isospin 1.
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surprising that the same system in isospin 0 produces a
much wider state. The reason for such a difference is that
the isoscalar KD interaction does not contribute to the
three-body interactions with total isospin 0, but does
contribute [generating Dsð2317Þ] to the total isospin 1
(see Table II). In other words, KρD with total isospin 1
reorganizes itself, partly, as an effective ρDsð2317Þ system
and the mass of the three-body bound state lies about
200 MeV below the ρDsð2317Þ threshold. The same
system gets contribution from open channels like KπDs
through the imaginary part of the isovector DK inter-
actions, which produces a finite, though small, width. Such
a state has not been found yet and we hope that our findings
will encourage its study in future experiments.

IV. FURTHER INVESTIGATIONS:
πXi INTERACTIONS

Considering that X0 is proposed to be a K̄�D� molecular
state in most works [4–11], we find it useful to investigate if
a pion with X0 can form a bound state. Particularly, we
follow Ref. [4] where the K̄�D� system has been found to
form isoscalar bound states with JP ¼ 0þ, 1þ and 2þ. Our
main aim is to test the possibility of the existence of a
bound state of pion and the 1þ state of the latter work, since
the masses of Xis discovered by LHCb differ by less than
the mass of a pion.
We, thus, study the three-body system πK̄�D�, using the

same formalism as presented in the previous section for
KρD and KρD̄. In this case we consider K̄�D� to form a
cluster and that the pion scatters off its components. Let us
denote the three states generated by the K̄�D� interactions
in Ref. [4] as X̃0, X̃1, and X̃2, where X̃0 has IðJPÞ ¼ 0ð0þÞ
with a mass of 2866 MeV and width ∼57 MeV and which
is well identified with the X0 state of LHCb. The other
states, X̃1 has IðJPÞ ¼ 0ð1þÞ, a mass of 2861 MeV and
about 20 MeVof width, and X̃2 has IðJPÞ ¼ 0ð2þÞ, a mass
of 2775 MeV and a width of 38 MeV. We study the three

possible configurations of πK̄�D�: πX̃0, πX̃1, and πX̃2. All
the three system have total isospin 1, since the K̄�D�
subsystem clusters with total isospin 0, and have the spin
parity 0−, 1−, and 2−, respectively.
Considering the findings of Ref. [4] to describe the

cluster and determining the amplitudes for the πK̄�, πD�
subsystems by solving the Bethe-Salpeter equation follow-
ing Refs. [30,41], we determine the three-body T matrix.
We must emphasize that the amplitude for πD� is obtained
by considering Dρ and other coupled channels, by includ-
ing the box diagrams, as described in Sec. II. The coupled
channel system generates D1ð2420Þ though, as mentioned
in Sec. II, it couples weakly to πD�. Similarly, πK̄� is a
coupled channel of Kρ and other pseudoscalar-vector
meson systems that generate K1ð1270Þ.
We present the modulus squared three-body amplitudes

in Fig. 12 for the three possible total spins of the system. As
can be seen, a three-body bound state with mass around
2900MeV is not found in the πK̄�D� system with isospin 1.
The πX̃2 amplitude is seen to increase with the energy,
indicating that a state may get formed at higher energies.
We have extended our calculations to higher energies and
find that a very wide bump-like structure appears in the
squared amplitude at energies above the three-body thresh-
old. We would, however, not make any claims since the
calculations above the three-body threshold may not be
reliable with our present formalism.
We can conclude this section by mentioning that the X1

of LHCb cannot be described as πK̄�D� bound state.

V. SUMMARY AND FUTURE PERSPECTIVES

In the present work we have investigated the possibility
of describing the X1ð2900Þ found by LHCb [1,2] as a
molecular state of KρD̄ or πK̄�D�. We first argue that the
Dρ interaction is strongly related to D1ð2420Þ as first
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FIG. 12. Modulus squared of the three-body T matrix for
the πK̄�D� system considering K̄�D� to cluster as X̃0, X̃1, and
X̃2 of Ref. [4].
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proposed in Ref. [30]. We update this former work by
including box diagrams with a pseudoscalar exchange and
by adjusting the model parameters to obtain the properties
of D1ð2420Þ in better agreement with the latest data. We
then study three-body systems by treating Dρ (D̄ρ) as
components of D1ð2420Þ, which remain static in the
scattering. Within such an approximation, we find that
the KρD̄ system could form a wide state but with a mass
higher than that of the X1 state found by LHCb [1,2]. We,
thus, conclude that X1 must have a description different
than a KρD̄ molecule.
Taking the advantage of the symmetry between D̄ρ and

Dρ interactions, we study the KρD system. In this case, we
find that the system generates states in the total isospin 0 as
well as 1 configurations. The properties of the isoscalar
state turn out to be in excellent agreement with those of
D�

s1ð2860Þ [28], implying that it can be understood as a
three-body molecular resonance. The isovector state is
clearly exotic, requiring more than two quarks for its
description. This latter state is narrow, having a width less
than 10 MeV, and a mass similar to that of the Xis found
by LHCb.
In the case of πK̄�D�, we follow Ref. [4] where K̄�D�

interactions have been studied thoroughly, providing a
molecular description for X0ð2900Þ [1,2], and proposing
the existence of two other states with spin parity 1þ, 2þ. The
investigations have been further extended in Refs. [53,54]
suggesting reactions to observe the new predicted states.
Treating K̄�D� as states with three possible JP values, as
found in Ref. [4], we study the πK̄�D� interaction.We do not
find a state which can be associated with X1, although bump

like structures are found at energies around 3000–3100MeV.
Such bumps lie in the energy region beyond the applicability
of the FCA and a more detailed study would be necessary to
make more robust claims.
As future perspectives of the current study, it should be

useful to investigate further the properties of the states
found in this work. For example, it can be worthwhile to
determine the decay rates of the KρD and KρD̄ states, with
isospin 0, to different possible final states. The former state
is associated with D�

s1ð2860Þ in our work, for which not
much is known on its decay properties. A theoretical study
of such properties can be helpful in experimental inves-
tigations of the properties of D�

s1ð2860Þ.
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