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Discrete wavelet-based methods promise to emerge as an excellent framework for the non-perturbative
analysis of quantum field theories. In this work, we investigate aspects of renormalization in theories
analyzed using wavelet-based methods. We demonstrate the nonperturbative approach of regularization,
renormalization, and the emergence of flowing coupling constant within the context of these methods. This
is tested on a model of the particle in an attractive Dirac delta function potential in two spatial dimensions,
which is known to demonstrate quintessential features found in a typical relativistic quantum field theory.
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I. INTRODUCTION

The wavelet-based methods have emerged as a strong
contender for the nonperturbative analysis of quantum
field theories (QFTs). Discrete wavelet-based methods
provide ways to analyze these QFTs akin to the
Euclidean lattice approach and yet allow the study of
real-time dynamics [1–9]. The discrete and multiscale
nature of compactly supported wavelets holds the promise
of providing a systematic framework for classical and
quantum simulations of these continuum QFTs [10–14].
Discrete wavelets have also been used for analyzing
statistical field theories [15–18]. Methods developed based
on continuous wavelets provide a complementary perspec-
tive [19–22]. Both approaches, discrete and continuous,
have considered regularization, renormalization, and gauge
invariance in field theories. Wavelet-based representation
of light-front quantum field theories has been formu-
lated [23–25] to gain an advantage from the unique
properties of being on the light front [26]. In this paper,
we investigate the approach to renormalization when
working within the framework of Daubechies wavelet-
based quantum theories.
The fundamental theories of elementary particles and

their interactions are described by local QFTs formulated
on (3þ 1)-dimensional Minkowski space-time. The quan-
tization of these field theories is usually done using
canonical quantization approach or via path integral meth-
ods. As a part of the quantization process, it is common to

resolve the field using the plane wave basis into its
momentum modes. In the plane wave basis, the free field
part of the Hamiltonian represents these momentum modes
as uncoupled oscillators, while the interaction Hamiltonian
represents the couplings between the different momentum
modes of the field. When computing the S-matrix elements,
it is common to adopt a manifestly covariant approach to
perturbation theory to effectively deal with the ultraviolet
divergences and reexpress the theory in terms of renor-
malized masses and couplings [27,28]. However, in doing
so, the central role played by the Hamiltonian eigenvalue
problem does get compromised.
The lattice approach allows one to analyze QFTs beyond

perturbation theory systematically. One defines the field on
a Euclidean lattice with a presumed underlying lattice
cutoff. The quantum field theory is studied as an equivalent
statistical field theory with the partition function defined as
a path integral over the Euclidean action. The discrete
nature of the lattice makes the field theory computationally
tractable. The presence of the explicit cutoff regulates the
ultraviolet divergences (beyond perturbation theory), but it
explicitly violates Euclidean invariance. There is often a
trade-off between the need for nonperturbative analysis and
the desire for full covariance. Within the lattice approach,
the continuum limit of QFT is obtained by maintaining
criticality in the limit of vanishing cutoff. With the
exception of the Hamiltonian lattice approach, Euclidean
lattice makes it challenging to work with the Hamiltonian
energy eigenvalue problem directly.
The discrete wavelet-based formulation of quantum

field theory allows one to commit to the Hamiltonian
framework while maintaining the discreteness of the lattice
approach, yet not compromise the continuum nature of
space. Daubechies wavelets and scaling functions consti-
tute an orthonormal basis (generally referred to as wavelet
basis in the rest of the paper) of compactly supported
functions [29–31]. Roughly speaking, each basis function
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is characterized by its location (translation index) and
length scale (resolution). The quantum fields, when
expanded in the wavelet basis, lead to its representation
as an infinite sequence of operators characterized by a
location and resolution index. This approach allows natural
volume and resolution truncations of the QFT. The trun-
cated theory is an ordinary quantum mechanical theory
with multiple discrete degrees of freedom organized by
location and length scale. The maximum resolution plays
the role of ultraviolet cutoff.
In this paper, we use an example of the two-dimensional

Dirac delta functional potential to illustrate aspects of
renormalization within the discrete wavelet-based approach.
Several authors [32–49] have studied this potential to under-
stand the nuances of renormalization in an elementary
setting. In this work, we showcase the emergence of
asymptotic freedomwithin thewavelet approach.The outline
of thepaper is as follows: InSec. II,we introduce the essential
basic properties of Daubechieswavelets, followingwhich, in
Sec. III, we show how this discrete wavelet basis can be used
to address problems in quantummechanics. In Sec. IV, after a
brief discussion on renormalization within the wavelet
framework, we present the analysis of the two-dimensional
Dirac delta function potential using wavelet based approach.
Section V contains concluding remarks and future outlook.

II. DAUBECHIES WAVELETS

In this section, we summarize the key aspects of
the construction of Daubechies wavelet basis and their
associated properties, which are used through out this
paper [1,16,17,29–31]. The basis elements consist of
scaling functions and wavelet functions, which are gen-
erated starting from a single function sðxÞ (often referred to
as the mother scaling function) defined through the linear
renormalization group equation:

sðxÞ ¼
X2K−1
n¼0

hnD̂T̂nsðxÞ: ð1Þ

D̂ and T̂ denote the scaling and translation operations,
respectively. These unitary operations are defined by

D̂sðxÞ ¼
ffiffiffi
2

p
sð2xÞ; T̂sðxÞ ¼ sðx − 1Þ: ð2Þ

T̂ translates the function as a whole by one unit to the right
without altering its form, while D̂ shrinks the support of the
function by a factor of 2 while maintaining its norm,

Z
sðxÞdx ¼ 1: ð3Þ

In Eq. (1), K represents a fixed integer that in turn will
determine the extent of smoothness and the support of the
basis functions.

The action of the operators D̂ and T̂ are shown for a
typical function fðxÞ in Fig. 1.
Equation (1) defines sðxÞ as a specific linear combina-

tion of 2K translated and scaled copies of itself. This is
visually represented in Fig. 2 for K ¼ 5.
Given the solution of Eq. (1), we define the kth

resolution scaling functions by applying n unit translations
followed by k dyadic scale transformations on the mother
scaling function,
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FIG. 1. Any generic function fðxÞ (blue color). The action of
(a) translation operator T̂ and (b) scaling operator D̂ on that
function (magenta color).
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FIG. 2. The red dotted line shows the mother scaling function
sðxÞ for K ¼ 5 formed as a weighted sum of 10 translated copies
of sðxÞ scaled to half of the original support.
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sknðxÞ ≔ D̂kT̂nsðxÞ: ð4Þ

The scaling functions sknðxÞ are orthonormal,

Z
skmðxÞsknðxÞdx ¼ δmn; ð5Þ

and arbitrary linear combination of these functions generate
the space Hk of resolution k:

Hk ¼
�
fðxÞjfðxÞ ¼

X∞
−∞

fnsknðxÞ; jfnj2 < ∞
�
: ð6Þ

From scaling equation Eqs. (1) and (6), it follows that

Hk ⊂ Hkþ1 ð7Þ

and, more generally, for any m > 0

Hk ⊂ Hkþm ð8Þ

this means that the kth resolution space is a linear subspaces
of the ðkþmÞth resolution space.
Now we define the mother wavelet function wðxÞ such

that it is orthogonal to the mother scaling function:

wðxÞ ¼
X2K−1
n¼0

gnD̂T̂nsðxÞ; ð9Þ

where

gn ¼ ð−1Þnh2K−1−n: ð10Þ

The mother wavelet function wðxÞ will be used to con-
struct the orthogonal complement wkðxÞ of Hk in Hkþ1.
Towards this end, we define the wavelet function wk

nðxÞ as

wk
nðxÞ ≔ D̂kT̂nwðxÞ: ð11Þ

The wavelet functions are orthonormal

Z
wk
mðxÞwl

nðxÞdx ¼ δmnδkl ð12Þ

and arbitrary linear combination of these generates the
space Wk of resolution k:

Wk ¼
�
fðxÞjfðxÞ ¼

X∞
−∞

fnwk
nðxÞ; jfnj2 < ∞

�
: ð13Þ

By design, the scaling functions and wavelet functions are
orthogonal to each other

Z
skmðxÞwkþl

n ðxÞdx ¼ 0; l ≥ 0; ð14Þ

and

Hkþ1 ¼ Hk ⊕ Wk: ð15Þ

The space of square integrable real functions, L2ðRÞ, can be
generated by recursive use of Eq. (15).

L2ðRÞ ¼ Hk ⊕ Wk ⊕ Wkþ1 ⊕ Wkþ2…: ð16Þ

This has been visually represented in Fig. 3.
There are two possible choices of basis forHk, one could

either work with the scaling function basis of resolution k
(fsknðxÞg∞n¼−∞) or a combination of resolution k − 1 scaling
and wavelet functions (fsk−1n ðxÞg∞n¼−∞ ∪ fwk−1

n ðxÞg∞n¼−∞).
These two bases are related to each other through an
orthogonal transformation given by

sk−1n ðxÞ ¼
X2K−1
l¼0

hlsk2nþlðxÞ; ð17Þ

wk−1
n ðxÞ ¼

X2K−1
l¼0

glsk2nþlðxÞ; ð18Þ

sknðxÞ ¼
X
m

hn−2msk−1m ðxÞ þ
X
m

gn−2mwk−1
m ðxÞ: ð19Þ

By induction, for any fixed value of k, the scaling
functions and wavelet functions,

fskng∞n¼−∞ ∪ fwm
n g∞;∞

n¼−∞;m¼k; ð20Þ

FIG. 3. Euler diagram for spanning of Hilbert space with
wavelet basis.
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will form the basis for L2ðRÞ. Any square integrable
function, fðxÞ can be expanded in this basis

fðxÞ ¼
X∞
n¼−∞

fsnsknðxÞ þ
X∞
n¼−∞

X∞
l¼k

fw;ln wl
nðxÞ ð21Þ

such that

X∞
n¼−∞

jfsnj2 þ
X∞
n¼−∞

X∞
l¼k

jfw;ln j2 < ∞: ð22Þ

An alternative way to construct L2ðRÞ is via an infinite
resolution limit of Hk.

L2ðRÞ ¼ lim
k→∞

Hk: ð23Þ

We are going to use this approach for the rest of the paper.
The real weights hn associated with the order K mother

scaling function can be determined for an integer value ofK
by solving the following system of equations:

X2K−1
n¼0

hn ¼
ffiffiffi
2

p
; ð24Þ

X2K−1
n¼0

hnhn−2m ¼ δm0; ð25Þ

X2K−1
n¼0

nmgn ¼
X2K−1
n¼0

nmð−1Þnh2K−1−n;

¼ 0; m < K: ð26Þ

Equation (24) is the necessary condition for the scaling
equation to have a solution. Equation (25) tells us that the
integer translation of scaling functions are orthonormal to
each other. Equation (26) ensures that the linear combina-
tion of integer translates of the wavelet functions are
orthogonal to degree K − 1 polynomials [1].
The coefficients hn for K ¼ 1, 2, and 3 are given in

Table I.

Using the weights hn we can determine sðxÞ and wðxÞ at
each point x from Eqs. (1) and (9) [50,51]. It can be shown
that the mother scaling function sðxÞ and mother wavelet
function wðxÞ have compact support on the interval
½0; 2K − 1�. A graphical view of sðxÞ and wðxÞ for a sample
value of K ¼ 2, 4, and 6 is shown in Fig. 4. The basis
functions sknðxÞ andwk

nðxÞ have compact support smaller by a
factor 2k in comparison with the sðxÞ and wðxÞ.

sknðxÞ; wk
nðxÞ ≠ 0 ∀ x ∈

�ð0 − nÞ
2k

;
ð2K − 1 − nÞ

2k

�

⇒ support size ¼ ð2K − 1Þ
2k

:

The degree of analyticity of the basis functions depends
on the value of K. For example, the basis functions for

TABLE I. h coefficients of Daubechies wavelets for different
values of K.

hn K ¼ 1 K ¼ 2 K ¼ 3

h0 1=
ffiffiffi
2

p ð1þ ffiffiffi
3

p
=4

ffiffiffi
2

p Þ ð1þ ffiffiffiffiffi
10

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h1 1=
ffiffiffi
2

p ð3þ ffiffiffi
3

p Þ=4 ffiffiffi
2

p
ð5þ ffiffiffiffiffi

10
p þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h2 0 ð3 − ffiffiffi
3

p Þ=4 ffiffiffi
2

p
ð10−2

ffiffiffiffiffi
10

p þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h3 0 ð1 − ffiffiffi
3

p Þ=4 ffiffiffi
2

p
ð10−2

ffiffiffiffiffi
10

p
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h4 0 0 ð5þ ffiffiffiffiffi
10

p
− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p

h5 0 0 ð1þ ffiffiffiffiffi
10

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2

ffiffiffiffiffi
10

pp
Þ=16 ffiffiffi

2
p
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wavelet function
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FIG. 4. Scaling and wavelet functions for different values of K.
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K ¼ 1, 2 are not differentiable, K ¼ 3, 4 are singly
differentiable, K ¼ 6 are doubly differentiable, and so on.
The extension of the basis in two dimensions can be done

by forming direct products of one-dimensional scaling and
wavelet functions.

skn1;n2ðxÞ ≔ skn1ðx1Þskn2ðx2Þ ð27Þ

and we introduce another notation wm
n;αðxÞ, which we call

generalize wavelets having the following forms:

wm
n1;n2;1;k2

ðxÞ ≔ skn1ðx1Þwk2
n2ðx2Þ; ð28Þ

wm
n1;n2;2;k1

ðxÞ ≔ wk1
n1ðx1Þskn2ðx2Þ; ð29Þ

wm
n1;n2;3;k1;k2

ðxÞ ≔ wk1
n1ðx1Þwk2

n2ðx2Þ: ð30Þ

m represents the smallest wavelet scale appearing in the
product and α indicates the values of k1, k2 and the four
types of products that are appearing in the basis function.
Any square integrable function in two dimensions can be
expanded in this basis as follows:

fðx1;x2Þ¼
X
n1;n2

fsn1;n2s
k
n1;n2ðxÞ

þ
X
n1 ;n2
k2≥k

fw1;m
n1;n2w

m
n1;n2;1;k2

ðxÞþ
X
n1 ;n2
k1≥k

fw2;m
n1;n2w

m
n1;n2;2;k1

ðxÞ

þ
X
n1 ;n2

k1 ;k2≥k

fw3;m
n1;n2w

m
n1;n2;3;k1;k2

ðxÞ ð31Þ

such that

X
n1;n2

jfsn1;n2 j2 þ
X
n1 ;n2
k2≥k

jfw1;m
n1;n2 j2 þ

X
n1 ;n2
k1≥k

jfw2;m
n1;n2 j2

þ
X
n1 ;n2

k1 ;k2≥k

jfw3;m
n1;n2 j2 ≤ ∞: ð32Þ

Here, the summation over n1, n2 goes from −∞ to ∞ and
summation over k1, k2 goes from k to ∞.

III. TWO-DIMENSIONAL DIRAC DELTA
FUNCTION POTENTIAL PROBLEM

IN WAVELET BASIS

The energy eigenvalue equation for the 2D Dirac delta
function potential in natural units (m ¼ 1;ℏ ¼ 1) is given by

�
−
1

2

X2
i¼1

∂
2

∂x2i
−gδðx1Þδðx2Þ

�
ψðx1;x2Þ¼Eψðx1;x2Þ: ð33Þ

We approximate the state space of the system to the
resolution subspace Hk. Within this approximation, by

expanding eigenfunction ψðx1; x2Þ in the scaling function
basis,

ψðx1; x2Þ ¼
X
n1;n2

ψk
n1;n2s

k
n1;n2ðxÞ; ð34Þ

we can express Eq. (33) as a matrix eigenvalue equation

X
n3;n4

Hk
s;n1;n2∶n3;n4ψ

k
n3;n4 ¼ Eψk

n1;n2 ; ð35Þ

where the Hamiltonian matrix elements are given by

Hk
s;n1;n2∶n3;n4 ¼

Z �
−
skn1;n2ðx1; x2Þ

2

X2
i¼1

∂
2skn3;n4ðx1; x2Þ

∂x2i

− gskn1;n2ðx1; x2Þδðx1Þδðx2Þskn3;n4ðx1; x2Þ
�

× dx1dx2: ð36Þ

Using integration by parts and the compact support of the
scaling functions, we can rewrite Eq. (36) as

Hk
s;n1;n2∶n3;n4 ¼

Z �
1

2

X2
i¼1

∂skn1;n2ðx1; x2Þ
∂xi

∂skn3;n4ðx1; x2Þ
∂xi

− gskn1;n2ðx1; x2Þδðx1Þδðx2Þskn3;n4ðx1; x2Þ
�

× dx1dx2: ð37Þ

From the separable nature of the two-dimensional scaling
basis functions, we can rewrite the Hamiltonian matrix
elements involving different overlap integrals as

Hk
s;n1;n2∶n3;n4 ¼

1

2
½Dk

ss;n1n3 × δn2n4 þDk
ss;n2n4 × δn1n3 �

þ gIkss;n1n3 × Ikss;n2n4 ; ð38Þ

where

Dk
ss;mn ¼

Z
∞

−∞
sk

0
mðxÞsk0n ðxÞdx; ð39Þ

Ikss;mn ¼
Z

∞

−∞
δðxÞskmðxÞsknðxÞdx: ð40Þ

We can evaluate these integrations analytically from the
properties of scaling functions using the procedure described
in the Appendix.
The resulting Hamiltonian matrix has to be truncated for

carrying out numerical computation of its eigenvalues.
The first kind of truncation is volume truncation, which
identifies the region of physical space accessible to the
physical system. In the present problem, we define the
volume truncation by −L ≤ x; y ≤ L. The other truncation
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involves choosing a value for the resolution k. This implies
the inclusion of all length scales down to ð2K − 1Þ=2k and
excluding all length scales finer than this limit. For a fixed
value of bare coupling constant g and resolution, the low-
lying eigenvalues remain unchanged with increasing L.
This saturation of eigenvalues is intuitively expected as
most of the dynamics happens around the origin due to
short range of the potential. From here on, all computa-
tional results will be reported by choosing an adequately
large value of L. There exists a minimum value of coupling
constant gmin, beyond which one gets exactly one bound
state. For example, if L ¼ 6 and resolution k ¼ 0, this
minimum value is around gmin ¼ 1.18. For any fixed value
of the bare coupling constant, the bound state eigenvalue
diverges to negative infinity (Fig. 5). This signifies the
appearance of ultraviolet divergences within the wavelet
based framework. We deal with these divergences by
renormalizing the theory. The following section demon-
strates the renormalization and continuum limit within this
wavelet-based approach.

IV. RENORMALIZATION

The concept of renormalization first arose in context of
relativistic quantum field theories. The QFTs defined in the
continuum have points in the underlying space-time that
can come arbitrarily close to each other. In other words,
there does not exist any short-distance (ultraviolet) cutoff.
When these quantum field theories are analyzed perturba-
tively, one encounters divergences at each order of pertur-
bation theory, whose origin can be traced to the lack of
underlying short-distance cutoff. The concept of renorm-
alization provides the essential element to derive physical
predictions from the perturbative QFT. At each order of
perturbation theory, the ultraviolet divergences are regu-
lated by the introduction of an artificial ultraviolet cutoff,
following which the dependence of the bare couplings on
the ultraviolet cutoff is determined by demanding that it
reproduces the experimental values of a finite set of

physical observables. For a perturbatively renormalizable
theory, this process of renormalization renders all observ-
ables of the quantum field theory finite and ultraviolet
cutoff independent. In other words, a local limit can be
established for a renormalizable theory within the pertur-
bative framework.
Within the wavelet framework, each quantum state of the

system can described as an expansion in scaling and
wavelet functions. The expansion coefficients of the scaling
functions describe contributions from the coarsest length
scale down to ð2K − 1Þ=2k, while the expansion coeffi-
cients of the wavelet functions represent contribution on all
lengths scales finer than ð2K − 1Þ=2k. We can impose a
short distance cutoff to regulate the theory at a non-
perturbative level by truncating the basis function expan-
sion to include only the scaling functions. In other words,
the Hilbert space of the system is restricted to Hk.
Likewise, all operators (for example, the Hamiltonian)
are defined in terms of their action on Hk. The bare
coupling constants of the truncated theory are tuned to
reproduce the experimental values of a finite set of physical
observables. The process of renormalization consists of
constructing the local limit by solving a series of truncated
theories with increasing resolution.
We showcase the application of this wavelet based

approach to renormalization in the context of two-dimen-
sional Dirac delta function potential. We have shown in the
previous section that, for a fixed value of bare coupling
constant, the ground state energy diverges to negative
infinity with increasing resolution. In order to have a
physically meaningful theory containing a bound state,
we bring in a renormalization prescription that the theory
truncated at resolution k should reproduce the ground state
eigenvalue which we fix at −1. We tune the coupling
constant value in order for the truncated theory to reproduce
this experimental observable. Repeating this process for a
series of truncated theories with increasing resolution, we
arrive at the observation that the coupling constant flows
with resolution. In particular, it becomes weaker with

FIG. 5. Negative divergence of bound state energy for fixed
volume (V ¼ 12) with fixed coupling constant (g ¼ 1.848694)
versus increasing resolution plot.

FIG. 6. Renormalized coupling constant ðg̃ðkÞÞ versus Reso-
lution (k) plot.
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increasing resolution as is expected in the context of this
problem. See Fig. 6 and Table II.

V. SUMMARY AND CONCLUSIONS

The purpose of this work has been to examine renorm-
alization in a discrete wavelet based quantum theory. The
attractive two-dimensional Dirac delta function potential
was chosen as the model of study as it contains many of
the nontrivial features that are observed in a relativistic
quantum field theory such as ultraviolet divergences,
asymptotic freedom, and dimensional transmutation.
Working with models such as this one will provide insights
that will be valuable when working with realistic quantum
field theories within the wavelet based framework.
For quantum systems with finite number of dynamical

variables, the operator energy eigenvalue problem is con-
verted to matrix eigenvalue problem using the discrete
Daubechies wavelet basis, in which the rows and columns
of the matrix can be organized by length scales. The off-
diagonal Hamiltonian matrix elements have a natural
interpretation of coupling between length scales.
Specifically, each Hamiltonian matrix element carries a
pair “location” and resolution indices. By imposing an
upper and lower bound on the “location” index, one can
define the region of physical space in which the system
would be studied. Setting an upper bound on the resolution
index essentially amounts to imposing an ultraviolet cutoff
and as such plays the role of the ultraviolet regulator at a
nonperturbative level.
We have shown that, if the bare coupling constant is held

fixed, then as the resolution is increased the ground state
energy diverges as is expected. To make physical sense of
this theory, one demands that the bare coupling constant
flows with resolution in such a way as to maintain the
physical value of the ground state energy. The coupling
constant becomes weaker as resolution is increased which
attests the asymptotically free nature of the two-dimen-
sional Dirac delta function potential.
In the context of QFTs, the field operator can be

expanded in terms of scaling and wavelet basis function
with operator valued coefficients. This decomposition leads
to the quantum field (the operator valued distribution)
being replaced in terms of a countably infinite number of
operators with different spatial resolutions. One define a

volume truncation by retaining only those basis function
terms in the field operator expansion, that have support
lying within a specified volume. The resolution truncation
admits only those basis function terms in the field operators
expansion that are coarser than a specified resolution. This
truncated QFT, which is now a theory with finite number of
degrees of freedom, should in principle be solvable. The
infinite volume and infinite resolution limit needs to be
constructed as a limit of a sequence of truncated theories.
Further investigations in this direction are highly desirable.

ACKNOWLEDGMENTS

M. B. would like to thank BITS Pilani K K Birla Goa
Campus for providing the necessary infrastructure and
financial support to conduct this work. The authors would
also like to thank Dr. Rudranil Basu for useful discussions.

APPENDIX: OVERLAP INTEGRALS

Here we describe the analytical method to compute the
overlap integrals involving product of scaling functions and
their derivatives, such as the one appearing in Eq. (39). This
method, due to Beylkin [52], has been described in [3,16].
We describe this approach in the context of the overlap
integrals appeared in Eqs. (39) and (40). The results for the
overlap integrals involving the delta function, Eq. (40) are
new and have not been reported in literature previously.
The following identities are used to compute these

integrals:

Z
sknðxÞdx ¼ 1ffiffiffiffiffi

2k
p ; ðA1Þ

DT2k ¼ TkD; ðA2Þ

d
dx

D ¼ 2D
d
dx

; ðA3Þ

Dx ¼ 2xD; ðA4Þ

Tx ¼ ðx − 1ÞT: ðA5Þ

In addition, the scaling equation, the definition of wavelet
and the derivatives of these equations are used in the
following form:

skmðxÞ ¼
X
n

Hmnskþ1
n ðxÞ; ðA6Þ

sk
0
mðxÞ ¼ 2

X
n

Hmnskþ10
n ðxÞ; ðA7Þ

where

Hmn ¼ hn−2m: ðA8Þ

TABLE II. The values of renormalized coupling constant with a
different resolution cutoff.

Resolution (k) Coupling constant (g)

4 0.7053401
3 0.8349675
2 1.021796
1 1.312652
0 1.848694
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The general matrix element of the kinetic energy term can
be the found out from the following matrix element.

Dk
ss;mn ¼

Z
sk

0
mðxÞsk0n ðxÞdx: ðA9Þ

Using Eqs. (A3) and (A9) can be expressed in the following
form:

Dk
ss;mn ¼ 22kDss;mn; ðA10Þ

where

Dss;mn ¼
Z

s0mðxÞs0nðxÞdx: ðA11Þ

Using translational invariance, we can rewrite Eq. (A11) as

Dss;mn ¼ Dss;0ðn−mÞ ¼
Z

s0ðxÞs0n−mðxÞdx: ðA12Þ

For K ¼ 3, the scaling function and their derivatives have
support on [0, 5]. This means Dss;0q will be nonzero only
for the values of q lying between −4 to 4. These nine
nontrivial integrals are related to each other through a set of
equations that we derive below.
Using the unitary nature of scaling operator D̂, we reduce

the resolutions of the scaling function by a factor of −1:

Dss;0q ¼ D−1
ss;0q ¼

Z
s−1

0 ðxÞs−10q ðxÞdx: ðA13Þ

Now, raising the resolution by a factor of 1 using Eq. (A7),
we arrive at a set of homogeneous equations for Dss;0q:

Dss;0q ¼ 4
X
p;r

H0pHqr

Z
s0pðxÞs0rðxÞdx;

¼ 4
X
p;r

hphr−2qDss;0ðr−pÞ: ðA14Þ

We now determine an inhomogeneous equation for the
variable Dss;0q that, in conjunction with the homogeneous
set of equations (A14), allows us to uniquely determine
Dss;0q. Our starting point is the decomposition 1, x, and x2

in terms of the scaling functions where hxni is called the nth
moment of the scaling function.

1 ¼
X
n

snðxÞ; ðA15Þ

x ¼
X
n

ðnþ hxiÞsnðxÞ; ðA16Þ

and

x2 ¼
X
n

ðn2 þ 2nhxi þ hx2iÞsnðxÞ: ðA17Þ

Here, hxni ¼ R
xnsðxÞdx are called the moments of the

scaling function. Equation (A15) is a property of the
scaling functions called “partition of unity.”
Differentiating Eq. (A16) and using Eq. (A15) we get,

1 ¼
X
n

ns0nðxÞ: ðA18Þ

Here is yet another differentiation but this time of Eq. (A17)
followed by use of Eq. (A18), and we get

2x¼
X
n

ðn2þ2nhxiÞs0nðxÞ¼
X
n

n2s0nðxÞþ2hxj:jxi ðA19Þ

Multiplying both sides with s0ðxÞ and integrating, we
arrive at
Z

2xs0ðxÞdx¼
X
n

�
n2

Z
s0ðxÞs0nðxÞdxþ2hxi

Z
s0ðxÞdx

�

⇒−2¼
X
n

n2
Z

s0ðxÞs0nðxÞdx

⇒−2¼
X
n

n2Dss;0n; ðA20Þ

the inhomogeneous equation (A20) for variables Dss;0q.
The linear system of equations (A14) and (A20) can be

solved exactly. These values ofDss;0n turn out to be rational
numbers and were first calculated in reference [52]. See
Table III.
The overlap integration involving the product of delta

function and two scaling function Eq. (40) can be expressed
in terms of the 0th resolution scaling functions using the
property of scaling operator D̂ and changing the variable of
the integration:

Ikss;mn ¼
Z

δðxÞskmðxÞsknðxÞdx;

¼ 2kIss;mn; ðA21Þ

TABLE III. The values of overlap integrals of product of
derivative of scaling functions.

Integrals Values

Dss;0ð−4Þ −3=560
Dss;0ð−3Þ −4=35
Dss;0ð−2Þ 92=105
Dss;0ð−1Þ −356=105
Dss;00 295=56
Dss;01 −356=105
Dss;02 92=105
Dss;03 −4=35
Dss;04 −3=560
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where

Iss;mn ¼
Z

δðxÞsmðxÞsnðxÞdx: ðA22Þ

Now, from the unitary nature of the operator D̂ we can
express Imn in terms of I−1mn as follows:

I−1ss;mn ¼
Z

δðxÞs−1m ðxÞs−1n ðxÞdx;

¼ 1

2

Z
δðxÞsmðxÞsnðxÞdx; ðA23Þ

⇒ Iss;mn ¼ 2 × I−1ss;mn; ðA24Þ

and using Eq. (A6) we can find out the set of homogeneous
equation for the integral Imn,

Iss;mn ¼ 2 ×
X
p;q

HmpHnqIss;pq: ðA25Þ

To get the inhomogeneous equation we start with the
definition of delta function and the partition of unity
property of scaling function Eq. (A15).

Z
δðxÞdx ¼ 1;

X
m;n

Z
δðxÞsmðxÞsnðxÞdx ¼ 1;

X
m;n

Iss;mn ¼ 1: ðA26Þ

Here, the delta function is centered at the origin. So, the
delta function and two scaling functions will overlap for
−4 ≤ m; n ≤ −1. For all other values of m and n there will
be no overlap among them, so the value of the integration
will be 0. We can solve the set of equations (A25) and
(A26) to get all the possible values of integrals. See
Table IV.

[1] B. M. Kessler, G. L. Payne, and W. N. Polyzou, Wavelet
notes (2003), arXiv:nucl-th/0305025.

[2] WN Polyzou, Tracie Michlin, and Fatih Bulut, Multi-scale
methods in quantum field theory, Few Body Syst. 59, 36
(2018).

[3] Tracie L. Michlin, Using wavelet bases to separate scales in
quantum field theory, Ph.D. thesis, The University of Iowa,
2017.

[4] P. Federbush, A new formulation and regularization of
gauge theories using a non-linear wavelet expansion, Prog.
Theor. Phys. 94, 1135 (1995).

[5] Christoph Best, Wavelet-induced renormalization group for
the Landau-Ginzburg model, Nucl. Phys. B, Proc. Suppl.
83, 848 (2000).

[6] Glen Evenbly and Steven R White, Entanglement Renorm-
alization and Wavelets, Phys. Rev. Lett. 116, 140403 (2016).

[7] E. T. Tomboulis, Wavelet field decomposition and UV
‘opaqueness’, J. High Energy Phys. 06 (2021) 077.

[8] Daniel J. George, Yuval R. Sanders, Mohsen Bagherimehrab,
Barry C. Sanders, and Gavin K. Brennen, Entanglement in
quantum field theory via wavelet representations, Phys.
Rev. D 106, 036025 (2022).

[9] T. Thiemann, Renormalisation, wavelets and the Dirichlet-
Shannon kernels, arXiv:2207.08294.

[10] Christoph Best and Andreas Schaefer, Variational descrip-
tion of statistical field theories using Daubechies’ wavelets,
arXiv:hep-lat/9402012.

[11] I. G. Halliday and P. Suranyi, Simulation of field theories in
wavelet representation, Nucl. Phys. B436, 414 (1995).

[12] Ahmed Ismail, George Stephanopoulos, and Gregory
Rutledge, Multiresolution analysis in statistical mechan-
ics. II. The wavelet transform as a basis for Monte Carlo
simulations on lattices, J. Chem. Phys. 118, 4424
(2002).

[13] Gavin K. Brennen, Peter Rohde, Barry C. Sanders, and
Sukhwinder Singh, Multiscale quantum simulation of
quantum field theory using wavelets, Phys. Rev. A 92,
032315 (2015).

[14] Wayne N. Polyzou, Path integrals, complex probabilities
and the discrete Weyl representation, arXiv:2108.12494.

[15] Wayne Polyzou and Fatih Bulut, Wavelet methods in field
theory, Few Body Syst. 55, 561 (2013).

[16] Fatih Bulut and W. N. Polyzou, Wavelets in field theory,
Phys. Rev. D 87, 116011 (2013).

TABLE IV. The values of overlap integrals of product of delta
function and two scaling functions.

Integrals Values

Iss;ð−4Þð−4Þ 0.0000179297
Iss;ð−4Þð−3Þ 0.000403396
Iss;ð−4Þð−2Þ −0.00163377
Iss;ð−4Þð−1Þ 0.00544679
Iss;ð−3Þð−3Þ 0.00907591
Iss;ð−3Þð−2Þ −0.0367577
Iss;ð−3Þð−1Þ 0.122546
Iss;ð−2Þð−2Þ 0.14887
Iss;ð−2Þð−1Þ −0.496316
Iss;ð−1Þð−1Þ 1.65466

RENORMALIZATION IN A WAVELET BASIS PHYS. REV. D 107, 036015 (2023)

036015-9

https://arXiv.org/abs/nucl-th/0305025
https://doi.org/10.1007/s00601-018-1357-z
https://doi.org/10.1007/s00601-018-1357-z
https://doi.org/10.1143/PTP.94.1135
https://doi.org/10.1143/PTP.94.1135
https://doi.org/10.1016/S0920-5632(00)91823-1
https://doi.org/10.1016/S0920-5632(00)91823-1
https://doi.org/10.1103/PhysRevLett.116.140403
https://doi.org/10.1007/JHEP06(2021)077
https://doi.org/10.1103/PhysRevD.106.036025
https://doi.org/10.1103/PhysRevD.106.036025
https://arXiv.org/abs/2207.08294
https://arXiv.org/abs/hep-lat/9402012
https://doi.org/10.1016/0550-3213(94)00443-I
https://doi.org/10.1063/1.1543582
https://doi.org/10.1063/1.1543582
https://doi.org/10.1103/PhysRevA.92.032315
https://doi.org/10.1103/PhysRevA.92.032315
https://arXiv.org/abs/2108.12494
https://doi.org/10.1007/s00601-013-0735-9
https://doi.org/10.1103/PhysRevD.87.116011


[17] Tracie Michlin, W. N. Polyzou, and Fatih Bulut, Multi-
resolution decomposition of quantum field theories using
wavelet bases, Phys. Rev. D 95, 094501 (2017).

[18] Herbert Neuberger, Wavelets and lattice field theory, EPJ
Web Conf. 175, 11002 (2018).

[19] Mikhail V. Altaisky et al., Wavelet-based quantum field
theory, SIGMA 3, 105 (2007).

[20] S. Albeverio and Mikhail V. Altaisky, A remark on gauge
invariance in wavelet-based quantum field theory, arXiv:
0901.2806.

[21] M. V. Altaisky, Wavelets and renormalization group in
quantum field theory problems, Phys. At. Nucl. 81, 786
(2018).

[22] Mikhail V. Altaisky and Natalia E. Kaputkina, Continuous
wavelet transform in quantum field theory, Phys. Rev. D 88,
025015 (2013).

[23] M. V. Altaisky and N. E. Kaputkina, On the wavelet
decomposition in light cone variables, Izv. Vuz. Fiz. 10,
68 (2012).

[24] M. V. Altaisky and N. E. Kaputkina, On quantization in
light-cone variables compatible with wavelet transform, Int.
J. Theor. Phys. 55, 2805 (2016).

[25] W. N. Polyzou, Wavelet representation of light-front quan-
tum field theory, Phys. Rev. D 101, 096004 (2020).

[26] Wayne N. Polyzou, Light-front quantum mechanics and
quantum field theory, arXiv:2002.04981.

[27] Michael E. Peskin and Daniel V. Schroeder, An Introduction
to Quantum Field Theory (Addison-Wesley, Reading, USA,
1995).

[28] Franz Mandl and Graham Shaw, Quantum Field Theory
(Wiley, Chichester, 2010).

[29] Ingrid Daubechies, Ten Lectures on Wavelets (Society for
Industrial and Applied Mathematics, USA, 1992).

[30] Charles K. Chui, An introduction to wavelets, Math.
Comput. 60, 584 (1993).

[31] Ingrid Daubechies, Orthonormal bases of wavelets with
compact support, Commun. Pure Appl. Math. 41, 909
(1988).

[32] D. A. Atkinson and H.W. Crater, An exact treatment of the
Dirac delta function potential in the Schrodinger equation,
Am. J. Phys. 43, 301 (1975).

[33] P. Gosdzinsky and R. Tarrach, Learning quantum field
theory from elementary quantum mechanics, Am. J. Phys.
59, 70 (1991).

[34] R. Jackiw, Delta function potentials in two-dimensional and
three-dimensional quantum mechanics, Report No. MIT-
CTP-1937, 1991, pp. 35–53.

[35] Lawrence R. Mead and John Godines, An analytical
example of renormalization in two-dimensional quantum
mechanics, Am. J. Phys. 59, 935 (1991).

[36] D. K. Park, Green’s-function approach to two- and three-
dimensional delta-function potentials and application to the
spin-1=2 Aharonov–Bohm problem, J. Math. Phys. (N.Y.)
36, 5453 (1995).

[37] R. J. Henderson and S. G. Rajeev, Renormalized contact
potential in two dimensions, J. Math. Phys. (N.Y.) 39, 749
(1998).

[38] R. M. Cavalcanti, Exact Green’s functions for delta function
potentials and renormalization in quantum mechanics, Rev.
Bras. Ens. Fis. 21, 336 (1999).

[39] Indrajit Mitra, Ananda DasGupta, and Binayak Dutta-Roy,
Regularization and renormalization in scattering from Dirac
delta potentials, Am. J. Phys. 66, 1101 (1998).

[40] Horacio E. Camblong, Luis N. Epele, Huner Fanchiotti, and
Carlos A. García Canal, Dimensional transmutation and
dimensional regularization in quantum mechanics: I. Gen-
eral theory, Ann. Phys. (N.Y.) 287, 14 (2001).

[41] Su-Long Nyeo, Regularization methods for delta-function
potential in two-dimensional quantum mechanics, Am. J.
Phys. 68, 571 (2000).

[42] Sydney Geltman, Bound states in delta function potentials,
J. At. Mol. Phys. 2011, 573179(2011).

[43] Horacio E. Camblong and Carlos R. Ordóñez, Renormal-
ized path integral for the two-dimensional δ-function
interaction, Phys. Rev. A 65, 052123 (2002).

[44] M. de Llano, A. Salazar, and M. A. Solis, Two-dimensional
delta potential wells and condensed-matter physics, Rev.
Mex. de Fis. 51, 626 (2005).

[45] N. Ferkous, Regularization of the Dirac δ potential with
minimal length, Phys. Rev. A 88, 064101 (2013).

[46] Fatih Erman, Renormalization of Dirac delta potentials
through minimal extension of Heisenberg algebra, Com-
mun. Theor. Phys. 68, 313 (2017).

[47] Kok An Wong and Su-Long Nyeo, Differential representa-
tion of the delta function in two-dimensional quantum
mechanics, Chin. J. Phys. (Taipei) 56, 2547 (2018).

[48] Farhang Loran and Ali Mostafazadeh, Singularity-free
treatment of delta-function point scatterers in two dimen-
sions and its conceptual implications, J. Phys. A 55, 305303
(2022).

[49] Cihan Pazarbas and Dieter Van den Bleeken, Renormalons
in quantum mechanics, J. High Energy Phys. 08 (2019) 96.

[50] B. M. Kessler, Gerald L. Payne, and W. N. Polyzou,
Scattering calculations with wavelets, Few Body Syst. 33,
1 (2002).

[51] Alistair Rowe and Paul Abbott, Daubechies wavelets and
Mathematica, Comput. Phys. 9, 635 (1995).

[52] G. Beylkin, On the representation of operators in bases of
compactly supported wavelets, SIAM J. Numer. Anal. 29,
1716 (1992).

MRINMOY BASAK and RAGHUNATH RATABOLE PHYS. REV. D 107, 036015 (2023)

036015-10

https://doi.org/10.1103/PhysRevD.95.094501
https://doi.org/10.1051/epjconf/201817511002
https://doi.org/10.1051/epjconf/201817511002
https://doi.org/10.3842/SIGMA.2007.105
https://arXiv.org/abs/0901.2806
https://arXiv.org/abs/0901.2806
https://doi.org/10.1134/S1063778818060029
https://doi.org/10.1134/S1063778818060029
https://doi.org/10.1103/PhysRevD.88.025015
https://doi.org/10.1103/PhysRevD.88.025015
https://doi.org/10.1007/s11182-013-9940-8
https://doi.org/10.1007/s11182-013-9940-8
https://doi.org/10.1007/s10773-015-2913-7
https://doi.org/10.1007/s10773-015-2913-7
https://doi.org/10.1103/PhysRevD.101.096004
https://arXiv.org/abs/2002.04981
https://doi.org/10.2307/2153134
https://doi.org/10.2307/2153134
https://doi.org/10.1002/cpa.3160410705
https://doi.org/10.1002/cpa.3160410705
https://doi.org/10.1119/1.9857
https://doi.org/10.1119/1.16691
https://doi.org/10.1119/1.16691
https://doi.org/10.1119/1.16675
https://doi.org/10.1063/1.531271
https://doi.org/10.1063/1.531271
https://doi.org/10.1063/1.532350
https://doi.org/10.1063/1.532350
https://doi.org/10.1119/1.19051
https://doi.org/10.1006/aphy.2000.6092
https://doi.org/10.1119/1.19485
https://doi.org/10.1119/1.19485
https://doi.org/10.1155/2011/573179
https://doi.org/10.1103/PhysRevA.65.052123
https://doi.org/10.1103/PhysRevA.88.064101
https://doi.org/10.1088/0253-6102/68/3/313
https://doi.org/10.1088/0253-6102/68/3/313
https://doi.org/10.1016/j.cjph.2018.08.016
https://doi.org/10.1088/1751-8121/ac7a76
https://doi.org/10.1088/1751-8121/ac7a76
https://doi.org/https://doi.org/10.1007/JHEP08(2019)096
https://doi.org/10.1007/s00601-003-0008-0
https://doi.org/10.1007/s00601-003-0008-0
https://doi.org/10.1063/1.168556
https://doi.org/10.1137/0729097
https://doi.org/10.1137/0729097

