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Observing physical effects of large quantum stress tensor fluctuations requires knowledge of the
interactions between the probe and the particles of the underlying quantum fields. The quantum stress
tensor operators must first be averaged in time alone or space and time to confer meaningful results, the
details of which may correspond to the physical measurement process. We build on prior results to
characterize the particle frequencies associated with quantum fluctuations of different magnitudes. For the
square of time derivatives of the massless scalar field in a spherical cavity, we find that these frequencies are
bounded above in a power law behavior. Our findings provide a way to identify the largest quantum
fluctuation that may be probed in experiments relying on frequency-dependent interactions.
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I. INTRODUCTION

As the search for a full theory of quantum gravity
continues, extensions to the semiclassical theory of gravity
remain a promising endeavor for understanding quantum
gravitational effects. In the semiclassical theory of gravity,
the stress-energy-momentum tensor is treated as a quantum
operator, related to the classical Einstein tensor by taking an
expectation value [1]. This approach has seen success in a
number of scenarios, ranging from Hawking radiation from
black holes [2] and the resulting gravitational backreaction
[3] to quantum particle creation [4]. Extensions to the
semiclassical theory include the addition of higher order
derivatives in the metric tensor [5], with consequences that
include the production of gravitons in the early Universe
[6,7], and the incorporation of fluctuations of the quantum
stress tensor around its mean value [8]. The latter approach
motivates the study of quantum fluctuations of stress tensor
operators, which have been shown to source a number of
possible effects, such as geodesic focusing [9] and imprints
on power spectra [10,11].

In recent years, focus has shifted to large vacuum
fluctuations due to hints that they may be observable in
experiments. A generic property of normal ordered oper-
ators quadratic in the fields is the divergence of the higher
moments, a problem formally addressed by averaging these
operators in time alone or space and time. Physically, we
may interpret this averaging as encoding the details of
experimental measurements, though the correspondence
between the two remains under investigation. In two-
dimensional conformal field theory with a Gaussian tem-
poral sampling function, the probability PðxÞ of measuring
a fluctuation of magnitude x is a shifted Gamma distribu-
tion [12–14] bounded below by the optimal quantum
inequality bound [15]. In four dimensions, the situation
is qualitatively similar, and studies have been conducted for
time averaging [16,17] and spacetime averaging [18].
These results, numerically verified in Refs. [19,20], suggest
the probability distribution PðxÞ asymptotically falls more
slowly with x than a decaying exponential function. We
will be particularly interested in the conclusions of
Refs. [17,18], as they assume smooth, compactly supported
sampling functions. These are functions that are strictly
zero outside a finite, bounded domain and may better
reflect the reality that physical measurements necessarily
take place in a finite spacetime region.
These findings suggest the probabilities of measuring

large vacuum fluctuations of stress tensor operators may
not be as negligible as one might have expected, spurring
work into possible physical effects such as focusing of
geodesics induced by spacetime curvature fluctuations
[21,22] and enhanced barrier penetration rates of charged
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particles due to radiation pressure fluctuations [23]. Related
phenomena in other systems that emerge from similar
quadratic operators are also expected to occur: false
vacuum decay of a self-interacting scalar field may be
dominated by a pathway [24] different from the usual
instanton approximation [25], Rydberg atoms may exhibit
velocity fluctuations in response to a sequence of short
laser pulses [26], and low-temperature light scattering
experiments may find large variations in the number of
scattered photons [27].
In this paper, we investigate a different but related

question. Models proposing experimental effects inevitably
assume certain interactions between the probe and the
particles of the quantum fields, and these interactions are
often dependent on the particle frequencies. The relation-
ship between the magnitudes of quantum fluctuations and
the angular frequencies of the constituent particles remains
unclear, and better understanding will help produce more
accurate models for future experiments. In Sec. II, we review
a numerical approach for diagonalizing bosonic operators
that are quadratic in the fields, a category that includes stress
tensor operators. In Sec. III, we build on previous results to
investigate the relationship between the frequencies of the
particle contents and the magnitudes of the fluctuations. In
Sec. IV, we discuss numerical simulations that confirm the
analytical calculations and, in doing so, provide estimates of
constants that are not well predicted analytically. In Sec. V,
we briefly describe a physical application as an example
showing how these results may be of interest in experimental
contexts. Finally, in Sec. VI, we summarize our findings and
consider some future investigations.
Units in which the reduced Planck constant ℏ and the

speed of light are set to unity are used throughout this paper.

II. NUMERICAL APPROACH TO SPACETIME-
AVERAGED QUADRATIC OPERATORS

Components of the normal ordered stress-energy-
momentum tensor operator, such as those of the massless
scalar field, may be generally expanded in terms of creation
and annihilation operators as

T ðt; rÞ ¼ 1

2

X
kk0

½2a†kak0Fkk0 ðt; rÞ þ akak0Gkk0 ðt; rÞ

þ a†ka
†
k0G�

kk0 ðt; rÞ�; ð1Þ

where

½ak; a†k0 � ¼ δkk01 and ½ak; ak0 � ¼ ½a†k; a†k0 � ¼ 0: ð2Þ

Here, Fkk0 ðt; rÞ and Gkk0 ðt; rÞ are matrix elements that
depend on the specific choice of operator, and 1 is the
identity operator. Because physical measurements take
place in a finite region of spacetime, a more meaningful
quantity to consider is the operator T ðt; rÞ averaged in

space and time with compactly supported sampling func-
tions, gðrÞ and fðtÞ, respectively, giving

T̄ ≡
Z

∞

−∞
dtfðtÞ

Z
V
d3rgðrÞT ðt; rÞ: ð3Þ

We further assume the spatial sampling function gðrÞ is
non-negative, spherically symmetric, and real, with unit
integral over all space. Likewise, the temporal sampling
function fðtÞ is non-negative, even, and real, with unit
integral over all time. Although experimental data are
lacking, we expect the details of these functions to correlate
with factors in the measurement process. The Fourier
transforms of these sampling functions are defined as

ĝðkÞ ¼
Z
V
d3rgðrÞe−ik·r ð4Þ

and

f̂ðωÞ ¼
Z

∞

−∞
dtfðtÞe−iωt: ð5Þ

We may write the analogous expression to Eq. (1) for the
spacetime-averaged operator T̄ as

T̄ ¼ 1

2

X
kk0

½2a†kak0F̄kk0 þ akak0Ḡkk0 þ a†ka
†
k0Ḡ�

kk0 �: ð6Þ

As we are concerned with vacuum fluctuations of these
quadratic operators, let us consider the Minkowski vacuum
state j0ia, defined as the state where akj0ia ¼ 0 for all k.
We immediately see that the vacuum state is not an
eigenstate of the operator T̄ , so quantum fluctuations will
be present in the vacuum state.
To perform numerical simulations of these vacuum

fluctuations, we need to characterize the eigenstates of
the operator T̄ . We follow a numerical method developed in
Refs. [19,28], briefly summarized here. For the cases we
consider, the matrix elements of F̄ and Ḡ are real, i.e.,
Ḡkk0 ¼ Ḡ�

kk0 . A Bogoliubov transformation [29] relates the
original set of creation and annihilation operators fa†k; akg
to a new set fb†k; bkg. The two sets of operators are related
by the linear transformation

ak ¼
X
k0

ðAkk0bk0 þ Bkk0b†k0 Þ: ð7Þ

The A and B matrices contain the real Bogoliubov
coefficients that transform fa†k; akg to fb†k; bkg. The
new set of creation and annihilation operators fb†k; bkg
acts on the corresponding particle number states

jmib ≡ jmk1
; mk2

; mk3
; � � �ib: ð8Þ
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Note that the physical particles of interest are the a particles
of the Minkowski vacuum state j0ia, not the b particles that
emerge as a consequence of the Bogoliubov transforma-
tion. That is to say, any observable physics arising from
vacuum fluctuations comes from interactions with the real
a particles. Substituting Eq. (7) into Eq. (6), we may rewrite
T̄ in the diagonal form

T̄ ¼
X
k

λkb
†
kbk þ Cshift1; ð9Þ

where 1 is again the identity operator. Here, fλkg and Cshift

are constants that depend on the matrix elements of F̄ and
Ḡ. These constants may be derived by mandating fb†k; bkg
obey the usual commutation relations analogous to those in
Eq. (2), in addition to requiring the diagonalization con-
ditions leading to Eq. (9). Theoretical considerations from
quantum inequalities bound the eigenvalues of T̄ from
below, so λk ≥ 0 for all k and Cshift < 0. We interpret the b
particle number states jmib as the eigenstates of the
operator T̄ . The eigenvalues x are calculated by acting
T̄ on an eigenstate jmib,

T̄ jmib ¼ xðmÞjmib: ð10Þ

Extracting the relevant physics in terms of the physical a
particles may be accomplished by transforming back to
fa†k; akg via the Bogoliubov transformation, Eq. (7).

III. DOMINANT MODE CONTRIBUTIONS TO
FLUCTUATIONS OF DIFFERENT MAGNITUDES

A useful class of operators to consider is the normal
ordered squares of time derivatives of the massless scalar
field φðt; rÞ,

T 2p0þ1ðt; rÞ ¼ ∶τ2p0þ2

�
∂
p0

∂tp
0 φðt; rÞ

�
2

∶: ð11Þ

Here, τ is a sampling timescale discussed below. The factor
of τ2p

0þ2 ensures T 2p0þ1ðt; rÞ remains dimensionless. We
introduce a more convenient label p, related to the number
of time derivatives p0 via

p ¼ 2p0 þ 1: ð12Þ

Thus, p ¼ 3 corresponds to T 3ðt; rÞ ¼ ∶τ4 _φ2ðt; rÞ∶, p ¼ 5

corresponds to T 5ðt; rÞ ¼ ∶τ6φ̈2ðt; rÞ∶, and so on. These
operators are of interest because they are related to physical
quantities that may be probed experimentally. For example,
the p ¼ 3 case can be used to infer the behavior of
electromagnetic energy density fluctuations [16], electro-
magnetic momentum flux fluctuations [23], and even fluid
density fluctuations [27].
The high moments of these operators were analyzed in

Ref. [17] for time averaging alone and in Ref. [18] for
spacetime averaging, which we summarize here. We
consider a class of compactly supported sampling functions
with Fourier transforms that asymptotically approach

f̂ðωÞ ∼ Cfe−βjωτj
α
; jωτj ≫ 1;

ĝðkÞ ∼ Cg

k2−λ
e−ηjkljλ ; jklj ≫ 1: ð13Þ

The constants are assumed to be constrained by
Cf; Cg; β; η > 0, 0 < λ ≤ α < 1, and lη1=λ < τβ1=α. Here,
τ and l are related to how quickly the sampling functions
switch on and off near the bounds of their compact supports.
In this paper, τ and l are on the order of the sampling times
and lengths, respectively, andmay beviewed as such, though
this need not be true in general. The factor of kλ−2 in the
expression for ĝðkÞ is not necessary but is present in our
numerical constructions later.
For T pðt; rÞ as defined in Eq. (11), after spacetime

averaging in rectangular coordinates, we find the form in
Eq. (6) with

F̄kk0 ¼ τpþ1
ðωω0Þðp−2Þ=2

V
f̂ðω − ω0Þĝðk − k0Þ;

Ḡkk0 ¼ τpþ1
ðωω0Þðp−2Þ=2

V
f̂ðωþ ω0Þĝðkþ k0Þ: ð14Þ

Let us define the dth moment of the spacetime-averaged
T̄ p as

μd ¼ ah0jðT̄ pÞdj0ia: ð15Þ

One may show that

μd ≈

(
C1

R
∞
0 dωf̂2ðωÞωdpþ1 worldline limit ðd ≲ d�Þ;

C2

R
d3qqdðp−2Þ

R
d3kkf̂2ðqþ kÞĝ2ðqþ kÞ spacetime-averaged limit ðd≳ d�Þ:

ð16Þ

Here, C1 and C2 are constants that depend on p and the
sampling functions, and k ¼ jkj. Note that the two limits
are distinguished by the absence or presence of the effects

of space averaging. The lower moments are independent of
the space averaging, but the higher moments depend upon
ĝðkÞ. The effect of space averaging is to reduce the rate of
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growth of the moment as d increases. The value d� depends
on the ratio of τβ1=α tolη1=λ in some power law behavior: the
smaller this ratio, the sooner the effects of space averaging
emerge, and the earlier the transition to the spacetime-
averaged limit. We may intuitively understand this behavior
by noting that in the limit of no space averaging, l → 0, we
reduce to d� → ∞. The expression in the worldline limit is
derived in Ref. [17], while the expression in the spacetime-
averaged limit can be easily generalized from thep ¼ 3 case
in Ref. [18] by noting from Eq. (14) that higher p merely
includes more factors of angular frequency.
These moments may be related to those of a probability

distribution PðxÞ,

μd ¼
Z

∞

−∞
dxxdPðxÞ; ð17Þ

from which we may infer [17,18]

PðxÞ ∼ c0xbe−ax
c
; x ≫ 1; ð18Þ

where c ¼ α=p in the worldline limit and c ¼ α=ðp − 2Þ in
the spacetime-averaged limit. We will not be concerned

with the remaining constants, which are predicted in the
worldline limit but are less clear in the spacetime-averaged
limit. Similarly to Eq. (16), the transition from the world-
line limit to the spacetime-averaged limit occurs around
x ≈ x�, depending again on the ratio of τβ1=α to lη1=λ, and
may be generalized from Ref. [18] to be

x� ≈
�
τβ1=α

lη1=λ

�p

: ð19Þ

We may now see that the transition from worldline to
spacetime-averaged behavior is linked both to the ratio
τ=l and to the relative rates of decay of f̂ðωÞ and of ĝðkÞ
functions of their arguments. If λ ≤ α, and β ≈ η, then we see
from Eq. (13) that f̂ðωÞ decreases more rapidly with
increasingω than does ĝðkÞwith increasing jkjwhen τ > l.
We now wish to estimate the dominant frequency

contributions to μd from Eq. (16) and the dominant
eigenvalue contributions from Eq. (17) by finding the
peaks of the integrands in these equations. Assuming that
d ≫ 1, the integrals in Eq. (16) may be approximated as

μd ≈

(
C1C2

f

R
∞
0 dωe−2βðωτÞαωdpþ1 worldline limit ðd ≲ d�Þ;

6π2α−4C2C2
fC

2
g

R∞
0 dke−2βðkτÞαkdðp−2Þ spacetime-averaged limit ðd≳ d�Þ:

ð20Þ

Notice that λ and η do not explicitly appear in the
spacetime-averaged limit here despite the presence of
ĝ2ðqþ kÞ in Eq. (16). When d ≫ 1, the integrals may
be approximated by taking k ≫ 1, and in this limit, we have
kα ≫ kλ for α > λ. We may now estimate ωd, the dominant
frequency contribution to the dth moment, as the frequency
that maximizes the integrands, giving

ωd ≈

8>><
>>:

�
dp

2βατα

�
1=α

worldline limit;�
dðp−2Þ
2βατα

�
1=α

spacetime-averaged limit;
ð21Þ

Similarly, we may estimate xd, the dominant eigenvalue
contribution to the dth moment, as the eigenvalue that
maximizes the integrand in Eq. (17), finding

xd ≈
�
d
ac

�
1=c

: ð22Þ

Here, we recall that in the worldline limit, c ¼ α=p,
whereas in the spacetime-averaged limit, c ¼ α=ðp − 2Þ.
We combine Eqs. (21) and (22) to find

ωd ∝

(
x1=pd worldline limit;

x1=ðp−2Þd spacetime-averaged limit:
ð23Þ

As the value of a is not well predicted, we are not interested
in the proportionality constant, which, at any rate, may be
inferred numerically. The crucial behavior here is the power
law behavior. The transition from the worldline to space-
time-averaged limit is expected to be given by Eq. (19),
though we do not have enough data to verify this pre-
diction. Reference [20] suggests the exponent in Eq. (19) is
well predicted but the proportionality constant is not, an
observation that likely holds in our case.
Note that the analytical estimates in this section do not

yet have a clear physical interpretation. Equation (23)
relates the dominant frequency and eigenvalue contribu-
tions, but these dominant contributions have not yet been
shown to have meaningful interpretations. One straightfor-
ward interpretation of xd is to consider it as an estimate of
the magnitudes of large fluctuations, x. However, a sim-
ilarly straightforward interpretation of ωd is less clear, as
we do not yet have a clear understanding of the frequencies
contributing to different fluctuations, the topic of the next
section. We will find that ωd gives an accurate estimate of
the maximum frequency contributing to a fluctuation of
magnitude x ≈ xd, rather than other possibilities such as the
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most likely frequency to contribute to fluctuations of that
magnitude.

IV. NUMERICAL ESTIMATES OF MODE
CONTRIBUTIONS TO LARGE FLUCTUATIONS

In this section, we are primarily concerned with the
characterization of the frequency modes that contribute to
large vacuum fluctuations. We will find for any given
quantum fluctuation a wide range of frequency modes

contribute, necessitating the introduction of some measure
that encodes this information. In doing so, we will show
that Eq. (23) predicts the greatest angular frequency ωd that
substantially contributes to a vacuum fluctuation of mag-
nitude xd.
In the numerical simulations, we work in spherical

coordinates to take advantage of the assumed spherical
symmetry of the spatial sampling function gðrÞ. The
spherical coordinate equivalent of Eq. (14) is [20]

F̄nlm;n0l0m0 ¼ τpþ1ðωnlωn0lÞðp−2Þ=2δl;l0δm;m0

4πR3jlþ1ðωn0lRÞjlþ1ðωnlRÞ
f̂ðωnl − ωn0lÞ

Z
1

−1
dyĝ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
nl þ ω2

n0l − 2ωnlωn0ly
q �

PlðyÞ;

Ḡnlm;n0l0m0 ¼ −τpþ1ðωnlωn0lÞðp−2Þ=2δl;l0δm;−m0

4πR3jlþ1ðωn0lRÞjlþ1ðωnlRÞ
f̂ðωnl þ ωn0lÞ

Z
1

−1
dyĝ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
nl þ ω2

n0l − 2ωnlωn0ly
q �

PlðyÞ: ð24Þ

Here, n is a positive integer, l is a non-negative integer, andm is an integer satisfying jmj ≤ l. The function jlðkrÞ is the lth
spherical Bessel function, the function PlðyÞ is the lth Legendre polynomial, δl;l0 is the Kronecker delta, R is the radius of
the bounding sphere of the quantized system, and

ωnl ¼
znl
R

; ð25Þ

where znl is the nth zero of jlðkrÞ. Reference [20] suggests reliable results may be obtained by setting l ¼ m ¼ 0, giving the
simpler form

F̄nn0 ¼
τpþ1πp−3ðnn0Þðp−2Þ=2

4ð−1Þnþn0Rp−1 f̂

�ðn − n0Þπ
R

�Z ðnþn0Þπ=R

jn−n0jπ=R
dkkĝðkÞ;

Ḡnn0 ¼
−τpþ1πp−3ðnn0Þðp−2Þ=2

4ð−1Þnþn0Rp−1 f̂

�ðnþ n0Þπ
R

�Z ðnþn0Þπ=R

jn−n0jπ=R
dkkĝðkÞ: ð26Þ

Functions f̂ðωÞ and ĝðkÞ with the behavior in Eq. (13) may
be constructed numerically [17,18]. A particular imple-
mentation is detailed in Secs. IVA1 and IVA2 of Ref. [20],
which we continue using here. A choice of τ, α, and the
sampling time specifies f̂ðωÞ, while a choice of l, λ, and
the sampling length specifies ĝðrÞ. We consider the specific
case α ¼ λ ¼ 0.5 in Eq. (13), which is less susceptible to
numerical error. As in Ref. [20], we work in τ ¼ 1 units,
and in these units, the sampling time and radius are 2 and
0.0028, respectively, while the radius of the bounding
sphere, R, is 0.88. In our construction, the parameter l is
equal to the radius of the sampling volume, i.e.,
l ¼ 0.0028. Note that these parameter choices are sub-
optimal given the assumption of flat space: the boundary of
the quantization sphere is detectable by an observer at the
origin, as the light travel time to the boundary and back is
shorter than the sampling time. Numerical instabilities
prevent a more optimal parameter selection, a topic for
future investigation.

A. Frequency spectra of a particles
in eigenstates of the operator

Recall that the physical particles of interest are the a
particles associated with the Minkowski vacuum state j0ia,
but the magnitudes of the quantum fluctuations, x, are more
easily expressed in the eigenstates given by the b particle
number states jmib. We would like to construct the
frequency spectra of a particles in the eigenstates jmib
to better understand the frequencies of a particles that
contribute to various quantum fluctuations. To do so, let us
consider the mean number of a particles with frequency
ω ¼ k in some eigenstate jmib. We may calculate this
quantity by evaluating

bhmja†kakjmib ¼
X
k0

½A2
kk0mk0 þ B2

kk0 ðmk0 þ 1Þ�; ð27Þ

where the Bogoliubov transformation, Eq. (7), has been
used. Here, mk labels the particle content of the eigenstates
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jmib with the convention shown in Eq. (8). This result
describes the relation between the b particle content, which
is encoded in the eigenstates jmib, and the a particle
content, which are the physically interesting particles.
Figure 1 shows an example of an eigenstate with two b
particles, i.e.,

P
k mk ¼ 2. There is some indication that

the total mean number of a particles may be equal to the
total number of b particles, but more analysis is needed to
confirm this. The frequency spectrum displays complex
structure that eludes straightforward interpretation, though
the higher frequency modes have diminishing contribu-
tions, a behavior that is generic to the spectra that we will
investigate in more detail. While the mean numbers of a
particles fall sharply to negligible values at small and high
frequencies, we cannot rule out limitations in our simula-
tions, so we leave further discussion of the consequences for
future work. Eigenstates with more than two b particles do
not display different behavior, so we will consider only the
two-particle sector in our simulations. The higher particle
sectors aregenerally less probable, as argued inRef. [20], and
should not significantly affect our conclusions.

B. Characteristic frequencies of frequency spectra

Because the frequency spectra are too complex to
analyze directly, we would like to extract a single character-
istic frequency from each spectrum. Here, we proceed with
the simplest characterization,

ωc ¼
P

kðbhmja†kakjmibωkÞP
kbhmja†kakjmib

; ð28Þ

which is merely an average of all frequencies, weighted by
the mean number of a particles at different frequencies. The
denominator normalizes the total mean number to unity.
For our case with l ¼ m ¼ 0 and n ¼ 1 ∼ N, we get

ωc ¼
π

R

P
N
n¼1 ðbhmja†nanjmibnÞP
N
n¼1 bhmja†nanjmib

: ð29Þ

Wewill find it convenient to look at the frequencies scaled
by R=π because 1 ≤ ωcR=π ≤ N, where N is the total
number of modes in the simulation. In Fig. 2, we show
plots of the characteristic frequencies against the eigenvalues
on log-log scales. Observe that there is clear structure to the
datasets, suggesting the weighted average ωc encodes
sufficient information to draw broad conclusions about the
frequency content of quantum fluctuations. For any given
fluctuation of magnitude roughly x, we find a wide range of
frequencies that contribute to that fluctuation. Interestingly,
except forp ¼ 3, the envelopes of the datasets are given by a
specific subset of eigenstates, thosewhere bothb particles are
in the same frequency mode. The anomalous behavior of
p ¼ 3 remains under investigation, and it remains unclear
why there is a region (12 < ln x < 13 in the top panel of
Fig. 2)where the envelope is not givenby this subset of states.
Regardless, in this region, the upper and lower bounds on the
characteristic frequencies almost coincide, so our numerical
results should still suffice for rough estimates.
However, given the complex behavior of the spectra, we

may be concerned whether a finite-mode computation can
be used in physical applications, which are better described
by the N → ∞ limit. We first recall our observation from
Fig. 1: generically, higher frequency modes have diminish-
ing contributions. We supplement this observation with a
simple argument. As higher frequency modes are included,
the characteristic frequency ωc, a weighted average of all
frequencies, increases. If ωc is not bounded above, then in
the N → ∞ limit, we have ωc → ∞ for all quantum
fluctuations, a nonsensical result. We thus expect that for
any given fluctuation, only some frequency modes have
substantial contributions.
We may also draw this conclusion numerically in the

following manner. The aforementioned argument suggests
that as N increases, ωc will converge to some stable value.
We confirm this behavior in Fig. 3 for both ωc and x. These
results suggest that our numerical analysis of finite-mode
systems can be applied to any physical system of interest,
provided we limit our analysis to the region that has
converged. Recalling that we can identify the states that
give the envelope, we focus our analysis on the envelope of
the datasets. In doing so, wewill find in Sec. IV C thatωd in
Eq. (23) may be interpreted as setting an upper bound on
the characteristic frequencies ωc. Note that the end of the
converged region may be visually distinguished by the kink
in the slopes at large x in Fig. 2.

0 100 200 300 400 500 600
0.00

0.01

0.02

0.03

0.04

FIG. 1. Plotted is a frequency spectrum for an eigenstate of the
p ¼ 5 operator with n ¼ 1; 2;…; 600 in the b two-particle sector.
The vertical dashed lined denotes the location of ωc defined in
Eq. (29). The observed behavior does not change drastically with
the parameter choices nor with higher b particle sectors. The
shapes of the spectra are roughly consistent for different
eigenstates, qualitatively differing by translations along the
horizontal axis, an effect that will be further discussed in
Sec. IV B.
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At this point, it may be worth pointing out some
subtleties to our interpretation of the theoretical prediction
in Eq. (23). Note that ωc is a weighted average, and thus
frequencies greater than ωc still contribute, so it is more
precise to say that ωd sets upper bounds on the frequencies
that contribute substantially, with the understanding that
higher frequency modes may have smaller, and eventually
negligible, contributions. We should also note that for any
fluctuation of magnitude x, there appears to be exactly one
corresponding eigenstate and thus one or two correspond-
ing b-mode frequencies, in the two-particle sector.
However, there can be a wide range of a-mode frequencies,
which is the focus of our discussion. Thus, Eq. (23) predicts
upper bounds on the a-mode frequencies that contribute
significantly to fluctuations with magnitudes of order x.

FIG. 2. Plotted are the datasets for, from the top to bottom
panel, p ¼ 3; 5, and 7, respectively, that will be used for detailed
numerical analysis later in Sec. IV C. Highlighted in red is the
subset of eigenstates where only one frequency mode has nonzero
particle content. The data shown are strictly in the b two-particle
sector.
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FIG. 3. Plotted are the eigenvalues and characteristic frequen-
cies as a function of the total number of modes N, where the
mode selection is n ¼ 1 ∼ N, l ¼ m ¼ 0, for the case p ¼ 3 and
l ¼ 0.0028, identical to the choices later in Sec. IV. At
sufficiently high N, both x and ωc converge, a behavior that
generically holds for arbitrary parameters and eigenstates.
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C. Numerical fits to the envelope

Let us now analyze the numerical data to confirm the
theoretical predictions, Eq. (23). As we are primarily
concerned with the power law behavior, we take natural
logarithms to find

lnðωdR=πÞ ≈
(

1
p lnðxdÞ worldline limit;

1
p−2 lnðxdÞ spacetime-averaged limit;

ð30Þ

Note that we have neglected a nonzero additive constant
that emerges from the proportionality constant in Eq. (23)
and our choice to rescale by a factor of R=π. An adequate
dataset must contain sufficient data in both the worldline
and spacetime-averaged limits to perform numerical fits.
Given computational constraints, we must make a com-
promise to get enough data in both regions. Preliminary
analysis following the method in Sec. IV B suggests that
the convergence rates as functions of N increase as p
increases. Consequently, for similar amounts of data points,
we must go to higher N for smaller values of p. We further
recall that the transition from the worldline to spacetime-
averaged limits scales as τ=l raised to some power, so
smaller values of l give us more data in the worldline limit.
These two observations underlie our parameter choices for
our datasets.
We interpret ωd as the envelope of the characteristic

frequencies ωc and xd as the fluctuation magnitudes x.
For the three datasets shown in Fig. 2, we perform least
squares linear regressions to the envelopes of the converged
regions of the worldline and spacetime-averaged limits,
which we may easily determine by eye as the two distinct
slopes in each plot. The transition location, Eq. (19), may be
analyzed following the method in Sec. IV B of Ref. [20],
which we do not consider here due to the lack of data. The
linear fits are shown in Fig. 4, and the best fit values and
statistical errors are compiled in Table I. We find fairly good
consistency between the predictions and numerical results,
verifying our interpretation of Eq. (23) as setting upper
bounds on the frequencies that substantially contribute to
fluctuations of varying magnitudes. Note that full consis-
tency in the spacetime-averaged limit can be obtained by
increasing l, at the expense of the worldline data. Full
consistency in the worldline limit has not been theoretically
explored in much depth, and in particular the l dependence
of the onset of the worldline limit is unknown. Reducing l is
thus not guaranteed to provide more data in the worldline
limit, and a reliablemethod to procure better data in this limit
is a topic for future work. As a final comment, note that in

FIG. 4. Plotted are the linear fits to the datasets for, from the top
to bottom panel, p ¼ 3; 5, and 7, respectively. Here, we only
show the envelopes in Fig. 2.
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choosing to fit strictly to the converged region, our numerical
results are not dependent on N and by extension the higher
frequency modes that are omitted from our finite-mode
computation. Our numerical verification of the theoretical
prediction, Eq. (23), is thus mode independent and may be
applied to systems with higher degrees of freedom.

V. PHYSICAL APPLICATIONS

In most models proposing physical effects arising from
large vacuum fluctuations, an interaction between a probe
and the particles of quantum field is assumed. The details of
these interactions often depend crucially on the frequencies
of the quantum particles because the eigenstates of space-
time-averaged quadratic operators are multimode squeezed
vacuum states with nonzero particle content, and it is the
effects of these particles that are potentially observable. We
have discovered that we may characterize the particle
frequencies of fluctuations of various magnitudes, which
may aid the development of better experimental proposals.
Let us consider a brief example of how one may take

advantage of the results in prior sections. The case p ¼ 3 is
particularly interesting due to its broad applicability, and
here we explore which photons arising from energy density
fluctuations may be trapped in a metal cavity. Let u be the
energy density of the massless scalar field averaged in some
region of spacetime. The moments of u are expected to

behave similarly to those of _φ2,1 so in our notation, the
dimensionless measures of the fluctuation magnitudes, x,
are related to the actual energy density measurements via

x ¼ τ4u: ð31Þ
Recall that the parameter τ may be considered as an
estimate of the sampling duration, so we now reintroduce
τ to account for variable measurement times. In Sec. IV C,
we found numerical estimates for the exponents in Eq. (23)
from the slopes of the data in Fig. 4, assuming τ ¼ 1. The

proportionality constant, which is not well predicted
theoretically, may also be numerically estimated from
the vertical intercepts of the data in those figures.
Accounting for the scaling factor R=π, we find

ωdτ ≈
	
5.0x0.34d worldline limit ðx≲ x�Þ;
0.00051x1.1d spacetime-averaged limit ðx≳ x�Þ:

ð32Þ
Here, we recall that ωd predicts the upper bound on the set
of characteristic frequencies ωc that contribute to a fluc-
tuation of magnitude xd ≈ x. We may estimate the transition
between the two limits, x�, by the intersection of the
worldline and spacetime-averaged limits,

5.0x0.34� ¼ 0.00051x1.1� ; ð33Þ

from which we deduce

x� ≈ 1.8 × 105: ð34Þ

This rough estimate of the transition between the two limits
gives lnðx�Þ ≈ 12, consistent with the data for p ¼ 3 in
Fig. 2. We may rewrite Eq. (32) in terms of the ratio ud=u�,
finding

ωdτ ≈
	
300ðud=u�Þ0.34 ud ≲ u�;

300ðud=u�Þ1.1 ud ≳ u�:
ð35Þ

Here, we follow Eq. (31) and define u� ¼ x�τ−4, and we
have used the numerical estimate of x� given by Eq. (34).
Here, we wish to point out a subtlety regarding our
interpretation of τ. In general, our numerical procedure
for construction of the temporal sampling function does not
require the switch-on time τ and the sampling duration, say
t0, to be approximately equal. However, the specific
functions used in this paper have τ ≈ t0. A set of two
timescale functions where t0 ≫ τ is possible was discussed
in Sec. II D in Ref. [26], where the dependence of both
f̂ðωÞ and PðxÞ upon the ratio t0=τ was considered.
However, no numerical studies using these more general
functions have yet been performed.

TABLE I. Fit results of the least squares linear regressions in the worldline and spacetime-averaged limits. In all
datasets, we have l ¼ 0.0028 whereas N has been increased for p ¼ 3 due to the slower convergence of the
eigenvalues and characteristic frequencies. The number of points in each fit ranges from 14 to 101, with fewer points
for smaller p due to slower convergence.

Case Value of N Limit Predicted slope Fitted slope Standard error

p ¼ 3 2000 Worldline 0.3333 0.3436 0.0005
Spacetime averaged 1.00 1.10 0.003

p ¼ 5 1400 Worldline 0.2000 0.2037 0.0002
Spacetime averaged 0.3333 0.3249 0.0001

p ¼ 7 1400 Worldline 0.14286 0.14447 0.00007
Spacetime averaged 0.20000 0.18493 0.00001

1In fact, for the case of time averaging alone, the relationship
between the moments of the energy density and the moments of
the square of the time derivative of the massless scalar field is
found analytically in Ref. [16].
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Note that the value of t0=τ is independent of the choice of
units for τ itself. The latter is simply a choice of scale which
does not alter the physical description. The meaningful
quantities are the dimensionless variables, such as ωτ of
x ¼ τ4u. We argue that our focus on a subset of temporal
sampling functions should not be a source of worry and
may in fact be necessary in certain cases. The correspon-
dence between the measurement process and the sampling
functions is not always clear, though we expect some
relationship between the two.
We now return to the question of reflection in a metal

cavity. Such reflection requires the angular frequencies of
the photons to be less than the plasma frequency of the
metal, ωp. From Eq. (35), we may then find a constraint on
the sampling time given a fluctuation of magnitude u.
Requiring ωc < ωp, we find

τ ≳
	
300ω−1

p ðud=u�Þ0.34 ud ≲ u�;

300ω−1
p ðud=u�Þ1.1 ud ≳ u�:

ð36Þ

For fixed u=u�, the constraint ωc < ωp thus implies that an
increased τ results in a decreased ωc. That is to say, a
measurement over longer timescales will observe contri-
butions from smaller frequencies, consistent with our
intuition that higher frequency modes are suppressed in
these cases. We end our discussion with a specific example.
For aluminum, the plasma frequency is ωp ≈ 15 eV [30].
Recalling that in units where the reduced Planck constant is
set to unity, 1 eV−1 ¼ 0.66 fs, we find

τ ≳
(
13ð15 eV=ωpÞðud=u�Þ0.34 fs ud ≲ u�;

13ð15 eV=ωpÞðud=u�Þ1.1 fs ud ≳ u�:
ð37Þ

This result may be used to estimate the timescales in which
the most of the contributing particle frequencies are small
enough to allow reflection from boundaries of an aluminum
cavity. Note that because ωd in Eq. (35) is an upper bound
on the characteristic frequencies, timescales shorter than
the bounds in Eq. (37) may still allow reduced levels of
reflection. Practical application of these results will require
an estimate of u=u� and may depend on the particular
context of the experiment. Here, we merely note that,
because u and x differ only by a scaling constant, Eq. (31),
the ratios u=u� and x=x� are equivalent, so numerical
simulations of the sort explored in this paper may be used
directly for these estimates. Although our numerical
calculations were performed assuming quantization in a
spherical cavity, the analytic arguments given in Sec. III
suggest that ωd is independent of the cavity geometry.
A different physical application of the characteristic

frequencies involves the effects of vacuum radiation pres-
sure fluctuations on Rydberg atoms [26]. These fluctua-
tions involve an operator with p ¼ 7, as shown in Ref. [23].
The model proposed in Ref. [26] involves the excitation of

an atom to a highly excited Rydberg state by a laser pulse
and its subsequent deexcitation by a second pulse. The
combined effect can be viewed as a measurement of the
p ¼ 7 operator with a two-timescale temporal sampling
function, resulting in velocity fluctuations of the atom.
Upper bounds on the characteristic frequency ωc associated
with a fluctuation of magnitude x is predicted by Eq. (30) to
scale as x1=7 in the worldline limit. Ideally, we would like to
have ωc small compared to the energy level separations of
the atom, for which a low upper bound is a sufficient but
not necessary condition. Whether this is the case will
require a more detailed analysis of involving a two-
timescale sampling function, which will be a topic for
future research.

VI. CONCLUSION

Phenomena associated with a full theory of quantum
gravity may be explored through extensions to the semi-
classical theory of gravity. Many such phenomena have
been proposed over the years, including geodesic focusing
[9,21,22], impacts on power spectra [10,11], increased
barrier penetration rates of charged particles [23], alter-
native false vacuum decay pathways for self-coupled scalar
fields [24], velocity fluctuations of Rydberg atoms [26],
and large variations in scattered photons in low-temperature
light scattering experiments [27]. Many of these effects are
not gravitational and may be interesting in their own right.
Thus far, experiments searching for these effects remain

lacking. To provide future proposals with the machinery for
more accurate calculations, we investigated the particle
frequencies driving large vacuum quantum fluctuations of
the normal ordered square of time derivatives of the
massless scalar field. We focused on the case where these
fluctuations are observed in a finite duration of time and
finite region of space, which we speculate is more relevant
for experimental purposes. We discovered that these
quantum fluctuations are composed of a variety of particles
at different angular frequencies, and the corresponding
frequency spectra display complex behavior that remains to
be understood. We extracted a characteristic frequency
from each spectra to assign to each quantum state, assumed
to be representative of the particle frequencies contributing
to the fluctuation associated with that state. In doing so, we
found that the characteristic frequencies and fluctuation
magnitudes are related by a power law behavior with two
distinct limits, the worldline and spacetime-averaged limits.
Furthermore, the numerical results obtained here are in
good agreement with the analytic predictions, as illustrated
in Table I. These results allow us to describe the particle
frequencies that substantially contribute to different fluc-
tuations. We described a simple physical application with
photons arising from energy density fluctuations reflecting
off the boundary of an aluminum cavity. We showed that
the measurement duration for which a majority photons are
reflected is bounded below. Such constraints may be used
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to infer the viability of experiments probing large quantum
fluctuations.
Further investigations in this direction may be of interest,

some of which we briefly outline here. The qualitatively
different behavior of the characteristic frequencies for the
p ¼ 3 case remains to be addressed. Perhaps the effects of
other frequency modes, such as those where l ≠ 0 and
m ≠ 0, are more crucial. Missing in our analysis is also any
notion of probabilities; there is no guarantee that the upper
bound on the characteristic frequencies is approximately
equal to the most likely characteristic frequency, and the
latter may also be of theoretical interest. Analysis of the
most likely frequency can be done by revising the method
in Secs. IV B and IV C to incorporate the probabilities PðxÞ
of measuring a fluctuation of magnitude x. The connection
to the probability distribution may run deeper than we
considered in this paper. The transition from the worldline
to spacetime-averaged limit, Eq. (19), is expected to be
identical for both the probability distribution, Eq. (18), and

the envelope of the characteristic frequencies, Eq. (23).
This equivalence is not guaranteed, and any discrepancies
between the probability and frequency data could provide
promising avenues to further understand the physics behind
large quantum fluctuations.
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