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We present the first complete calculation of the soft photon self-energy to the next-to-leading order in a
hot and/or dense ultrarelativistic plasma in QED. The calculation is performed within the real-time
formalism utilizing dimensional regularization in 4 − 2ε dimensions, while the result is reported including
explicit OðεÞ terms in the zero-temperature limit. This information is required to extend the perturbative
calculation of the pressure of cold and dense QED matter to partial next-to-next-to-next-to-leading order in
a weak-coupling expansion, reported in a companion paper. These results pave the way for a similar future
calculation in quantum chromodynamics.
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I. INTRODUCTION

Perturbative thermal field theory is a frequently used
technique in a number of subfields of theoretical high energy
physics, ranging from studies of earlyUniverse cosmology to
heavy-ion phenomenology and the physics of neutron stars.
In high-order computations, a common and at times prob-
lematic issue has to do with the infrared (IR) sensitivity of
different physical quantities, originating from the contribu-
tions of long-range massless (bosonic) fields and leading to
uncancelled divergences in naive perturbation theory (see
e.g., [1] for a review). This has lead to the need to develop
both resummation techniques and effective-field-theory
methods for taming this so-called soft sector of various
quantum field theories, culminating in the development
and application of dimensionally reduced [2–4] and hard-
thermal-loop (HTL) effective theories [5,6]. The dimension-
ally reduced effective theories are applicable to static
observables at high temperatures T (see e.g., [7]), while
the HTL framework is more versatile, remaining functional
even at zero temperature and for time-dependent quantities.
In the context of quantum chromodynamics (QCD) at

nonzero temperature and/or density, efforts to determine the

pressure, or equation of state, have reached such a high order
[8–13] that physical contributions can no longer be classified
as being purely hard (corresponding to scales such as πT orμ,
where μ is the chemical potential of quarks) or soft (scales
proportional to electric or magnetic screening masses).
Instead, these modes also interact with each other in ways
that have recently been characterized at zero temperature
[12], leading to the generation of so-called mixed contribu-
tions to physical quantities. In theparticular case of theT ¼ 0
pressure of cold quark matter, such contributions enter at
Oðα3sÞ in the strong coupling constant αs, and require the
dressing of gluon propagators with self-energies that go
beyond the usual leading-order (LO) one-loop HTL expres-
sion, encountered already in lower-order computations.
Given that the LO HTL approximation amounts to

studying one-loop self-energies (and vertex functions) in
the limit of soft external momenta, there are two indepen-
dent ways in which one can proceed beyond this limit to
next-to-leading order (NLO). On the one hand, we may
expand the one-loop self-energy of the full theory beyond
LO in powers of the soft momentum. On the other hand, we
may consider two-loop corrections at LO in the momentum
expansion.1 In the context of the Abelian theory quantum
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1In principle, there is a third possible source of NLO
corrections as well, corresponding to soft loop momenta in the
one-loop self-energy diagrams. These corrections will, however,
turn out to be of subleading order for the calculation performed in
this paper [14].
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electrodynamics (QED) and QCD, the one-loop photon,
and gluon HTL self-energies2 at finite temperature and
nonzero density were first computed by Toimela in
Ref. [15]. Recently, the photon self-energy was extended
to two loops at nonzero temperature but vanishing density
in the limit of soft external momenta3 and massless
fermions [17]. The main goal of the present paper is to
generalize this two-loop computation to nonzero chemical
potentials.
The reason to consider QED in the present work is

twofold. First, owing to the lack of self-interactions
between photons, the evaluation of the photon two-point
function to NLO both in a loop and small-momentum
expansion is considerably more straightforward than in
QCD. Thus, it makes sense to begin by considering this
more tractable—and yet very nontrivial—limit, and return
to the subtleties related to the non-Abelian nature of QCD
later. Second, QED is of course an interesting physical
theory on its own, although due to the small value of the
fine-structure constant αe, weak-coupling expansions per-
formed there tend to converge considerably better than in
QCD. Evaluating the two-loop self-energy in QED enables
us to analyze the function at various coupling strengths,
and to study the interesting physics contained therein.
Furthermore, this allows the evaluation of the mixed
contributions to the QED pressure at next-to-next-to-
next-to-leading order (N3LO), including the determination
of the complete Oðα3e ln αeÞ term at zero temperature. This
calculation will be described in the associated companion
paper [18].
The present article is organized as follows. In Sec. II, we

introduce to the reader both our notation and the technical
background of our computation. This includes a detailed
description of how the two-point function is evaluated in
the real-time formalism of thermal field theory, and an
introduction of the general structure of the photon self-
energy tensor and its low-momentum HTL expansion. In
Sec. III, we then present the detailed computation of the
one- and two-loop photon self-energies with arbitrary soft
external momenta within the framework of dimensional
regularization in 4 − 2ε dimensions. Section IVon the other
hand contains a summary of the main results for the photon
self-energies and an analysis of the resulting dispersion
relations for transverse and longitudinal photon modes. In
Sec. IV C, we then compute the explicit OðεÞ term for the
one- and two-loop self-energies in the limit of soft external
momenta at zero temperature. These results become useful
when considering higher-order vacuum diagrams for the
pressure in which the self-energy appears. Finally, in Sec. V
we draw our conclusions and consider the implications of

our work, while many technical details of the calculations
are explained in the Appendix.

II. ORGANIZING THE COMPUTATION

In this section, we provide the reader with the back-
ground toolkit needed to follow the details of our compu-
tation. In particular, we introduce the formalism ranging
from dimensional regularization to real-time HTL compu-
tations. In addition, we discuss the mathematical properties
of real-time propagators, the photon self-energy tensor and
the low-momentum expansion, relevant for our work. A
reader familiar with the topic may want to move directly to
the following section.

A. Conventions and notation

We work in D ¼ 4 − 2ε spacetime dimensions and
d ¼ D − 1 spatial dimensions with the Minkowskian
metric gμν ¼ diagð−1;þ1;…;þ1Þ and with the fermion
Clifford algebra defined by fγμ; γνg ¼ −2gμν. All four-
vectors are denoted by uppercase letters and the magnitudes
of spatial vectors with lowercase letters,

P≡ ðp0;pÞ; p≡ jpj; ð1Þ

where the individual spatial components are pi,
i ¼ 1;…; d. The D-dimensional integration measure is
defined as

Z
P
≡
�
eγEΛ̄2

4π

�4−D
2
Z

dDP
ð2πÞD ¼

Z
∞

−∞

dp0

2π

Z
p
; ð2Þ

where the spatial part of the integration measure can be
written as [19]

Z
p
≡
�
eγEΛ̄2

4π

�3−d
2
Z

ddp
ð2πÞd ;

¼ 4

ð4πÞdþ1
2 Γðd−1

2
Þ

�
eγEΛ̄2

4π

�3−d
2
Z

∞

0

dppd−1
Z

1

−1
dzð1−z2Þd−32 :

ð3Þ

Here, the variable z ¼ k̂ · p̂ parametrizes an angle with
respect to some external vector k and Λ̄ is the MS
renormalization scale. The factor ðeγE=4πÞð3−dÞ=2, with γE
the Euler-Mascheroni constant, is introduced as usual to
simplify the final expressions.

B. Real-time formalism

We calculate the self-energies using the r=a (or Keldysh)
basis representation of the real-time formalism (for a recent
review see e.g., Ref. [1]), where propagators and self-
energies are 2 × 2 matrices

2The computation was also done including the full kinematics.
3In the full kinematics, the computation was performed in

Ref. [16].
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D ¼
�
Drr DR

DA 0

�
; Π ¼

�
0 ΠA

ΠR Πaa

�
; ð4Þ

respectively. In terms of the r=a indices, the retarded/
advanced propagator is written as DR=A ¼ Dra=ar, while
for the self-energy, the corresponding result reads ΠR=A ¼
Πar=ra. In Feynman gauge (ξ ¼ 1), the gauge-boson propa-
gators are then given by

DR=A
μν ðPÞ ¼ gμνΔR=AðPÞ; Drr

μνðPÞ ¼ gμνΔrr
B ðPÞ; ð5Þ

and the fermion propagators by

SR=AðPÞ ¼ −=PΔR=AðPÞ; SrrðPÞ ¼ −=PΔrr
F ðPÞ; ð6Þ

where the retarded and advanced scalar parts are written as

ΔR=AðPÞ ¼ −i
P2 ∓ iηp0

; ð7Þ

with η > 0.
The scalar rr-propagator is related to the retarded and

advanced ones through the Kubo-Martin-Schwinger
relation,

Δrr
B ðPÞ ¼ NBðPÞðΔRðPÞ − ΔAðPÞÞ;

Δrr
F ðPÞ ¼ N−

FðPÞðΔRðPÞ − ΔAðPÞÞ; ð8Þ

where the functions NB and NF are written in terms of the
bosonic and fermionic distribution functions nB=Fðp0Þ ¼
ðep0=T ∓ 1Þ−1 as

NBðPÞ ¼
1

2
þ nBðp0Þ; N�

F ðPÞ ¼
1

2
− nFðp0 � μÞ; ð9Þ

respectively. Here, the difference of the retarded and
advanced propagators is, by definition, the spectral function
Δd, which may be expressed as δ functions by using the
Sokhotski-Plemelj formula,

ΔdðPÞ≡ ΔR − ΔA ¼ 2πsgnðp0ÞδðP2Þ
¼ π

p
ðδðp − p0Þ − δðpþ p0ÞÞ: ð10Þ

In the computations to follow, we frequently rely on the
parity properties of the above functions,

ΔAðPÞ ¼ ΔRð−PÞ; ΔdðPÞ ¼ −Δdð−PÞ;
NBðPÞ ¼ −NBð−PÞ; N�

F ðPÞ ¼ −N∓
F ð−PÞ: ð11Þ

The different propagators in the r=a basis may be inter-
preted as describing the flow of causality (see Ref. [1]).
This interpretation leads to an intuitive graphical represen-
tation of the various r=a assignments contributing to a
certain diagram. In particular, the propagators are drawn as
causal arrows from a fields to r fields as shown in Fig. 1.
In the r=a basis, there are two distinct ways to assign r=a

labels to three-point vertices (relevant in QED), namely rra
and aaa. Additionally, the latter vertices are multiplied
with an extra factor of 1

4
. Using the graphical causal arrow

representation we introduced for the propagators, the two
vertices are drawn in Fig. 2.

C. Tensor representation

In QED, one defines the self-energy (or polarization
tensor) Πμν of the photon field through the Dyson-
Schwinger equation as

iΠμνðKÞ ¼ ðD−1ÞμνðKÞ − ðD−1
0 ÞμνðKÞ; ð12Þ

where DμνðKÞ is the full dressed photon propagator and
Dμν

0 ðKÞ is the bare propagator. The definition above implies
that the self-energyΠμν is given asþi times the appropriate
Feynman diagram. The current conservation in QED
requires that the photon self-energy is transverse

KμΠμνðKÞ ¼ 0; ð13Þ
and gauge invariance requires that in a covariant gauge

KμKνDμνðKÞ ¼ −iξ; ð14Þ
where the parameter ξ fixes the gauge. In QED, both of
these constraints hold in the vacuum as well as in
medium [20].

FIG. 1. The r=a propagators may be represented as arrows describing the flow of causality from r fields to a fields. The cut in the
rr-propagator sources the flow.

FIG. 2. Two possible r=a labelings for the three-point vertex.
The vertex with three a indices has an extra factor of 1

4
.
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Introducing a thermal medium breaks the Lorentz
symmetry of the vacuum by specifying a special frame
of reference, the rest frame of the thermal bath. In that
frame, the remaining symmetry is associated with spatial
rotations, and the four-velocity of the medium has
the form uμ ¼ ð1; 0Þ. Consequently, the tensor basis for
the photon self-energy extends to four different tensors
gμν; KμKν; uμuν, and uμKν þ uνKμ. Further, requiring the
transversality property (13) reduces the number of available
independent basis tensors to two, allowing us to write4

ΠμνðKÞ ¼ PT
μνðKÞΠTðKÞ þ PL

μνðKÞΠLðKÞ; ð15Þ

where the scalar functionsΠT andΠL are the transverse and
longitudinal components of the self-energy tensor, respec-
tively. The associated orthogonal projection operators read

PT
μνðKÞ ¼ δμi δ

ν
j

�
gij −

kikj

k2

�
;

PL
μνðKÞ ¼ PD

μνðKÞ − PT
μνðKÞ; ð16Þ

with

PD
μνðKÞ ¼ gμν −

KμKν

K2
: ð17Þ

These above projectors are D-dimensionally transverse
as required by Eq. (13), and additionally PT

μνðKÞ is
d-dimensionally transverse with respect to k.
Using the properties of the two projectors, we can

determine the coefficients seen in Eq. (15) via the trace
and 00-component of the full self-energy tensor. The
explicit d-dimensional identities are given by

ΠTðKÞ ¼
1

d − 1

�
Πμ

μðKÞ þ K2

k2
Π00ðKÞ

�
;

ΠLðKÞ ¼ −
K2

k2
Π00ðKÞ: ð18Þ

D. HTL limit

In calculations involving a thermal medium, it is often
convenient to extract the vacuum contribution from the
self-energy tensor as

Πμν ¼ ðΠμν − lim
T;μ→0

ΠμνÞ þ lim
T;μ→0

Πμν ≡ Πμν
M þ Πμν

V ; ð19Þ

where the vacuum-subtracted Πμν
M is the matter contribution

and Πμν
V is the ultraviolet (UV) -divergent vacuum

contribution independent of the medium. However, when
considering the self-energy at small external momentum K,
it is beneficial to write the small-K expansion without
explicitly separating the vacuum and matter parts,

ΠμνðKÞ ¼ m2
E

X∞
n¼0

�
e2K2

m2
E

�
n

cμνn ðμ=T; k0=kÞ; ð20Þ

where e is the electric charge, m2
E is an Oðe2Þ effective

thermal mass scale (to be defined below), and the cμνn are
dimensionless functions.5 Since Πμν

V ∼ K2 by Lorentz
symmetry, only Πμν

M contributes to the n ¼ 0 term. It also
follows that the n ¼ 1 term is a sum of Πμν

V and the OðK2Þ
piece of Πμν

M, each of which separately contains terms
proportional to lnðK2Þ, but in the sum they cancel out,
leaving only ratios of mass scales lnðT=Λ̄Þ and lnðμ=Λ̄Þ.
(Here and throughout, ln denotes the complex logarithm).
Further, it is worth noting that the structure of Eq. (20)
implies that the n ¼ 1 term (unless cμν1 has a very particular
form) includes nontrivial and noncovariant structures
originating from Πμν

M that are nevertheless independent of
T and μ and may thus be easily confused for vacuum terms.
In reality, this is a side effect of writing the series expansion
in exactly d ¼ 3 dimensions, and in a more general setting
these terms would depend on the mass scale mE as
expected. This is explicitly seen in the ε corrections
considered below in Eqs. (119) and (120) at T ¼ 0, where
the noncovariant terms appearing in the first nontrivial term
of the expansion reappear with the factor lnð2μ=Λ̄Þ multi-
plying them at OðεÞ.
In this work, we compute the one-loop and two-loop

parts of the n ¼ 0 term of Eq. (20), of which the former is
the usual LO HTL self-energy, as well as the one-loop
part of the n ¼ 1 term, dubbed a “power correction.” The
contributions are denoted by ΠLO, ΠNLO, and ΠPow,
respectively.

III. DETAILED EVALUATION OF THE
PHOTON SELF-ENERGIES

In this section, we present the detailed computation of
ΠLO, ΠPow, and ΠNLO with arbitrary soft external momenta
in a hot (nonzero-temperature) and dense (nonzero-
chemical-potentials) QED plasma, generalizing the results
of [17,21,22] to nonzero density. The results of the com-
putation are collected in their entirety in the following
section. However, the results follow the notation defined in
this section, so we encourage the reader to review also the
present section at least cursorily.

4Note that in QCD the transversality (13) does not generally
hold beyond the leading order HTLs [20]. Hence, the corre-
sponding decomposition for the gluon includes all four basis
tensors.

5Note that in general they can also depend on “mixed” ratios of
thermal and momentum scales. However, for the power correc-
tions the angular and radial integrals are expected to factorise in
such a way that this does not happen. In the one-loop case this is
evident from the calculations performed in this paper.
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The calculations are performed within the standard
r=a-basis representation of the real-time formalism. We
work in the massless-fermion limit and, as discussed above,
use dimensional regularization to regularize all the inter-
mediate singularities in the MS renormalization scheme.

A. One-loop photon self-energy

There are two ways to draw the r=a arrows to a retarded
one-loop photon self-energy as shown in Fig. 3. An
application of Feynman rules to the assignments yields

−iðΠR
LOÞμνðKÞ ¼ −

Z
P
FμνðK;PÞfΔAðPÞΔrr

F ðK þ PÞ

þ Δrr
F ðPÞΔRðK þ PÞg; ð21Þ

where the overall minus sign stems from the fermion loop.
The numerator algebra is contained in the tensor Fμν and
simplifies to

FμνðK;PÞ ¼ Tr½ðiVμÞ=PðiVνÞð=K þ =PÞ�;
¼ −4e2ð2PμPν þ KμPν þ PμKν

− ðP2 þ K · PÞgμνÞ; ð22Þ

where iVμ ¼ ieγμ stands for the free electron-photon vertex
function.
Next, we should bring Eq. (21) to a form where the

δ-functions and distribution functions in the rr-propagators
depend only on the loop momentum P, so that the
distribution functions become independent of the angle
between k and p, making the angular integral easier to
handle. To this end, we shift the loop momentum in the first
term by P ↦ −K − P. The numerator is invariant under
this change of variables due to the cyclicity of the trace and
the symmetry under μ ↔ ν. Hence, we obtain

−iðΠR
LOÞμνðKÞ ¼ −

Z
P
FμνfN−

FðPÞ þ Nþ
F ðPÞgΔR

× ðK þ PÞΔdðPÞ; ð23Þ

where we utilized the parity properties of the propagators
and distribution functions we introduced in Eq. (11).
From the expression in Eq. (23), we can then compute
the trace ðΠR

LOÞμμ and 00-component ðΠR
LOÞ00 of the photon

self-energy.

1. Trace

Contracting the metric tensor with the numerator in
Eq. (22) gives

Fμ
μ ¼ 4e2ðD − 2ÞK · P; ð24Þ

where the spectral function Δd sets P on shell, P2 ¼ 0.
Substituting the above numerator into Eq. (23) and writing
the ΔR propagator out explicitly yields the result

ðΠR
LOÞμμðKÞ ¼ −4e2ðD − 2Þ

Z
P
ΔdðPÞfN−

FðPÞ þ Nþ
F ðPÞg

×
K · P

2K · Pþ K2
: ð25Þ

To avoid clutter, the iη from the retarded propagator has
been absorbed into k0 since we can write ðK þ PÞ2 −
iηðk0 þ p0Þ ¼ ðK þ PÞ2jk0→k0þiη for small η. Hence, later
on we should remember that the 0-component of the
external momentum has a small imaginary part and replace
k0 with k0 þ iη in our expressions.
In the HTL limit, we are interested in the behavior of the

photon self-energy when the external momentum K is soft.
A convenient shortcut for extracting the limit is to expand
the integrand for K ≪ p. Strictly speaking, we should first
integrate over p0 properly, but since Δd is proportional to
δðp0 − pÞ − δðp0 þ pÞ, it has already been done implicitly
by the δ-functions. Before expanding, we should therefore
set P2 ¼ 0 to obtain the correct expansion. Hence, we can
directly expand Eq. (25) for small K and pick out the
leading terms, yielding

ðΠR
LOÞμμðKÞ ¼ −2e2ðD − 2Þ

Z
P
ΔdðPÞfN−

FðPÞ þ Nþ
F ðPÞg:

ð26Þ

FIG. 3. The two r=a assignments for the retarded one-loop photon self-energy diagram. By convention, the direction of fermion flow
is aligned with the momenta of fermions.
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In general, expressions become more symmetric in the
HTL limit, which is the reason we have taken the limit
before integrating explicitly. In our case, the expression in
the curly brackets in Eq. (26) is odd in P, so we can carry
out the p0 integral by employing the formula

Z
P
ΔdðPÞfðp0;pÞ ¼

Z
p

fðp;pÞ
p

; ð27Þ

where f is an odd function of P (Δd is odd, making the
integrand even). This is a direct consequence of the
definition of Δd in Eq. (10).
Integrating over p0 gives next

ðΠR
LOÞμμðKÞ ¼ −2e2ðD − 2Þ

Z
p

1

p
fN−

FðpÞ þ Nþ
F ðpÞg;

¼ −2e2ðd − 1ÞNR2A0 ≡m2
E; ð28Þ

where N�
F ðpÞ is understood as N�

F ðPÞjp0→p. Characteristic
to the HTL expansion, the radial and angular spatial
integrals factorize making their separate calculation pos-
sible. Here, we have introduced the notation of the
Appendix, where the radial integrals are denoted by Ri
and angular ones by Ai. The normalization of the integra-
tion measure given by Eq. (3) has been absorbed into the
factor

N ≡ 4

ð4πÞdþ1
2 Γðd−1

2
Þ

�
eγEΛ̄2

4π

�3−d
2

: ð29Þ

We also defined mE as the d-dimensional in-medium
effective mass scale for the photon.
Next, we apply the results for the spatial integrals found

in the Appendix. The integrals are regulated by dimen-
sional regularization in d spatial dimensions but neither in
R2 norA0 divergences are present. To obtain the finite part,
we may then set d ¼ 3 everywhere leading to the result

ðΠR
LOÞμμðKÞ ¼ e2

�
T2

3
þ μ2

π2

�
¼ m2

Ejd¼3; ð30Þ

which gives the well-known d ¼ 3-dimensional value
for mE.

2. 00-component

Next, we repeat the above steps for the 00-component.
Picking out the 00-component from the numerator in
Eq. (22) gives

F00 ¼ −4e2ð2p2
0 þ 2k0p0 þ K · PÞ; ð31Þ

and inserting this expression into Eq. (23) leads to

ðΠR
LOÞ00ðKÞ ¼ 4e2

Z
P
ΔdðPÞfN−

FðPÞ þ Nþ
F ðPÞg

×
2p2

0 þ 2k0p0 þ K · P
2K · Pþ K2

: ð32Þ

The HTL limit is obtained by expanding in small K,
resulting in

ðΠR
LOÞ00ðKÞ ¼ 2e2

Z
P
ΔdðPÞfN−

FðPÞ þ Nþ
F ðPÞg

×

�
1þ 2k0p0

K · P
−

K2p2
0

ðK · PÞ2 þ
2p2

0

K · P

�
: ð33Þ

The last term in the round brackets behaves parametrically
as Oð1=KÞ and leads the small-K expansion. However, the
term vanishes due to symmetry since the corresponding
integrand is an odd function of theD-dimensional vector P.
The remaining terms become leading, and since their
integrands are even, we can use Eq. (27) to integrate
over p0,

ðΠR
LOÞ00ðKÞ ¼ 2e2

Z
p

1

p
fN−

FðpÞ þ Nþ
F ðpÞg

×

�
1þ 2k0

v · K
−

K2

ðv · KÞ2
�
;

¼ 2e2NR2ðA0 þ 2k0A1 − K2A2Þ; ð34Þ

where v≡ ð1; p̂Þ so that v · K ¼ −k0 þ kz. The radial and
angular integrals in Eq. (34) are finite, allowing us to set
d ¼ 3, which leads to

ðΠR
LOÞ00ðKÞ ¼ −m2

Ejd¼3ð1 − k0LðKÞÞ; ð35Þ

with

LðKÞ≡ 1

2k
ln
k0 þ k
k0 − k

: ð36Þ

B. Power corrections to one-loop photon self-energy

Next, we will consider the leading power correction to
the one-loop photon self-energy at nonzero temperature
and density. As in the leading-order HTL case, we start
from the retarded photon self-energy tensor in Eq. (23) and
consider the kinematical approximation where the external
momentum is soft K ≪ P. As discussed in Sec. II D [see
Eq. (20)], the power corrections are then obtained by
expanding the argument of the one-loop photon self-energy
in powers ðK2Þn, where n ¼ 0 gives the leading HTL result
and n ¼ 1 corresponds to the power correction, the latter of
which receives contributions from both the vacuum and
matter parts.
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Concentrating first the trace part of the self-energy
tensor, we obtain for the first subleading ð∼K2Þ power
correction term

ðΠR
PowÞμμðKÞ ¼ −

e2

2
ðD − 2Þ

Z
P
ΔdðPÞfN−

FðPÞ

þ Nþ
F ðPÞg

K4

ðK · PÞ2 ; ð37Þ

where the integral over p0 yields

ðΠR
PowÞμμðKÞ ¼ −

e2

2
ðD − 2Þ

Z
p

1

p3
fN−

FðpÞ þ Nþ
F ðpÞg

×
K4

ðv · KÞ2 ;

¼ −
e2

2
ðd − 1ÞK4NR3A2: ð38Þ

Next, we concentrate on the 00-component of the self-
energy tensor, for which the leading power correction term
is given by

ðΠR
PowÞ00ðKÞ ¼ −

e2

2

Z
P
ΔdðPÞfN−

FðPÞ þ Nþ
F ðPÞg

×

�
K6p2

0

ðK · PÞ4 −
K4ð2k0p0 þ K · PÞ

ðK · PÞ3
�
; ð39Þ

where the integral over p0 yields

ðΠR
PowÞ00ðKÞ ¼ −

e2

2

Z
p

1

p3
fN−

FðpÞ þ Nþ
F ðpÞg

×

�
K6

ðv · KÞ4 −
2k0K4

ðv · KÞ3 −
K4

ðv · KÞ2
�
;

¼ −
e2

2
K4NR3ðK2A4 − 2k0A3 −A2Þ: ð40Þ

Here, the radial and angular integrals factorize and are
computed up to OðεÞ in the Appendix. Note that the radial
integral R3 is proportional to

Z
∞

0

dppd−1

p3
f1 − nFðp − μÞ − nFðpþ μÞg; ð41Þ

which is divergent when d → 3. As can been seen from the
form of the three parts of Eq. (41), the first term is a vacuum
contribution, while the two latter terms are matter parts.
In the small-p limit, the integral is convergent due to a
cancellation between the vacuum and matter parts. On
the other hand, in the large-p limit, the matter parts

are exponentially suppressed, while the vacuum part is
divergent. Thus, the integral in Eq. (41) contains a 1=ε
divergence that is a UV divergence of QED rather than
the HTL theory, even though the use of dimensional
regularization might obscure this fact. To verify that this
is indeed a UV divergence of full QED, one can perform
the calculations discussed after Eq. (20), namely separa-
tely compute the textbook one-loop vacuum contribution
and the one-loop matter part [15], both unexpanded in
the external momentum K. The former is IR finite due
to the external scale, but UV divergent, and behaves
like ∼K2½1=ε − #1 lnðK2Þ þ � � ��, while the latter is com-
pletely finite and has a subleading term of the form
∼K2½#1 lnðK2Þ þ � � �� in the HTL limit.6 The power cor-
rection is then the sum of these two contributions [note that
the lnðK2Þ terms cancel], which indeed contains a full-
theory UV divergence, arising from the full-theory vacuum
part. Consequently, the divergence seen here will be
canceled upon the UV renormalization of the full theory.
The structure of the divergences is discussed more exten-
sively in the context of the pressure in Ref. [12].
Using the results given in the Appendix, we may finally

write

ðΠR
PowÞμμðKÞ ¼ −

e2K2

2π2

�
−

1

2ε
þ
�
ln
2e−γET

Λ̄
− 1

�
þ 1

2

þ
�
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�

− Lið1Þ0 ð−eμ
TÞ − Lið1Þ0 ð−e−μ

TÞ
�
; ð42Þ

and

ðΠR
PowÞ00ðKÞ ¼ e2k2

6π2

�
−

1

2ε
þ
�
ln
2e−γET

Λ̄
− 1

�

þ 1

2

�
3 −

k20
k2

��
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�

− Lið1Þ0 ð−eμ
TÞ − Lið1Þ0 ð−e−μ

TÞ
�
; ð43Þ

where we have introduced the notation Lið1Þ0 ðzÞ ¼
lims→0

∂LisðzÞ
∂s with Lis standing for the standard polylogar-

ithm function. As mentioned above, the UV divergence in
these expressions is eliminated with UV renormalization,
specifically by renormalizing the wave function. In the
MS scheme, the wave function renormalization constant
Z3 for the photon field reads Z3 ¼ 1 − e2

4π2
1
3ε. This leads to

the renormalized expressions which will be presented
in Sec. IV.

6The leading term in the expansion of the matter part is just the
LO HTL term computed in Sec. III A.
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C. Two-loop photon self-energy

We are now finally able to move on to a detailed
presentation of the calculation of the retarded two-loop
photon self-energy in the HTL limit, which generalizes the
calculation of Carignano et al. [17] to finite density. We
have explicitly checked that the μ → 0 limit of ΠR

NLO agrees
with the result of Ref. [17].

There are three diagrams that contribute to the self-energy
at the two-loop order, which we call the cat’s eye graph,
watermelon 1 (denoted by M1) and watermelon 2 (M2)

ðΠR
NLOÞμν ¼ ðΠR

catÞμν þ ðΠR
M1Þμν þ ðΠR

M2Þμν; ð44Þ

and which are represented by the graphs7

ð45Þ

respectively.
Before moving to the actual computation, let us first

present a useful relation between the distribution functions
NB and N�

F . At two-loop level, the integrals contain
products of two distribution functions which obey the
relation

N�
F ðP1ÞN∓

F ðP2Þ þ N∓
F ðP2ÞNBðP3Þ þ NBðP3ÞN�

F ðP1Þ

þ 1

4
¼ 0; ð46Þ

where the momenta satisfy P1 þ P2 þ P3 ¼ 0. Since the
last constant term on the lhs in the above relation is a pure
vacuum term not contributing to the HTL limit, it will be
persistently ignored in the following.

1. Cat’s-eye diagram

Applying the Feynman rules to the cat’s-eye diagram
without specifying the r=a assignments yields

−
Z
P

Z
Q
Tr½ðiVμÞSpðPÞðiVρÞSqðPQÞðiVνÞSrðKPQÞ

× ðiVσÞSsðKPÞ�Dρσ
t ðQÞ; ð47Þ

where the indices p, q, r, s, and t will be replaced with the
appropriate r=a labels. To save space, we have compacti-
fied the notation by suppressing plus signs in the arguments
of propagators: KPQ ¼ K þ PþQ, etc. The overall
minus sign originates from the fermion loop present in
the diagram. Applying the r=a-basis Feynman rules to the
above expression yields now the assignments (see Fig. 4):

−iðΠR
catÞμνðKÞ ¼ −

Z
P

Z
Q
Fcat
μν ðK;P;QÞfΔRðPÞΔrr

B ðQÞΔrr
F ðPQÞΔRðKPÞΔRðKPQÞ

þ ΔAðPÞΔrr
B ðQÞΔAðPQÞΔAðKPÞΔrr

F ðKPQÞ þ ΔAðPÞΔrr
B ðQÞΔAðPQÞΔrr

F ðKPÞΔRðKPQÞ
þ Δrr

F ðPÞΔrr
B ðQÞΔAðPQÞΔRðKPÞΔRðKPQÞ þ Δrr

F ðPÞΔRðQÞΔrr
F ðPQÞΔRðKPÞΔRðKPQÞ

þ ΔAðPÞΔRðQÞΔrr
F ðPQÞΔrr

F ðKPÞΔRðKPQÞ þ ΔAðPÞΔAðQÞΔAðPQÞΔrr
F ðKPÞΔrr

F ðKPQÞ
þ Δrr

F ðPÞΔAðQÞΔAðPQÞΔRðKPÞΔrr
F ðKPQÞg: ð48Þ

We have only included assignments with thermal contributions and dropped all purely vacuum terms, i.e., those not
containing any rr-propagators. Additionally, assignments with closed loops of retarded or advanced propagators have been
discarded since they integrate to zero.
The numerator algebra above simplifies to

Fcat
μν ¼ Tr½ðiVμÞ=PðiVρÞð=Pþ =QÞðiVνÞð=K þ =Pþ =QÞðiVσÞð=K þ =PÞ�gρσ;

¼ e4Tr½γμ=Pγρð=Pþ =QÞγνð=K þ =Pþ =QÞγρð=K þ =PÞ�; ð49Þ

7As above, the direction of the fermionic flow is aligned with the momentum assignments.
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where the Dirac trace can be computed in D dimensions by
employing well-known γ-matrix identities. However, the
resulting expression is rather lengthy and we choose not to
write it down explicitly. As the trace and 00-component end
up being the only components we need, we may utilize that
the diagonal elements (μ ¼ ν) of Fcat

μν are invariant under the
following changes of integration variables

ð1Þ P ↦ −K − P −Q; ð50Þ

ð2Þ P ↦ −K − P; Q ↦ −Q: ð51Þ

Next, our goal is to make the integration more manageable
by bringing Eq. (48) into a form where the Δd functions and
distribution functions depend only on single momenta. This
is significantly more complicated than in the one-loop case,
but can be achieved using the relation between the distri-
bution functions in Eq. (46). That relation, together with the
variable changes (1) and (2) allows us to simplify Eq. (48) to

−iðΠR
catÞμνðKÞ ¼ −

Z
P

Z
Q
Fcat
μν ðK;P;QÞΔdðPÞΔRðK þ PÞf2NBðQÞ½N−

FðPÞ þ Nþ
F ðPÞ�ΔRðK þ PþQÞ

× ½ΔdðPþQÞΔpðQÞ þ ΔdðQÞΔpðPþQÞ�
þ ½N−

FðPÞN−
FðK þ PþQÞ þ Nþ

F ðPÞNþ
F ðK þ PþQÞ� × ΔAðQÞΔAðPþQÞΔdðK þ PþQÞg; ð52Þ

where we utilized the parity properties of the functions listed in Sec. II B and introduced the notation Δp ≡ ðΔR þ ΔAÞ=2.
By introducing another two changes of variables,

ð3Þ Q ↦ −K − P −Q; ð53Þ

ð4Þ Q ↦ Q − P; ð54Þ

and making use of Eq. (46) again, we can bring Eq. (52) into the form

−iðΠR
catÞμνðKÞ ¼ −

Z
P

Z
Q
ΔdðPÞΔdðQÞf2ΔRðK þ PÞΔpðPþQÞΔRðK þ PþQÞNBðQÞ½N−

FðPÞ þ Nþ
F ðPÞ�Fcat

μν

þ ΔRðK þ PÞΔRðK þQÞΔRðK þ PþQÞ½N−
FðPÞNþ

F ðQÞ þ Nþ
F ðPÞN−

FðQÞ�Fcatð3Þ
μν

þ ΔRðK þ PÞΔpðP −QÞΔRðK þQÞ½N−
FðPÞN−

FðQÞ þ Nþ
F ðPÞNþ

F ðQÞ�Fcatð4Þ
μν g; ð55Þ

where the variable changes (3) and (4) have not left the numerator Fcat
μν invariant, and we have denoted the results of those

changes by FcatðiÞ
μν , with (i) referring to the particular change of variables.

2. Watermelon diagram 1

Next, we concentrate on the watermelon diagram 1 shown in Eq. (45). When applied to it, the Feynman rules yield

−
Z
P

Z
Q
Tr½ðiVμÞSpðPÞðiVνÞSqðKPÞðiVρÞSrðKPQÞðiVσÞSsðKPÞ�Dρσ

t ðQÞ; ð56Þ

FIG. 4. r=a assignments contributing to the thermal parts of the cat’s eye diagram. Here, the distinction between photon and fermion
lines is not necessary since assigning the r=a labels depends only on the topology of a given diagram.
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to which we assign the appropriate r=a labels as shown in Fig. 5. Again, contributions independent of distribution functions
(i.e., the vacuum parts) and contributions containing closed causality loops are neglected. This leads to the expression

−iðΠR
M1ÞμνðKÞ ¼ −

Z
P

Z
Q
FM1
μν ðK;P;QÞfΔrr

F ðPÞΔrr
B ðQÞΔRðKPÞΔRðKPÞΔRðKPQÞ

þ ΔAðPÞΔrr
B ðQÞΔrr

F ðKPÞΔRðKPÞΔRðKPQÞ þ ΔAðPÞΔrr
B ðQÞΔrr

F ðKPÞΔAðKPÞΔAðKPQÞ
þ ΔAðPÞΔrr

B ðQÞΔRðKPÞΔAðKPÞΔrr
F ðKPQÞ þ Δrr

F ðPÞΔAðQÞΔRðKPÞΔRðKPÞΔrr
F ðKPQÞ

þ ΔAðPÞΔAðQÞΔrr
F ðKPÞΔRðKPÞΔrr

F ðKPQÞ þ ΔAðPÞΔRðQÞΔrr
F ðKPÞΔAðKPÞΔrr

F ðKPQÞg; ð57Þ

where the numerator reads

FM1
μν ¼ Tr½ðiVμÞ=PðiVνÞð=K þ =PÞðiVρÞð=K þ =Pþ =QÞðiVσÞð=K þ =PÞ�gρσ;

¼ e4Tr½γμ=Pγνð=K þ =PÞγρð=K þ =Pþ =QÞγρð=K þ =PÞ�: ð58Þ

The expression in Eq. (57) contains so-called pinch singularities, which are generated when retarded and advanced
propagators with the same momentum arguments multiply each other as in ΔRðKPÞΔAðKPÞ. They arise when a
0-component integration contour gets squeezed between two poles, which approach a point on the contour from opposite
sides. In this case, a pole from a retarded propagator and another from an advanced propagator pinch the contour when
taking the limit η → 0. Fortunately, these ill-defined terms cancel each other when using Eq. (46) to simplify Eq. (57),
leaving us with

−iðΠR
M1ÞμνðKÞ ¼ −

Z
P

Z
Q
FM1
μν ðK;P;QÞfΔrr

F ðPÞΔRðKPÞ2½ΔAðQÞΔrr
F ðKPQÞ þ Δrr

B ðQÞΔRðKPQÞ�

þ ΔAðPÞΔrr
B ðQÞN−

FðKPÞ½ΔRðKPÞ2ΔRðKPQÞ − ΔAðKPÞ2ΔAðKPQÞ�
þ ΔAðPÞΔrr

F ðKPQÞN−
FðKPÞ½ΔAðQÞΔRðKPÞ2 − ΔRðQÞΔAðKPÞ2�g: ð59Þ

In some terms, an rr-propagator has been eliminated,
as its δ-function would trivialize the 0-component
integral.
To proceed further, it is convenient to write the terms

with the missing δ-function in terms of the difference
Δd

2 ≡ ðΔRÞ2 − ðΔAÞ2, which resembles the spectral func-
tion Δd except the retarded and advanced propagators
are squared. The main motivation behind defining
Δd

2 is that an integral over Δd
2 can be carried out

with the help of the result (that holds for sufficiently
regular f),

Z
∞

−∞

dp0

2π
Δd

2ðPÞfðp0Þ ¼ i
Z

∞

−∞

dp0

2π
ΔdðPÞ d

dp0

fðp0Þ
2p0

; ð60Þ

which effectively reduces it to an integral over Δd.
Equation (60) follows directly from the residue theorem
upon (i) rewriting the integral on the left-hand side as a
contour integral circulating the two poles of the function
1=ðP2Þ2, (ii) picking up the residues from those poles, and
then (iii) deforming the contour back into the integral on the
right-hand side. Replacing ðΔAÞ2 with −Δd

2 þ ðΔRÞ2 in
Eq. (59), we find

FIG. 5. r=a assignments contributing to the thermal parts of the watermelon diagram.
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−iðΠR
M1ÞμνðKÞ ¼ −

Z
P

Z
Q
FM1
μν ðK;P;QÞfΔrr

F ðPÞΔRðKPÞ2½ΔAðQÞΔrr
F ðKPQÞ þ Δrr

B ðQÞΔRðKPQÞ�

þ ΔAðPÞΔd
2ðKPÞN−

FðKPÞ½ΔRðQÞΔrr
F ðKPQÞ þ Δrr

B ðQÞΔAðKPQÞ�
þ ΔAðPÞΔRðKPÞ2Δrr

B ðQÞΔrr
F ðKPQÞg; ð61Þ

where on the last line we have used Eq. (46). After this procedure, Eq. (61) is free of pinch singularities and every term
contains a δ-function, trivializing the 0-component integrals.
As before, we change variables so that Δd, Δd

2 , and distribution functions depend only on a single loop momentum.
Introducing an additional change of variables,

ð5Þ P ↦ −K − P; Q ↦ PþQ; ð62Þ

we then arrive at

−iðΠR
M1ÞμνðKÞ ¼ −

Z
P

Z
Q
ΔdðQÞfΔRðK þ PÞ2ΔRðK þ PþQÞΔdðPÞN−

FðPÞ½NBðQÞFM1
μν þ Nþ

F ðQÞFM1ð3Þ
μν �

þ ΔRðK þ PÞΔRðPþQÞΔd
2ðPÞNþ

F ðPÞ½NBðQÞFM1ð2Þ
μν þ N−

FðQÞFM1ð5Þ
μν �

þ ΔRðK þ PþQÞΔAðPþQÞ2ΔdðPÞNþ
F ðPÞNBðQÞFM1ð1Þ

μν g: ð63Þ

In this case, the changes of variables have not left the
numerator FM1

μν invariant, as indicated by the notation

FM1ðiÞ
μν , which denotes that the change of variables (i)

has been performed in the numerator.

3. Watermelon diagram 2

For the second watermelon diagram, applying the
Feynman rules gives

−
Z
P

Z
Q
Tr½ðiVμÞSpðPÞðiVρÞSqðPQÞðiVσÞSrðPÞðiVνÞ

× SsðKPÞ�Dρσ
t ðQÞ: ð64Þ

The r=a assignments are the same as for the first watermelon,
but with the replacement R ↔ A as the diagrams have the
opposite directions of momentum and fermion flows:

−iðΠR
M2ÞμνðKÞ ¼ −

Z
P

Z
Q
FM2
μν ðK;P;QÞfΔAðPÞΔAðPÞΔrr

B ðQÞΔrr
F ðKPÞΔAðPQÞ

þΔrr
F ðPÞΔAðPÞΔrr

B ðQÞΔRðKPÞΔAðPQÞ þΔrr
F ðPÞΔRðPÞΔrr

B ðQÞΔRðKPÞΔRðPQÞ
þΔAðPÞΔRðPÞΔrr

B ðQÞΔRðKPÞΔrr
F ðPQÞ þΔAðPÞΔAðPÞΔRðQÞΔrr

F ðKPÞΔrr
F ðPQÞ

þΔrr
F ðPÞΔAðPÞΔRðQÞΔRðKPÞΔrr

F ðPQÞ þΔrr
F ðPÞΔRðPÞΔAðQÞΔRðKPÞΔrr

F ðPQÞg: ð65Þ

The numerator here reads

FM2
μν ¼ Tr½ðiVμÞ=PðiVρÞð=Pþ =QÞðiVσÞ=PðiVνÞð=K þ =PÞ�gρσ;

¼ e4Tr½γμ=Pγρð=Pþ =QÞγρ=Pγνð=K þ =PÞ�: ð66Þ

Since we already manipulated the first watermelon diagram, we are familiar with the necessary steps to take next. By
canceling the pinch singularities, introducing the Δd

2 propagator, and performing suitable changes of variables, we arrive at

−iðΠR
M2ÞμνðKÞ ¼ −

Z
P

Z
Q
ΔdðQÞfΔRðK þ PÞ2ΔRðK þ PþQÞΔdðPÞNþ

F ðPÞ½NBðQÞFM2ð2Þ
μν þ N−

FðQÞFM2ð2;3Þ
μν �

þ ΔRðK þ PÞΔAðPþQÞΔd
2ðPÞN−

FðPÞ½NBðQÞFM2
μν þ Nþ

F ðQÞFM2ð6Þ
μν �

þ ΔRðK þ PþQÞΔRðPþQÞ2ΔdðPÞN−
FðPÞNBðQÞFM2ð1;2Þ

μν g; ð67Þ
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where we have introduced a sixth variable change,

ð6Þ Q ↦ −P −Q: ð68Þ

The notation FM2ði;jÞ
μν in Eq. (67) indicates the result

obtained when performing the changes (i) and (j) con-
secutively in the respective order.

4. Trace

The expressions become quite lengthy when one
writes the numerator functions out explicitly. Since we
are already familiar with the general structure of the
computation from the one-loop case, we choose to
highlight here only a few important intermediate steps
before presenting the final result. To obtain ðΠR

NLOÞμμ, we
proceed as follows:
(1) Sum the different contributions from Eqs. (55), (63),

and (67) according to Eq. (44).
(2) Contract the numerator functions with gμν and

evaluate the Dirac traces, obtaining factors of D
(which turn out to be essential).

(3) Use the prescription for Δd
2 propagators given

by Eq. (60).
(4) Set the loop momenta on shell, P2 ¼ Q2 ¼ 0, which

is justified since every term contains the prod-
uct ΔdðPÞΔdðQÞ.

(5) Expand in powers of the small external momentum
K and keep the leading terms in order to obtain the
HTL limit.8

(6) Symmetrize the integrand using

Z
PQ

fðP;QÞ ¼
Z
PQ

ðfðP;QÞ þ fð−P;QÞ

þ fðP;−QÞ þ fð−P;−QÞÞ=4

discarding terms that would vanish by symmetry
upon integration.

(7) Symmetrize the integrand by interchanging the
labels of the loop-momenta P and Q according
to

R
PQ fðP;QÞ ¼ R

PQðfðP;QÞ þ fðQ;PÞÞ=2.
After performing the above operations, we have

obtained9

ðΠR
NLOÞμμðKÞ¼−e4ðD−2Þ

Z
P

Z
Q
ΔdðPÞΔdðQÞ

�
ð2NBðQÞ−N−

FðQÞ−Nþ
F ðQÞÞ

�
ðD−2Þ d

dp0

N−
FðPÞþNþ

F ðPÞ
2p0

−ðN−
FðPÞþNþ

F ðPÞÞ
K2

ðK ·PÞ2
�
þ1

2
ðN−

FðPÞ−Nþ
F ðPÞÞðN−

FðQÞ−Nþ
F ðQÞÞ

�
K2

ðK ·PÞðK ·QÞ−
ðK2Þ2P ·Q

ðK ·PÞ2ðK ·QÞ2
��

:

ð69Þ

In the first term inside the braces, the two-loop integral
has factorized into two one-loop integrals. In the second
term, which vanishes at μ ¼ 0, the integrals are coupled
and such factorization does not occur. It is also worth
noting that before the above symmetrization steps, our
expression contained factors of 1=ðP ·QÞ. These factors
diverge in d ¼ 3 dimensions when the three-momenta p
and q become collinear. Such terms are absent in Eq. (69),
as these divergences cancel upon symmetrization in the
HTL limit.
Next, we perform the 0-component integrals using

Eq. (27) and express the resulting d-dimensional spatial
integrals in terms of the radial and angular integrals defined
in the Appendix. This leads to

ðΠR
NLOÞμμðKÞ

¼−e4N 2

�
ð2R1−R2ÞA0

�
1

2
ðd−1Þ2ðR5−R3ÞA0

− ðd− 1ÞK2R3A2

�

þ 1

2
ðd− 1ÞR2

4½K2A2
1þðK2Þ2ðA2

2−Ai
2A

i
2Þ�

�
; ð70Þ

where N is given by Eq. (29). The only divergent integral
in Eq. (70) is R3, which contains a 1=ε divergence.
Let us study the R3-proportional part of the square

brackets on the second line of Eq. (70) a bit more closely. It
becomes

−2R3fðA0 þ K2A2Þ − εð2A0 þ K2A2Þ þOðε2Þg ð71Þ

upon substituting d ¼ 3 − 2ε. By applying the results for the
angular integrals, one can show that A0 þ K2A2 ¼ OðεÞ.
Thus, the part inside the curly brackets of Eq. (71) becomes
OðεÞ, canceling the 1=ε divergence from the radial integral,

9The retarded prescription has been absorbed into k0. In the
final result, we must replace k0 → k0 þ iη.

8Expanding in small K before doing the 0-component integrals
is justified as in the one-loop case. As a check, we have also
verified that expanding after performing the 0-component inte-
grations yields the same result.
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and making the whole expression finite.10 It was essential to
evaluate the Dirac trace in D dimensions to obtain this
cancellation as the explicit factors of ε in Eq. (71) originate
from there.
Consequently, after reinserting the finite result of

Eq. (71) into Eq. (70), and taking ε → 0 everywhere, we
arrive to the final result:

ðΠR
NLOÞμμðKÞ ¼ −

e4

8π2

�
T2 þ μ2

π2

��
1þ k0

k
ln
k0 þ kþ iη
k0 − kþ iη

�

−
e4

4π2
μ2

π2

�
1−

k20
k2

��
1−

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�
2

:

ð72Þ

Here we have reintroduced the retarded prescription þiη
for k0.

5. 00-component

The remaining task is to repeat the above steps for
the 00-component of the self-energy. Following the recipe
from above Eq. (69) and picking out the 00-components
from the numerator functions (instead of contracting with
gμν) leads to

ðΠR
NLOÞ00ðKÞ ¼ e4ðD − 2Þ 1

2

Z
P

Z
Q
ΔdðPÞΔdðQÞ

�
ð2NBðQÞ − N−

FðQÞ − Nþ
F ðQÞÞ

×

�
−ðN−

FðPÞ þ Nþ
F ðPÞÞ

�
1

p2
0

þ 2K2k0p0

ðK · PÞ3 þ K2

ðK · PÞ2 −
2k20

ðK · PÞ2
�

þ
�

d
dp0

ðN−
FðPÞ þ Nþ

F ðPÞÞ
��

1

p0
−

K2p0

ðK · PÞ2 þ
2k0

K · P

��
þ ðN−

FðPÞ − Nþ
F ðPÞÞðN−

FðQÞ − Nþ
F ðQÞÞ

×

� ðK2Þ2p0q0

ðK · PÞ2ðK ·QÞ2 −
2K2k0p0

ðK · PÞ2ðK ·QÞ þ
k20

ðK · PÞðK ·QÞ
��

: ð73Þ

In this case, all of the two-loop integrals have factorized into
products of one-loop integrals. In addition, collinear diver-
gences have completely canceled. At this point, we make a
remark on the peculiar behavior of the 00-component at
small external momentum K. Should one consider contri-
butions from the individual diagrams, the 00-components of
the twowatermelon diagrams would each behave asOð1=KÞ
for small K. These contributions are also proportional to
odd powers of μ, but thankfully cancel when summing the
diagrams together. The leading term in Eq. (73) is thus
OðK0Þ, as expected within the HTL paradigm.
After performing the 0-component integrals in Eq. (73),we

are left with the following d-dimensional spatial integrals:

ðΠR
NLOÞ00ðKÞ¼e4ðd−1Þ1

2
N 2fð2R1−R2Þ

×A0½−R3ðA0þ2K2k0A3þK2A2−2k20A2Þ
þR5ðA0−K2A2þ2k0A1Þ�
þR2

4½ðK2Þ2A2
2−2K2k0A2A1þk20A

2
1�g:

ð74Þ

Once again, the only divergent integral appearing here isR3,
sowe inspect the term proportional to it inside the first square
brackets:

−R3ðA0 þ 2K2k0A3 þ K2A2 − 2k20A2Þ: ð75Þ
By evaluating the angular integrals in Eq. (75), one finds the
expression in the parentheses to be OðεÞ, canceling the 1=ε
divergence coming fromR3. Substituting the finite result of
Eq. (75) into Eq. (74) and taking ε → 0 everywhere, gives us
the final expression for the 00-component:

ðΠR
NLOÞ00ðKÞ ¼

e4

8π2

�
T2 þ μ2

π2

��
1þ k20

K2

�

þ e4

4π2
μ2

π2

�
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�
2

: ð76Þ

IV. RESULTS

In this section, we summarize and inspect the results of
our computation. First, we collect all results in a condensed
fashion, the study the propagation of soft photons in detail,
and finally extract the explicit OðεÞ terms for ΠLO, ΠPow,
and ΠNLO in the zero-temperature limit.

A. Summary of the results

Here, we summarize the results obtained in the previous
section by expressing the self-energy components in the

10This UV divergence stems from the self-energy and vertex-
correction subgraphs inside the two-loop expressions. The
cancellation occurs since the QED renormalization constants
Z1 and Z2, respectively, for the vertex correction and the electron
wave function, satisfy Z1 ¼ Z2.
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basis of transverse and longitudinal projectors using Eq. (18). We suppress the label R standing for the retarded prescription
from now on.
The leading-order (in the coupling e) HTL self-energy components for the photon read

ΠLO
T ¼ e2

2

�
T2

3
þ μ2

π2

��
k20
k2

þ
�
1 −

k20
k2

�
k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�
;

ΠLO
L ¼ e2

�
T2

3
þ μ2

π2

��
1 −

k20
k2

��
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�
; ð77Þ

where η > 0. The corresponding renormalized power corrections (see the discussion in Sec. III B) arising from the low-
momentum expansion of the one-loop self-energy are

ΠPow
T ¼ −

e2

4π2
2K2

3

�
ln
2e−γET

Λ̄
− 1þ 1

4
þ
�
1 −

K2

4k2

��
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�
− Lið1Þ0 ð−eμ

TÞ − Lið1Þ0 ð−e−μ
TÞ
�
;

ΠPow
L ¼ −

e2

4π2
2K2

3

�
ln
2e−γET

Λ̄
− 1þ

�
1þ K2

2k2

��
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�
− Lið1Þ0 ð−eμ

TÞ − Lið1Þ0 ð−e−μ
TÞ
�
; ð78Þ

where Lið1Þ0 ðzÞ ¼ lims→0
∂LisðzÞ

∂s and Lis is the standard polylogarithm function. Note that the UV divergence in these
expressions has been eliminated using the photon wave function renormalization counterterm in the MS scheme.
The logarithms appearing in Eq. (78) make the limits of vanishing temperature or chemical potential nontrivial. First, we

study the power corrections at vanishing chemical potential, for which we get

lim
μ→0

½Lið1Þ0 ð−eμ
TÞ þ Lið1Þ0 ð−e−μ

TÞ� ¼ ln
2

π
: ð79Þ

Hence, we obtain

lim
μ→0

ΠPow
T ¼ −

e2

4π2
2K2

3

�
ln
πe−γET

Λ̄
− 1þ 1

4
þ
�
1 −

K2

4k2

��
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

��
; ð80Þ

lim
μ→0

ΠPow
L ¼ −

e2

4π2
2K2

3

�
ln
πe−γET

Λ̄
− 1þ

�
1þ K2

2k2

��
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

��
: ð81Þ

In the case of vanishing temperature, we can study the leading asymptotic behavior of

lim
x→∞

½Lið1Þ0 ð−exÞ þ Lið1Þ0 ð−e−xÞ� → − ln x − γE; ð82Þ

where the ratio x≡ μ=T → ∞. Hence, we obtain

lim
T→0

ΠPow
T ¼ −

e2

4π2
2K2

3

�
ln
2μ

Λ̄
− 1þ 1

4
þ
�
1 −

K2

4k2

��
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

��
; ð83Þ

lim
T→0

ΠPow
L ¼ −

e2

4π2
2K2

3

�
ln
2μ

Λ̄
− 1þ

�
1þ K2

2k2

��
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

��
: ð84Þ

The expressions obtained in Eqs. (80)–(84) are in agreement with Ref. [22].11

11Due to the different conventions of the two papers, the agreement of our results with those of [22] follows only after the following
substitutions in our result: K2 → −K2, ε → −ε, and Λ̄2 → 4πe−γEν2. In addition, our definition for ΠL differs from the one in [22] by an
overall factor of −k2=K2.
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Finally, the NLO (in the coupling e) contribution to the
photon HTL self-energy at nonzero T and μ reads

ΠNLO
T ¼ −

e4

8π2

�
T2 þ μ2

π2

�
k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

;

ΠNLO
L ¼ −

e4

8π2

�
T2 þ μ2

π2

�
−

e4

4π2
μ2

π2

�
1 −

k20
k2

�

×

�
1 −

k0

2k
ln
k0 þ kþ iη
k0 − kþ iη

�
2

: ð85Þ

These expressions generalize the result obtained in
Ref. [17] to nonzero density. As in the zero-μ case, we
find that the intermediate UV and IR singularities are fully
canceled, and that the resulting final expression for the
NLO contribution is finite.

The terms proportional to ðT2 þ μ2

π2
Þ in ΠT and ΠL follow

from the radial integralZ
∞

0

dppð2nBðpÞ þ nFðp − μÞ þ nFðpþ μÞÞ

¼ π2

2

�
T2 þ μ2

π2

�
; ð86Þ

where the bosonic and fermionic distribution functions have
the usual forms nB=FðxÞ ¼ ðex=T ∓ 1Þ−1. Note that the
fermionic part in Eq. (86) is identical to the one appearing
in the LO expressions in Eq. (77). In addition, the longi-
tudinal component in Eq. (85) includes a new HTL structure
containing a squared logarithm, which is only present at
finite density. This term arises from the radial integralZ

∞

0

dpðnFðp − μÞ − nFðpþ μÞÞ

¼ T ln ð1þ eμ=TÞ − T ln ð1þ e−μ=TÞ ¼ μ: ð87Þ
Interestingly, at d ¼ 3 this integral is independent of T. We
also observe that due to the more complicated radial integral
structure at NLO, the medium dependent mass scale mEjd¼3

[defined in Eq. (30)] does not factorize out from Eq. (85) as
in the LO case.
We can now apply our results to compute the electric

screening length, which follows from Π00 ¼ −ðk2=K2ÞΠL

in the static infrared limit limk→0Π00ðk0 ¼ 0; kÞ. Utilizing
our LO and NLO expressions for ΠL in Eqs. (77) and (85),
respectively, we obtain

Π00ðk0 ¼ 0;k → 0Þ ¼ −
�
e2

3
−

e4

8π2

��
T2 þ 3μ2

π2

�
þOðe5Þ:

ð88Þ
Note that in QED this quantity is directly related to the

equation of state pðT; μÞ via e2 ∂
2pðT;μÞ
∂μ2

(e2× electric

susceptibility). It is straightforward to check that our result
is in agreement with known results [23]. We also note that

the Oðe4Þ result is sensitive to both terms in Eq. (85),
including the second one which is only present for μ > 0.
This thus constitutes a nontrivial check of our new results.

B. Soft photon propagation at NLO

As an application of our self-energy results, we will next
study the NLO corrections to the HTL-resummed soft
photon propagator. Let us first recall the main features
of the LO case (see e.g., Ref. [1] for a review). In the
timelike region, both transverse and longitudinal compo-
nents exhibit zero-width plasmon poles (collective quasi-
particle excitations) at the scale mE. At k ¼ 0 the fre-
quencies of the transverse and longitudinal modes reduce to
the plasma frequency, ωp ¼ ωT=Lðk ¼ 0Þ ¼ �mE=

ffiffiffi
3

p
,

while at high momenta, k ≫ mE, the transverse mode
acquires an asymptotic mass, m∞ ¼ mE=

ffiffiffi
2

p
, and the pole

of the longitudinal mode approaches the light cone with an
exponentially vanishing residue. On the other hand, in the
spacelike region the components of the propagator have a
Landau cut (originating from the branch cut of the
logarithm in the LO self-energies) leading to a nonvanish-
ing spectral function. Next, we consider the NLO correc-
tions to this LO soft photon propagator. Note that in this
subsection, we use mE to denote the three-dimensional in-
medium effective mass scale m2

E ¼ e2ðT2=3þ μ2=π2Þ
instead of the d-dimensional version given by Eq. (28).
The (dressed) retarded photon propagator is defined in

the ξ-covariant gauge as

Dμν
R ðKÞ ¼ PT

μνðKÞDTðKÞ þ PL
μνðKÞDLðKÞ − iξ

KμKν

K4
;

ð89Þ
where the transverse and longitudinal components read

DIðKÞ ¼ −i
K2 þ ΠIðKÞ

; I ∈ fT;Lg; ð90Þ

and the projectors Pμν
I are defined in Sec. II C. The retarded

prescription further implies that the 0-component ofK has a
small imaginary part, i.e., that we need to substitute
k0 → k0 þ iη, where η > 0.
It is convenient to study the photon propagator through

the spectral function, ρμν ≡Dμν
R −Dμν

A ¼ 2ReDμν
R . More-

over, we can inspect the transverse and longitudinal
components in a gauge-independent way by projecting
ρμν onto the conserved currents Jμ satisfying KμJμ ¼ 0.
With JiL ¼ kikj=k2Jj being the spatially longitudinal cur-
rent, we may write

JμρμνðKÞJν ¼ ðJ2 − J2LÞρTðKÞ þ J2LρLðKÞ; ð91Þ

where the components of the spectral function are defined
by ρI ¼ 2ImΔI with
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ΔTðk0; kÞ≡ 1

K2 þ ΠTðk0; kÞ
;

ΔLðk0; kÞ≡ −
K2

k20

1

K2 þ ΠLðk0; kÞ
: ð92Þ

In our case, the features of the spectral function are
qualitatively different in the timelike and spacelike
regions, so it is useful to consider those regions separately.
By assuming that the widths of the plasmon poles are
infinitesimal12 and positive in the timelike region, i.e.,
ImðΔ−1

I jk0→k0þiηÞ ¼ OðηÞ and sgnImðΔ−1
I jk0→k0þiηÞ ¼

−sgnðk0Þ for jk0j > k, we straightforwardly obtain

ρIðKÞ ¼ jZIðkÞj × 2πsgnðk0Þδðk20 − ω2
I ðkÞÞ

þ ρIðKÞθðk − jk0jÞ: ð93Þ

Here, ωIðkÞ are the locations of the plasmon poles
(dispersion relations), given as the solutions to the equa-
tions Δ−1

I ðωI; kÞ ¼ 0, and ZIðkÞ are the corresponding
residues, given by

ZIðkÞ ¼
1

1 − ΨIðωI; kÞ
; ð94Þ

where the auxiliary functions ΨI are defined as

ΨTðω; kÞ≡ ∂ω2ΠTðω; kÞ;

ΨLðω; kÞ≡ ∂ω2

ω2ΠLðω; kÞ
ω2 − k2

: ð95Þ

The form of the spectral function in Eq. (93) holds to all
loop orders assuming the above conditions hold for the
self-energy.
We now focus on the NLO corrections to the soft spectral

function by using the NLO soft photon self-energy results
calculated in this work. First, we consider the locations of the
plasmon poles in the timelike region of the spectral function.
For soft photons at NLO, the dispersion relation reads

ω2
I ¼ k2 þ ΠLO

I ðωI; kÞ þ δωIðωI; kÞ; ð96Þ
where δΠI ≡ ΠPow

I þ ΠNLO
I . To work consistently at order

e2m2
E, we expand Eq. (96) around the leading order result

ωI;LO, given by ω2
I;LO ¼ k2 þ ΠLO

I ðωI;LO; kÞ, as
ω2
I ¼ ω2

I;LO þ δΠIðωI;LO; kÞ
þ ðω2

I − ω2
I;LOÞ∂ω2

I;LO
ΠLO

I ðωI;LO; kÞ þOðe3m2
EÞ; ð97Þ

from which we obtain

δω2
I ≡ ω2

I − ω2
I;LO ¼ δΠIðωI;LO; kÞ

1 − ∂ω2
I;LO

ΠLO
I ðωI;LO; kÞ

þOðe3m2
EÞ:

ð98Þ
Applying the LO self-energy results from Eqs. (77)–(98)

then yields

ω2
T ¼ ω2

T;LO þ 2ω2
T;LOðk2 − ω2

T;LOÞ
ðk2 − ω2

T;LOÞ2 −m2
Eω

2
T;LO

δΠTðωT;LO; kÞ;

ω2
L ¼ ω2

L;LO þ 2ω2
L;LO

k2 − ω2
L;LO þm2

E
δΠLðωL;LO; kÞ; ð99Þ

where we dropped the higher order Oðe3m2
EÞ terms. These

NLO dispersion relations are shown in Fig. 6 with different

FIG. 6. Transverse and longitudinal NLO plasmon dispersion relations at different coupling strengths αe compared to the LO relations.
The values of αe are chosen rather large for illustrative purposes. For αe ≲ 1, the results remain qualitatively the same, and the large αe
values are used merely to emphasize the effects of the corrections.

12In QED, the widths of the plasmon poles are beyond-NLO
effects.
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values of the fine-structure constant αe ¼ e2=4π.13 The
effect of varying μ=T is further illustrated in Fig. 7 by
plotting the difference between the NLO and LO results.
As indicated by the figures, the NLO correction shifts the
LO result downward and causes the dispersion curve to
pierce the light cone at a finite value of k. For the transverse
component, the piercing happens only at very high values
of k=mE ð∼ expð1=e2ÞÞ unless αe is large [i.e., Oð1Þ], but
for the longitudinal component, the dispersion curve
hits the light cone at relatively small values of k=mE

(∼ lnð1=e1=2Þ) even with small αe.

Next, we study the residues of the transverse and
longitudinal plasmon poles at NLO. Expanding the all-
order result in Eq. (94) around the LO one, given by
ZLO
I ¼ 1=½1 −ΨLO

I ðωI;LO; kÞ�, results in

ZI ¼ ZLO
I f1þ ZLO

I ½δΨIðωI;LO; kÞ
þ δω2

I ∂ω2
I;LO

ΨLO
I ðωI;LO; kÞ�g þOðe3Þ; ð100Þ

where the Oðe3Þ terms may be dropped as higher-order
contributions. In Fig. 8, we plot the above NLO residues
of the transverse and longitudinal photon modes. As seen
in the figure, the correction to the transverse residue is
positive for the values of momenta k shown, whereas the
one for the longitudinal component starts positive and
eventually changes sign as k increases. While the LO result
for the longitudinal residue approaches zero exponentially,
it is worth noting that the corrected results reach zero at a
finite value of k.14

Finally, we consider the spectral function in Eq. (93) in
the spacelike region, k > jk0j, where it remains nonzero
due to the Landau cut in the propagator. Expanding around
the leading order results ρLOI ¼ 2ImΔLO

I leads to the NLO
corrections

δρI ≡ ρI − ρLOI ¼ −2Im
�
ΔLO

I
δΠI

K2 þ ΠLO
I

�
þOðe3m−2

E Þ;

ð101Þ

where we may drop the higher order Oðe3m−2
E Þ terms.

These corrections to the components of the soft spectral
function in the Landau cut are plotted for αe ¼ 1=2 in Fig. 9

FIG. 7. Difference between the NLO and LO dispersion relations evaluated at various μ=T. The longitudinal component has been
plotted only up to the point where it crosses the light cone. Here αe ¼ 1=137.

FIG. 8. Transverse and longitudinal NLO residues of the
plasmon poles at various values of αe compared to the LO case.

13For convenience, the renormalization scale Λ̄ is chosen such
that ln ð2e−γET=Λ̄Þ − 1 − Lið1Þ0 ð−eμ

TÞ − Lið1Þ0 ð−e−μ
TÞ ¼ 0. Further,

we choose πT ¼ μ > 0. These apply to all figures unless
otherwise stated.

14We have observed that the NLO longitudinal residue goes to
zero only if T > 0.
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alongside the full NLO results in Fig. 10. Further, to
visualize the corrections at various coupling strengths, we
plot slices of the spectral function with fixed momentum
in Fig. 11. We observe from the figures that for πT ¼
μ > 0 the NLO corrections are mainly positive except in
the vicinity of the light cone, where even the full NLO
spectral function becomes negative. The near-light cone
behavior stays qualitatively the same with different values
of μ=T.
The above results for the NLO HTL-resummed photon

propagator (spectral function) display peculiar behavior
near the light cone. The plasmon dispersion curves hitting

the light cone together with the negative spectral function in
the Landau cut is related to a breakdown of the HTL
resummation as K2 → 0. Indeed, the NLO correction of
relative order e2 eventually becomes greater than the
LO result as K2 → 0, which can be seen by noting
that ΠNLO=K2 diverges faster than ΠLO=K2 as K2 → 0

[cf. Eqs. (85) and (77)]. This breakdown of perturbation
theory implies that we can trust our results only up to some
small distance from the light cone. It also (partly) explains
the unexpected behavior of the resummed propagator as
K2 → 0. However, the longitudinal dispersion curve pass-
ing through the light cone is a physical effect that has

FIG. 9. NLO corrections to the transverse and longitudinal components of the spectral function in the Landau cut. Note that the
longitudinal component has been scaled by k20=k

2 here as well as in Figs. 10 and 11. Here αe ¼ 1=2.

FIG. 10. Transverse and longitudinal components of the NLO photon spectral function with αe ¼ 1=2. Vertical slices at k ¼ mE=2 are
shown in Fig. 11.
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already been predicted, at least in scalar QED [24], non-

relativistic QED [25], and even in QCD [26,27].
In scalar QED, the failure of the NLO HTL resummation

near the light cone has been investigated thoroughly in
Ref. [24]. There, the NLO soft photon dispersion relations
display qualitatively similar behavior to the presently
studied case of physical QED, even though the NLO
corrections in scalar QED arise in an entirely different
way.15 In Ref. [24], the breakdown of the HTL resumma-
tion is caused by hard massless particles running in the
loops, which leads to collinear singularities in the small-K
expansion of Πμν at K2 ¼ 0. We suspect that to obtain
correct behavior of the HTL expressions in our case one
must also carry out additional resummations, such as
including ladder-type diagrams [28] when considering
photon propagation near the light cone.
In the perturbative region sufficiently far from the light

cone, our results are applicable for soft momenta, k≲mE.
From the obtained NLO results, we can then take various
IR limits, provided that k0 ≠ k. For instance, the NLO
photon plasma frequency ωp, given by the equation
ω2
p ¼ ΠTðωp; 0Þ ¼ ΠLðωp; 0Þ, reads

ω2
p ¼

m2
E

3

�
1 −

e2

6π2

�
37

12
þ 9π2T2

2π2T2 þ 6μ2
− ln

2e−γET
Λ̄

þ Lið1Þ0 ð−eμ
TÞ þ Lið1Þ0 ð−e−μ

TÞ
��

: ð102Þ

On the other hand, the NLO Debye mass (electric screening
mass), defined here by m2

D ¼ −Π00ð0; kÞjk2→−m2
D
, is

given by16

m2
D ¼ m2

E

�
1 −

e2

6π2

�
7

4
− ln

2e−γET
Λ̄

þ Lið1Þ0 ð−eμ
TÞ

þ Lið1Þ0 ð−e−μ
TÞ
��

: ð103Þ

Obtaining the asymptotic mass of the transverse photon
modem∞ to NLO, however, requires information about the
self-energy near the light cone. As our results become ill-
behaved in this region, we cannot extract the full NLO
value of this quantity. Nevertheless, we find a contribution
to the NLO asymptotic mass of the transverse photon
mode, given by ω2

Tðk ≫ mEÞ ¼ k2 þm2
∞,

m2
∞ ¼ m2

E

2

�
1þ e2 ln e

12π2

�
11π2T2 þ 15μ2

π2T2 þ 3μ2

�
þOðe2Þ

�
;

ð104Þ

where we exclude the relative order Oðe2Þ terms. Those
terms contain logarithmic k-dependence17 and we expect
them to be related to the breakdown of our expressions near
the light cone.

FIG. 11. NLO photon spectral functions with fixed momentum k ¼ mE=2 compared to the LO ones.

16It is easy to check that ωp and mD are renormalization scale
invariant up to and including Oðe2m2

EÞ terms, dm2
D=dΛ̄ ¼

dω2
p=dΛ̄ ¼ 0.
17We find that this logarithmic k-dependence still remains even

after renormalization of the LO result.

15In scalar QED, the NLO corrections to the soft photon self-
energy arise from fully soft HTL-resummed one-loop diagrams
resulting in Oðem2

EÞ terms (cf. the e2m2
E corrections presented in

this paper).
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C. The OðεÞ terms in the zero-temperature limit

Next, we consider the OðεÞ terms for ΠLO, ΠPow, and
ΠNLO. These terms become useful when considering
higher-order diagrams in which the self-energy appears.
Here, we only write the explicit results in the zero-
temperature limit, which become relevant e.g., in the
calculation of the cold and dense QED pressure [18].
Following the notation introduced in Ref. [12], we first
expand the d-dimensional ðd ¼ 3 − 2εÞ expressions for the
self-energies determined in Sec. III in a series

ðΠR
XÞI ¼ ðΠR

XÞð0ÞI þ εðΠR
XÞð1ÞI þOðε2Þ; I ∈ fT;Lg;

ð105Þ

where the subscript X ∈ fLO;NLO; Powg, and then deter-
mine the unknown coefficients. Here, ðΠR

PowÞI also contains
a single vacuum UV divergence so the corresponding

expansion in Eq. (105) also has a ðΠR
PowÞð−1ÞI term.

It is straightforward to extract the OðεÞ terms in
Eq. (105) using the d-dimensional results for the radial
and angular integrals in the Appendix. Applying these
results to the LO self-energy in Eqs. (28) and (34) yields

ðΠR
LOÞμμðKÞ ¼ ðΠR

LOÞð0Þμμ ðKÞ þ εðΠR
LOÞð1Þμμ ðKÞ þOðε2Þ;

ðΠR
LOÞ00ðKÞ ¼ ðΠR

LOÞð0Þ00 ðKÞ þ εðΠR
LOÞð1Þ00 ðKÞ þOðε2Þ;

ð106Þ

where the coefficients ðΠR
LOÞðiÞμμ ðKÞ and ðΠR

LOÞðiÞ00ðKÞ for
i ¼ 0, 1 are given by

ðΠR
LOÞð0Þμμ ðKÞ ¼ m2

E;

ðΠR
LOÞð1Þμμ ðKÞ ¼ 0; ð107Þ

and

ðΠR
LOÞð0Þ00 ðKÞ ¼ −m2

Eð1 − k0LðKÞÞ;
ðΠR

LOÞð1Þ00 ðKÞ ¼ −m2
Ek

0HðKÞ: ð108Þ

The function LðKÞ is defined in Eq. (36) and we further
define

HðKÞ≡ LðKÞ
�
2þ ln

�
K2

4k2

��

−
1

2k

�
Li2

�
k0 þ k
k0 − k

�
− Li2

�
k0 − k
k0 þ k

��
: ð109Þ

Note that the trace of the one-loop HTL self-energy in
Eq. (28) is defined to be m2

E. In d dimensions, the in-
medium effective mass scale at nonzero density reads (see
also Ref. [12])

m2
E ¼ e2μ2

�
eγEΛ2

h

4πμ2

�3−d
2 8Γð1

2
Þ

ð4πÞdþ1
2 Γðd

2
Þ ;

¼ e2μ2

π2
þOðεÞ; ð110Þ

which agrees with Eq. (30). The coefficients of the
expanded transverse and longitudinal components are
finally given by

ðΠR
LOÞð0ÞT ðKÞ¼m2

E

2

�
k20
k2
þ
�
1−

k20
k2

�
k0LðKÞ

�
;

ðΠR
LOÞð1ÞT ðKÞ¼m2

E

2

�
1−

�
1−

k20
k2

�
ð1−k0LðKÞþk0HðKÞÞ

�
;

ð111Þ

and

ðΠR
LOÞð0ÞL ðKÞ ¼ m2

E

�
1 −

k20
k2

�
ð1 − k0LðKÞÞ;

ðΠR
LOÞð1ÞL ðKÞ ¼ m2

E

�
1 −

k20
k2

�
k0HðKÞ: ð112Þ

At NLO, the expression for the trace part of the HTL
self-energy in Eq. (70), generalized to d dimensions, reads

ðΠR
NLOÞμμðKÞ ¼ ðΠR

NLOÞð0Þμμ ðKÞ þ εðΠR
NLOÞð1Þμμ ðKÞ þOðε2Þ;

ð113Þ

where the coefficients ðΠR
NLOÞðiÞμμ ðKÞ for i ¼ 0, 1 are

given by

ðΠR
NLOÞð0Þμμ ðKÞ ¼ −

m4
E

8μ2

�
1þ 2k0LðKÞ

þ 2

�
1 −

k20
k2

�
ð1 − k0LðKÞÞ2

�
;

ðΠR
NLOÞð1Þμμ ðKÞ ¼ m4

E

4μ2

�
1þ

�
1 −

k20
k2

�
ð1 − k0LðKÞÞ2

þ
�
1 − 2

�
1 −

k20
k2

�

× ð1 − k0LðKÞÞ
�
k0HðKÞ

�
: ð114Þ

Similarly, the NLO expression for the 00-component in
Eq. (74), also generalized to d dimensions, yields

ðΠR
NLOÞ00ðKÞ ¼ ðΠR

NLOÞð0Þ00 ðKÞ þ εðΠR
NLOÞð1Þ00 ðKÞ þOðε2Þ;

ð115Þ

where the coefficients ðΠR
NLOÞðiÞ00ðKÞ for i ¼ 0, 1 are

given by
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ðΠR
NLOÞð0Þ00 ðKÞ ¼ m4

E

8μ2

�
k2

K2
þ 2ð1 − k0LðKÞÞ2

�
;

ðΠR
NLOÞð1Þ00 ðKÞ ¼ −

m4
E

4μ2
ð1 − k0LðKÞÞ

�
1 − k0LðKÞ

þ k2

K2
− 2k0HðKÞ

�
: ð116Þ

The coefficients of the expanded transverse and longi-
tudinal components read

ðΠR
NLOÞð0ÞT ðKÞ ¼ −

m4
E

8μ2
k0LðKÞ;

ðΠR
NLOÞð1ÞT ðKÞ ¼ m4

E

8μ2
k0HðKÞ; ð117Þ

and

ðΠR
NLOÞð0ÞL ðKÞ¼−

m4
E

8μ2

�
1þ2

�
1−

k20
k2

�
ð1−k0LðKÞÞ2

�
;

ðΠR
NLOÞð1ÞL ðKÞ¼m4

E

4μ2
ð1−k0LðKÞÞ

×

�
1þ

�
1−

k20
k2

�
ð1−k0LðKÞ−2k0HðKÞÞ

�
:

ð118Þ
Finally, we generalize the power corrections to the one-

loop HTL self-energy in Eq. (78) to d dimensions. The
coefficients of the expanded transverse and longitudinal
components end up reading

ðΠR
PowÞð−1ÞT ¼ e2

4π2
K2

3
;

ðΠR
PowÞð0ÞT ¼−

e2

8π2
K2

3

�
1−2Iþ

�
3þk20

k2

�
ð1−k0LðKÞÞ

�
;

ðΠR
PowÞð1ÞT ¼ e2

8π2
K2

3

�
4−

π2

2
− Iþ I2−

�
3þk20

k2

�
k0HðKÞ

þ
�
2−4I− ð2− IÞ

�
1−

k20
k2

��
ð1−k0LðKÞÞ

�
;

ð119Þ
and

ðΠR
PowÞð−1ÞL ¼ e2

4π2
K2

3
;

ðΠR
PowÞð0ÞL ¼ −

e2

4π2
K2

3

�
−I þ

�
3 −

k20
k2

�
ð1 − k0LðKÞÞ

�
;

ðΠR
PowÞð1ÞL ¼ e2

4π2
K2

3

�
1 −

π2

4
þ I2

2
−
�
3 −

k20
k2

�
k0HðKÞ

−
�
2I − ð3 − IÞ

�
1 −

k20
k2

��
ð1 − k0LðKÞÞ

�
:

ð120Þ

Here, the UV divergence multiplying ðμ=Λ̄Þ−2ε in the
integration measure has resulted in explicit factors of
lnðμ=Λ̄Þ that have been absorbed in the function

I ≡ 2 − 2 ln

�
2μ

Λ̄

�
: ð121Þ

V. DISCUSSION

In the paper at hand, we determined the NLO self-energy
of soft photons traversing a hot and dense electromagnetic
plasma. Our computation generalizes the results obtained in
Refs. [17,21,22] to nonzero electron chemical potential,
and paves the way for a future similar calculation in the
context of QCD. Our main motivation for this work stems
from a desire to extend the determination of the pressures of
cold and dense QED and QCD to full N3LO, where NLO
self-energies are required for the proper physical dressing
of photon (or gluon) propagators. Indeed, the present article
is the long companion paper of a letter [18], where we
determine the Oðα3eÞ pressure of dense zero-temperature
QED up to one undetermined coefficient stemming from
the hard sector of the theory. For this reason, we also
determined a number ofOðεÞ parts to the LO and NLO self-
energies (see Sec. IV C) which are needed in the pressure
calculation.
Our main result for the NLO contribution to the photon

self-energy can be found from Sec. IVA. Similarly to the
zero-μ case [17], we find that the UV and IR singularities
are fully canceled between the different dimensionally
regularized two-loop self-energy diagrams, and that the
resulting final expression for the NLO contribution is finite
for D ¼ 4. We also find that, at nonvanishing T and μ, the
NLO contribution in Eq. (85) contains a very nontrivial
medium dependence, where the medium-dependent mass
scale T2=3þ μ2=π2 does not factorize out as in the LO case
in Eq. (77). This is due to the more complicated radial
integral structures present in the two-loop diagrams.
Interestingly, our result for the NLO longitudinal self-
energy introduces a new HTL structure with a squared
logarithm [see Eq. (85)]. This term is solely generated by
nonvanishing μ.
As a physical application of our result, in Sec. IV B we

studied the transverse and longitudinal components of the
soft photon propagator at NLO. Specifically, we computed
the plasmon dispersion relations and the residues of the
corresponding poles in the timelike region, along with the
spectral function in the Landau cut in the spacelike region.
The plasma frequency and Debye mass were calculated as
specific limits of these results, while a contribution to the
asymptotic mass was also obtained. We found that the NLO
HTL-resummed propagator is well behaved in the region of
soft momenta, k≲mE, except in the vicinity of the light
cone, where the HTL-resummation breaks down. In this
region, we suspect that further resummations are necessary.
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Finally, it is worth acknowledging that while this
article deals with QED and photon propagation therein,
to a large extent this calculation represents a simpler test
case for a similar forthcoming computation in QCD. In
QED, the absence of gauge field self-interactions leads
to an overall lower number of two-loop diagrams
contributing to the gauge-boson self-energy at NLO,
while also simplifying the soft limit of the self-energy at
LO. Likewise, QED obeys simple Ward identities,
reducing the number of basis tensors with potentially
nonzero coefficients (see e.g., Ref. [20]). However, the
methods developed and utilized in this work should
mostly suffice for QCD as well. It is worth reiterating
(see footnote 2) that in QCD there is an additional
correction to the self energy arising from soft loop
momenta in the one-loop self-energy diagrams. Indeed,
this correction turns out to dominate over the corrections
computed in this work in the case of high T (see [14]). Such
a contribution requires a different calculation than the
contributions presented here, involving the use of real-time
Feynman rules for the HTL theory, presented in [29]. As far
as applications of the self-energy results go, it should also
be pointed out that the corrections to the T ¼ 0 quark-
matter pressure arising from these additional soft correc-
tions have already been computed in [12,13]. Given this,
the only remaining self-energy contribution needed to
compute further corrections to the perturbative QCD
pressure at T ¼ 0 is the QCD generalization of the results
presented in this paper. These corresponding QCD com-
putations are already underway.
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APPENDIX: RADIAL AND ANGULAR
INTEGRALS

1. Radial integrals

Here we list some results for radial integrals of the
distribution functions defined in Eq. (9). To save space, we
denote the radial part of the integration measure in
d ¼ 3 − 2ε spatial dimensions [see Eq. (3)] by

Z
p
≡
Z

∞

0

dppd−1: ðA1Þ

The results for integrals over the bosonic and fermionic
distribution functions may be written in terms of the
polylogarithm function as

Z
p
pαNBðpÞ ¼ TdþαΓðdþ αÞLidþαð1Þ; ðA2Þ

Z
p
pαN�

F ðpÞ ¼ TdþαΓðdþ αÞLidþαð−e∓
μ
TÞ; ðA3Þ

where α is a parameter and scale-free parts of the integrands
have been discarded as they vanish in dimensional regu-
larization. Upon integration by parts, we obtain results for
the derivatives of the distribution functions,

Z
p
pα d

dp
NBðpÞ ¼ −Tdþα−1Γðdþ αÞLidþα−1ð1Þ; ðA4Þ

Z
p
pα d

dp
N�

F ðpÞ¼−Tdþα−1ΓðdþαÞLidþα−1ð−e∓
μ
TÞ: ðA5Þ

For the self-energy calculations, we need the leading
terms of the small ε expansions for various combinations of
the above integrals for particular values of α,

R1 ≡
Z
p

1

p
NBðpÞ ¼

π2T2

6
þOðεÞ; ðA6Þ

R2 ≡
Z
p

1

p
ðN−

FðpÞ þ Nþ
F ðpÞÞ ¼ −

π2T2 þ 3μ2

6
þOðεÞ;

ðA7Þ

R3 ≡
Z
p

1

p3
ðN−

FðpÞ þ Nþ
F ðpÞÞ ¼

1

2ε
− lnðe−γETÞ

þ Lið1Þ0 ðeμ
TÞ þ Lið1Þ0 ðe−μ

TÞ þOðεÞ; ðA8Þ

R4 ≡
Z
p

1

p2
ðN−

FðpÞ − Nþ
F ðpÞÞ ¼ −μþOðεÞ; ðA9Þ

R5 ≡
Z
p

1

p2

d
dp

ðN−
FðpÞ þ Nþ

F ðpÞÞ ¼ 1þOðεÞ; ðA10Þ

where we have used the notation Lið1Þ0 ðzÞ≡ lims→0
∂LisðzÞ

∂s .
The zero-temperature limit of the radial integrals in

Eqs. (A2)–(A5) is straightforward to obtain given the
following limiting behavior of the polylogarithm

lim
x→∞

Lisð−e−xÞ ¼ 0; ðA11Þ
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lim
x→∞

Lisð−exÞ ¼ −
xs

Γðsþ 1Þ ; s ∉ Z−; ðA12Þ

where x ¼ μ=T. In this limit, we can compactly write
the d-dimensional results for the integrals defined in
Eqs. (A6)–(A10) as

R1 ¼ 0; ðA13Þ

R2 ¼ −
μd−1

d − 1
; ðA14Þ

R3 ¼ −
μd−3

d − 3
; ðA15Þ

R4 ¼ −
μd−2

d − 2
; ðA16Þ

R5 ¼ μd−3: ðA17Þ

2. Angular integrals

In d ¼ 3 − 2ε spatial dimensions, the angular part of the
integration measure in Eq. (3) may be written as

Z
z
≡
Z

1

−1
dzð1 − z2Þd−32 ; ðA18Þ

where z ¼ k̂ · p̂ parametrizes an angle between an external
spatial unit vector k̂ and the spatial unit vector in the
direction of the loop momentum p̂. According to our
conventions, the “direction” of the on-shell loop four-
momentum P is denoted by v ¼ ð1; p̂Þ, so that v · K ¼
−k0 þ kz for the external four-momentum K. In the HTL
limit, we often encounter integrals of the type

Aα ≡
Z
z

1

ðv · KÞα

¼ Γð1
2
ÞΓ½1

2
ðd − 1Þ�

Γðd
2
Þ ð−k0Þ−α2F1

�
α

2
;
1þ α

2
;
d
2
;
k2

k20

�

ðA19Þ

for some parameter α. The result has been written in terms
of the hypergeometric function 2F1. The following recur-
sion relation applies for α ∈ Zþ,

Aαþ1 ¼
1

α

d
dk0

Aα: ðA20Þ

Another useful integral is given by

Ai
α ≡

Z
z

vi

ðv · KÞα ¼ k̂i
Z
z

z
ðv · KÞα ¼

ki

k2
ðAα−1 þ k0AαÞ;

ðA21Þ

where we have exploited spatial rotational symmetry. By
denoting

LðKÞ≡ 1

2k
ln
k0 þ k
k0 − k

; ðA22Þ

we write the small ε expansions of the above results at
specific values of α as

A0 ¼
Z
z
1 ¼ 2þ ð1 − lnð2ÞÞ4εþOðε2Þ; ðA23Þ

A1 ¼
Z
z

1

v · K

¼ −2LðKÞ þ
�
2LðKÞ ln

�
K2

k2

�

þ 1

k

�
Li2

�
k0 − k
k0 þ k

�
− Li2

�
k0 þ k
k0 − k

���
εþOðε2Þ;

ðA24Þ

A2 ¼
Z
z

1

ðv ·KÞ2

¼ −
2

K2
þ 4

K2
ðlnð2Þ− k0LðKÞÞεþOðε2Þ; ðA25Þ

A3 ¼
Z
z

1

ðv · KÞ3

¼ −
2k0

ðK2Þ2 −
2

ðK2Þ2 fð1 − 2 lnð2ÞÞk0

þ ðk20 þ k2ÞLðKÞgεþOðε2Þ; ðA26Þ

A4 ¼
Z
z

1

ðv · KÞ4

¼ −
2

3

3k20 þ k2

ðK2Þ3 −
2

3

2

ðK2Þ3 fð2 − 3 lnð2Þ þ k0LðKÞÞk20
þ ð1 − lnð2Þ þ 3k0LðKÞÞk2gεþOðε2Þ: ðA27Þ
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