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We calculate the baryon-meson coupling constants for the spin-1/2 baryonic octet and spin-3/2 decuplet
in a unified approach relying on symmetry arguments such as the fact that the Yukawa couplings, present in
the Lagrangian density of the Walecka-type models, must be an invariant under SU(3) and SU(6) group
transformations. The coupling constants of the baryon with the scalar ¢ meson are fixed to reproduce the
known potential depths for the hyperons and A resonances, in an approach that can be extended to all
particles. We then apply the calculated coupling constants to study neutron star matter with hyperons and
deltas admixed to its composition. We conclude that the A~ is by far the most important exotic particle that
can be present in the neutron star interior. It is always present, independent of the chosen parametrization,
and might appear in almost every known neutron star, once its onset happens at very low density. Yet, its
presence affects the astrophysical properties of the canonical 1.4 M, star, and, in some cases, it can even

contribute to an increase in the maximum mass reached.
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I. INTRODUCTION

Knowing the neutron star inner composition is a central
piece of the research program on these objects. The first
theoretical descriptions of neutron stars (NS) by Landau,
Baade and Zwicky in the 1930s considered protons and
electrons alongside with the neutrons, in order to acknowl-
edge the stability of the nuclear matter under f decay and
the charge neutrality condition [1,2].

Different non-nucleonic degrees of freedom are consid-
ered in the literature when describing neutron star matter.
The inclusion of the entire spin-1/2 baryon octet (i.e.,
nucleons and hyperons) is almost standard to the theo-
retical description of such objects [3]. These studies gave
rise to the very much discussed hyperon puzzle; on one
hand, their inclusion is a direct follow up of energetical
considerations but, on the other, they soften the equation of
state (EOS) resulting in a decrease of the maximum stellar
mass attained [4,5], which is not desirable since the first
really massive NS was detected with a robust relativistic
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Shapiro-delay method in the 2010s [6]. From the theo-
retical side, a clear caveat is that all calculations depend on
the hyperon-meson couplings and some of them are poorly
defined. One possible solution to fix these quantities in a
less arbitrary way is to use group theory, as previously
done in [7-10].

From the experimental and observational side, during the
COVID-19 pandemic (2020-2021), the NICER telescope
kept our interests very much alive with some new results
for the NS radii. Surprisingly a massive NS and a canonical
one (with a mass of the order of 1.4 M) bear quite similar
radii [11,12]. Meanwhile, the LIGO and Virgo Collaboration
remained fully operational, detecting more gravitational
waves and providing more information on tidal polarizabil-
ities, some of which will be used to analyse our results along
the present work [13].

Even being of huge value to the improvement of the
theoretical description of compact stars, these results are far
from giving a conclusive picture of the internal composition
of such objects. Thus, it is still interesting to explore the
influence of other exotic particles in the neutron star EOS.
An obvious next step is the inclusion of the baryons of the
spin-3/2 decuplet. In the latest years, many papers addressed
this fundamental question, specially considering the A
resonances [ 14—17]. As it is with the hyperons, the couplings
of the spin-3/2 particles with the mesons are very important
but remain largely unknown. A very broad study about the
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delta-meson coupling effects on the NS description was
performed in Ref. [17], but the authors let the delta couplings
vary freely within a given range.

In the present work, we fix the couplings of the octet and
of the decuplet baryons with the mesons through an unified
SU(3) and SU(6) group symmetry [7-10,18-25]. This is a
good recipe to get rid of the huge arbitrariness previously
used, while all the baryonic potentials are not obtained
experimentally. Once the Clebsch-Gordan coefficients are
used to calculate all the couplings, just one free parameter is
left to be freely varied. The resulting EOS are then obtained
and the corresponding mass-radius diagrams are plotted and
discussed. The adiabatic index and the tidal polarizability
are also checked. For a better understanding of the effects of
the inclusion of the hyperons and the A particles in our
calculations, we present our results step-by-step; we first
consider only nucleons and hyperons, as done in [7-10,19],
then we consider only nucleons and A’s and finally we
include the whole octet and the A particles in our calcu-
lations. It is worth mentioning that the prescription for the
calculation of the decuplet-meson couplings presented in
this work can be applied to a diversity of calculations in
future works.

II. THE COUPLING CONSTANTS
WITH THE VECTOR MESONS

Let us assume that the Yukawa couplings of the quantum
hadrodynamics (QHD) Lagrangian, of the type
Lyuawa = —(988m) Wy s)M, (1)
where yp is the Dirac field of the baryon B, and M is an
arbitrary meson [25], are invariant under the flavor SU(3)
symmetry group and that the more restrictive hybrid
SU(6) D SU(3) ® SU(2) group is only partially broken.
The Yukawa coupling constant of the baryon B with the
meson M, given by ggpy, can be written in terms of only
one free parameter «, (see the Appendix for a detailed
discussion). The relative strength of the coupling between
the mesons and the exotic baryons will be given by

IAAw _ 4 + 2av (2)
9INNw 5 =+ 4av '
955w _ 8 — 2(11, (3)
INNw 5 + 4(11,
EEo _ 5- zaﬂ (4)
9INNw 5 + 4av '
for the w meson,

IAAG NG 5-— 20!1»>

I (2, 5

INNw <5 + 4(1” ( )

92 _ _ /5 1+205y> 6
INNw (5 + 4av ' ( )
gEE(/) 4+ 2(11;
B2 2 : 7
gN,a) f(s + 4(,10 ( )
with zg’—:‘p = 0 for the ¢ meson, and
9NNp
% — 2a,, (9)
9np
P2 — (1 -2a,), (10)
9NNp

for the p meson.

For the baryon decuplet we can also write the relative
strength of the baryon-meson coupling constants in terms
of the same free parameter «,, if we assume that the
Sakurai’s theory of the strong interaction (see Ref. [26])
holds even between intermultiplet states, as discussed in the
appendix. Then, we have

9as'w _ Yrde _ 9 (11)
INNw INNw 5 + 4a1ﬂ '
L9005 5 6
= , 12
INNw 5 + 4av ( )
e 3
= =W — , 13
INNw 5 =+ 4(11) ( )
94oow _ 0’ (14)
INNw
for the @ meson,
Iexp _ -3v2 (15)
INNw 5 + 4611/. ’
EET —6V2 (16)
INNw 5 + 4(11) 7
Yooy _ —-9V2 (17)
INNw 5 + 4-6!1} ’
with g;;—fv*"’ = g}t% = 0 for the ¢ meson, and
Inay g (18)
9NNp
9arp (19)
gNNp
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20, (20)
gN,/)
gE*E*/) _ 1’ (21)
9NNp
0% _, (22)
9NNp

for the p meson. As can be seen, no free parameter is
present for the coupling with the p meson. Notice that we
have combined the four A’s into two isospin multiplets
(A ={A% A"} and A* = {A~,ATT}).

III. THE COUPLING CONSTANT
WITH THE SCALAR MESON

To keep the Yukawa Lagrangian density invariant under
the SU(3) flavor symmetry we need the knowledge not only
of the baryon eigenstates, but also of the meson ones.
Unfortunately, unlike the vector mesons, the nature and the
proper existence of the scalar mesons are still foggy and
uncertain. Nevertheless, despite all the beauty of the
symmetry group theory, a physical theory must ultimately
reproduce the results coming from the laboratory.
Therefore, the relative strength of the coupling constants
can be determined by the potential depths at the saturation
point. The potential depth of the baryon B is defined as

Ug(ny) = 98w®0 — 9BBs00- (23)

where the @, and the o, are the RMF values of the w and ¢
fields, respectively [7,19]. The A potential depth is well
known, U, = —28 MeV [3], but the Uy and Uz are known
with a lesser degree of precision, although we believe that
the X potential is moderately repulsive, while the =
potential is weakly attractive [27]. In this work, we use
Us = +30 MeV and Uz = —4 MeV, values that were
recently favored by lattice QCD calculations [28].

Lonp = ZV_/B [7” (iaﬂ — 9BBo®u — 98By —
B

1

o

3
1

-

2 4

where the yp represent both the baryonic Dirac field of the
baryon octet and of the decuplet, with mass M. We are
aware that from a rigorous point of view, the members of
the baryon decuplet should be described by the Rarita-
Schwinger Lagrangian density. Nonetheless, as shown in
Ref. [33], the resulting equation of motion can be written

A 1 1
(0”06”6 - msz'gz) - E]V[N(gﬁa)3 - (906)4 - 79/”9;41/ +3 m%w "

| 1 —
- Pﬂl/ + _m/zpr pﬂ - —(I)””d)lw + Emé¢ﬂ¢” + Au)p(g/%p” ' p_/:)(gg)wﬂwﬂ)? (25)

In the case of the baryon decuplet, the situation is far
worse. The potential depths for the A baryons are poorly
constrained and, as far as we know, there is no information
about the potential depth of the other species of the baryon
decuplet. Therefore, we present no value for the scalar
meson coupling constant for these baryons. As extensively
discussed in Ref. [29], different models and techniques
point to a potential depth —150 MeV < U, < —50 MeV.
A more recent study [30] suggests that U, =~ 1.5U . Here,
we assume the latter value.

Unfortunately, the values of the w and o fields in
Eq. (23) are not model independent, implying that the
9ggpe Will not be independently determined either. Thus, to
determine the couplings with the scalar meson while still
satisfying nuclear bulk properties, we need to employ a
more comprehensive Lagrangian density, which involves
the kinetic terms of baryons and mesons in addition to the
Yuakawa couplings from Eq. (1). In general, nonlinear
terms and their couplings are also necessary. In this work
we use an enhanced version of the L3wp QHD para-
metrization presented in Ref. [31], which virtually sat-
isfies every single constraint of the symmetric nuclear
matter at the saturation point. Within this model, we
have Uy = 1.5Uy = —98 MeV.

A different kind of constraint was presented in Ref. [32],
and it is related to the difference between the relative
strength of the scalar channel and the vector one, that must
obey the relation

0< <M - %ﬂ) <0.2. (24)
9INNe  9NNw

As we show next, for our chosen parametrization and
potential depth, such constraint is always satisfied.

The nonlinear Walecka-type QHD Lagrangian employed
here reads

9BBp - -
BBpT'/) > _(MB_gBBng)]V/B

2 H

"

4 4 2

I
compactly as a Dirac equation with the same energy
eigenvalue. The i = 6, w,, ¢, ﬁﬂ are the mesonic fields with
mass m;. The ggp; are the Yukawa coupling constants that
simulate the strong interaction between the baryon B and the
meson i, and 7 are the Pauli matrices. The antisymmetric
mesonic field strength tensors are given by their usual
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TABLE I. Enhanced version of the L3wp [31] parametrization
(top) and its predictions to nuclear matter (bottom). The phe-
nomenological constraints are taken from Ref. [13,35-38].

Enhanced L3wp

(gnne/ms)? 12.108 fm?
(gNNw/’"ﬁ)2 7132 fm2
(gNNp/mp)2 5.85 fm2
K 0.04138
A —0.0390
Ay 0.0283
Quantity Constraint This model
ny (fm=3) 0.148-0.170 0.156
M*/M 0.60-0.80 0.69

K (MeV) 220-260 256

Sy MeV) 31.2-35.0 32.1

L (MeV) 38-67 66
B/A (MeV) 15.8-16.5 16.2
S(2ny) (MeV) 38.0-64.0 49.8
p(2ny) MeV /fm?) 11.2-38.7 16.4

expressions as presented in [3]. The A,,, term represents a
nonlinear @ — p coupling between the Vector mesons as,
e.g., the one present in the ITUFSU model [34]. The
parameters utilized in this work and the predictions
to nuclear matter properties are presented in Table I
The meson masses are m,, = 783 MeV, m, =770 MeV,
my = 1020 MeV, m, = 512 MeV.

The main experimental constraints are related to the
nuclear matter saturation point. The acceptable values for
the saturation density itself (n) the effective nucleon mass
(My/My), the binding energy per nucleon (B/A) and the
compressibility (K) are taken from two extensive review
articles, see Refs. [35,36]. The values of the symmetry
energy (Sy) and its slope (L) were strongly constrained
combining astrophysical data with nuclear properties
measured in the PREX-II experiment, together with chiral
effective field theory, in Ref. [37]. We use 31.2 MeV <
So < 35 MeV, and 38 MeV < L < 67 MeV as bounds to
these quantities.

Another two recent constraints are set beyond the
saturation point. They are the symmetry energy at twice
the saturation density, S(2n,), and the pressure of the
symmetric matter at the same point, p(2n,). The authors
in Ref. [38] bound S(2n;) in the range between 51 +
13 MeV at 68% confidence level, while Ref. [13] fixed
p(2n,) between 11.2 MeV - fm™ and 38.7 Mev - fm™ at
the 90% level. Our enhanced L3wp parametrization agrees
with all constraint presented.

To solve the equations of motion, we use the mean field
approximation, where the meson fields are replaced by their
expectation values. Applying the Euler-Lagrange formalism,

and using the quantization rules (E = 0°, k = id’) we easily
obtain the eigenvalue for the energy

Ep = \/I* + M3 + gp,00 + gpsto + 28 2 ngPOv (26)

where My = My — gp,0y is the effective baryon mass and
73p 18 the isospin projection of the baryon.A noninteracting
lepton gas is also included.

Applying Fermi-Dirac statistics to baryons and leptons,
we can write the total energy density as

—22 > / dkk*\ /K + M*2+ m 24+ = mwa)(z)
A 4
¢¢0 pp0+3MN(ga ) +Z<gaa)

1 [k
+ SAyw%p(z) + Z? /) " Ak \JK + m? (27)
1

where A, = Awpglz\,wgzzV ,; v is the degeneracy factor
y = (25 4+ 1), and assumes y = 2 to the members of the
baryon octet and y =4 for the members of the baryon
decuplet.

The pressure is easily obtained by thermodynamic
relations: p = Zf usng — €, where the sum runs over all
the fermions and y is the corresponding chemical poten-
tial. In order to ensure the chemical equilibrium condition,
the relation

B = Hy = qpHe (28)
must hold, where y,, and u, are the chemical potentials of
the nucleon and electron, respectively, gy is the electric
charge of the baryon, and u, = u,.. Additional discussion
about the formalism can be found in Refs. [7,8,10] and the
references therein.

To obtain ggp, from Eq. (23), we determine the fields
considering symmetric nuclear matter, i.e., containing only
protons and neutrons with equal densities and no leptons.
Fixing the potentials U, = —28 MeV, Us = +30 MeV,
Uz = -4 MeV, and U, = -98 MeV, we are able to
determine the whole set of coupling constants for each
value of a,, presented in Table II. Notice that, for any value
of a,, the constraint presented in Eq. (24) is always
fulfilled.

IV. HYPERONIC NEUTRON STARS

We start by describing the features of hyperonic neutron
stars and their constituents. The results presented in this
section are not new, as they have already been discussed in
the past [7—10], but they are important to allow us a direct
comparison between the effect of hyperons and A as well as
with A-admixed hyperonic nuclear matter.

036011-4



BARYON COUPLING SCHEME IN A UNIFIED SU(3) AND ...

PHYS. REV. D 107, 036011 (2023)

TABLE II. Baryon-meson coupling constants for different
values of a, to reproduce U, = —28 MeV, Uy = +30 MeV,
Uz = —4 MeV, and U, = —98 MeV. The potentials depth for
the £*, E* and Q are still unknown, so it is not possible to
determine their scalar couplings with the current knowledge.

a,
1.00 0.75 0.50 0.25
Irne/ INNw 0.667 0.687 0.714 0.75
55w/ INNw 0.667 0.812 1.0 1.25
9=50/ INNw 0.333 0.437 0.571 0.75
Iang! INNw —0.471 —-0.619 —0.808 -1.06
9539/ INNe —0.471 —0.441 —0.404 —0.354
9=zp/ INNw —0.943 -0.972 —-1.01 -1.06
Ianp/ INNp 0.0 0.0 0.0 0.0
Gss,/ 9NN 2.0 1.5 1.0 0.5
=2,/ INNp 1.0 0.5 0.0 -0.5
Iane/ INNo 0.610 0.625 0.646 0.674
G550/ INNo 0.406 0.518 0.663 0.855
Gzz0/ INNe 0.269 0.350 0.453 0.590
Ianw/ INNe 1.0 1.125 1.285 1.5
Ianre] INN 1.0 1.125 1.285 1.5
55w/ INNe 0.667 0.75 0.857 1.0
Jow/ INNe 0.0 0.0 0.0 0.0
954/ INNw —0.471 —0.530 —0.606 —0.707
=2/ INNw —0.943 —1.060 -1.212 —1.414
9a0s/ INNw —1.414 —1.590 —1.818 -2212
9anp/ NNy 1.0 1.0 1.0 1.0
9ara*p/ GNNp 3.00 3.0 3.0 3.0
Gsxp/ NN 2.00 2.0 2.0 2.0
=25/ INNp 1.0 1.0 1.0 1.0
Joap/ INNp 0.0 0.0 0.0 0.0
Iano/ INNe 1.110 1.208 1.331 1.5
Iaacol INNo 1.110 1.208 1.331 1.5
gE*E*a/gNNo r’ ? {7 ?
9= 50/ INNo ? ? ? ?
9000/ INNs ? ? ? ?

We plot in Fig. 1 the particle population for different
values of @,. As can be seen, the X triplet is not present in
any parametrization, due to the highly repulsive potential
—Uys = +30 MeV—together with the strong @ repulsion,
especially for low values of «,. For the SU(6) parametri-
zation (a, = 1.00), the lepton fraction goes to zero at high
densities, and the charge neutrality is obtained by an equal
fraction of protons and E~ hyperons. As we decrease «,,
the lepton fraction at high densities increases. In all
parametrizations we also see that the AY is the first hyperon
to appear, always around n = 0.40 fm™3.

We plot in Fig. 2 the EOS for hyperonic nuclear matter
for different values of «,. We can see, that there is a clear
relation between «, and the stiffness of the EOS. The lower

the value of «,, the smaller the hyperon fraction present in
the matter composition and so, as stated by the hyperon
puzzle reasoning, the stiffer the EOS. Such result was
already pointed in Refs. [7-9].

The adiabatic index, defined as

is a sensitive indicator of phase changes in stellar matter
and the stability with respect to vibrations and pulsations of
the star [39,40]. For multicomponent matter, the adiabatic
index exhibit jumps at densities coincident with density
thresholds of individual components, signaling phase
transitions and/or changes in the matter constitution [41].
The adiabatic index I' presents information not only on
the EOS (p and €), but also on the speed of sound
(v2 = dp/oe). It is shown in Fig. 3. Looking at Fig. 3,
one can notice that the A° threshold around 0.40 fm~ is
strongly evidenced, causing a huge drop in the value of I".
A smaller but distinguishable peak also points to the onset
of the E™ hyperon. Also, the higher the a,, the deeper the
drop of the adiabatic index due to the A° threshold.

Now we turn our attention to the neutron star properties
that result from each EOS. Any valid EOS must be able to
reproduce some astrophysical constraints. Maybe the more
important is that it must be able to describe the mass
and radius of the PSR J0740 + 6620 pulsar, whose values
are M =2.08+0.07 My and R = 12.397}30 km [11].
Another important constraint is the radius of the canonical
M =14 Mg star. We use here a very strong constraint
presented in Ref. [12], which suggest R;, = 12.45+
0.65 km, that limits the radius of the canonical star within
an uncertainty of only 5%. We also discuss the possibility of
the existence of a very massive neutron star, dubbed as black
widow, with a mass of M = 2.35 +£0.17 M, as suggested
in Ref. [42]. Such heavy star, if confirmed, would be by far
the most massive neutron star ever measured.

The mass-radius relations are obtained by using the EOS
as input to solve the Tolman-Oppenheimer-Volkoff (TOV)
equations [43]. Complementary, we use the BPS EOS [44]
for the outer crust and the BBP EOS [45] for the inner crust,
as discussed in Ref. [46]. The results are presented in Fig. 4.
As can be seen, with the exception of the SU(6) para-
metrization, all models are able to describe the M = 2.08 =
0.07 Mgy PSR J0740 4- 6620 pulsar. Moreover, as the
hyperon onset is around n = 0.4 fm=3, within our model
only stars with masses higher than M = 1.43 Mg, present
hyperons in their core. Given that, all canonical stars has the
same internal nucleon-only composition and, therefore the
same radius of R = 12.82 km. This result is in agreement
with the discussion presented in Ref. [12]. Finally, for
a, = 0.25, we found a maximum mass of M = 2.20 Mg,
what means that this model allows the description of the
PSR J0740 + 6620 as containing hyperons in its the core,
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and even of the black widow pulsar in the lower limit of the
error bar.

Another important astrophysical constraint comes from
the GW170817 event, detected by the LIGO/VIRGO
gravitational wave telescopes: the dimensionless tidal
deformation parameter A. The tidal deformability of a
compact object is a single parameter that quantifies how
easily the object is deformed when subjected to an external
gravitational field. Larger tidal deformability indicates that
the object is easily deformable. On the opposite side, a
compact object with a smaller tidal deformability parameter

600 T
Nucleonic ------
a=025 ——
o =0.50
450  a=0.75 d
. SuU(6)
(3]
£
> 300 - i
=
o
150 | |
0 e | | |
0 250 500 750 1000 1250

e (MeV/im®)

FIG. 2. Equation of state for different values of , for hyperonic
nuclear matter.
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n (fm'3)
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> 0.1 | =5
/- e e
R 0:' " E_
oTE ! ’l‘ A\ : "' | | .
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Particle population for different values of a, for hyperonic neutron star matter.

is smaller, more compact, and it is more difficult to deform.
It is defined as

A (30)

- 3C
where C = GM/R is the compactness of the star. The
parameter k, is called the Love number and is related to
the metric perturbation. We refer the interested reader to
Refs. [13,47-49] to a complete discussion about the Love
number and its calculation procedure. Here, we adopt the
constraint on the dimensionless tidal parameter for the
canonical mass star presented in Ref. [13], 70 < A;4 <
580. As there are no hyperons in the 1.4 M, star, all values
of a, produce the same dimensionless tidal parameter
Ay 4 =516, which is in agreement with this constraint.
The results for the tidal deformability are presented in Fig. 5.
Finally, the hyperonic neutron star main properties are
presented in Table III.

V. A-ADMIXED NEUTRON STARS

Now we study the effects of the presence of A baryons
on the neutron star properties. We must emphasize that here
we consider only the A~ and A° baryons, because the
inclusion of the AT and A™ baryons causes the nucleon
effective mass to drop to zero for very low densities,
preventing the neutron stars to reach densities high enough
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FIG. 3. The adiabatic index for different values of «a, for
hyperonic nuclear matter.
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FIG. 4. Mass-radius relation for hyperonic neutron stars for
different values of a,. The hatched areas correspond to the
uncertainty on the radius of the canonical star, and the mass-
radius uncertainty of the PSR J0740 + 6620 pulsar.
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FIG. 5. Dimensionless tidal deformability parameter A for
hyperonic neutron stars for different values of «,. The hatched
area corresponds to the uncertainty on the A, value obtained
from the GW170817 event [13].

TABLE 1II. Hyperonic neutron star main properties, for the
maximum mass and canonical stars. The properties of the
nucleonic star is included for comparison.

ab‘
su©)  0.75 0.50 025  Nucl.
M /Mo 1.97 2.05 2.13 2.20 2.30
n, (fm=3) 1.04 1.02 1.00 0.98 0.94
R (km) 118 1117 1119 1123 1134
R, (km) 1282 12.82 1282 1282 1282
AL 516 516 516 516 516

to describe in the maximum mass star. This behavior was
discussed thoughtfully in Ref. [17], where it is understood
that the increase of the exotic particle abundance adds to
the negatively contributing term of the effective nucleon
mass, through the scalar density dependence of the o field.
In that study, the authors could tune the multiplicity of
baryons in the matter by varying the coupling constants,
what would go against the scope of the present work. Yet,
as the couplings are now bound by the symmetry relations,
determining the onset of the particles, the abundance of
positively-charged baryons in the lower densities makes it
very hard to obey the charge neutrality condition.

We show the particle population for A-admixed neutron
star matter in Fig. 6. As it can be seen, the A~ is always the
first one to appear, at a density about n = 0.3 fm™>. This
can be explained due to the high-attractive potential of
the A’s (U, = —98 MeV) as well as its negative electric
charge, which reduces its chemical potential. Another fact
is that, since the members of the spin-3/2 decuplet carry a
y = 4 degeneracy factor, their number densities are twice
bigger than it would be for a spin-1/2 baryon. This makes
the increase of the A~ population very fast. For SU(6) and
for @, = 0.75, the density of the A~ quickly reaches the
density of the protons, contributing to the deleptonization
of the nuclear matter because the charge neutrality is now
reached by an equal amount of protons and A~. For the SU
(6) case, the neutron population is outweighed by all the
other baryonic species, with A® becoming the more
abundant component in the high density region. For SU
(6) and a, = 0.75, the A° appears before n = 0.6 fm™,
being absent for a, = 0.50, but reappearing for a, = 0.25
at very high density. Seeing beyond the model-dependency
specifics, we can compare these results with the ones
presented in Ref. [17]. There, it is stated that the larger the
difference between the vectorial (repulsive) and the scalar
(attractive) couplings, the less favored the A baryons are to
appear. The overall behavior of the particle population is
consistent between the two studies, with the main differ-
ence being that, in the SU(6) case here, the A? population
dominates in the higher density, while in [17] the A~ is
always more abundant. It can be explained by the absence
of the positively-charged resonances here, whose onset
would increase the A~ population. Also, we see that for
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FIG. 6. Particle population for different values of «, for A-admixed neutron star matter.

a, = 0.50 and 0.25, the A~ fraction begins to decrease at
high densities, which causes an increase of the lepton
fraction. Such behavior has never been observed in hyper-
onic nuclear matter. This behavior is due to the fact that
resonances are subject to a coupling with the mesons
stronger than the other baryons. It favors their onset at low
densities, where the attractive part of the potential is more
relevant, but makes them less favored once the repulsive @
field dominance takes place at large densities that occurs
because the o field saturates [17].

We now study how the A threshold affects the nuclear
EOS and the adiabatic index I', both results presented in
Fig. 7. For the SU(6) and a, = 0.75, the EOS is clearly
softer than the pure nucleonic one, but for a, = 0.50 and
0.25, this is not so clear. In fact for these values the EOS
becomes stiffer than the pure nucleonic one at high
densities. Again, let us point out that such behavior is
never present in the case of hyperonic nuclear matter. All
the complexity of the A-admixed nuclear matter is more
strongly reflected in the adiabatic index. There is a huge
drop of I" around n = 0.3 fm™3, due to the onset of the A~,
which is similar to the drop caused by the A threshold but
deeper. What is not present in the case of the hyperonic
nuclear matter is the huge and fast increase of the I" around
n = 0.4 fm3. Indeed, the adiabatic index becomes higher
for A-admixed nuclear matter than for pure nucleonic
matter. For a, = 0.25, we also see a new increase of the

T" due to the onset of the A?, just before the numerical code
stops converging.

Solving the TOV equations we can see how the onset of
the A’s affects the neutron star macroscopic properties and
the dimensionless tidal parameter, as presented in Fig. 8. As
the A~ threshold happens at n = 0.3 fm™ this implies that
stars with masses above M = 0.92 M, contain A’s in their
core. In practice, this means that all known neutron stars
have deltas in their cores if we assume a A-admixed neutron
star matter composition. As a direct consequence, the radius
of the canonical star depends on the A-meson coupling
constants. We see that the higher the value of «,, the lower
the maximum mass and the lower the radius of the canonical
star. The SU(6) parametrization is the only one which is not
able to describe the PSR J0740 4 6620 pulsar [11].
Although the maximum mass is M = 2.09 M, this curve
misses the observational data window by presenting radii
below R = 11.40 km. For all other values of «, we are able
to explain the PSR J0740 + 6620 pulsar, and for a, = 0.50
and 0.25, even a mass above 2.18M, is reached, explaining
the PSR J0952-0607 black widow pulsar discussed in
Ref. [42]. A very interesting feature here is the fact that
for a, = 0.25, the maximum mass is M = 2.31 M, even
larger than the maximum mass of a pure nucleonic neutron
star of M = 2.30 Mg,. Again, this behavior is due to the fact
that the resonances are subject to a stronger coupling with
the mesons than the nucleons. Larger scalar coupling favors
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FIG. 7. [Equation of state (top) and adiabatic index I" (bottom)
for A-admixed neutron star matter for different values of «,,.

larger A fractions and, as the deltas also couple more
strongly to the vector fields, the w-dominance at large
densities results in stiffer EOS, and, therefore, larger
masses, as discussed in Ref. [17].

As far as the radius of the canonical star is concerned,
we see that all parametrizations are in agreement with
the discussion presented in Ref. [12]. Indeed, for SU(6),
the canonical radius can be as low as R = 12.08 km. The
presence of A’s in the neutron star core can naturally
explain why some observational astrophysical results point
to a very low radius for the canonical star [50], while at the
same time some terrestrial nuclear experiments point to a
high slope of the nuclear matter symmetry energy [51],
that would suggest larger radii. The increase of the neutron
star compactness due to the onset of a new degree of
freedom was already discussed in Ref. [52]. About the
dimensionless tidal parameter, we see that the increase of
the compactness of the star due to the onset of A~ also
reduces the A;4. For SU(6), this value is as low as
A4 = 318. The A-admixed neutron stars main properties
are summarized in Table I'V.

VI. A-ADMIXED HYPERONIC NEUTRON STARS

In this last section we study how the presence of both A
barryons and hyperons affect the nuclear EOS and the

2.4
2 - -
1.6 | *
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N a=025 —— | i
081 =050 \
a=0.75 \
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04 1 1 L~
10 11 12 13 14
R (km)
1000 T T
Nucleonic ------
A\ =025 —
EQ\Y a=0.50 4
800 I\ \k a=0.75
600 | °
<
400
200
0
1.2
FIG. 8. TOV solutions (top) and dimensionless tidal parameter

A (bottom) for A-admixed neutron stars for different values of «,,.

corresponding neutron star macroscopic properties. In this
case there is expected a very complex competition between
the A’s and the hyperons populations. The particle pop-
ulations are presented in Fig. 9. We can see that the onset of
the A~ around n = 0.3 fm™ is kept, as in the case of when
only A’s are admixed to the neutron star matter. On the
other hand, the A° has its threshold pushed away towards
higher densities when compared with pure hyperonic
nuclear matter, due to the higher attractive potential of
the resonances. For the SU(6), the & is not present, once
the nucleon mass goes to zero before its onset and the
numerical code stops converging. As in the case of pure

TABLE IV. A-admixed neutron star main properties, for the
maximum mass and canonical stars. The properties of the
nucleonic star is included for comparison.

ab‘
su©)  0.75 0.50 025  Nucl.
Mpw /Mg 2.09 2.20 2.28 231 2.30

n, (fm=3) 1.11 1.06 0.99 0.95 0.94
R (km) 1031 1059 1097 1126 1134
R, (km) 1208 1225 1253 1273 12.82
Aps 318 360 428 489 516
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FIG. 9. Particle population for different values of «, for A-admixed hyperonic matter.

A-admixed matter, for a, = 0.50, the A° is not present. For
a, = 0.50 and 0.25, the releptonization of the star matter
due to the decrease of the A~ seen in the pure A-admixed
matter is now weakened, once there is the onset of the =~
in these scenarios. It is more difficult to draw parallels
between our results here and the ones in Ref. [17] because
the authors there considered a fixed SU(6) hyperon
coupling scheme and varied the delta couplings freely.
However, apart from model dependencies and the suppres-
sion of the positively-charged deltas, some behaviors repeat
themselves in both studies. The A~ is the first exotic
particle to appear. The reasoning to that is that it can replace
a neutron-electron pair at the top of their Fermi seas, being
favored over the lighter hyperons because their potential is
more attractive. The A°, being electrically neutral and the
lighter exotic baryon, is the next to appear. It also becomes
the more abundant particle in intermediate densities, after
the w-dominance gets established, because its smaller
repulsive coupling. The competition between the A~ and
the 2~ can also be understood by the former being subject
to a less repulsive coupling than the first. Also, we argue
that there is a strong tendency of deleptonization in the high
density region of A-admixed hyperonic neutron stars.
We now display in Fig. 10 the EOS and the adiabatic
index I" for the A-admixed hyperonic star matter. As can be
seen, the EOS are again distinguishable. The lower the value
of a, the stiffer the EOS, but unlike the pure A-admixed
matter case, we do not have any EOS stiffer than the pure

nucleonic one, once the coupling constants with the hyper-
ons are smaller. In relation to the adiabatic index, the
behavior of I" is even richer and more complex. We see a
huge drop of I due to the A~ threshold followed by a quick
increase and a new drop due to the onset of the A°.
Finally we display in Fig. 11 the TOV solution as well the
dimensionless tidal parameter A. We see that we have an
intermediate result between pure hyperonic neutron star and
pure A-admixed neutron star. In this case, the nucleonic
neutron star has always a higher maximum mass. Moreover,
neither the SU(6) parametrization nor the a, = 0.75 can
describe the PSR J0740 + 6620 pulsar, despite the fact that
for @, =0.75, a maximum mass of M =2.02 M, is
reached, its radius is too low to cross the hatched area.
For the SU(6) parametrization, a mass of M = 1.84 Mg, is
reached. However, we must emphasize that this does not
represent the true maximum mass, as for this parametrization
the numerical code stops before the condition oM /de,. = 0
is reached (see the discussion in Ref. [17]). We want to note
that the presence of hyperons and deltas produces the higher
central density of the models under investigation, reaching
n=1.14 fm=3, which is over seven times the nuclear
saturation density. Also, for a, = 0.25, a maximum mass
in the range of the black widow pulsar is reached. It is also
worth pointing out that for a, = 0.25, the A-admixed
hyperonic neutron star reaches a maximum mass higher
than the pure hyperonic case. This counterintuitive behavior
when deltas are included in the neutron star matter, given the
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FIG. 10. Equation of state (top) and adiabatic index I" (bottom)
for A-admixed hyperonic star matter for different values of «,,.

well-known hyperon puzzle reasoning, was first noticed and
explained in Ref. [17]. It occurs due to the increased
repulsion between the baryons in the high-density region
of the star, because deltas have more repulsive couplings
than the hyperons. Here, we presented an unified and model-
independent formalism to determine the exotic particle
couplings that strongly suggests that not only delta baryons
must populate the neutron star matter, but also that their
presence makes the stars more massive.

Concerning the canonical star, we want to note that
hyperons are present with a very low fraction only for the

TABLE V. A-admixed hyperonic neutron star main properties
for the maximum mass and canonical stars. The properties of the
nucleonic star is included for comparison, and the * indicates that
the true maximum mass was not reached.

al/‘
a, SU(6) 0.75 0.50 025  Nucl.
M /Mo 1.84* 2.02 2.13 2.21 2.30
n, (fm=3) 0.95* 1.14 1.05 0.98 0.94
R (km) 10.81* 1050 1090  11.18  11.34
R, (km) 12.05 1225 1253 1273 1282
As 311 360 428 489 516
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FIG. 11. TOV solution (top) and dimensionless tidal parameter

A (bottom) for A-admixed neutrons stars for different values of «,,.

SU(6) parametrization. This reduces the radius for the
canonical star to R 4 = 12.05 km, a small reduction when
compared with the R; 4 = 12.08 km for a pure A-admixed
neutron star. A reduction of the dimensionless tidal
parameter from A;, =318 to A;4, =311 is obtained.
The macroscopic neutron star main results are summarized
in Table V.

We conclude that the A~ is by far the most important
exotic particle that can be present in the neutron star core,
once it appears at significantly low densities, and its
fraction increases very rapidly due to the very attractive
potential, as well as its negative charge and spin-3/2.
Moreover, based on the present study, it is the only particle
able to influence even the canonical star properties.

VII. CONCLUSION

In this work we calculated the baryon-vector meson
coupling constants for all members of the baryon octed and
the baryon decuplet using the Clebsch-Gordan coefficients
of the SU(3) group. Then, using a QHD model that virtually
fulfills all the constraints at the saturation density, we fixed
the coupling constants of the scalar ¢ meson in order to
reproduce the known potential depth, which allows an
unified approach to hyperons and delta resonances coupling
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constants. We then apply the calculated coupling constants
to study neutron star properties. The main remarks are
listed below.

(i) The vector meson coupling constants are fully model
independent, and is determined by fixing the free
parameter «,. The results presented in Table II can
be applied to a diversity of problems that go beyond
the one shown in the present paper.

(i) When we deal with hyperonic nuclear matter:

- We see that the A and =~ are always present,
independent of the value of a,. These results
corroborate the discussion presented in Ref. [7,53],
where it is stated that hyperons are inevitable.

- As expected from the hyperon puzzle reasoning,
the hyperons soften the EOS. In a symmetry group
approach, the higher the value of «,, the softer
the EOS.

- The adiabatic index I" shows a huge drop due to
the onset of the A?, followed by a small one due to
the Z~ onset.

- With the exception of the SU(6) parametrization,
we are able to explain the mass and the radius of
the PSR J0740 + 6620 pulsar [11]. For a low
value of a,, even the mass range of the black
widow pulsar is reached.

- Within our model, hyperons are never present in a
M =14 My star. Therefore, we always have
R, =12.82 km and A, = 516 if we consider
a hyperonic neutron star matter composition.

(iii) In the case of A-admixed nuclear matter:

- We see that the A~ is always present, in a density
even lower than the A onset in the hyperonic
neutron star matter composition. Also, the matter
is strongly deleptonizated for lower values of a,,.
As in the case of hyperons, the A~ also seems
inevitable, due to their strongly attractive poten-
tial, Uy = —98 MeV and its negative charge.

- For higher values of «,, the A-admixed nuclear
matter is softer than the pure nucleonic one. But
for lower values, this correlation is not so
straightforward. In fact, the A matter can become
even stiffer than the nucleonic one at higher
densities.

- The adiabatic index I' for A-admixed matter
shows a much more complex behavior than the
hyperonic one. We see a huge drop of I" due to the
onset of the A~, which is followed by a quick
increase. The I" at intermediate densities becomes
even higher than for the pure nucleonic one, a
behavior not present in the hyperonic case.

- For all values of a, we are able to reach a
maximum mass above two solar masses; although
for the SU(6) case the radii are too low and in
disagreement with the inferred values for the PSR
JO740 + 6620 pulsar [11]. For low values of «,

the high mass of the PSR J0952-0607 pulsar is
reached [42].
(iv) For the A-admixed hyperonic nuclear matter:

- We see that the A~ and the A° are always present.
Also, the A~ is always the first exotic particle to
appear, followed by the A° that then becomes the
more abundant particle in intermediate densities.

- As in the case previously analyzed, the nucleonic
EOS is always the stiffer one. Also the adiabatic
index here is even richer and more complex than
for pure A-admixed matter.

- With the SU(6) parametrization, the true maxi-
mum mass is not reached because the code stops
converging still at low densities. This is the only
case where this situation happens. For a, lower or
equal to 0.50, our results are able to describe the
mass and radius of the PSR J0740 + 6620 pulsar.
For a, = 0.25 even the very massive PSR J0952-
0607 pulsar is also described.

- Despite the fact that we use a very tight constraint
for the radius of the canonical star, i.e.,
R4 =12.65£0.45 km, with an uncertainty of
only 5%, all our models are able to satisfy such
restriction. The same is true for the constraint of the
dimensionless tidal parameter: 70 < A; 4 < 580.

- We conclude that, by far, the A~ is the most
important exotic particle that can be present in the
neutron star core. It is always present, for all
parametrizations considered in the present work,
and its onset happens at very low densities.
Therefore the A~ affects the properties of the
canonical 1.4 My. Also, its presence not always
softens the EOS, but in some cases, the EOS can
be even stiffer, increasing the maximum mass!
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APPENDIX: YUKAWA COUPLINGS IN SU@3)
AND SU(6) FORMALISM

In this appendix, we discuss in some detail the theory of
the strong force, assuming that the Yukawa coupling of the
QHD is invariant under the SU(3) flavor symmetry group.
In practice, this implies obtaining the SU(3) Clebsh-Gordan
coefficients in order to keep the Yukawa-Lagrangian
density,

(A1)

EYukawa = _g(WBWB)M7
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as an unitary singlet. In Eq. (A1), wp is the Dirac field of
the baryon B, M is the field of an arbitrary meson and yp is
the complex conjugate of the field y . Each field is labeled
by its eigenstates as |N, Y, I, I3), in conformance with the
usage of the SU(3) symmetry, where N is dimension of the
representation, Y is the hypercharge, I is the total isospin
and /5 is the isospin projection [25,54]. On the other hand,
the complex conjugate of a state can be determined from
IN.Y,I,I3) = (=1)57Y2|N, Y, I,-15). (A2)
where N is the dimension of the representation of the
complex conjugate.
Keeping the Yukawa coupling as an invariant implies the
calculation of the SU(3) Clebsh-Gordan (CG) coefficients
for the coupling g Q@ wp M.

1. The baryon octet

The use of the SU(3) formalism and the CG coefficients
for the members of the baryon octet is well known in the
literature [7—10,18-25,54,55]. Nevertheless it is useful to
retrieve the results, not only to explicitly show some
subtleties, but also to help the reader who is unfamiliar
with symmetry group techniques.

As we pointed out, the Lagrangian of Eq. (A1) must
belong to the irreducible representation IR{1}, i.e., an
unitary singlet. Both the baryon octet (y5) and its complex
conjugate (g) belong to the IR{8}, D(p,q) = D(1,1)
[25]. The vector meson nonet belongs either to IR{8}
or to IR{1}. To preserve the unitary symmetry, the
direct product Wz ® wp must transform as IR{8}
when the meson eigenstate (M) belongs to IR{8}, and
as IR{1} when M belongs to IR{1}. By the use of the
Speiser method [25], the direct product {8} ® {8} results
in {27} @ {10} & {10} & {8} ®{8'} ® {1} [25,55].
Therefore, there are two ways to couple {8} ® {8} to
{8}; typically called antisymmetric ({8}) and symmetric
({8'}) couplings [22,23].

The Yukawa Lagrangian density can be rewritten as

‘CYukawa - _(gc + glcl) (II,BWB)M’ (A3)
for the mesons belonging to IR{8}, and
Lyukawa = —91 (l/_/Bl//B)M7 (A4)

for the mesons belonging to IR{1}.

The g (¢) is the constant associated to the antisymmetric
(symmetric) coupling, while the C (C’) is the SU(3) CG
coefficients of the antisymmetric (symmetric) coupling.
The SU3) CG coefficients can be calculated from the
isoscalar factors, as discussed in Ref. [25]. Once its values
are well known, we use the tables presented in Ref. [54].

A crucial step is to realize that the CG coefficients
presented in Ref. [54] are related to the (wp ® wp) direct

product, instead of the (pp ® wp) presented in our

Lagrangian. The CG in reversal order introduces a sign

of +1. As pointed in Table 1 from Ref. [54], the CG of the

symmetric coupling (C') gains a —1 sign. Without it, one

cannot reproduce the results presented in Ref. [8,9,20,25].
Now, explicity, we have

3 1 1
=—|=\/=g—1\/— -, A5
9NNp ( \/209 \/ 129’) X \/g (AS)
/1 1 1
INNwys = —< %g - \/%d) S \/% (A6)
gAAp =0 (A7)
1 1
IANAwg = —<—\/;g) X = g (AS)
1 1
gsz, = —(— §Q/> x\g (A9)
1 1
gEZaig = _<_ 59) X g, (AIO)
3 1 1
e = — =4/ — , All
9=z < T 129>>< \/g (A1)
1 1 1
== —| —1/== , Al2
==, ( 509~ \/;9’ ) x \/; (A12)
and
INNg, = 9Arp, — 9sz¢, — 9259, — 91- (A13)

Then, following Ref. [25], we introduce the coupling
constants:

_x/_ V6

10 +— and a, =

Voy

= Al4
gs 24 g ( )

which allow us to rewrite the coupling constants of the
baryons with the vector mesons (A5)—(A12) in its more
usual way [8,20,25],

9NNp = 98> (AIS)
Jssp, = 2931y, (Al6)
Jz=p = —gs(1— 20‘@)7 (A17)
Ianp = 0, (AIS)

and
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1
INNwy = 598\/5(4% - 1), (A19)
2
INAwg = _598\/37(1 —-a,), (A20)
2
Isswg = 598\/5(1 —a,), (AZI)
1
922wy = _598\/5(1 + 2&7,). (AZZ)

In nature, nevertheless, the physical realization of the
mesons are the w and ¢ meson, that are a mixture of the
theoretical wg and ¢, states [20],

® = cos0,|¢p;) + sinb,|wg) (A23)

¢ = —sin 61}|¢l> +cos 0,

wg). (A24)
Therefore, the coupling constants of the baryon octet
with the @ meson now read

1
IvNe = 91€08 0, + gg sin0, = V3(4a, —1),  (A25)

2
Iare = g1 €080, — ggsinb, 3 \/3(1 -a,), (A26)

2
Jsse = g1 €080, + ggsind, 3 \/§(1 —-a,), (A27)

1
J=m, = g1 €08, — gg sin b, 3 \/5(1 + 2a,). (A28)

The results for the ¢ meson follow directly by replacing
cosf, - —sind, and sinf, — cosd, in the equations
above [20].

Within the flavor SU(3) symmetry, we have in principle
three free parameters (a,, the ratio z = gg/g;, and the
mixing angle 0,). The mixing angle 6, is related to the
nature of the w and ¢ mesons. When we assume SU(6)
symmetry (6, = 35.264) we have the quark contents @ =
(au 4 dd)/+/2 and ¢ = 5s. This is called ideal mixing [20].
The z and «, parameters are related to the relative strength
of the coupling, and to the nature of the coupling itself.
a, = F/(F + D) is a weight factor for the contributions of
the symmetric D (corresponding to {8'}) and the antisym-
metric F (corresponding to {8}) couplings relative to each
other [9,21,23]. The ratio z is the relative strength of the
coupling of the baryons with the meson octet over the
singlet one.

All three free parameters can be fixed by imposing that
the Yukawa Lagrangian density is not only invariant under
the flavor SU(3) symmetry group but also to the spin SU(2)
symmetry group, creating the so-called SU(6) hybrid group

SU(6) D SU(3) ® SU(2), which implies [20,22-24,55]
that
0,=35264, and a,=1.00.

2=—, (A29)

V6
In this case we obtain that the ¢» meson does not couple
to the nucleon (gyys = 0); the @ meson couples to the
hyperchage and the p meson couples to the isospin. Such
coupling nature was originally proposed by Sakurai [26].
In this work, in order to study the effect of different
coupling constants, we assume that the SU(3) flavor
symmetry is exact but the hybrid SU(6) symmetry can
be partially broken. In other words, all baryon-vector
meson coupling constants obey Eq. (A25) to Eq. (A28)
and the values of z and 8, given in Eq. (A29) are kept fixed
in agreement with the SU(6) symmetry, but «, is left as a
free parameter.

2. The baryon decuplet

Once we set the grounds and pave our knowledge to
construct an Yukawa coupling which is invariant under the
flavor SU(3) symmetry group for the baryon octet, we give
a step further and impose that the Yukawa coupling is also
invariant for the baryon decuplet. As one could correctly
deduce, this implies calculating the CG coefficients for the
baryon decuplet.

The baryon decuplet belongs to IR{10}, D(p,q) =
(3,0), while its complex conjugate belongs to IR{10*},
D(p,q) = D(0,3) [22,25]. The vector meson nonet belongs
either to IR{8} or to IR{1}. Therefore, to preserve the
unitary symmetry, as in the case of the baryon octet, the
direct product must transform as IR{8} when the meson
eigenstate (M) belongs to IR{8} and as IR{1} when M
belongs to IR{1}.

Applying the Speiser method, the direct product {10} ®
{10*} results in {64} @ {27} @ {8} @ {1} [54]. Here,
unlike the octet case, we have only one coupling resulting
in a IR{8}, the antisymmetric one.

The Yukawa Lagrangian density can be rewritten as

EYukawa = —(gC) (l/_/Bl//B)M’ (A30)
for the mesons belonging to IR{8}, and
Lyukawa = =91 (Wsws)M, (A31)

for the mesons belonging to IR{1}, where C are the SU(3)
CG coefficients. The CG are listed in Ref. [54]. It is also
worth pointing out that the direct product that results in a
IR{1} must gain a —1 sign, as displayed in Table 1
from [54].

In the case of the baryon octet, we have some doublet
isospin, i.e., particles with the same eigenstates except by
the sign of the isospin projection. For instance, protons and
neutrons form the nucleon doublet: N = |8,1,1/2,+1/2);
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EY and 2 correspond to E = |8, —1,1/2, £1/2). Here, it
is useful to divide the four A’s into two isospin doublets.
We therefore define (A%, AT) = A =110,1,3/2,41/2),
and (A7, ATT) = A* =10,1,3/2,£3/2). Within these
definitions we have

3 1
9arnp = —< 109) 10 (A32)
1 1
IN A wg = —( EQ) X = 0 (A33)
1 1
9anpy = —\| — %g X 10 (A34)
1 1
9anws = —<— Eg) X 10 (A35)
2 1
g — — | —4 [ — J— A
)30 ( \/ 159) x 10 (A36)
I3 sr g = 0, (A37)
1 1
TRk, — . A/ = A38
gzzp < 309) *=\1o (A38)
1 1
Ik — = —\/ = A/ A39
925 oy ( 109) *=\1o (A39)
gQQp = O, (A40)
= \/E X 1 (A41)
900w, = 59 10
and
I = Gang, = 9aratg,
= gz, = 9mrErg, = 9QQ¢, - (A42)

Now, in analogy with Eq. (A14) related to the baryon
octet, we introduce a new coupling constant to the baryon
decuplet

g0 = 10V/3g. (A43)

As the real ¢ and w are not the theoretical wg and ¢,
but a mixture of them, as put in the Eqs. (A23) and (A24),
we can rewrite the coupling constants for the baryon
decuplet as

Iaatp = 3910, (Ad4)

9anp = 1o (A45)
Osryrp = 2410 (A46)
9=rzrp = 910> (A47)

94oop = 0, (A48)

and
Ia e = Jane = §1 €080, + g1oV/3sind,, (A49)
Js's'e = §1 €080, (A50)
Jzrmp = g1 €080, — g10V/3sin6,, (A51)
Joow = 91 €080, — 910\/E sind,, (A52)

and again, the results for the ¢ meson are obtained, by
replacing cos @, - —siné, and sinf, — cos@,.

As can be seem, for the baryon decuplet we have only
two instead of three free parameters. As a consequence, the
coupling for the p meson is already determined. Now we
employ SU(6) symmetry, and assume an ideal mixing angle
(0, = 35.264). We also determine z in such a way that
gara ¢ = 9gany = 0, which implies z = 1/4/6, exactly as in
the octet case.

3. The intermultiplet ratio

If we want to describe on the same footing, a strongly
interacting matter composed of both the baryon octet and
decuplet members, then the ratios of the type gaaw/Inne
are crucial. For simplicity, but without any loss of general-
ity, we start by assuming a full SU(6) parametrization, i.e.,
a, = 1.00. In this case we have

Jase =XAo = @ . (A53)
INNw g3

From a pure, abstract, symmetry group theory argu-
ments, the baryon octet and decuplet are unrelated multip-
lets of the SU(3) group. Therefore, in principle, y,, can
assume any value. However, we known that the nucleon
and the A are not pure abstract entities. Indeed, they can be
faced as the same particle, being the A only an excited state
of the nucleon. We also know that in accordance with the
SU(6) symmetry, for the members of the same multiplet the
@ meson couples to the hypercharge. This is also in
agreement with the Sakurai’s theory of the strong inter-
action [26]. Therefore, it is reasonable to assume that the
nature of the coupling with the ® meson holds even in the
intermultipet case. So, we impose

g0 _ 1,

o8 (A54)

Once we fixed the ratio g;¢/gs, for a given value of a,
(assuming that 6, and z obey Eq. (A29) every single
relative coupling of the baryon octet and decuplet with the
vector mesons are fully determined.
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