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In this work, we investigate the semileptonic weak decays of spin-1/2 doubly heavy baryons Eg
into spin-3/2 singly heavy baryons X}, within light-cone sum rules. Using the parallel components

*

of the light-cone distribution amplitudes of X7, ,

the transition form factors for these decays are calculated

both analytically and numerically. The numerical results for these semileptonic weak decays widths
and branching ratios are also predicted, which are compared with the same predictions by other
theoretical approaches in the literatures. These phenomenology predictions can be tested by the

experiments in the future.
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I. INTRODUCTION

The doubly heavy baryons consisting of two heavy quarks
(b and ¢ quarks) and one light quark (u, d, s) have been
predicted in theoretical literatures a few decades ago [1-6].
As early as 1964, M. Gell-Mann and G. Zweig proposed
the simple quark model to understand the existence of the
numerous observed hadron states [1,2]. Furthermore, R. L.
Jaffc and J. Kiskis tried to decode the masses of the baryons
with the spin-parity J* = 1/2% and J* = 3/2" by the bag
model [4]. For the study of doubly heavy baryons, a number
of comprehensive theoretical researches based on relativistic
quark models [7-11], the Faddeev method [12], quantum
chromodynamics (QCD) sum rules [13—16], potential mod-
els [17], and lattice QCD [18-20] have predicted their
masses spectrum, lifetimes, and other prospects serving
for the detection of doubly heavy baryons.

On the experimental side, the first suspicious signal of a
doubly charmed baryon E, was claimed by the SELEX
collaboration in 2002 [21]. Unfortunately, there are no
further evidences from other experiments to support the
claim, which includes the photon-on-fixed-target collisions
by the FOCUS collaboration [22] and the eTe™ collisions
by the BABAR [23] and Belle [24] collaborations. Perennial
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research for the doubly heavy baryon, ultimately, the LHC
experiment, which is based on the highly integrated
luminosity and long-term data accumulation, tells us
how the story ends. In 2017, the LHCb collaboration
announced the observation of the doubly charmed baryon
=l viathe decay " — AT K ntz" [25]. The B} mass
is measured to be 3620.6+ 1.5(stat) + 0.4(syst)+
0.3(E}) MeV/c?. They confirmed the finding by another
decay mode E/F —» EfzT in 2018 [26]. Now the world
averaged value of the E/." mass is 3621.24 £ 0.65(stat)+
0.31(syst) MeV/c?, which is consistent with the theoreti-
cal predictions [9,18]. The lifetime and production cross
section of Z1" is also measured [27-29]. Nevertheless, the
heavier states including the doubly bottomed baryons and
charmed-bottomed baryons are still waiting to be found in
the future experiments.

To spot all the ground states of the doubly heavy baryons
listed in Table I by performing a reconstruction of their
weak decays, it is necessary to give reliable theoretical
analysis of these decays. Among these weak decays, the
semileptonic weak decays are suitable for researching the
QCD dynamics of doubly heavy baryons theoretically,
since all the QCD dynamics can be expressed by the hadron
transition matrix elements, which can be decomposed
into several form factors. These transition form factors
have been investigated in multifarious methods such as the
SU(@3) flavor symmetry analysis [30-32], the QCD sum
rules approach [33,34], and the light-front quark model
[35-37]. Now there are no special approaches that are
entirely designed for the doubly heavy baryon physics.
As the techniques are universal, we can also study double
heavy baryons via the similar approaches to one of the
singly heavy baryons, such as perturbative QCD [38,39],

Published by the American Physical Society
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TABLEIL Quantum numbers for doubly heavy baryons considered in this paper. The quark content and spin parity J” of these baryons
are listed in the second and forth column, respectively. The S7 is the spin of the heavy quark system.

Baryon Quark content Y JP Baryon Quark content s J?
Eee {cc}lq 1+ 1/2+ Epp {bb}q 1" 1/2*%
B {cc}lq 1" 3/2F 55 {bb}q 1" 3/2%
Q.. {cc}s 1" 1/2+ Qup {bb}s 1" 1/2+%
Q. {cc}s 1" 3/27F Qp {bb}s 1" 3/2*
B, {bc}q 0" 1/2F Q. {bc}s 0" 1/2F
Epe {bc}q 1" 1/2+ Qpe {bc}s 1" 1/2+%
il {bc}q 1" 3/2F Q. {bc}s 1" 3/2*

light-cone sum rules (LCSR) [40,41], and so on. In our
previous works, we have applied the LCSR approach for
the study of semileptonic weak decays of o — Ay and
Eopg — Zg, driven by the ¢ — d and b — u transition at
quark level [42,43]. In these semileptonic decays, the Ay
and Xy in the final states are spin 1/2 and belong to SU(3)
antitriplets 3 and sextets 6, respectively.

The heavy baryon sextets also contain spin 3/2 states,
namely 27, E'.’Q*, and QF,. The aim of this work is to analyze
the transition E,, — Z*Q, in the LCSR approach. The

nonperturbative dynamics of the quarks and gluons in
the baryons are described by the light-cone distribution
amplitudes (LCDAS) of X7,. The study of these semileptonic

weak decays can help us to understand the internal strong
dynamics within the doubly heavy baryons. On the other
hand, in the future, higher precision measurements on the
doubly heavy baryon decays from various experiments are
expected. We hope the future experimental measurements on

|

(V—aAy

the Zpp — E*Q, transition form factors can be used to extract

more precise heavy baryon LCDAs through the inverse
procedure of the LCSR approach performed in our works.

This paper is organized as follows. In Sec. II, the
transitions Epo — ZZ), form factors f; and g; are derived
in LCSR. In Sec. III, we give the numerical results of these
form factors, and use them to predict the decay widths and
branching ratios of 2y — Z*Q, ly; decays. In Sec. IV is a

brief summary of this work.

II. THE LCSR FOR THE TRANSITION
Epp — Z; FORM FACTORS

A. Form factors

The transition matrix element of E,, — X7, is induced
by the (V — A)¥ current, which can be expressed by eight
form factors. f; and g; with i = 1, 2, 3, 4 are the vector and
axial-vector transition currents, respectively,

_ 1
:'QQ’q(P’S:Esz)>

P* P¢ MZ _ M2
= (P50 1) (7= ) ) (Mg - )

M,
P* M} — Mj

+ f3(4%) —
fS(Q)M%

qz 2 qﬂ + f4(q2)

a4
<g"" - qqz ﬂysu(P, S.)

_ . q P (M3} — M3
— ity(P', S") [91(612)P (7“ - 5¢" )+ () — | ——5—2 g = P*
q M7 q

P M3 — M?

+93(4*) —
My ¢

a

¢+ 9u) (57~ L8 |52, (0

here M| (M,) is the mass of ¢/, (E*Q,) and ¢*(P*) = P* F P™. In the Appendix, we give another parametrization scheme
of the above transition matrix element and the relationships between the form factors of them. In LCSR approach,
the following parametrizing scheme is more appropriate to extract the transition form factors compared with the former
ones Eq. (1):
3 — 1 _
<EZ/ <P" ¥=2 SQ) (V= AV Bocs <P’ S=3 S)> = (P SOl PUF\ () + Fa(¢?) PP + Fy(q?) PP
+ Fo(q?)g*lrsu(P.S.) — o (P', SO [/ P*G1(q%)

+ Go(q*)P P + G3(q*) P*P" + Gy(q)g™]u(P.S,).  (2)
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The relationships of the form factors (F; and G;) in Eq. (1) between the ones defined in Eq. (2) are shown as follows:

M2

A@) =MF(e), ) = =T @) + 3], fald®) = Fald®), (3)

M3 M3 1 ¢*M3
f3(d*) = M2~ M2 [F(q*) (=M, = My) + Fy(q*)] + - [F2(q%) + F3(q?)] + M= M2 [Fa(q®) = F3(¢%)]. (4)

2 2 2 M3 2 2 2

9(¢*) =MiGi(¢"),  9:(e*) = =T [Gae?) +G:(@D)].  au(d) = Guld), (5)

M M? 1 @M
93(q*) = M2 [G1(q%) (M| = M) + Gy(q)] t [Ga(q%) + G3(g?)] + EMQ Ve [G2(q%) = G3(¢?)). (6)
B. Light-cone sum rules framework Tz T2y = €abe(OFCY*Q1)7,75q. with Q = Q' = b or
In order to derive the transition form factors in Eq. (2), ¢, and J5, = \/%eabc(bgCy”cb + cI'Cy¥by)y,75q.. Here a,

we begin from the following correlation function within the

b, and c¢ are the color indices, and ¢’ refers the light
framework of LCSR.

quark (u,d, s).
We calculate the hadron level correlation function firstly.
T{J}~ A(x)J EQQI( )}|0), It is achieved by inserting a complete set. of baryon statgs
between the two currents JV~4 and Jz,y+ in Eq. (7). In this

=P+
o0
the negative parity states aQQ, are considered. Then the

I, (ps.q)=i / dixe' ™ (Zy (ps)

(7) paper, the contribution of the positive parlty states =, and

where JV™* = g,7,(1 —y5)Q, is the V — A current, and

JEQ is defined as the interpolating current. In following

calculations, we exploit two specific forms of the current
|

correlation function Eq. (7) at the hadron level can be
rewritten as

o

I (ps., q) = I (pye. q) " + T30 (ps. q)
(5 (e WA ONE ) B T, (010} 2. = (p=: = pa- )]
+ (T (P2 ) (0)[Eg o ) (Bg 2,y (0)10)/[m2- — (pz- — px:)?] + -+, (8)

where the ellipses denote the contribution of continuum spectra p” integration above the threshold sg,. The matrix element
(B oy |J= a0/ (0)|0) in Eq. (8), describing doubly heavy baryon EP£, with the interpolating current J. =, defined by the decay

e Ql
constant fZ,

(Ebo (2> 9)Tz,, (0)[0) = —iysfzii=(ps, 5). )

Another matrix element (7, (py-)

Jy A (x) _QQ,) in Eq. (8) has been given by the Eq. (2). Then the total correlation
function at the hadron level can be derived. As an example, the one containing only positive parity state contributions and
interpolated by the vector current J can be deduced as
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+
Hhadron . + — _ fE il NFH (a2 P y+F+ 2) pa o
v " (P q) @+ pe P —ri. o(Pe)[FV (@) Py + F5 (47) PPy
+ F5 (¢*)P*pl + Fi (@*)g™ys(d + Ps +mz) + -+ -,
fz _
= ‘mua(m)w 1(¢%)(mz + my )q"y* + (mz — my)F3 (4°)q"q"

+ [(=mg. + mzms:)(F3 (¢%) + F3(q%)) = 2mz-F{ (¢%)]q"v*
+ Fy(q*)(mz — ms- ) g™ — F{ (¢*)qr"d — ms-(F3 (¢*) + F3 (¢%))g“v"'4

—F{(4*)q"a"d — Fal(@*) g™ dlrs + -+ (10)

The correlation function at hardon level, induced by the current J4 and inserted with negative parity states Epg can be
calculated via the same procedure.

On the other hand, the QCD level correlation function is calculated by OPE near the light cone x> = 0. In the case where
the two light quarks form a spin-1 (j = 1) structure, the heavy baryons can be decomposed into spin-1/2 and spin-3/2
states. The parallel LCDAs of the baryons with j = 1 have been given in Ref. [44]:

% (0[[q7 (1)) Crqs(12)] 0, (0)|HI=") = %wf’(h, 0)f Vel

M . 1 _
%<0|[QIT(tl)CGaﬁ‘h(tZ)]Qy(o)ﬁanﬂ|HJ:1> = %Wﬁ"(ﬁ,fz)f(z)duluy,

v (01lg] (1) Cas (1)), (0) | H) =%wﬂ(t1,tz)f(2>€”uy,

=1, 74(0]4] (1) Ca(12)1Q, (O)HI=!) = = (1.12) Ve, (1

v is the four velocity of the heavy baryon and 7 is the light-cone vector. Note that |H/=!) is in a reducible representation of
the direct product of spin-1 and spin-1/2. However, what we desire is the irreducible representation of spin-3 /2. Therefore,
to extract the spin-3/2 component from |H/=!) one has to conduct a projecting operator on the both sides of each equations
in Eq. (11). The projecting operator reads as

(r + o)l (12)

W[ =

[Pyt = (8l —

where y,y’ are the spinor indexes. Using this operator we can obtain the LCDAs of a purely spin-3/2 heavy baryon:
2 T * 1 n (1) 7
—5—(0l[gq] (1) Cihg2(12)] Q(0)|Zi(v)) = eid (t1 1) fMu - o,

3v,

=50l (1) Corpa12) QO 52 ) = (0.2 P,

=3 01l (1)Cax() QO =) = w2 -,

2 (0llgT (1) iz (12)]Q(O)[: (1) Z%wf’(tl,tz)f(”u-@- (13)

Here we have also contracted both sides of the equations above by ¥ :%(%— v, i), and used the fact that

72 = —1,7 - v = 0. After taking a complex conjugate, we can arrive at the following matrix elements
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3 T < el N 2
Eave (Zi(0)]G5,(11)g5:(12) 05(0)]0) = Te UVl (1, ) fVT, - 5(C7'R); — " Ty (t1. ) fOT, - B(CViogp) i
VoL . V3 o
+ ?V/ﬁ (11.12) 20, - 5(C") = 160, — (1, )0, - 5(C7 ), (14)

where we have rewritten the spinor notation u as its capital form U to emphasize that now it represents the spinor of the
baryon. a, b, ¢ denote the color indexes. The four parallel LCDAs {z//ﬁ wﬁ’_', z/jll‘ , y/ﬁ} are calculated by QCD sum rules that

correspond to the four LCDAs with different twists {y», w3, w3, 4} in our previous work [42]. f () (i = 1, 2) denotes the
decay constants of X,

Using Eq. (14), the correlation function induced by vector current J, can be given as

3. © 1 . _
HSCD(pZ*v 6]) :_%/d‘lx/; dwa)A duel(q+uw1;).x

s {0 000D - 5 C(S2(0) €1, 7,15 i
— ™ (0.)FOT - 5 C(SC(x))T CTy,iG gt V)i
U - (" C(S2(x) ' Cly,r,75) mi

+ 214*(0 x)fAU
0D 5 (SN Crrirs)o | (15)

Here the light-cone vectors n, 7 can be expressed as the following Lorentz covariant forms

1 1
I’lﬂ = mxﬂ, M = 2’U —ﬂx (16)

The heavy quark propagator S2(x) is given by the following equation:

SQ(x):/(dk eikx (F=mo) : (17)

2m)* k* — mg + ie

During the above derivation, the light-cone components of the two light quark momenta in X, are denoted as w;, w,, and

® = ®; + ®,. The momenta fraction u is given by @, = (1 — u)w = aw shown in Fig. 1. Then the correlation function
induced by the J} transition current will be expressed as a convolution form of  and u:

QCD 4 d4 i(g+uawv—k)-x
I,y (pesq) = d*x dow du

yi (@, u) fVa, —vﬂ y”# Yul 2¢ = Y05
- . (k = +)le X )

_ _ x* (K=mg) X\ o
—yi™ (. u) P, [(— - Uﬁ) e kzighwaﬁ <2”a T ) : 7”75}
ml

VX m2, + v-X) VX
A
1+ Q)5 X\ (K —mg)
+ 2y (0, u)f uﬂ[(v-x v >J’ kz_ngﬂemyrs y
A
itk M= | (X ) (¥ —myp) X
wi (. u)f L”Kv-x v)r kz_mé“emv.xms e

Integrating the space-time coordinate x, we obtain the correlation function of J,‘f as
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FIG. 1. Feynman diagram of the QCD level correlation function. The mean of green ellipse is the final state ¥, with four-velocity v.
The left black dot represents the V — A current and the right dot indicates the doubly heavy baryon current. The left straight line
describes one light quark in the baryon X¥,. This light quark owns momentum #wwv, where i is its momentum fraction of the diquark

momentum.

250
(s + ) = [ o [ s Vi 0.0 -2m 26 + 10+ mo) g, + o)
2 2ii -2 2 1 — ) y) _ gA 1
— (¢ +2i0g - v+ B )y,] 15+ W20, + (d + 50+ mo)gt] 15

. i ] _ 1
VB (00— o, + 2+ g ) 3~ g |

[ [ g {0 | a2 mg + g0,
#200g 0+ @)1, + ol + 1000 3 + 205, = a0+ 1] ||
[ [ g Vs .10 Rl + 70n,) + mon) g3 - wdiy |}
+ [P o [Maur {00 {mm(qz+2qu-v+u2w2>
=20 + 0 = m) g, + )] 5+ Bl + 0 - o) ~ 2,15 | (19

where A = (g + itwv)? — m2Q and m, is the mass of the decaying heavy quark Q = b, c. Note that later we have to extract
the discontinuity of the correlation function in terms of the momentum square of the inserted doubly heavy baryon state,
namely (g + itwv)?. Such discontinuity only comes from the As in the denominators, and we have to explicitly express A as
a function of (g + #iwv)?, which reads as

X s+ Huo.¢) -m},  s=(py 49> H(uo,q%) = io(io - my) + <1 —:l—"’)qz. (19)
.

A=

My

In Eq. (18), we have introduced two kinds of newly defined LCDAs

o, u) = /wdﬂwi(r,u), (e, u) = /wdﬂi/i(r,u) (i = 2.30.35.4).
0 0
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As a consequence, one obtains the correlation function at QCD level, which can be decomposed into eight Lorentz
structures {q*7,. 4"V, 44 G- @'Vl Vol @ 94 T}

2P (e + 9)% %) = wx(ps){C oy @7 + Cyp, @04 + Ciy, 4y + C 6l
T Cq%/qﬂy"d + quv”{/q’lvﬂyj * quq”/qiqﬂyj + Cflﬁf/gf‘%}’ (20)

where Cgeure denotes the corresponding coefficient functions for different structure, and are expressed as
20 1 et e |
Coiy, = /o dw/o d”{_ﬁ”[ﬂ AR 9 ] = fDmewr] 55
_ _ 1
+2V3a* [ (l//H*+l//” @ + aw(2q - v + aw)) — 2f? moyr(i™q - v] A3} (21)
25 1 1 _
Cpy = / da)/ du{2\/§f<2>y71*uA— 4\f3u2[f<‘>mg(¢/ﬁ* — )
. 0 0

- * Y PSITES 77 1
+ fWao (@ + i) - 2/ @i (mQ‘f"]'”"‘“a’)]F}v (22)

/QS" da)/ du{Z\/_u g + 1) + FORSH 4 7 0)] 15 J

] 1
— 43R [fOaw[mg () = §) + GG + i) + 2f Q1™ (¢ + ¢ - viiw)] Aa} (23)
250 7
Ci= [ aw [ a ~auirog + 1m0 g+ [ meor + )
] ] 1
+2f Daw(@f* + ") - 4f O (q - v+ awﬂ] p}’ (24)

qy;,/ /2‘ da)/ du{ "*— 4\/7f m Wﬂm* 2Al3} (25)
q KM/ /ZYO da)/ du{ 4ff (WH + V/ A_} (26)
Cq%{: Azso da)[)] du{—4\/§f(1)123a)(1// + ] A_} (27)

Cpy= / dw/ du{\/_f >+ )Alz}. (28)

Here the arguments (w, u) of the LCDAs ¥|> |, and 4| have been omitted to get terseness functions. The correlation
function at QCD level can be depicted by a Feynman diagram shown with Fig. 1, which is a function of (py: + ¢)* and ¢°.

By computing its discontinuity across the branching cut in the complex plane of (py- + ¢)?, we can transform the
correlation function Eq. (18) into a dispersion integration form,

1 [sth ImI¥P (s, g2

%P (ps.q) = - / dsM. (29)
T J (mo+my+m,)? S = (pE* + q)

Based on the global quark-hadron duality, there would exist an equivalence between the QCD contribution Eq. (29) in

spectral region (mg + mgy + mq)2 < s < sth and the continuum contribution Eq. (8). Therefore, Eq. (29) is equal to

Eq. (10), and then the form factors F l+ can be extracted out as
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f=ps) P () 1 /
(q + pE*)z - m" T mQ+mQr+mq

_fEﬁa(Pz*)F;(q ) /
(mg+my+my)? 2my- mE[s - (pZ* + Q)z]

(q+ ps)* —mi
— (mE + mz*)Cqm/— mz*quqﬂ + Cq*vﬂ}’
_fEﬁ(l(pZ*)F;r(qz)

/s m[cq}vq,, - (mE + mZ*)quqﬂ/]
(q+p2*)2 _mé (m

_fala(pe)Filg) _ 1 /sh 4Gy —
( 2mz[s — (ps- + q)
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Im[Cp, + Cq‘r,,l(mz* —mz)]
2mz[s — (ps + q)°]
Im[—2my- Cond + (md. + mz*mE)quqﬂ{

s

bll—‘

9

N -

2mz[s — (ps + q)?]

(mg + mZ*)Cgf‘/}
7

th

ds
Q+mQ/+mq)2
1

30
(q+ps)-m: =« (30)

mQ+mQ/+mq)2

which correspond to the transition of Z07,. In order to suppress the contribution from higher twists, the Borel
transformation is performed on both sides of the equations in (30). To compute the discontinuity, the following
transformation on the high power denominators in Egs. (21)-(27) has to be conducted before doing the Borel
transformation,

(31)

1 1 0\ (=1 1
- — —_— .
[(q =+ ﬁg)y)z - sz]n (Vl - 1)' 0Q (C] + ﬁa)y)z -Q Q:mZQ

After that, the form factors F; can be written as a series of explicit expressions. Here we just show F| as an example,
el
(—ﬁ)ﬁ(sth—s )0(s2 — (VQ+ my +m %)

:_fo ( )asz/zm / .

PEs ~ 1% 1 g Myx — Mg
x { R + i) + @ a] = fPmoi| ]—H + - W —Ezmg }IQ:sz
1

RIS

{2\fu O +01) (¢ + aw(2q - v + aw))

« — Mg
5]

Fi(q*)

) (sth — s2)0(s2 — (mg + my + m,)?)

1
2m

= 2fCmgirq- o]

[84]

(32)

’

Q:mZQ

where s, and s are defined as the singularity position of
the heavy quark propagator in the correlation function. In
other words, they are the roots of the following two
equations, respectively:

uw

H ) ) 2 - 2:07
s+ Hwno.?) =
uws?—i—H(qu) Q=0. (33)
My«

With a similar procedure one can get expressions of G,
which will not be repeated here.

III. NUMERICAL RESULTS

A. Transition form factors

In the numerical analysis, we take the heavy quark masses
as m. = (1.35+0.10) GeV and m, = (4.7 +0.1) GeV,

and neglect the masses of light quarks. The input parameters
(mass lifetime, decay constant) of doubly heavy baryons
are listed in Table II [9,14,45,46]. Moreover, the masses E*Q
are taken as my: = 2.454 GeV, My = 5.814 GeV, and the

decay constants of them are f(!) = (2 =0.038 [47]. The
upper limit of light quarks momentum is sy = 1.2 GeV [44].

The Borel parameters M? and threshold s, of Ego are
carefully chosen as shown in Table II. Here we only choose
the uncertainty of Borel parameter M and thresholds sy, to
enumerate the error of resulting form factors. We take the
uncertainty of Borel parameters around their center value as
1 GeV? while the uncertainty of sy, as 2-5 GeV?2. Using
these input parameters, we can obtain the numerical result
of the transition form factors f;/g; (i = 1, 2, 3, 4) defined
by Eq. (1).

It should be mentioned that, in Ref. [44], the LCDAs
depend on an parameter A ranging from 0 to 1.
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TABLE II. The input parameters of doubly heavy baryons and the fitting parameters for transition form factors.

Baryons Mass (GeV) Lifetime (fs) f= (GeV3) [48] Channel sg (GeV?) M? (GeV?) Fit range (GeV?)

=++

g 3.621 [49] 24512 E(H 0.109 £ 0.021 . - X 16 £2 15+1 0<¢*><038

o 244 [9] Bpe = % 54+3 2041 0<¢*><038
be 943 [52 176 £ 0.04 be 7T

=9, 6.943 [52] 93 [9] 0-176 £ 0.040 Epe = X0 54+3 20+ 1 0<g*<6

E), 370 [9] 2

2 10.143 [52] 0.281 +0.071 Epp = X 112+5 20+ 1 0<g=<6

b 370 [9]

In principle A should be taken as its center value 0.5.
However, with the use of the LCDA model given in
Ref. [44], some of the LCDAs will be divergent if
A =0.5. To make the LCDAs be finite one has to
choose a smaller value of A. In this work, to ensure
the stability of the from factors, the value of A closest to
its center value is chosen as 0.21.

Since the LCSR approach used here is only reliable in
the small ¢> region, one has to extend the form factors in
this region to the whole physical region 0~
My,)?
metrization function to fit the form factors in the small g>
region, and then the obtained parametrization function can
describe the form factors in the whole physical region. The
small g® regions chosen for the fitting are listed in the last
column of Table II. The parametrization function is chosen
as the dipole form

(Mz,, -
Zo0
. To realize this extension we can choose a para-

F(O)[1 +a(g?) + b(g?)?)

qz qz 2
1=+ o (i)

F(q*) = (34)

G _
Heff = 7;;{‘/14}7[”7/;4(1 -

vs)b) [y (1 — ys)vi] + Vigldy, (1 — ys)e] o (1 —ys)1]}.

The numerical results of the transition form factors are
listed in Table III. There are two further points should be
mentioned:

(1) In the Table III, the sign refers to the
corresponding parameter without fitting, and the
asterisk at the upper right corner of the data indicates
the use of fitting formula:

F(O)[1+a( 2)+b( 7))
1+ -1 +5( o)

m

113 2

F(q*) = (35)

(i) As shown in the Table III, the fitting parameters of
some form factors are abnormally large. While with
these large values, the behavior of the form factors

are still stable in the physical range as shown
in Fig. 2.

B. Semileptonic decays

For the semileptonic decays Eyo — Z*Q, lv; considered

in this work, the effective Hamiltonian is the same with the
ones of Ego = Zyly; in our previous work [43],

(36)

Here the Fermi constant Gr = 1.166 x 107 GeV~2, and Cabibbo-Kobayashi-Maskawa (CKM) matrix elements

V.| = 0.00357, |V,4| = 0.225 [53,54].

After a thorough analysis on the polarizations of the initial and final states, the positive helicity amplitudes induced by

V — A current can be derived as

T O L (A NN CE L
H?/Z.l =i/ Q194 H?J 1E<g4 ﬁm)’ Hél/z.z —— g\/@Qngﬁz— M%)g%
1/20 \/_ {M2 211“4/[2 fa— A;IZIVI M, 20, /1 - 2%;2%2][2]
Hipo = \/7\/_ [M M3 - Agllel\lzz Q-91 = 2%;5/[_2 92]- (37)
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FIG. 2. ¢* dependence of the Eppy, = Xy 0a

15 20 0 5 10 15 2
q°[GeV?]

form factors. The first two graphs correspond to =Z.. — X7, the second two graphs

correspond to B, — X¥, the third two graphs correspond to ;. — X, and the fourth two graphs correspond to Z,, — Z;. Here the

parameters sy,, M are fixed at their center values as shown in Table II. For the case of Eooq = Xy

enlarged by a factor v/2.

0'aq’ the vertical scale needs to be
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TABLE III.  Numerical results of transition form factors of the Ey, — E*Q,. F(0), mgy, 8, a, and b correspond to the five fitting

parameters in Eq. (34). The form factors of ¢, — X, Are just v/2 times those of Eooq, = Zi

which are not listed in this table.

0'q19,°

F F(0) My 1) a b
[T 0.01 £0.01 -0.77 + 1.64 0.56 + 0.41 -2.51 +£3.07
foeT 0.21 +0.04 1.88 + 0.07 0.28 + 0.49
[ —0.72 +0.09 1234257 0.53 4 0.49 —0.74 +0.10
[T —-0.24 +0.04 1.41 £2.88 1.00 £0.11
g 0.14 £0.02 1.02 +£2.08 0.82 £0.09
g 0.03 4 0.01 ~1.52+4.01 3.27 +2.05 —1.55+0.27
gy 0.09 4 0.03 —1.24+2.76 1.59 4+ 2.65
g 0.02 4 0.01 —-0.95+1.98 0.34 4+ 0.01
£ —0.38 +0.09 —0.94 + 1.83 0.38 4+ 0.01
Fom 536+ 0.75" 0.15 + 0.05* 0.30 +0.15* 38.30 + 30.70* 22.40 + 10.80*
s ~7.5140.72 ~1.20+0.15 9.93+5.74
s ~147+0.15 1.41 +0.03 0.81 + 0.01
G —0.46 + 0.08 0.40 4 0.92 1.94 + 1.07
g —0.40 4 0.04 ~1.14+2.33 0.96 +0.19
G 0.10 + 0.06 —0.65 + 0.04 0.30 4 0.03 o
g ~0.02 £ 0.01 1.05 £2.20 045 £0.22 ~1.34£0.23
[T 0.04 + 0.00 3.47 +6.62 1.03 + 15.30 —0.10 £ 0.07
[T -0.09 +0.01 4.46 +1.10 0.90 4 2.50 —0.14 +0.02
f3rT 0.07 £0.01* 4.54 4+ 3.55* 15.50 + 18.50 —0.13 +0.16*
[ 0.03 + 0.00 4.17 + 8.47 1.02 +0.92 —0.17 £ 0.02
g —0.04 +0.01 -3.19 + 6.41 0.55 4+ 0.29 -0.23 +0.05
g 0.14 £+ 0.01 5.09 4 0.02 0.3140.03
gy —0.16 4 0.02 4.02+0.15 1.03 +0.02
g 0.01 & 0.00* 5.06 &+ 0.16* 1.19 4 0.50*
s 0.31£0.03 2.95£0.12 033 £0.01 ~0.12 £ 0.00
P —0.90 £ 0.10 8.45 + 1.21 139.00 £ 93.30
P 0.42 4 0.05 6.89 + 0.60 57.60 + 58.10 —0.24 +0.02
fran 0.16 4+ 0.01 —-3.42+7.07 0.51+0.16 -0.13+0.01
g —0.79 £ 0.11 3.06 +0.98 0.60 + 1.31 -0.07 £ 0.05
5" ~0.09 £ 0.01° 1.04 £ 0.07* 0.36 £ 0.62*

R —0.42 +0.06 4.014+0.08 1.78 +0.10 0.04 4 0.00
g 0.03 £ 0.00 —4.21+0.08 0.37 £ 0.09 -0.08 = 0.00

The negative helicity amplitudes can be also derived,
which have the following relations with the corresponding

positive ones:

_gv A
HlZ-AW - Hﬁz,/lw Hﬂz,ﬂw'

(39)

Considering longitudinally and transversely polarized /v

Hz/lz,—ﬂw = —HXMW and Hﬂaz,—/lw = HQMW, (38)

A, and Ay denote the polarizations of the final £, and the
intermediate W boson, respectively. The total helicity
amplitudes induced by the V — A current are

pairs, we can write the differential decay widths of Zyo —
Z*Q,ly in two parts:

ﬂ _ G%«“‘VCKMqup(l - ’hzz)z
dq2 384JT3M%
+ [Hyo ) + 33 (H_y, P+ |Hy, ). (40)

(2 + m7)(|H 0
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TABLE 1V. Decay widths and branching ratios of the semileptonic Eyp — ZZ, lv; decays, where [ = e, p.

Channels I'/GeV B I'y/T

B - ity (7.99 £1.97) x 1077 (3.11 £0.77) x 107 0.293 +0.165
B = =0ty (1.59 £0.39) x 10716 (1.09 £0.27) x 1073 0.293 4 0.165
g = 20y, (1.93 £0.44) x 10716 (7.14 £1.64) x 1073 0.339 +0.125
B - Ity (3.79 +0.87) x 1071 (536 +£1.23) x 1073 0.339 £0.125
) - iy, (1.47 £0.32) x 10717 (2.08 £0.46) x 1076 0.017 4 0.006
). - it (2.87 £0.52) x 1077 (4.06 +0.73) x 107 0.004 = 0.001
B - i, (2.93 £0.65) x 1077 (1.09 £0.24) x 107 0.017 = 0.006
SRR VA 78 (5.73 £1.03) x 1077 (2.13£0.38) x 1073 0.004 + 0.001
gy, = I, (7.72 £ 1.80) x 1077 (434 £1.01) x 107 0.265 £ 0.093
gy = 200, (1.16 +0.26) x 1071 (6.50 & 1.44) x 1073 0.082 =+ 0.026
B, —> ity (1.55+£0.36) x 10716 (8.74 £2.04) x 1073 0.265 £ 0.093
=), >, (2.334£0.52) x 1071 (1.31 £0.29) x 107* 0.083 £ 0.026

darr _ Gi|Vekml*@*p(1 = m})* (2 + i)
dq* 384 M?
Uy 4 UHy P VP g ) (4D

2 2

In the above Egs. (37)-(41), Q. = (M, £ M,)* — ¢*,
M;, and M, refer to the masses of Zyp and Z,
respectively. 7y, = m;/ \/?, where [ = e, p, 7. In this
work, the lepton masses m, and m, are neglected while
m, = 1.78 GeV is taken from Ref. [53]. Before integrating
out the squared transfer momentum ¢?, it is worth for us to
note that the calculation of the decay width is conducted in
the rest frame of the initial particle Z, for plainness. p =
VO, 0_/(2M,) is the magnitude of the three-momentum
of Z*Q, in the rest frame of Z . After the integration of q°,

the total decay width can be obtained

(M—M,)? dl’ dI’
r= dg* (=% +—L). 42
A 1 (dqz +dq2 (42)

2
1

1
QL » EI"y) =T(EL - i 1v) =T

Our predictions for various semileptonic Eyy — Z*Q,lz/,
processes, including their integrated partial decay widths,
branching ratios and the ratios of I'; /T’y are given in
Table IV.

Here are some comments on these phenomenology

results in Table IV:

(i) From Table 1V, the relatively large branching ratios
of By, — Z;lv and By, — X /v imply the potential
for observing E,,., E,;, through these decay channels
in the future experiments.

(i1) The uncertainty of the decay widths are caused by
the error of form factors that come from the fitting
parameters, the Borel parameter M, and the thresh-
olds sy,.

(iii) Using the SU(3) flavor symmetry, we can obtain
following model-independent relations among dif-
ferent decays, which lead to the semileptonic decay
widths of Q¢ [30,37,55]:

EL - Z01M) = (7.99 £ 1.97) x 1077 GeV,

P(Q), — Z1) = T(&f, - 51*0) =

1
F(Q), — B *170) =T (&), — £ 170) = 3T(8f, — ' 170) = (287 4052) x 1077 GeV,

c

1
ST(E = Zj71%w) = (193 £044) x 1077 GeV.

1
(Qy, - &%) =T(8, > ') = EF(“% - X7 7p) = (7.72 £ 1.80) x 10717 GeV. (43)

=b

IV. CONCLUSIONS

The discovery of E/.;" by LHCb collaboration in 2017 has
inspired the interest in studying doubly charmed baryons. In
this work, we have investigated the semileptonic decays

[

Epg — X, using the LCSR approach, which is a continu-
ation of our previous works, extending the spin parity of the
final baryon states from 1/2% to 3/2". In this study, we
present the first LCSR calculation of the form factors of the
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transition Ego — Z*Q, with the parallel LCDAs of X¥,.

Among that, the quark-hadron duality has been used to
generate the form factors for the decay of =, with positive
parity. The numerical results of these form factors are given
in Table III, which can be served as inputs for the calculation
of nonleptonic decays in the future research. Our theoretical
results for the decay widths and branching ratios of
Epo = Xy lv are predicted, which is shown in Table IV.
The error estimation and theoretical analyses about them are
also given in detail. In addition, a set of SU(3) relations
between the decay widths of such processes can be found in
Eq. (43). As an estimation, we give the decay widths for
Q) — E)I"v using SU(3) symmetry. We hope our
investlgatlon can provide valuable suggestions for exper-
imental research about doubly heavy baryons conducted by
the LHCb and other experiments and help people to get a
comprehensive understanding of the dynamics of baryon
decays in the future.

<2*Q, (P’, S = % SQ) ‘(V — A
){f’ 1(4%) (g -

q°q" +f2(612)
¢ M

q“r") +

+ f4(q%)

0P OB (e )+

M,

a / 2
A TE LD @ o haip 5

q M3

9%(@*) ; ,
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APPENDIX: ANOTHER PARAMETRIZATION
SCHEME

In Eq. (1), the 3/2-spinor u, satisfies y*u, =0 and
p&u, = 0. All the Lorentz structures £S;" multiplying
on the form factors f; or g; satisfy q”ﬁSTf‘ZA =0. In
Refs. [56,57], there is another parametrization satisfying
the relation ¢* LS, , = 0, which reads as

_ 1
:QQ’q<P’S:§’Sz>>

(4%)
M3

1
[q° Pk §(M2 M3 — ¢*)g*]

(4*9™ — q"q") }75%(3 S.)

L -2 - 2y

(A1)

The form factors f’ and ¢ in Eq. (A1) have the following relationships with the ones in Eq. (1),

flmf  fy=—2fy oMM
1= 1s 2 = 25 3= MZ 2 3>
M? — M?
d=ag. G=-20, @ d=—5520,
1 2 3 M%QZ

M2 M1+M2 M%—M%—qz
fi= ( fi— fo+fa)s
4 — q2 M1 M%
g4:ﬁ<M1—M2 l_M%—M%—nger%)
7 M, M?

These form factors also have a relationship with the form factors F; and G, in Eq. (2). Here we take the f’ as an example,

(@) =MFi\(¢).  fi(q*) = Mi[Fs(q?) + F5(q*)]. (A2)
2
FUG) = 551220+ Ma)JF () + (M3 = 3 = ) [Fle?) + Fa(aP)]. (A3)
F) = 5y (PG = M)+ Fq?)] + S FA) + o) 4 g Fale?) = (@)l (A9

and the g; have similar a relationship with G;. Using f% and ¢. we can write the helicity amplitude as
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M, + ¢-M-M3), 7
3/21 —i/ 0 [ 1+ 2]‘/112 = f'z+—2fﬁl .
o M- Mz g — (Mi - M53)
H?/Z,l =1 Q+ - 1‘41 gll + 2M2 9,2 M2-g£1 ’
- O_[q* =M (M, + M,) g’ = (Mi - M3)
HV — = / / ,
NI MM, =g M%f“
04 [¢* = M\(M, — My) - Mi-M3) , &
g — =t
HLo=05 1 v, hi+ 2002 % +M2 94
v/ 2 M? — M3 \/
H‘l/zo — vt 2= q Q f f2 ( 1 2)f£‘ , HZI = Q— g’
/ V3M 2M M, /28 \/6q M,
V24°0 2, 40— (M —M3) V-0
HA _ + 72y 1 2) HA =+ / A5
120 = == VM {9 +M %+ MM, Ya > 120 = \/@MZ (AS)
As argued by Refs. [56,57], at the end point k = Y—1—2— M M. — 0 with A(a, b, c) = a® + b* + ¢?, the above helicity
amplitudes should satisfy Hy 15 Hy 10 Hy30 =10 — \/ : —4/3/2. Using the relationship between f, ¢\ and f, g;,

We can prove that our helicity amplitudes given in Eq. (37) also satisfy Hyjp: HyjpiHi3 =1:
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