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We study quantum effects of recently discovered kink solitons which are constructed self-consistently
by coupling to a single, excited fermion bound state. Our studies are based on the observation that in a
semiclassical expansion the energies of this single level and of the Dirac sea should be treated equally.
For these kink solutions we compute the energy of the Dirac sea as the fermion vacuum polarization
energy. We find it to be substantial and to typically outweigh the energy gain from binding the single
level.
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I. INTRODUCTION AND MOTIVATION

By Derrick’s theorem [1] scalar field theories in one time
and one space dimension (D ¼ 1þ 1) wherein spontaneous
symmetry breaking produces discrete degenerate vacua, are
almost certain to contain (static) soliton solutions. These
solutions have localized energy densities [2–4]. Low-
dimensional soliton models are frequently considered as
toy models for more complex theories in higher dimensions
that have applications in many branches of physics: in
cosmology [5], condensed matter physics [6,7], as well as
hadron [8] and nuclear physics [9].
The field equation for a soliton is equivalent to minimiz-

ing its classical energy, Ecl. The leading, one-loop quantum
correction to Ecl is the renormalized sum of the shifts of the
zero-point energies of the quantum fluctuations. These
shifts reflect the polarization of the vacuum induced by the
soliton and thus this quantum correction is frequently called
the vacuum polarization energy EVPE (VPE). By now
techniques have been developed that make it relatively
straightforward to compute the VPE in D ¼ 1þ 1 [10,11];
this is particularly the case when the potential for the
quantum fluctuations is reflection symmetric. In general,
Ecl and EVPE exhibit different dependences on the
model parameters. This feature is, for example, fundamen-
tal for the soliton picture of baryons in effective theories for
quantum chromodynamics [12]. If the model parameters
are chosen such that Ecl ≈ EVPE one would expect that

higher-loop corrections are not negligible.1 In such cases
the VPE is not a reliable approximation for the quantum
correction and its computation is merely of academic
interest. Of course, this observation does not at all lessen
the value of the groundbreaking studies on the VPE about
half a century ago [14].
Yet, there are scenarios in which the VPE is indeed of

significant importance and must be included. First, Ecl may
be degenerate with respect to a certain (variational) para-
meter for the soliton but EVPE is not.2 In that case the VPE
is decisive for the favorable soliton configuration albeit
Ecl ≫ EVPE. Ref. [11] explores cases in which the inclusion
of the VPE even destabilizes classically stable solitons
(Higher-loop corrections may reverse this picture.).
Second, the field equations are usually derived by minimiz-
ing an energy functional. This functional may contain
components that in some expansion scheme are of the same
order as the VPE. This feature can be delicate because the
particular parameter dependences may be hidden when the
model is constructed in terms of dimensionless variables and
coordinates. It is this scenario that we focus on in this study.
Third, with different topological sectors and associated
topological chargesQ, the VPEmay be decisive for binding
energies as in Eð2QÞ − 2EðQÞ [15].
The second scenariodescribed above applies tomodels that

recently attracted renewed interest. In these models a scalar
boson with a nonlinear self-interaction that allows sponta-
neous symmetry breaking has a Yukawa coupling with a
fermion. Typically the scalar field assumes a kink type
structure connecting different vacua at positive and negative
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1See e.g. Ref. [13] for estimates beyond one loop.
2Translational invariance usually holds for both, though there

are exceptions [10].
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spatial infinity (and is thus topologically stable). Novel local
minima of the energy functional were obtained [16–18] when
the scalar couples to a single fermion that dwells in an exited
bound state. We call these configurations local minima
because the fermion could decay into a lower energy state
while the kink radiates small amplitude fluctuations without
changing its topological structure. The resulting configura-
tion would have a smaller total energy and the classical kink
mass would be its lower bound.Wewant to revisit these local
minima for two reasons. First, in their construction the Dirac
sea contribution was omitted. As wewill explain later, in any
suitable expansion scheme this contribution to the energy is of
the same order as the one from the single level. Second,
solutionswith the single fermion occupying a negative energy
levelwere also constructed. TheDirac seamust be included to
give a physical interpretation because the negative energy
level is a hole in the sea. But then the solution to the field
equation becomes the charge conjugation of a configuration
where the boson couples to a positive energy fermion level.
The paper is organized as follows. In Sec. II we will give

a formal and brief discussion on the role of the Dirac sea
when a single fermion level is occupied. We will then
review the construction procedure of Ref. [16] modified
such that the hole character of the negative energy levels is
respected. In Sec. IV we will list and explain the formulas
relevant to compute the vacuum polarization energy in the
no-tadpole renormalization scheme. We present the results
of our numerical simulations in Sec. Vand conclude with a
summary in Sec. VI.

II. DIRAC SEA

In order to make the arguments from the introduction
explicit, we start with a short discussion of the role of the
Dirac sea when certain fermion levels with energy eigen-
values Eν are occupied. For a charge conjugation invariant
background we can formally, i.e. before regularization and
renormalization, write the total energy as

Etot¼Eclþ
X
ν

ηνjEνj−
X
ν

½θð−EνÞjEνj−θð−Eð0Þ
ν ÞjEð0Þ

ν j�:

ð1Þ

Here Ecl is the classical energy of the scalar background and
ην ¼ 0, 1 are occupation numbers that describe the occupa-
tion of particular levels. The second sum adds the Dirac sea
contribution3 where we have subtracted the trivial back-
ground equivalent (indicated by the superscript). The differ-
ence in that second summeasures the change in the spectrum
and is called the vacuum polarization energy (VPE).

Typically only a single level is selected, call it n so that
ηn ¼ 1 and ην≠n ¼ 0. We classify a configuration as clas-
sically stable if Ecl þ jEnj ≤ m, where m is the mass of the
Dirac field. The kink is the soliton for a model without
fermions. Its classical energy is Ekink. We call a configura-
tion whose total energy is Etot ≤ mþ Ekink topologically
stable because the sum on the right-hand side is the minimal
energy of the system of an isolated free fermion and a boson
fieldwith a nontrivial topological structure. This is a sensible
comparison because the change required for the boson field
to get from Ecl to Ekink does not alter that structure.
When En > 0 we simply occupy that level. It is more

interesting to consider En < 0. Then we can write

jEnj −
X
ν

½θð−EνÞjEνj − θð−Eð0Þ
ν ÞjEð0Þ

ν j�

¼ −
X
ν≠n

θð−EνÞjEνj þ
X
ν

θð−Eð0Þ
ν ÞjEð0Þ

ν j;

which means that we have created a hole in the Dirac sea
corresponding to an antiparticle state. Obviously the inclu-
sion of the Dirac sea is essential for a consistent particle
or antiparticle interpretation of the solutions to the Dirac
equation. The need for combining the level and sea con-
tributions was actually noted quite early in the context of
nontopological soliton models for baryons [19,20], though
those studies only focused on the case when the lowest non-
negative energy bound state was occupied. Also renormal-
ization is an issue for those higher-dimensional models.
In our analysis we first follow the procedure of Ref. [16]

and minimize Ecl þ jEnj to construct the static kink profile
Φn. We will subsequently compute the Dirac sea contri-
bution for this kink profile. In principle the Dirac sea
component must also be included when constructing the
profile from the minimum condition for the total energy.
However, that is quite complicated as highly nonlocal field
equations (would) emerge. So far this has only been
performed in variational approximations or in nonrenor-
malizable theories, cf. Refs. [21,22] for reviews.

III. THE KINK MODEL

In D ¼ 1þ 1 the scalar field Φ is dimensionless while
the fermion spinors Ψ have canonical energy dimension 1

2
.

To make the Yukawa coupling constant g dimensionless we
write the Lagrangian as4

3If the background was not charge conjugation variant we
would write 1

2

P
ν jEνj for the Dirac sea contribution. Even though

the trace of the Dirac Hamiltonian vanishes formally, the two
prescriptions may yield different results because particular regu-
larization prescriptions may cause this trace to be no longer zero.

4For quantized fermion fields we should actually write the
fermion part of the Lagrangian as

LF ¼ i
2
½Ψ̄; =∂Ψ� − g

2

ffiffiffi
λ

2

r
Φ½Ψ̄;Ψ�

to properly account for charge conjugation. This gives rise to the
factor signðEnÞ in Eq. (3). The commutators are for the fermion
creation and annihilation operators.
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L ¼ 1

2
∂μΦ∂

μΦ −
λ

4

�
Φ2 −

M2

2λ

�
2

þ iΨ̄=∂Ψ − g

ffiffiffi
λ

2

r
Ψ̄ΦΨ:

ð2Þ

Observe that λ has dimension energy squared and that m ¼
gM
2
is the fermion mass from spontaneous symmetry break-

ing that generates the vacuum expectation value hΦi ¼ �Mffiffiffiffi
2λ

p .

The field equations for the scenario in which the scalar field
only couples to the level n are (with the convention γ0 ¼ σ1
and γ1 ¼ iσ3)

∂
2
xΦn ¼ λΦ

�
Φ2

n −
M2

2λ

�
þ g

ffiffiffi
λ

2

r
signðEnÞΨ†

nσ1Ψn

EnΨn ¼ −iσ2∂xΨn þ g

ffiffiffi
λ

2

r
Φnσ1Ψn: ð3Þ

These equations are supplemented by the normalization
condition

R
dxΨ†

nΨn ¼ 1. Accounting for the fermion
source term in the scalar field equation has been phrased
backreaction in Ref. [16].
In order to find the most generic, i.e. parameter inde-

pendent, formulation and also for numerical practicality it
is appropriate to introduce dimensionless quantities

ΦnðxÞ ¼
Mffiffiffiffiffi
2λ

p ϕðξÞ and ΨnðxÞ ¼
ffiffiffiffiffi
M
2

r
ψðξÞ;

where ξ ¼ M
2
x: ð4Þ

For simplicity we omit the subscript on the new fields.
After this transformation the normalization condition isR
dξψ†ðξÞψðξÞ ¼ 1. The field equations become

ϕ00ðξÞ¼2ϕðξÞðϕ2ðξÞ−1Þþg
2λ

M2
signðϵÞψ†ðξÞσ1ψðξÞ

and ϵψðξÞ¼−iσ2ψ 0ðξÞþgϕðξÞσ1ψðξÞ; ð5Þ

where ϵ ¼ 2En
M is also dimensionless and primes denote

derivatives with respect to ξ. The dimensionless fermion
mass in this parametrization is m ∼ g.
The classical mass is the integral

Ecl ¼
Z

dx

�
1

2
ð∂xΦðxÞÞ2 þ λ

4

�
Φ2ðxÞ −M2

2λ

�
2
�

¼ M3

8λ

Z
dξ½ϕ02ðξÞ þ ðϕ2ðξÞ − 1Þ2� ¼ M3

λ

ϵcl
4
; ð6Þ

where we understand the last equation as the definition of
ϵcl. Then we combine

Ecl þ jEnj ¼
M3

4λ

�
ϵcl þ

2λ

M2
jϵj
�
: ð7Þ

As inRef. [19]we call this the quasiclassical energy.Wemake
the important observation that the contribution from the
fermion levels scales with the relative factor 2λ

M2. This, of
course, is then also the case for the energy from the Dirac sea
because that is the sum of the single fermion energies obtained
from the very same wave equation. This different parameter
dependence is not surprising since in a semiclassical expansion
theVPEhas an extra factor ofℏ. Apart from the aboveparticle-
hole interpretation we have thus another strong motivation to
include theDirac sea. InRef. [16] only the particular parameter
choice M ¼ ffiffiffiffiffi

2λ
p

was considered. To some extent this hides
the crucial detail that the classic scalar and fermion quantum
energies have different scaling behaviors.
Introducing upper and lower spinor components

ψ ¼ ðuvÞ, the profiles are subject to the differential equations

ϕ00 ¼ 2ϕðϕ2 − 1Þ þ 4gλ
M2

signðϵÞuv;
u0 ¼ ϵv− gϕu and v0 ¼ −ϵuþ gϕv: ð8Þ

For g ¼ 0 the soliton is the well-known kink,
ϕðxÞ ¼ tanhðxÞ. For completeness we recall that one then
finds ϵcl ¼ 4

3
, or Ecl ¼ Ekink ¼ M3

3λ . The kink is odd under
spatial reflection. This reflection property is maintained
when g is smoothly increased and we can write

ϵcl ¼
Z

∞

0

dξ½ϕ02ðξÞ þ ðϕ2ðξÞ − 1Þ2�: ð9Þ

From ϕð−ξÞ ¼ −ϕðξÞ it is furthermore obvious that there
are two parity cases for the fermion spinors. The first has
even u and odd v; the second has even v and odd u. These
cases are called A- and B-type solutions in Ref. [16]. We
keep that notation. Additional integer labels on A and B
count the number of zero crossings of u on the half line
x ≥ 0, including the one at x ¼ 0 for the B-type.
Equations (8) are invariant when changing the signs of u

and ϵ but keeping the sign of v. Hence the spectrum is
symmetric for a given profile ϕ. Furthermore, occupying a
particle or an antiparticle level with equal jϵj (which is
equivalent to digging a hole into the Dirac sea) yield
equivalent solutions.
The fermion equations have two ϵ ¼ 0 solutions

uðξÞ ¼ N exp

�
−g

Z
ξ
dξ0ϕðξ0Þ

�
; vðξÞ ¼ 0 and

uðξÞ ¼ 0; vðξÞ ¼ N exp

�
g
Z

ξ
dξ0ϕðξ0Þ

�
: ð10Þ

Without loss of generality we take signðϕÞ ¼ signðξÞ. Then
only the first solution is normalizable so that there is
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exactly one normalizable zero mode in the A0 channel for
any prescribed ϕ. In either case uv ¼ 0 so that there is no
fermionic source term in the wave equation for ϕ which is
then solved by the kink profile.

IV. FERMION VPE

The construction of fermion continuum scattering sol-
utions with a kink type background is not straightforward
because the mass parameters at positive and negative
spatial infinity have opposite signs; though this is only a
problem for practical calculations rather than a conceptual
one. Fortunately for a static system which is invariant under
charge conjugation we can formally write the effective
action, from which the VPE is extracted, asZ

dω
2π

TrLog½ω −H� ¼ 1

2

Z
dω
2π

TrLog½ω2 −H2�; ð11Þ

where the trace goes over the eigenstates of the Dirac
Hamiltonian H. This shows that the VPE of the fermion
system can be obtained from the average VPE of two scalar
systems [23]. More explicitly we have from Eq. (8)

H ¼
�

0 −∂ξ þ gϕ

∂ξ þ gϕ 0

�
so that

H2 ¼
�−∂2ξ − gϕ0 þ g2ϕ2 0

0 −∂2ξ þ gϕ0 þ g2ϕ2

�
: ð12Þ

The potentials of the two scalar systems are straightfor-
wardly identified as

VS¼ g2ðϕ2−1Þ−gϕ0 and fVS¼ g2ðϕ2−1Þþgϕ0: ð13Þ

With ϕ being odd, these potentials are even in the
coordinate ξ and the VPE in the no-tadpole renormalization
scheme can be computed by standard techniques [11,21]. In
this scheme, the Lagrangian counterterm proportional to
ðΦ2 − hΦi2Þ is adjusted such that there are no quantum
corrections to the vacuum expectation value of the scalar
field. The related, ultraviolet-divergent tadpole Feynman

diagram is a loop with a single insertion of the potential and
thus does not depend on the Fourier momentum of VS (orfVS). In turn the diagram is completely canceled by this
counterterm.
The basic ingredients for the nonperturbative part of the

VPE are the Jost functions for imaginary momenta in the
positive and negative parity channels. The Jost functions
are extracted from the Jost solutions fðk; ξÞ which are
solutions to the Schroedinger equations with the potentials
VS and fVS. Asymptotically (ξ → ∞) the Jost solutions are
incoming plane waves. In general there are contributions to
the VPE from the bound and continuum scattering states.
The latter contribution is the momentum integral over the
single particle energies weighted by the density of states. In
a given parity channel the difference of the densities of
states with and without the background potential is
the derivative of the phase shift with respect to the
momentum [24]. Next we use that the phase shift is the
logarithm of the Jost function which has simple zeros at the
imaginary momenta of the bound state energies. Hence,
when writing that continuum integral as a contour integral
in the complex momentum plane the singularities and
residues resulting from the logarithmic derivative cancel
the explicit bound state contributions to the VPE. All what
is left stems from the discontinuity of the dispersion
relation ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ g2

p
along the imaginary axis.5 With

k ¼ it we are then left with an integral over t ∈ ½g;∞�.
To facilitate the calculation we factorize the plane-wave

component of the Jost solution after continuing to imagi-
nary momenta: fðit; ξÞ ¼ e−tξGðt; ξÞ and establish the
second-order differential equation

G00ðt; ξÞ ¼ 2tG0ðt; ξÞ þ σðξÞGðt; ξÞ: ð14Þ

Here σ is either VS or fVS. With the boundary condition
limξ→∞Gðt; ξÞ ¼ 1 we extract the Jost functions from

Gðt; 0Þ and G0ðt; 0Þ ¼ ∂Gðt;ξÞ
∂ξ jξ¼0 to accommodate the

reflections properties (of the scattering wave function)
for the positive and negative parity channels. Putting things
together yields the vacuum polarization energy [11,21]

ϵVPE½σ� ¼
Z

∞

0

dτ
2π

�
ln

�
Gðt; 0Þ

�
Gðt; 0Þ − 1

t
G0ðt; 0Þ

��
−
hσi
t

�
t¼

ffiffiffiffiffiffiffiffiffi
τ2þg2

p : ð15Þ

Here we have introduced the integration variable τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − g2

p
to mitigate an integrable singularity at t ¼ g.

The two factors under the logarithm are the Jost functions
in the odd and even parity channels, respectively while the
subtraction with hσi ¼ R∞

0 dξσðξÞ takes out the contribu-
tion that is associated with the tadpole diagram. Since that
diagram and the counterterm cancel exactly, the subtraction
in Eq. (15) implements the no-tadpole renormalization
condition and renders the τ integral ultraviolet finite.

5The imaginary axis formalism also avoids ambiguities from
the multivalued logarithm of complex numbers that might have
occurred in earlier studies on the fermion VPE from (pseudo)
scalar backgrounds [23,25,26].
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The total renormalized VPE is simply the sum (note the
overall sign for a fermion)

EVPE ¼ −
M
4
ðϵVPE½VS� þ ϵVPE½ṼS�Þ: ð16Þ

For this average the subtraction under the integral in
Eq. (15) is proportional to

1

2
hVS þ ṼSi ¼ g2

Z
∞

0

dξðϕ2 − 1Þ: ð17Þ

It indeed equals the contribution from the counterterm that
cancels all quantum corrections to the scalar vacuum
expectation value.

V. NUMERICAL RESULTS

The numerical treatment Eqs. (8) is simplified by the
parity properties that we have discussed in Sec. III. For a
given parity channel it suffices to solve the equations on the
half line ξ ≥ 0. In addition to ϕð0Þ ¼ 0 we have the
following initial conditions for the spinors

A-type∶ uð0Þ ¼ 1; vð0Þ ¼ 0 and

B-type∶ uð0Þ ¼ 0; vð0Þ ¼ 1: ð18Þ

At a large ξmax in both channels the boundary conditions

uðξmaxÞ¼1 and vðξmaxÞ¼
g− t
ϵ

with t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2−ϵ2

q
ð19Þ

ensure that the fermion profiles are proportional to e−tξ

outside the realm of ϕðξÞ as required for a bound state
with jϵj < g.
To self-consistently construct the profile that minimizes

the quasiclassical energy ϵcl þ 2λ
M2 jϵj we first compute the

bound state energies and wave functions as a function of g
for the kink profile ϕðxÞ ¼ tanhðxÞ. In this process the
fermion differential equations in Eq. (8) are solved with the
initial and boundary conditions from Eqs. (18) and (19).
Solutions that are continuous over the whole ξ half line only
exist for particular values of ϵ. These are the energy
eigenvalues which we identify with a nested interval
algorithm. The resulting fermion profile functions are
normalized to

R∞
0 dξ½u2 þ v2� ¼ 1

2
. At small g only the

A0 zero mode is bound. We then increase g until the desired
mode gets bound with a significant binding energy. This
desired mode could, for example, be B1 which is the one
with the lowest positive energy eigenvalue in the negative
parity channel. We substitute the corresponding fermion
profiles into the differential equation for ϕ. For this
equation we employ a shooting method for the slopes of
ϕðξÞ at ξ ¼ 0 and ξ ¼ ξmax ≫ 1=g such that both ϕ and ϕ0
are continuous. We then iterate this procedure until con-
vergence under the iteration is observed. This convergence

is measured by ϵcl þ 2λ
M2 jϵj being stationary. As we further

increase g, guessing a good initial profile ϕ becomes
problematic as we observe that the success of the iteration
is quite sensitive to this initial guess. In most cases a linear
(over)relaxation procedure has proven to be successful:
Assume ϕð1Þ and ϕð2Þ are self-consistent solutions for
Yukawa couplings g1 ≲ g2, respectively. Then

ϕð3ÞðξÞ ¼ ϕð1ÞðξÞ þ ζ
ϕð2ÞðξÞ − ϕð1ÞðξÞ

g2 − g1
ðg3 − g1Þ; ð20Þ

with the fudge factor ζ ≳ 1, turns out to be a good initial
guess for the profile associated with g3 ≳ g2.
In all numerical simulations we set the scale by choosing

M ¼ 2 and eventually vary λ. Stated otherwise, to get
energies in terms of physical units, the results below have to
be multiplied by M=2 with M measured in electron volts,
for example. This choice for M is convenient since
then E ¼ 2

M ϵ ¼ ϵ.
In Ref. [16] solutions to Eqs. (8) were obtained for many

choices of the occupied level. To make our arguments clear
it suffices to focus on the lowing lying excitations in the
two parity channels B1 and A1. For these channels we have
reproduced the kink solitons of Ref. [16] whenM2 ¼ 2λ. In
addition we have constructed solutions deviating from this
particular relation between the model parameters. A few
profiles are displayed in Fig. 1. Their construction turned
out to be somewhat cumbersome for M2 < 2λ since this
effectively corresponds to increasing g in the differential
equation for ϕ. Accordingly the larger the ratio λ

M2, the
larger the deviation of the kink profile from tanhðξÞ.
For the discussion of the energetic stability we recall

from the previous sections the three energies to consider:
(i) classical Ecl, (ii) quasiclassical Ecl þ E, and (iii) semi-
classical Etot ¼ Ecl þ Eþ EVPE. As argued in Secs. III (i)
and (iii) are leading and subleading fermion contributions,
respectively, while (ii) cannot be associated with a par-
ticular truncation of an expansion scheme.
To investigate the (quasi)classical stability (Eþ Ecl ≤ g)

we consider the numerical results for Eq. (7) in Tables I, II
and III. We stress that this is not absolute stability, as the
fermion could still move to the ever present zero mode and
the energy would be that of the classical kink, Ekink ¼ M3

3λ
plus the fermion VPE for the kink (to be discussed below).
We observe this stability when the Yukawa coupling g
exceeds a certain value. With M2 ¼ 2λ this is at about
g ¼ 3 and g ¼ 4 for the B1 and A1 channels, respectively.
As we detune λ from this relation, these critical values
decrease as λ increases and vice versa. This opposite
behavior is essentially due to the λ dependence of Ecl.
We recognize that Ecl is smaller for the A1 channel than for
the B1 channel when M2 ≤ 2λ. This is remarkable because
the distortion of the A1 profile is larger in the sense that it is
wider than its B1 counterpart.
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We next compute the VPE. Occupying the zero mode A0

implies uv ¼ 0, according to Eq. (10). Hence, there is no
backreaction in this case and ϕðξÞ ¼ tanhðξÞ. For this
scenario we find EVPE ¼ 0.348, 0.607, 0.943 and 1.359
for g ¼ 2.0, g ¼ 3.0, g ¼ 4.0 and g ¼ 5.0, respectively. The
g ¼ 2.0 result is analytically known to be Mð1π − 1

4
ffiffi
3

p Þ ≈
0.3479 [23] favorably confirming our numerical simula-
tion. The VPE results for the A0 level do not depend on the
particular value for λ since this parameter enters via the
distortion of the scalar profile only when uv ≠ 0 and as an
overall factor in Ecl. The resulting total energies are listed in
Table IV. In our approximation scheme these are the lowest
energies for the kink topology. In this channel we have
E ¼ 0 and EVPE < g so that the configuration is topologi-
cally stable.
Finally, Tables V, VI and VII contain our numerical

results for the fermion contribution to the energy for
configurations that include the backreaction from a par-
ticular fermion level on the kink. This contribution has two
components, the energy of the explicitly occupied level and
the VPE from the Dirac sea. The latter is our main novel
result. In all cases considered, the VPE adds positively and
may indeed be substantial. Similar to the classical energy,
the fermion VPE differs only slightly between the B1 and
A1 channels. For small g the VPE for the A1 channel is even
less than for the B1 channel. This suggests a lesser

polarization of the Dirac sea in the A1 case. However,
for both channels the fermion VPE is significantly larger
than it is when occupying the A0 mode. Hence, the
backreaction has an important impact on the VPE.
In Table V we present the fermion energies in the B1 and

A1 channels when M2 ¼ 2λ but for different values of the
Yukawa coupling g. For the B1 channel we find the
quasiclassical energy to obey Eþ EVPE < g. This suggests
that the fermionic piece could be stable by itself. However,
that threshold is exceeded within the A1 channel. In either
case the gain in energy from binding the single level, g − E,
is essentially compensated by the VPE. To discuss the
topological (in)stability we must consider the semiclassical
energy Etot which includes the Dirac sea contribution. We
find topological stability (Etot ≤ gþ Ekink, with the M2 ¼
2λ values for gþ Ekink listed in Table I) merely for small g
in the B1 channel. For the A1 channel it does not occur at
all. The data in Tables VI and VII show that this picture
does not change qualitatively when we vary λ (cf. Tables II
and III, for the respective values of gþ Ekink). For small g
the level energy increases with the ratio M2

λ while the VPE
decreases (in the considered λ range). As g increases this
monotonic behavior disappears. The quasiclassical energy
Eþ EVPE is still smaller than g in the B1 channel for g ≤ 5.
This kinematic bound is always exceeded within the A1

channel. Presumably this bound will also be exceeded for

TABLE I. Energies in Eq. (7) as functions of the Yukawa coupling g for the B1 and A1 channels withM2 ¼ 2λ. For g ¼ 0 the classical
mass is Ekink ¼ 4

3
≈ 1.333.

B1 A1

g E Ecl Eþ Ecl gþ Ekink g E Ecl Eþ Ecl gþ Ekink

2.6 1.433 1.670 3.103 3.933 2.8 2.227 1.536 3.764 4.133
3.0 1.370 1.812 3.183 4.333 3.0 2.140 1.721 3.861 4.333
4.0 1.039 2.231 3.270 5.333 4.0 2.069 2.079 4.148 5.333
5.0 0.715 2.540 3.255 6.333 5.0 1.749 2.542 4.292 6.333

FIG. 1. Kink profiles in the B1 (left panel) and A1 (right panel) channels for g ¼ 4.0 and deviations fromM2 ¼ 2λ. The profile on the
negative half line is obtained from the reflection ϕðξÞ ¼ −ϕð−ξÞ.
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TABLE II. Same as Table I for M2 ¼ 1.8λ with Ekink ¼ 3
5
¼ 1.2.

B1 A1

g E Ecl Eþ Ecl gþ Ekink g E Ecl Eþ Ecl gþ Ekink

2.6 1.346 1.584 2.930 3.8 3.0 2.090 1.595 3.685 4.2
3.0 1.227 1.765 2.992 4.2 3.5 2.036 1.799 3.835 4.7
3.5 1.026 2.006 3.032 4.7 4.0 1.875 2.068 3.944 5.2
4.0 0.812 2.223 3.035 5.2 4.5 1.716 2.286 4.003 5.7

TABLE III. Same as Table I for M2 ¼ 2.2λ with Ekink ¼ ≈1.467.

B1 A1

g E Ecl Eþ Ecl gþ Ekink g E Ecl Eþ Ecl gþ Ekink

3.0 1.472 1.887 3.358 4.467 3.0 2.146 1.887 4.039 4.467
4.0 1.226 2.258 3.484 5.467 4.0 2.050 2.304 4.354 5.467
5.0 0.891 2.609 3.501 6.467 5.0 1.813 2.721 4.535 6.467

TABLE IV. Total energy for the A0 channel for various model parameters.

Ekink þ EVPE

M2=λ g ¼ 2.0 g ¼ 3.0 g ¼ 4.0 g ¼ 5.0

1.8 1.548 1.807 2.143 2.559
2.0 1.681 1.940 2.276 2.692
2.2 1.815 2.074 2.410 2.826

TABLE V. The single-level fermion energies E and the renormalized Dirac sea contributions for the caseM2 ¼ 2λ as a function of the
Yukawa coupling g. Here Etot ¼ Eþ EVPE þ Ecl. Left panel: B1 channel, right panel: A1 channel.

B1 A1

g E EVPE Eþ EVPE Etot g E EVPE Eþ EVPE Etot

2.6 1.433 0.714 2.147 3.817 2.8 2.227 0.693 2.920 4.456
3.0 1.370 0.990 2.360 4.172 3.0 2.140 0.945 3.091 4.812
4.0 1.039 2.031 3.079 5.310 4.0 2.069 1.999 4.068 6.147
5.0 0.715 3.439 4.154 6.694 5.0 1.749 3.687 5.436 7.978

TABLE VI. Same as Table V for M2 ¼ 1.8λ.

B1 A1

g E EVPE Eþ EVPE Etot g E EVPE Eþ EVPE Etot

2.6 1.346 0.755 2.101 3.685 3.0 2.090 0.984 3.074 4.639
3.0 1.227 1.066 2.293 4.058 3.5 2.036 1.492 3.528 5.327
3.5 1.026 1.597 2.623 4.629 4.0 1.875 2.245 4.120 6.188
4.0 0.812 2.237 3.049 5.272 4.5 1.716 2.990 4.706 6.992
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large enough g in the B1 channel because E cannot become
less than zero.
In Ref. [16] also configurations that minimize

Ecl þ ϵn with ϵn < 0

have been constructed. Even though such systems do not
have a particle-hole interpretation, we have nevertheless
computed the fermion VPE for B−1 and A−1 channels.6

These are the first available levels in the negative and
positive parity channels. The resulting data are displayed in
Table VIII. For these cases the binding of the level (Eþ g)
is small, but so is the VPE and there is no absolute gain
when compared to the mass of a free fermion.

VI. CONCLUSION

In this study we have computed the vacuum polarization
energy (VPE) emerging from fermion fluctuations about
recently observed solitons for scalar fields coupled to
fermions in one time and one space dimension. These
solutions deviate from the renowned kink by self-consis-
tently accounting for the backreaction from a single
fermion bound state level. We have argued that this VPE
must be considered for two reasons, at least. First, it equals
the contribution from the Dirac sea. This contribution is
needed for a physically sensible picture when the selected
level has a negative energy eigenvalue. Second, when the
model parameters are consistently incorporated, the VPE is
of the same order in a semiclassical expansion as the energy

eigenvalue of the single level. This was revealed by a
careful analysis of the parameter dependence of the energy.
Thereafter, fields and variables could be redefined to
dimensionless quantities suitable for the numerical
simulation.
We have found that the fermion VPE contribution is

substantial and approximately outweighs the binding of
the single level in the parameter regime that leads to a
sizable backreaction. Nevertheless, that configuration
may still be topologically stable for the case that the
single fermion level is the first excited state and the
Yukawa coupling is small; i.e. its total energy is less than
that of a single free fermion and a kink without back-
reaction. For moderate and large couplings this stability is
lost. In other channels it never occurs. We have not found
a configuration that is absolutely stable as the total energy
has always been larger than that of a free fermion
combined with the translationally invariant scalar con-
figuration. Stated otherwise, the local minima of the
quasiclassical energy functional cease to exist for the
semiclassical analog.
In a consistent quantum field theory calculation the Dirac

sea contribution to the energy is obtained from the fermion
effective action. Its nonlocal structure makes it impossible
to construct the minimum of the semiclassical energy from
a set of differential equations. Hence, a variational pro-
cedure [25] that minimizes this energy is the most sugges-
tive extension of the current study.
In many considerations the boson VPE may be neglected

compared to the fermion one because the latter scales with
the number of internal degrees of freedom (for example, the
number of colors in soliton models for the strong inter-
action). In the present model that number is unity and there
is no (obvious) approximation scheme that favors the
fermion VPE. We have seen that it strongly increases with
the Yukawa coupling and for large enough coupling it
dominates (presumably) and thus justifies the omission of
the boson VPE. In any event, such a calculation would be
even more cumbersome as a further backreaction must
then be taken into account, that of the boson fluctuations
on the fermion wave-functions. From the historic studies in
Refs. [2,14] we expect the boson VPE to be negative and
to some extent cancel the fermion counterpart that we
computed here. These studies also suggest a not so obvious
scenario in which the boson VPE is negligible against the
fermion counterpart; the model without fermions also has

TABLE VII. Same as Table V for M2 ¼ 2.2λ.

B1 A1

g E EVPE Eþ EVPE Etot g E EVPE Eþ EVPE Etot

3.0 1.472 0.933 2.405 4.292 3.0 2.146 0.942 3.088 4.975
4.0 1.226 1.871 3.097 5.355 4.0 2.050 2.014 4.064 6.368
5.0 0.891 3.236 4.127 6.736 5.0 1.813 3.612 5.425 8.146

TABLE VIII. The single-level fermion energies E and the
renormalized Dirac sea contributions for the case M2 ¼ 2λ as
a function of the Yukawa coupling g. Left panel: B−1 channel,
right panel: A−1 channel.

B−1 A−1

g E EVPE g E EVPE

3.0 −2.762 0.500 3.8 −3.419 0.841
4.0 −3.567 0.680 4.0 −3.592 0.892
5.0 −4.363 0.864 5.0 −4.481 1.133

6The minus sign in the subscript is added for the negative
energy eigenvalue [16].
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the factor λ=M2 for the boson VPE relative to the classical
energy [21]. A consistent model in which higher-order
boson quantum effects are small would thus require
M2 ≫ λ. To nevertheless have a substantial backreaction
from the fermion level a large Yukawa coupling will be
needed. Exploring this parameter regime certainly is
another interesting extension of the presented study.
In Ref. [16] scenarios with an additional explicit mass

term Lm ¼ −m0ΨΨ were considered. With the kink con-
necting the two distinct vacua at hΦi ¼ � Mffiffiffiffi

2λ
p at positive

and negative spatial infinity, its inclusion would lead to
different mass parameters, m0 � g

2
M, in the fermion sector.

Such systems are destabilized by quantum effects [10,27].
The above discussions indicate that our estimate for the

quantum corrections when kinks are bounded to excited

fermion levels leaves space for future extensions. Yet, it
accounts for the important fact that contributions from
distinct energy levels and the Dirac sea are of equal order in
the semiclassical expansion. We have therefore combined
these contributions and our estimate suggests that the Dirac
sea contribution to the total energy outweighs the gain from
binding single levels. This points towards an instability of
such configurations.
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