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We compute the vacuum polarization energies (VPEs) of solitons in a self-dual impurity model in which
the soliton profiles take the shape of a separated kink-antikink pair. Classically the soliton energies are
invariant under the change of a continuous parameter that can be interpreted as the kink-antikink
separation. This is not the case for the VPEs so that quantum effects decide on the energetically most
favorable separation. The considered configurations are classically stable so that its quantum fluctuations
have only real frequency eigenvalues. Hence, in contrast to the kink-antikink configuration in the ϕ4 model,
the VPE is well defined for any value of the separation and we gain insight into the quantum corrections to
the kink-antikink potential.
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I. INTRODUCTION

In this work we explore the one-loop quantum correc-
tions to the energies of solitons in a self-dual impurity ϕ4

model in one-space and one-time dimension (D ¼ 1þ 1).
Low-dimensional soliton models are interesting because
they are role models for more complex systems in higher
dimensions that have applications ranging from, among
others, cosmology [1] via condensed matter physics [2,3] to
hadron [4] and nuclear physics [5]. An important feature of
the model that we consider here is that its solitons saturate
a Bogomolny-Prasad-Sommerfield (BPS) [6,7] energy
bound. Hence the classical energy only depends on the
boundary values of soliton profiles but not on the position
of the impurity so that there is no static force between the
impurity and the soliton [8,9]. As a further consequence
these solitons are degenerate with respect to the variation of
a continuous parameter that measures the distance between
the position of the kink-type structure and the center of the
impurity. Thus the most favorable solution is determined by
the quantum corrections to the classical energy even though
these corrections are small for a consistent choice of model
parameters. Computing these corrections as a function of
this variational parameter is the central objective of
this work. For a sufficiently strong impurity we will find
a local minimum of the quantum energy. However, for
weak impurities, this energy favors infinitely far separated

kink-antikink pairs, signaling an unstable soliton. This is
similar to multifield Shifman Voloshin soliton [10] that has
classically degenerate solitons that are unstable quantum
mechanically [11]. Similarly, quantum corrections reveal
instabilities in higher polynomial soliton models [12,13].
For moderate and large values of the separation para-

meter the static solutions resemble superpositions of a kink-
antikink pair in the renowned ϕ4 model [14–16]. In contrast
to kink-antikink superpositions in the ϕ4 model the
impurity causes such configurations to be stable classically
so that the model provides a way around the fundamental
problem of dealing with imaginary frequencies [17,18]
of the quantum fluctuations about a kink-antikink in the
ϕ4 model.
The computation of quantum corrections to soliton

energies in one space dimension is by now a standard
and straightforward endeavor when utilizing the so-called
spectral methods [19]. The essential ingredients are the
scattering data extracted from the quantum fluctuations
about the potential that is induced by the soliton. This
computation is particularly simple when this potential is
invariant under spatial reflection [20]. All that is needed is
the Jost function along the positive imaginary momentum
axis. Since the quantum energy manifests itself through the
shift (or polarization) of the zero point energies of the
quantum fluctuations it is frequently called the vacuum
polarization energy (VPE).
Following this introduction, we will describe the self-

dual impurity model and its BPS solutions in Sec. II.
Section III contains the analysis of the potential for the
quantum fluctuations at moderate and large kink-antikink
separation. In Sec. IV we will describe the spectral method
that determines the VPE. We will present the numerical
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results for the VPE of BPS solutions in the self-dual
impurity model in Sec. V. In Sec. VI we estimate the
leading quantum correction to the kink-antikink potential.
We conclude and summarize in Sec. VII.

II. THE MODEL

We consider the self-dual impurity model in D ¼ 1þ 1
whose full Lagrangian is given by [21,22]

L ¼
Z

dx

�
1

2

�
∂ϕ

∂t

�
2

−
1

2

�
∂ϕ

∂x
þ

ffiffiffi
2

p
W þ

ffiffiffi
2

p
σW

�
2
�

þ
Z

dx
ffiffiffi
2

p
W

∂ϕ

∂x
; ð1Þ

whereW ¼ WðϕÞ is the superpotential and σ ¼ σðxÞ is the
prescribed impurity. In the limit σ → 0 the standard scalar
model with a scalar potential of U ¼ W2 is obtained.
Typically these potentials generate spontaneous symmetry
breaking with at least two degenerate vacua. The soliton(s)
then assume either of them at positive and negative spatial
infinity. We have written this Lagrangian in terms of
dimensionless variables and parameters, thereby omitting
an overall factor. This factor does not affect the field
equations but, through canonical quantization, it is the
order parameter that counts the loops entering the quantum
corrections and thus discriminates between classical and
quantum contributions. In our case we will solely compare
configurations which are classically degenerate at one loop
order. (Actually all configurations have zero classical
energy.) Hence our results will not be sensitive to this
order parameter and we may safely omit it.1

The topological lower bound of the classical energy is
saturated when the following Bogomolny equation holds

∂ϕ

∂x
þ

ffiffiffi
2

p
W þ

ffiffiffi
2

p
σW ¼ 0: ð2Þ

In this study we take the superpotential to be

W ¼ 1ffiffiffi
2

p ð1 − ϕ2Þ; ð3Þ

which is of the ϕ4 model type in the no impurity limit. In
particular, we consider the nonlocalized impurity [21,22]

σjðxÞ ¼
j
2
tanhðxÞ − 1; ð4Þ

where j ≥ 0 is the parameter that measures the strength of
the impurity. The BPS solutions in this self-dual impurity
model are

ϕðxÞ ¼ −
coshjx − a
coshjxþ a

: ð5Þ

We may take either a ∈ ð−1;∞Þ or

a ¼ −1þ ejx0 with x0 ∈ R; ð6Þ

as the variation parameter that parameterizes the shape of
the BPS soliton profiles.
For x0 ≫ 1 the BPS solutions represent infinitely widely

separated kink-antikink pairs of the ϕ4 model as shown in
Fig. 1. Also, as x0 tends to 0, the kink and antikink
approach each other. For small impurities with 0 < x0 ≲ 1,
a BPS solution is similar to a kink-antikink pair in the ϕ4

model with small separation. However, for large impurities,
the BPS solutions develop wells at the center. The variation
parameter x0 was interpreted as the distance between the
BPS soliton and the impurity [22] because of these
particular features.
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FIG. 1. From left to right: the profile of the BPS soliton in Eq. (5) for various values of the intersoliton distance (x0) for j ¼ 1, j ¼ 2,
and j ¼ 3.

1In general, this parameter should be chosen to make the
leading quantum correction small; otherwise higher order effects
will presumably be sizable.
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In general BPS solutions saturate the topological energy
bound and the static energy thus only depends on the
boundary values of the soliton. In our case this has the
important consequence that this energy is independent of
the strength j of the impurity. Hence there is no (static)
force between the BPS soliton and the impurity.
Obviously the superpotential vanishes at ϕ ¼ �1 which

are the two possible vacua. At spatial infinity the soliton
approaches ϕ ¼ −1, which we thus call the primary
vacuum. The equality between the profiles at positive
and negative spatial infinity actually leads to a vanishing
classical energy. Unless x0 is very small, the soliton also
occupies the secondary vacuum at ϕ ¼ þ1 in a sizable
region of space. This region grows with x0. The possibility
of occupying such a secondary vacuum has been recently
related to quantum destabilization of solitons [11].
In the next step, we investigate the behavior of the

scattering potential. We do this by considering a small
perturbation of the BPS solitons ϕðx;tÞ¼ϕðxÞþηðxÞe−iωt.
Substituting this into Eq. (1) and considering linear terms of
η in the resulting wave equation yields�

−
d2

dx2
þ VðxÞ

�
η ¼ ω2η; ð7Þ

where ω2 ¼ m2 þ k2 with k > 0 for the scattering states
and kj ¼ iκj for the bound states. Herem and k are the mass
of the fluctuations and the continuous momentum, respec-
tively. Subtracting the analog quantity for Vðx→�∞Þ¼m2

from the wave equation yields the scattering wave equation�
−

d2

dx2
þ uðxÞ

�
η ¼ k2η; ð8Þ

where

uðxÞ ¼ VðxÞ −m2

¼ 2ð1þ σÞ2
��

dW
dϕ

�
2

þW
d2W
dϕ2

�

−
ffiffiffi
2

p ∂σ

∂x
dW
dϕ

−m2 ð9Þ

is the scattering potential. We also identify m ¼ j from
uðxÞ → 0 when x → ∞. The explicit expression for the
scattering potential is obtained by substituting the BPS
soliton ϕðxÞ, the nonlocalized impurity σjðxÞ, and the
superpotential WðϕðxÞÞ. This then takes the form

uðxÞ ¼ j2

2

��
3

�
coshjx − a
coshjxþ a

�
2

− 1

�
tanh2x − 2

�

−
j

cosh2x
coshjx − a
coshjxþ a

: ð10Þ

The shape of the scattering potential is shown in Fig. 2. We
observe that for small j the potential has two noncentral
attractive regions in the vicinity of �x0. As we increase j a
central structure around the origin emerges that is fully
attractive for large j. For small and moderate j it has both
attractive and repulsive components.
Since the classical energy does not depend on x0, we

expect a zero mode whose wave function is proportional to

η0ðxÞ ¼
∂ϕðxÞ
∂x0

∝
∂ϕðxÞ
∂a

¼ 2coshjx
ðcoshjxþ aÞ2 : ð11Þ
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FIG. 2. The scattering potential uðxÞ from Eq. (10) compared to that of the ϕ4 configuration ux0ðxÞ for x0 ¼ 2, 5, and 20. The latter is
defined in Eq. (24). Left to right: for j ¼ 0.5, 1, and 2. Note the different scales along the horizontal axis as x0 varies.
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III. SCATTERING POTENTIAL AT LARGE x0

We want to investigate the potential for large a ≈ ejx0 in
the three regimes where it substantially deviates from zero:
(i) x ≈ x0, (ii) x ≈ −x0, and (iii) x ≈ 0. The first two are
equivalent by spatial reflection.
For (i) and (ii) we can set tanh2 x ¼ 1. To be definite we

consider (i) so that coshjx ≈ 1
2j
ejx ¼ ejðx−ln 2Þ. We then have

coshjx − a
coshjxþ a

≈
ejðx−ln 2Þ − ejx0

ejðx−ln 2Þ − ejx0
¼ ejðx−x0−ln 2Þ − 1

ejðx−x0−ln 2Þ þ 1

¼ tanh

�
j
2
ðx − x0 − ln 2Þ

�
: ð12Þ

This approximates the potential as

uðxÞ ≈ 3

2
j2
�
tanh2

�
j
2
ðx − x0 − ln 2Þ

�
− 1

�
; ð13Þ

which is a Pöschl-Teller potential2 with M ¼ j and l ¼ 2
centered at x0 þ ln 2. Its bound state energies have wave
numbers t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 − ϵ2

p
with t ¼ j

2
and t ¼ j. This approxi-

mation also shows that the zero mode associated with the x0
invariance of the classical energy turns into the translational
zero mode of an ordinary kink. By a similar analysis we get

ϕðxÞ ¼ −
coshjðxÞ − a
coshjðxÞ þ a

≈ − tanh

�
j
2
ðx − x0 − ln 2Þ

�
ð14Þ

for large a and x ≈ x0, which again exhibits the antikink
structure located at x0 þ ln 2. With the kink potential

λ
4
ðϕ2 − M2

2λ Þ2 this corresponds to M ¼ j and λ ¼ j2

2
.

Along the same considerations we find a kink structure
around −ðx0 þ ln 2Þ.
For case (iii) we have a ≫ coshj x and thus

uðxÞ ≈ jðj − 1Þ½tanh2ðxÞ − 1�: ð15Þ

The bound state wave numbers of this potential are also
known3

t ¼ j − n − 1 with n ¼ 0; 1;…; bjc − 1: ð16Þ

The numerical simulation verifies these solutions for large j
and x0; including the zero mode wave functions being
centered at x0 þ ln 2 as can be seen from the numerical
results shown in Fig. 3. Since uð−xÞ ¼ uðxÞ, the bound
states have definite parity.
In the process of these numerical simulations we have

also verified the existence of the zero mode with the wave
function, Eq. (11) for various values of j and x0.
For j ¼ 1 and large a the central part of the potential

(iii) vanishes. Hence we expect that in this case the VPE is
(twice) that of the kink with M ¼ 1.

IV. VACUUM POLARIZATION ENERGY

The VPE is a measure of the energy change caused by
the polarization of the single particle modes, which occurs
due to the interaction of quantum fluctuations with the
background configuration generated by the soliton. As
already discussed the soliton induces a reflection invariant
potential and we can therefore write the renormalized
boson VPE as

FIG. 3. Bound state wave functions for x0 ¼ 5.0 and j ¼ 6.0. The solutions labeled n ¼ 1 are the asymptotic (x0 → ∞) zero modes.
We have normalized the wave functions to be in the interval ½−1; 1�.

2These potentials are Vl ¼ lþ1
l M2½tanh2ðMx=lÞ − 1�. The

bound state wave numbers are t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − E2

p
¼ kM=l with

k ¼ 0; 1; 2;…; l. 3See, e.g., Eqs. (3.11) and (3.12) in Ref. [23].
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ΔE ¼ 1

2

Xb:s:
n

ωn þ
Z

∞

0

dk
2π

X
l¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ j2

q �
dδlðkÞ
dk

�
N

þ
XN
n¼1

EðnÞ
FD þ ECT: ð17Þ

The first term sums over the explicit bound states and the
momentum integral (with the sum over the parity channels)
collects the continuum contribution. It is the integral
over the scattering states with the relativistic dispersion
ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ j2

p
weighted by the change in the density of

states expressed by the phase shift according to the Krein
formula [24],

Δρl ¼ 1

π

dδlðkÞ
dk

: ð18Þ

The subscript N indicates the subtraction of the first N
orders of the Born series from the phase shifts. With N
sufficiently large, the momentum integral is finite. These
subtractions are added back in the form of equivalent

Feynman diagram contributions, EðnÞ
FD. Finally, ECT is the

counterterm contribution that implements the renormaliza-

tion condition(s). Note that
P

N
n¼1 E

ðnÞ
FD þ ECT is also ultra-

violet finite. For a boson fluctuation in one space dimension
the situation is quite simple. There is only one ultraviolet
divergent Feynman diagram with a single insertion of the
(Fourier transform at zero momentum of) uðxÞ. It is
proportional to

R
∞
0 dx uðxÞ and can thus be canceled

completely within the so-called no-tadpole renormalization
scheme. Hence we write

ΔE ¼ 1

2

Xb:s:
n

ωn þ
Z

∞

0

dk
2π

X
l¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ j2

q �
dδlðkÞ
dk

�
1

: ð19Þ

The phase shifts are the phases of the Jost functions

FþðkÞ ¼ limx→0
∂F ðk;xÞ
ik∂x and F−ðkÞ ¼ limx→0F ðk; xÞ in

the two parity channels. Here F ðk; xÞ solves the wave
equation, Eq. (8), with the boundary condition
limx→∞e−ikxF ðk; xÞ ¼ 1. This function is the Jost solution
and is analytic for ImðkÞ ≥ 0 [25,26]. For real k we also
have F ð−k; xÞ ¼ F �ðk; xÞ so that we express the phase
shifts as an obviously odd function of the momentum:
δlðkÞ ¼ i

2
½lnFlðkÞ − lnFlð−kÞ�. In turn we get the VPE

ΔE ¼ 1

2

Xb:s:
n

ωn þ
i
2

Z
∞

−∞

dk
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ j2

q �
d lnFþðkÞF−ðkÞ

dk

�
1

:

ð20Þ

This integral can be computed as a contour integral because
F�ðkÞ is analytic in the upper complex momentum plane.
As the leading large jkj terms are Born subtracted there is
no contribution from the semicircle at infinity. The Jost
function has simple zeros at the complex bound state
momenta k ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 − ω2

n

p
so that the singularities from

the logarithmic derivative cancel 1
2

P
b:s:
n ωn. The only

contribution stems from bypassing the branch cut induced
by the relativistic dispersion relation along the imaginary
axis t ∈ ½j;∞�, where k ¼ it. To efficiently compute that
final integral we factorize F ðit; xÞ ¼ e−txgðt; xÞ and solve
the differential equation

∂
2gðt; xÞ
∂x2

¼ 2t
∂gðt; xÞ
∂x

þ uðxÞgðt; xÞ; ð21Þ
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FIG. 4. The vacuum polarization energy as a function of x0 for various values of j. Note the different horizontal scales for small j.
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with boundary condition gðt;∞Þ ¼ 1. After a final inte-
gration by parts we get

ΔE¼
Z

∞

j

dt
2π

tffiffiffiffiffiffiffiffiffiffiffiffi
t2−j2

p �
ln

�
gðt;0Þ

�
gðt;0Þ−1

t
∂gðt;xÞ
∂x

				
x¼0

��

−
1

t

Z
∞

0

dxuðxÞ
�
: ð22Þ

We have made the Born subtraction explicit. The coef-
ficient of that spatial integral can be most straightforwardly
derived by expanding gðt; xÞ ¼ 1þ gð1Þðt; xÞ þOðu2Þ and
integrating the corresponding differential equation

∂
2gð1Þðt; xÞ
∂x2

¼ 2t
∂gð1Þðt; xÞ

∂x
þ uðxÞ;

with the boundary condition gð1Þðt;∞Þ ¼ 0 along the
positive half axis in coordinate space.

V. NUMERICAL RESULTS FOR THE VPE

In this section, we report the results from our numerical
simulations of the one-loop VPE discussed above. We
solve Eq. (21) using the fourth order Runge-Kutta algo-
rithm with an adaptive step size control for various values
of j and x0. That is, we compute the quantum correction to
the energy as a function of the variational parameter, x0
with respect to which the classical energy is degenerate.
As indicated earlier, the BPS solution behaves like a

superposition of the kink-antikink configuration in the ϕ4

model approximated by

ϕRðxÞ ¼ tanh

�
j
2
ðxþ RÞ

�
− tanh

�
j
2
ðx − RÞ

�
− 1; ð23Þ

where R indicates the position of the kink. This configu-
ration gives rise to the scattering potential

uRðxÞ ¼
3j2

2
½ϕ2

RðxÞ − 1�: ð24Þ

In Fig. 2 we also compare this to the BPS scattering
potential. We see that j ¼ 1 best approximates the kink-
antikink configuration of the ϕ4 model for x0 ≫ 1. This
confirms the approximation, Eq. (15) according towhich the
central structure vanishes for this value of jwhen x0 is large.
The only difference is that the position of the potential
minimum is somewhat larger thanR; of course this is just the
additional ln 2 identified in Sec. III. For j≳ 5 the noncentral
structures of uðxÞ almost exactlymatchuRðxÞ, with the same
small deviation of the minimum position from R.
We display the results for ΔE as a function of x0 from

our numerical simulations for other impurity values in
Tables I–V, each referring to different values of j. We
observe that ΔE decreases when increasing x0 from a small
finite value to infinity. For small j it does so monotonously
but develops a tiny local minimum at a moderate x0 when j
increases. This is due to the attractive central structure of
uðxÞ. The position of the local minimum moves to smaller
values of x0 as j increases. This is also obvious from the
graphs in Fig. 4. Hence we conclude that for a significantly
strong impurity the quantum corrections resolve the
classical degeneracy while for weak impurities x0 → ∞
is favored, which causes the soliton to be unstable. From
Fig. 4 and Table IV we immediately recognize an energy
minimum for j ¼ 2. For j ¼ 1.5 the existence of such a

TABLE I. VPE as function of x0 for j ¼ 0.2.

x0 1.5 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 44.0

ΔE −0.06455 −0.06992 −0.09204 −0.11242 −0.12575 −0.13312 −0.13681 −0.13856 −0.13937 −0.13974 −0.13990 −0.13995

TABLE II. Behavior of the VPE as function of x0 for j ¼ 0.5.

x0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

ΔE −0.17786 −0.19343 −0.22755 −0.25882 −0.28383 −0.30221 −0.31493 −0.32336 −0.32878 −0.33219
x0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
ΔE −0.33431 −0.33562 −0.33642 −0.33691 −0.33721 −0.33739 −0.33749 −0.33754 −0.33756 −0.33758

TABLE III. VPE as function of x0 for j ¼ 1.0, whose asymptotic value is twice the VPE value of a single kink of the ϕ4 model.

x0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

ΔE −0.475999 −0.53358 −0.60935 −0.64415 −0.65805 −0.66328 −0.66523 −0.66599 −0.66617 −0.66622
x0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0
ΔE −0.66623 −0.66623 −0.66623 −0.66623 −0.66623 −0.66623 −0.66623 −0.66623 −0.66623 −0.66623
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very shallow minimum is not obvious from the figure.
However, the data ΔEð7.0Þ − ΔEð15.0Þ ¼ −0.0004 indeed
indicate the existence of a minimum already for j ¼ 1.5.
Even though this small difference is of the order of the
numerical accuracy we conjecture that minima emerge for
all j > 1 since for this value and large enough x0 the central
structure of uðxÞ turns from repulsive to attractive at j ¼ 1;
as discussed in Sec. III. Eventually the VPE saturates when
x0 is large enough because the various structures in uðxÞ
separate without changing their shapes as x0 grows further.
For weak impurities the asymptotic value is (approxi-
mately) reached only for very large x0 but the saturation
position decreases as j increases. Again, this can be
understood from the discussion in Sec. III: the larger j,
the better the approximation coshjðx − x0Þ ≈ ejðx−x0−ln 2Þ.
With increasing impurity strength the local minimum in

ΔE moves to smaller x0 values and the x0 behavior of the
soliton profile shown in Fig. 1 suggests that the soliton
eventually loses its kink-antikink shape.
The case j ¼ 1 is particularly interesting because we

have conjectured that the central structure becomes

irrelevant as x0 increases and that the potential in the
vicinity of �x0 is of Pöschl-Teller type with l ¼ 2. That is
exactly the background potential induced by the kink in
a ϕ4 model. And indeed we see from Table III that
ΔE approaches −0.66623 asymptotically which is twice
the Dashen-Hasslacher-Neveu [27] value ð 1

4
ffiffi
3

p − 3
2πÞ ≈

−0.333127 for the VPE of the ϕ4 kink soliton for unit
mass parameter. Though supported by the analytical con-
siderations in Sec. III in the limit of large x0, this agreement
occurs already for moderate x0. For example, for x0 ¼ 5 the
difference in the VPEs is just about 1%.

VI. QUANTUM CORRECTIONS
TO THE KINK-ANTIKINK POTENTIAL

We identify the scattering potential associated with the
central region by defining

ũðxÞ ¼ uðxÞ
�
1 jxj ≤ x0

2

e−ðjxj−x0=2Þ2=w2 jxj > x0
2

; ð25Þ

TABLE IV. VPE as function of x0 for j ¼ 2.0.

x0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

ΔE −1.28454 −1.33903 −1.36159 −1.36259 −1.36230 −1.36217 −1.36214 −1.36213 −1.36213
x0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
ΔE −1.36213 −1.36213 −1.36213 −1.36213 −1.36213 −1.36213 −1.36213 −1.36213 −1.36213

TABLE V. VPE as function of x0 for j ¼ 2.5.

x0 1.5 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

ΔE −1.70952 −1.73737 −1.73857 −1.73648 −1.73594 −1.73586 −1.73585 −1.73585 −1.73585
x0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0
ΔE −1.73585 −1.73585 −1.73585 −1.73585 −1.73585 −1.73585 −1.73585 −1.73585 −1.73585

TABLE VI. The quantum correction to the kink-antikink potential, Eq. (26) as a function of x0 for j ¼ 0.5 and w ¼ 2.0.

x0 1.0 3.0 5.0 7.0 9.0 11.0 13.0

ΔEKK̄ −0.1448 −0.2182 −0.2766 −0.3088 −0.3235 −0.3295 −0.3317

TABLE VII. Same as Table VI for j ¼ 2.5.

x0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

ΔEKK̄ −1.4350 −1.6505 −1.6657 −1.6659 −1.6657 −1.6656 −1.6656

TABLE VIII. Same as Table VI for j ¼ 4.0.

x0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

ΔEKK̄ −2.6254 −2.6836 −2.6684 −2.6655 −2.6651 −2.6650 −2.6650
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and we compute the corresponding VPE, fΔE. For large
enough x0 this is not sensitive to the width parameter w as
long as it still small compared to x0. The quantum
correction to the kink-antikink potential is the difference

ΔEKK̄ ¼ ΔE − fΔE: ð26Þ

A direct identification of this correction would lead to
imaginary frequencies (equivalently, zeros of the Jost
function for t > j) for the would-be zero mode(s) because
the static configuration from Eq. (23) is not a solution to the
kink wave equation. In a sense we can interpret the central
structure as the source needed to keep the ϕ4 (anti)kink in
place [28].
The numerical results for ΔEKK̄ as functions of x0 for

different strengths j of the impurity are shown in
Tables VI–VIII and Fig. 5. In all cases we reproduce the
expected asymptotic valueΔEKK̄ → jð 1

2
ffiffi
3

p − 3
πÞ for x0 → ∞

suggested via the Pöschl-Teller potential in Eq. (13).
As in the case of ΔE, ΔEKK̄ is purely repulsive for small

and moderate j. However, for j≳ 2 a local minimum
emerges. The x0 position of this minimum approaches
the center as j increases. We therefore conclude that the
attraction for larger j is not only a property of the central
structure of the fluctuation potential but also signals an
attractive quantum contribution to the kink-antikink inter-
action. The energies shown in Fig. 5 suggest that the
interaction becomes arbitrarily strongly repulsive as x0
approaches zero. Thus would eventually prevent the kink-
antikink system from collapsing (as it may in the pure ϕ4

model). Unfortunately, extracting this interaction via
Eq. (26) becomes an invalid procedure in that interesting
limit.

VII. CONCLUSION

We have computed the leading (one-loop) quantum
correction to soliton energies in an BPS-impurity model
in one time and one space dimensions. Our motivation for
this study was twofold. First, with the model parameters set
to the BPS case, the classical energy is degenerate with
respect to a continuous real parameter. Usually one trusts
the computation of the leading quantum correction only
when it is (significantly) smaller than the classical counter-
parts; otherwise it is very likely that even higher order
corrections are equally important and should not be
omitted. (See, e.g., Ref. [29] for estimates beyond one
loop.) However, when comparing classically degenerate
configurations, the classical energy is irrelevant and the
quantum corrections are decisive for selecting the favorable
configuration. Second, the above mentioned continuous
parameter can be associated with the separation of a kink-
antikink pair in the renowned ϕ4 kink model, at least for
moderate and large values. This allows us to investigate the
quantum corrections to the kink-antikink interaction,
which, due the emergence of unstable fluctuation modes,
is unfortunately not directly possible in the ϕ4 kink model.
In this model the soliton solution generates a potential

for the quantum fluctuations with three structures. We have
identified these structure from analytic considerations and
also by exploring the bound state structure. Two of these
structures can be associated with the kink and the antikink
at the respective positions while the impurity induces a
central structure in between. For small strengths of the
impurity the central structure is repulsive but gets more and
more attractive as this strength is increased. As conse-
quences, for weak impurities the quantum fluctuations
destabilize the soliton in the sense that it is energetically
favorable to pull the kink and the antikink components
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FIG. 5. The quantum correction to the kink-antikink potential, Eq. (26) as a function of x0 and various values of j.

I. TAKYI and H. WEIGEL PHYS. REV. D 107, 036003 (2023)

036003-8



infinitely far apart. This means that the soliton occupies a
secondary vacuum in an ever increasing region of space.
Hence this instability is conceptually similar to the one
previously observed in the Shifman-Voloshin model. As the
strength increases the potential extracted from the quantum
fluctuations develops a minimum that determines the
favorable value of the parameter with respect to which
the classical energy is degenerate. The more the impurity
strength is increased the more the soliton loses its kink-
antikink shape.
When we remove the central structure from the potential,

we can get some insight into the quantum corrections to the
kink-antikink interaction in the ϕ4 model. Unfortunately,
the corresponding results depend on the impurity strength
so that we cannot make a general statement. However, we
find that these corrections are mostly repulsive, only for
large strengths a moderate attraction occurs.
We note that the choice for the impurity is somewhat

arbitrary. The choice considered in Ref. [30] generates an
antikink. Similar to the present case, the classical energy is
not dependent on the distance between the centers of the

antikink and the impurity. Using the technique4 of Ref. [31],
those authors hence computed the quantum correction to the
energy as a function of that distance but did not observe a
local minimum. It would be interesting to verify that result
using the spectral method approach. Eventually the com-
parison of the VPEs for various impurities can further
disentangle the effects stemming from the soliton on one
side and the impurity on the other.
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