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We study the thermal properties of quantum field theories (QFT) with three-leg interaction vertices gφ3

and gSφ2 (φ and S being scalar fields), which constitute the relativistic counterpart of the Yukawa potential.
We follow a nonperturbative unitarized one-loop resummed technique for which the theory is unitary and
well defined for a large range of values of the coupling constant g. Using the partial wave decomposition of
two-body scattering we calculate the phase shifts, whose derivatives are used to infer the pressure of the
system at nonzero temperature by using the so-called phase shift formalism. A φφ bound state is formed
when the coupling g is larger than a certain critical value. As the main outcomes of this work, we estimate
the influence of particle interaction on the pressure (both without and with the bound state), and we
demonstrate that the latter is always continuous as a function of the coupling constant g (no sudden jumps
occur when the bound state forms), and we show that the contribution of the bound state to the pressure
does not count as one state in the thermal gas, since a cancellation with the residual φφ interaction occurs.
The amount of this cancellation depends on the details of the model and its parameters and a variety of
possible scenarios is presented. We also show how the overall effect of the interaction, including eventual
resonances and bound states, can be formally described by a unique expression that makes use of the phase
shift continued below the threshold.
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I. INTRODUCTION

The production of hadronic bound states such as deu-
teron (2H), tritium (3H), helium-3 (3He), helium-4 (4He),
hypertritium (3ΛH) and their antiparticles in high energy
collisions has created a lot of interest in the community
[1–7]. The temperature at the chemical freeze-out is much
larger than the binding energies of those bound states.
Hence the natural question is how such weakly bound
objects can form in such a hot environment? Moreover, the
size of such bound states is usually large compared to the
interparticle spacing of the fireball. It is, therefore, impor-
tant to understand the mechanism of the formation of those
bound states in a thermal system. Further, a whole new
class of X, Y and Z resonances is observed in the QCD

spectrum which are not predicted by the quark model;
see [8] references therein. Some of these resonances can be
mesonic molecular bound states. Experimentally observed
pentaquarks [9] can also be understood as molecular
objects.
Two successful phenomenological models describing the

production of bound states in high energy collisions are
discussed in the literature: the thermal model [10–15] and
the coalescence model [16–29]. In the thermal model,
bound states are formed directly from the source according
to the corresponding probability at a given temperature T.
On the other hand, the coalescence model works in a two-
step process: first, nucleons are produced from a fireball
and, second, the bound states (such as nuclei) are formed
long after the emission nucleons when the relative
momenta of the nucleons become small. Along the same
line, conventional mesons, such as pions and kaons, etc.
are directly produced, while molecular states emerge as
a secondary product. Until now, it is not clear which
assumption is correct, although both models describe the
production yields of bound states in high-energy collisions
quite well. Transport [30] and hybrid dynamical [31]
models are also applied to describe bound states.

*subhasis.samant@gmail.com
†fgiacosa@ujk.edu.pl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 036001 (2023)

2470-0010=2023=107(3)=036001(29) 036001-1 Published by the American Physical Society

https://orcid.org/0000-0003-2065-9219
https://orcid.org/0000-0002-7290-9366
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.036001&domain=pdf&date_stamp=2023-02-01
https://doi.org/10.1103/PhysRevD.107.036001
https://doi.org/10.1103/PhysRevD.107.036001
https://doi.org/10.1103/PhysRevD.107.036001
https://doi.org/10.1103/PhysRevD.107.036001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In Ref. [32], we investigated how to take into account the
effect of the interaction in a thermal gas in the context of
quantum field theory (QFT) by using a scalar λφ4 inter-
action (λ being the dimensionless coupling), which corre-
sponds to a delta potential in the nonrelativistic limit. For
that (relatively simple) QFT, it was possible to consider
only the s-channel Feynman diagrams. The temperature
dependence was incorporated via the so-called phase shift
(or S-matrix) formalism [33–42] [see Appendix A for a
brief quantum mechanical (QM) recall of this approach].
This approach allows calculating the effect of the interaction
in the medium by using the derivative of the scattering phase
shifts calculated in the vacuum. In particular, a positive
(negative) derivative implies an increase (decrease) of the
pressure. For λ < 0 (for which attraction occurs) and jλj
above a certain critical value, a bound state forms. It was
shown that this bound state is relevant at nonzero temper-
ature, but it counts less than what a single state with the same
mass would contribute since a partial cancellation with the
residual φφ interaction takes place. Note, this is in partial
agreement with the quantum mechanical (QM) approach of
Ref. [14], where a similar (but even more pronounced)
cancellation was shown to occur.
A natural continuation of the work in Ref. [32] is to

investigate the role of bound states in more complex QFTs,
which go beyond the simple contact interaction. The next
step is then to consider scalar theories that correspond to
the Yukawa interaction, in which, besides the s-channel,
also the t-channel and u-channel Feynman diagrams must
be included. The simplest of such theories contains the
interaction gφ3 (g being the coupling constant), in which
the exchanged particle is of the same type as the scattering
ones. The interaction is always attractive (for any value of
the coupling constant g) and, if strong enough, a bound
state forms. The t and the u exchange channels are crucial
for the attraction and thus for the formation of the bound
state and generate also a left-hand cut in the complex plane,
which must be properly taken into account in the unitarized
version of the theory. Thus, the understanding of such
scalar QFTs is an important intermediate step toward the
application to realistic cases [such as the deuteron or the
Xð3872Þ or mentioned above] that involve particles with
spin. Namely, some interesting and quite general issues can
be addressed by the simple but nontrivial models presented
in this work.
At nonzero T the bound state (if it forms) must be

included as an additional state in the thermal gas, yet its
effect is typically partially canceled by the residual φφ
interaction, in a way that resembles the results of Ref. [32].
As expected, the pressure of the system turns out to be
continuous as a function of g at any given temperature,
showing that the emergence of the bound state does not
cause any discontinuity in the pressure, because the abrupt
contribution of the bound state is compensated by a jump in
the interaction part.

Moreover, in order to quantify the role of the interaction
and of the (eventually forming) bound state, we aim also to
calculate the following quantities:

(i) By denoting with Pφ;free the noninteracting pressure
of a gas of particles at a given temperature T, when
no bound state occurs the pressure of the system can
be expressed as ηPφ;free, where η is a constant that
quantifies how much the interaction modifies the
simple free gas contribution. As we shall see, η ≥ 1,
thus showing that the interaction increases the
pressure. The goal is to quantify η in dependence
of the coupling. In other words, we can estimate the
error that one would do by neglecting the effect of
the interaction.

(ii) When the attraction is strong enough to generate a
bound state, the total pressure can be written as
Pφ;free þ ζPB, where PB is the pressure contribution
of a free gas of bound state particles. In the limit
ζ ¼ 1, one has the sum of two free gases, thus the
bound state counts as a normal state. Yet, we shall
show that 0 ≤ ζ ≤ 1: one may interpret this result as
a partial cancellation of the bound state contribution
due to the φφ interactions above the threshold. In
some cases, ζ can deviate, even sizably, from unity,
showing that the simple inclusion of the bound state
to the pressure may not be accurate.

As a next step, we repeat the study above for the QFT
that contains two distinct fields S and φ which interact via
a term of the type gSφ2. The state S with mass M is
exchanged by the two φ fields. Assuming that M > 2m,
the field S corresponds to resonance with a certain decay
width into φφ, see e.g., Ref. [43] for a detailed description.
As it is well known, the thermal properties of the resonance
S can be described via the φφ phase shift above the
threshold, see e.g., Refs. [35,36,38,41,44–47] and refer-
ences therein. Moreover, besides the resonance S, also a
bound state can form if g is large enough, making this
system quite interesting. Also, in this case, we estimate
the effect of the interaction and of the bound state on the
pressure and we verify that the latter is always continuous
as a function of the coupling g.
Finally, for the QFTs mentioned above and in agreement

with Ref. [32], we show how to formally generalize the
phase shift approach for the thermal description of the
system by extending it below the φφ threshold. In this case,
(eventual) bound state(s) and resonance(s), if present, are
automatically incorporated into the finite-T properties of
the thermal gas.
The paper is organized as follows: in Sec. II we briefly

present the vacuum’s properties of the φ3-QFT. Here we
discuss scattering phase shifts, the unitarization procedure,
and the formation of a bound state. Then, in Sec. III we
discuss the formalism and the results of the system at finite
temperature. Further, in Sec. IV we consider a second state
S with the three-leg interaction Sφ2. Finally, in Sec. V we
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summarize and conclude the paper. Additional topics (brief
recall of the phase shift formula, study of causality via the
Wigner condition and the speed of sound, and the addition
of a φ4-interaction term to the potential) are presented in
four separate Appendixes.

II. VACUUM PHENOMENOLOGY
OF THE SCALAR φ3-QFT

In this section, we describe (some) vacuum properties
of the φ3 theory, with special attention to elements of
scattering and the employed unitarization approach. These
properties will be used later on when presenting the results
of the system at nonzero T.

A. Lagrangian and amplitudes

The Lagrangian under consideration reads

L ¼ 1

2
ð∂μφÞ2 −

1

2
m2φ2 −

g
3!
φ3; ð1Þ

where the first two terms describe a free particle with mass
m and the last term corresponds to the interaction. The
coupling constant g has dimension [Energy], therefore the
theory is renormalizable [48]. Yet, as we shall comment
later on, we shall introduce a nonperturbative unitarization
procedure on top of Eq. (1), in such a way to make the
theory finite and unitary at each energy.
The potential in Eq. (1),

VðφÞ ¼ m2

2
φ2 þ g

3!
φ3; ð2Þ

has a local minimum at φ ¼ 0, but is unbounded from
below. Namely, choosing g>0, one has Vðφ→−∞Þ¼−∞,
meaning that the underlying system is only metastable:
instabilities are expected to occur for g large enough.
One can study small oscillations around the minimum

by applying the perturbation theory that holds when g is
sufficiently small (as we shall see, small implies g=m≲ 1).
Yet, in this work, we are interested in the emergence of a
bound state, which is a nonperturbative phenomenon. Thus,
one must consider intermediate values of g (as it will be
clear later, of the order of g=m ∼ 10), for which one needs
to go beyond perturbation theory: to this end, a unitariza-
tion approach shall be applied. An important discussion
point in the following is indeed the determination of the
range of g up to which the employed unitarization approach
can be considered reliable.
We now turn to φφ scattering. In the center of the mass

frame, the differential cross section is given by [48]

dσ
dΩ

¼ jAðs; t; uÞj2
64π2s

; ð3Þ

where Aðs; t; uÞ is the scattering amplitude as evaluated
through Feynman diagrams, and s, t and u are Mandelstam
variables:

s ¼ ðp1 þ p2Þ2 ≥ 4m2; ð4Þ

t ¼ ðp1 − p3Þ2 ¼ −
1

2
ðs − 4m2Þð1 − cos θÞ ≤ 0; ð5Þ

u ¼ ðp2 − p3Þ2 ¼ −
1

2
ðs − 4m2Þð1þ cos θÞ ≤ 0; ð6Þ

where p1, p2, p3 and p4 are the four-momenta of the
particles in the center of the mass frame (p1, p2 ingoing and
p3, p4 outgoing), and θ is the scattering angle. The sum of
these three variables is sþ tþ u ¼ 4m2.
In this example (as well as in the following ones in the

paper) we limit our study to two-body elastic scattering.
The first inelastic channel opens at s ¼ ð3mÞ2 ¼ 9m2, the
second at s ¼ ð4mÞ2 ¼ 16m2, etc. The treatment of the
problem including inelastic channels is much more
involved and is not attempted here. Fortunately, inelastic
channels are expected to deliver subleading contributions to
the pressure up to (at least) temperatures of the order
of T ∼ 3m.
In the particular case of our Lagrangian of Eq. (1), the

tree-level scattering amplitude Aðs; t; uÞ takes the form

Aðs; t; uÞ ¼ −
g2

s −m2 þ iϵ
−

g2

t −m2 þ iϵ
−

g2

u −m2 þ iϵ
:

ð7Þ

The amplitude on-shell reads

Aðs ¼ 4m2; 0; 0Þ ¼ −
g2

4m2 −m2
−

g2

−m2
−

g2

−m2

¼ g2

m2

�
−
1

3
þ 1þ 1

�
¼ 5g2

3m2
> 0; ð8Þ

thus attraction wins at the threshold because the attractive t
and u channels overcome the s-channel repulsion.
Next, we turn to partial wave expansion [49]:

Aðs; t; uÞ ¼ Aðs; θÞ ¼
X∞
l¼0

ð2lþ 1ÞAlðsÞPlðcos θÞ; ð9Þ

where PlðξÞ with ξ ¼ cos θ are the Legendre polynomials
with

Z þ1

−1
dξPlðξÞPl0 ðξÞ ¼

2

2lþ 1
δll0 : ð10Þ

In general, the lth wave contribution to the amplitude is
given by

ROLE OF BOUND STATES AND RESONANCES IN SCALAR QFT … PHYS. REV. D 107, 036001 (2023)

036001-3



AlðsÞ ¼
1

2

Z þ1

−1
dξAðs; θÞPlðξÞ: ð11Þ

At tree level the s-wave amplitude’s contribution takes
the form

A0ðsÞ ¼
1

2

Z þ1

−1
dξAðs; θÞ ¼ −

g2

s −m2
þ 2g2

ln ½1þ s−4m2

m2 �
s − 4m2

;

ð12Þ

which at threshold reduces to A0ðs ¼ 4m2Þ ¼ 5g2

3m2. The
s-wave scattering length (at tree level) aSL0 can be reob-
tained as [50]

aSL0 ¼ 1

2

A0ðs ¼ 4m2Þ
8π

ffiffiffiffiffiffiffiffiffi
4m2

p ¼ 1

32πm
5g2

3m2
¼ 5g2

96πm3
: ð13Þ

There are two important properties of A0ðsÞ that need to
be discussed since they will be useful later on:

(i) A0ðsÞ contains a pole for s ¼ m2: this is the pole of
the single particle in the s channel, jA0ðs¼m2Þj¼∞;
this simple pole (with nonzero residuum) should be
preserved when unitarizing the theory. We assume
that the position of the pole is not shifted by loop

corrections: this can be achieved by a suitable
subtraction.

(ii) A0ðsÞ diverges for s ¼ 3m2. This is due to the left-
hand cut induced by the t and the u channels onto
the s wave. (The residuum is zero, thus no particle
corresponds to this divergence.) We stress that the
existence of the branch cut for s ≤ 3m2 is also a
consequence of the single-particle pole described in
point (i) [51,52]. As for (i), we will impose this
feature when unitarizing the theory.

We now turn to higher waves. Clearly, A2nþ1ðsÞ ¼ 0,
since each odd wave vanishes. For the d wave, the
corresponding amplitude reads

A2ðsÞ ¼
−2g2

ðs − 4m2Þ3
�
3ð8m4 − 6m2sþ s2Þ

þ ð2m4 þ 2m2s − s2Þ ln
�
1þ s − 4m2

m2

��
; ð14Þ

which for s close to the threshold is approximated by

A2ðsÞ ≃
1

15

g2

m6
ðs − 4m2Þ2: ð15Þ

For the g wave we have

A4ðsÞ ¼
−g2

3ðs − 4m2Þ5
�
−5ð46m4 − 2m2s − 5s2Þðs − 2m2Þðs − 4m2Þ

þ 6ð74m8 − 124m6sþ 54m4s2 − 4m2s3 − s4Þ ln
�
1þ s − 4m2

m2

��
; ð16Þ

which close to the threshold reads

A4ðsÞ ≃
g2

315m8
ðs − 4m2Þ4: ð17Þ

Both A2 and A4 vanish at the threshold, like any other wave
with l > 0. The total cross section reads

σðsÞ ¼ 1

2
2π

1

64π2s

Z
π

0

jAðs; θÞj2 sin θdθ

¼ 1

2
2π

1

64π2s

X∞
l¼0

2ð2lþ 1ÞjAlðsÞj2; ð18Þ

which at the threshold reduces to

σðsth ¼ 4m2Þ ¼ 1

2
2π

1

64π2s
2jA0ðsthÞj2 ¼ 8πjaSL0 j2: ð19Þ

Next, let us introduce an important quantity of this work,
the phase shifts. The lth wave phase shift δlðsÞ is defined as

e2iδlðsÞ − 1

2i
¼ 1

2
·

k
8π

ffiffiffi
s

p AlðsÞ; ð20Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

q
. Note, for s just above threshold we

have e2iδ0ðsÞ−1
2i ≃ δ0ðsÞ ≃ kaSL0 . In general, the phase shift

δlðsÞ can be calculated as

δlðsÞ ¼
1

2
arg

�
1þ i

k
8π

ffiffiffi
s

p AlðsÞ
�
: ð21Þ

We can rewrite Eq. (20) as

e2iδlðsÞ ¼ 1þ i
k

8π
ffiffiffi
s

p AlðsÞ: ð22Þ

In Fig. 1 we show the energy dependence of j1þ i kAl
8π

ffiffi
s

p j
for l ¼ 0; 2; 4 and for g=m ¼ 1; 10; 20. Clearly, if unitarity
is strictly fulfilled, this quantity is one for any value of s.
As it is known, perturbation theory fulfills unitarity only
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perturbatively (up to the considered order). For g=m ¼ 1
violations of unitarity are rather small, showing that
g=m ¼ 1 can be considered as a small coupling. On the
other hand, this is not the case for g=m ¼ 10 or 20, for
which these violations are large for the s wave and non-
negligible for the d wave, (yet, they are still rather small
for the g wave). Since, as we shall see in the next two
subsections, the range 10≲ g=m≲ 20 is relevant in this
paper, a unitarization approach is required.

B. Unitarization

In this subsection, we describe the so-called on-shell
unitarization [53,54]. First, we need to introduce the φφ
loop ΣðsÞ. Its imaginary part above the threshold is the
usual phase-space kinematic factor (see e.g., Ref. [43]):

IðsÞ ¼ ImΣðsÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

q
8π

ffiffiffi
s

p for
ffiffiffi
s

p
> 2m: ð23Þ

We use no cutoff, hence the above equation is considered
valid up to arbitrary values of the variable s. The imaginary
part alone does not fix the form of ΣðsÞ completely. Here,
the loop function ΣðsÞ for a complex s is chosen by
considering two subtractions [55]:

ΣðsÞ ¼ −
ðs −m2Þðs − 3m2Þ

π

×
Z

∞

4m2

1
2

ffiffiffiffiffiffiffiffiffi
s0
4
−m2

p
8π

ffiffiffi
s0

p

ðs − s0 þ iεÞðs0 −m2Þðs0 − 3m2Þ ds
0: ð24Þ

The subtractions guarantee that Σðs ¼ m2Þ ¼ 0 and
Σðs ¼ 3m2Þ ¼ 0. In this way, the choice of ΣðsÞ fulfills
the following requirements: (i) it preserves the pole
corresponding to s ¼ m2 (in other words, the tree-level
mass is also preserved at the unitarized level); (ii) it assures
that the unitarized amplitude diverges at the branch point
s ¼ 3m2 generated by the single-particle pole for m2 along
the t and u channels.

Note that the convergence of the integral is guaranteed
by a single subtraction. Yet, it turns out that in the present
approach a single subtraction is not appropriate to study
our system, since, whenever a bound state forms, also a
ghost state appears [56]. This problem does not take place
when two subtractions as in Eq. (24) are implemented. A
single subtraction is possible if a different unitarization
loop is implemented, see Appendix B for details.
Interestingly, the same unitarization procedure has been
used in the recent work of Ref. [55] dealing with glueball-
glueball scattering in an effective dilaton model of Yang-
Mills theory.
The real and the imaginary parts of Σ as a function offfiffiffi
s

p
=m are shown in Fig. 2. [Note, throughout this paper,

we consider m ¼ 1 in arbitrary unit (a.u.) and all the
variables are normalized with respect to m.] The function
ReΣðsÞ vanishes at ffiffiffi

s
p

=m ¼ 1 and
ffiffiffi
3

p
as a consequence

of the subtractions. In particular, it is positive betweenffiffiffi
s

p
=m ¼ ffiffiffi

3
p

and the threshold
ffiffiffi
s

p
=m ¼ 2, where it

reaches the value

0 5 10 15 20

s m/

1

1.00002

1.00004

1.00006

] s
 �

8
l

k
 A

A
b
s
[1

 +
 i
 

s-wave

d-wave

g-wave

g/m = 1

0 5 10 15 20

s m/

0.9

1

1.1

1.2

1.3

1.4

1.5

] s
 �

8
l

k
 A

A
b
s
[1

 +
 i
 

s-wave

d-wave

g-wave

g/m = 10

0 5 10 15 20

s m/

0

1

2

3

4

] s
 �

8
l

k
 A

A
b
s
[1

 +
 i
 

s-wave

d-wave

g-wave

g/m = 20

FIG. 1. Energy dependence of the absolute value of 1þ i kAl
8π

ffiffi
s

p for l ¼ 0; 2; 4 at g ¼ 1m (left), g ¼ 10m (middle) and 20m (right) at the
tree level.

s m/

0 1 2 3 4 5

�

0.01�

0.005�

0

0.005

0.01

]�Re[

]�Im[

�364 

1

FIG. 2. Energy dependence of the real and imaginary parts
of the loop function Σ [see Eq. (24)]. The value of the Σ at the
threshold [¼ 1=ð64 ffiffiffi

3
p

πÞ] is also indicated in this plot.
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Σðs ¼ 4m2Þ ¼
3π þ i ln

�
1728ð3−i ffiffi

3
p Þ3

ð−36−12i ffiffi
3

p Þ3
�

64
ffiffiffi
3

p
π2

¼ 1

64
ffiffiffi
3

p
π
≈ 0.0028715: ð25Þ

In this way a bound state, if existent, has a mass within
ð ffiffiffi

3
p

m; 2mÞ. Above threshold, ReΣðsÞ decreases and
becomes negative at large

ffiffiffi
s

p
=m. Conversely, the imagi-

nary part ImΣðsÞ is zero (or better infinitesimally small)
below the threshold, while above the threshold it increases
according to Eq. (26). It is also useful to reexpress the
imaginary part ImΣðsÞ as

ImΣðsÞ ¼
(

1
2

ffiffiffiffiffiffiffiffi
s
4
−m2

p
8π

ffiffi
s

p þ ϵ for s > ð2mÞ2

ϵ for s < ð2mÞ2;
ð26Þ

where ϵ is an infinitesimal positive quantity; see
Appendix B for proper treatment of this issue. As
discussed later on, this formal point is relevant when
extending the phase shift below the threshold upon
considering a small but finite ε.
The unitarized amplitudes are obtained by a resumma-

tion of the tree-level amplitudes AkðsÞ by assuming that the
loop function of Eq. (24) can be factorized out:

AU
k ðsÞ ¼ AkðsÞ þ AkðsÞΣðsÞAkðsÞ þ � � �

¼ AkðsÞ þ AkðsÞΣðsÞAU
k ðsÞ; ð27Þ

thus a Bethe-Salpeter-type equation (e.g., Ref. [57]) is
obtained. Hence, the final expression reads

AU
k ðsÞ ¼ ½A−1

k ðsÞ − ΣðsÞ�−1: ð28Þ

It is interesting to notice that, if we would keep only the s
channel for the case l ¼ 0, the tree-level amplitude reduces

to Al¼0ðsÞ ≃ −g2
s−m2, then the corresponding unitarized

version is AU
l¼0ðsÞ ≃ −g2

s−m2þg2ΣðsÞ, where ΣðsÞ is the loop

function given in Eq. (24). Thus, the resummed propagator
in the s channel emerges. Yet, this is not a good approxi-
mation here, since the t and u channels are relevant,
especially close to the threshold and for the eventual
emergence of a bound state. The situation is different
when two scalar fields are considered, in which one of them
represents a resonance: in that case, the s channel might be
a good approximation, see Sec. IV.
Once the unitarized amplitudes are determined, the

unitarized phase shift is calculated as

e2iδ
U
l ðsÞ − 1

2i
¼ 1

2
·

k
8π

ffiffiffi
s

p AU
l ðsÞ; ð29Þ

hence

δUl ðsÞ ¼
1

2
arg

�
1þ i

k
8π

ffiffiffi
s

p AU
l ðsÞ

�
: ð30Þ

Note, one can calculate δUl ðsÞ by using the equivalent
expressions

δUl ðsÞ ¼
1

2
arcsin

�
k

8π
ffiffiffi
s

p Re½AU
l ðsÞ�

�

¼ 1

2
arccos

�
1 −

k
8π

ffiffiffi
s

p Im½AU
l ðsÞ�

�
: ð31Þ

In fact, when unitarization is preserved, the expressions in
Eqs. (31) and (30) give rise to the same result for the phase
shift. This is also a practical useful check of the validity
of unitarity. The unitarization of amplitudes that contains
a sizable contribution of t- and u-channel exchanges is
discussed in various works, especially in the domain of
pion-pion (or other hadronic) scattering phenomena
[53–55,58–62]. In practice, any unitarization simplifies
in some form the underlying Lippmann-Schwinger equa-
tions. The on-shell approximation used here means that the
t and the u channels are evaluated on shell, implying that
our results for the formation of a bound state are acceptable
when the coupling constant g is not too large: see the next
section. Namely, this unitarization does not describe
properly the left-hand cut that starts at s ¼ 3m2.
The unitarized scattering length reads

aU;SL
0 ¼ 1

2

1

16πm
1

A−1
0 ð4m2Þ− Σð4m2Þ ¼

1

32πm
1

3m2

5g2 −
1

64
ffiffi
3

p
π
:
:

ð32Þ

The critical value of g is given by

3m2

5g2
−

1

64
ffiffiffi
3

p
π
¼ 0 →

g2c
m2

¼ 192
ffiffiffi
3

p
π

5
≈ 208.95; ð33Þ

thus

gc
m

≈ 14.4551: ð34Þ

For g ¼ gc the divergence of the scattering length signalizes
the emergence of a bound state just at the threshold, see the
next subsection.
When g approaches gc the tree-level scattering length

becomes less and less accurate. While for g=m ¼ 1 the
ratio of the tree level and the unitarized scattering length
is aT;SL0 =aU;SL

0 ¼ 0.995, already for g=m ¼ 5 one gets
aT;SL0 =aU;SL

0 ¼ 0.88. By further increasing the coupling
to g=m ¼ 10 implies aT;SL0 =aU;SL

0 ¼ 0.52, which corre-
sponds to a sizable underestimation with respect to the
unitarized result. For values exceeding gc the tree-level
results are not meaningful any longer, since no bound state
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forms. These numbers, together with the previously pre-
sented Fig. 1, show that a unitarization is required if g=m of
the order of 10–20 needs to be investigated.
Before going into the details of the numerical results of

the phase shifts, let us mention the convention adopted in
this work. We impose that the phase shifts for any partial
waves vanish at the threshold:

δUl ðs ¼ 4m2Þ ¼ 0: ð35Þ

Sometimes a different convention is used, according to
which the phase space at the threshold equals nBπ, where
nB is the number of bound states below the threshold [52].
Since the physical quantities are related to the difference
and derivative of the phase shifts, the results are unaffected
by the choice of the convention of the phase shift at
the threshold.

The left panel of Fig. 3 shows the energy dependence of
the unitarized phase shifts for s wave (l ¼ 0), d wave
(l ¼ 2), and g wave (l ¼ 4) at the coupling g ¼ 10m <
gc ≈ 14.45m. The s-wave phase shift increases rapidly
just above the threshold

ffiffiffi
s

p ¼ 2m and then decreases
approaching zero at large energies. The d wave and g
wave show similar behavior, yet their magnitudes are
smaller than that of the s wave. [Note, the degeneracy
factor (2lþ 1) is not displayed in Fig. 2.] The correspond-
ing phase shift derivatives are depicted in the right panel
of Fig. 3.
Figure 4 shows the same quantities as Fig. 3 but for

g ¼ 20m > gc. The s-wave phase shift, shown in the left
panel, decreases rapidly above the threshold and saturates
at −π at large

ffiffiffi
s

p
=m. This behavior indicates the presence

of a bound state below the threshold; see the next
subsection. The phase shifts of d and g waves are similar
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FIG. 3. Left: energy dependence of the phase shifts [using Eqs. (28) and (30)] for l ¼ 0; 2; 4 at g ¼ 10m < gc. Right: energy
dependence of derivatives of the phase shifts.
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to the previous case. The right panel shows the derivatives
of the phase shifts, where it is visible that the s-wave
contribution is sizable.
The phase shift in Eq. (29) is defined only for s ≥ 4m2.

Yet, following the discussion of Ref. [32], upon using
Eq. (26) one can extend the phase shift also below the
threshold by considering the expression upon considering
an arbitrarily small but nonzero ε:

δUl ¼ 1

2
arg ½1þ 2iAU

l ImΣ�: ð36Þ

Above the threshold, we recover Eq. (30). Below the
threshold, the equation ImΣ ¼ ϵ implies that δUl ¼ nπ ¼
const for any finite AU

l (the choice n ¼ 0 guarantees that the
phase shift is continuous at the threshold). Yet, the situation
is different if pole(s) of AU

l appear(s) (indeed, the single-
particle pole below the threshold for s ¼ m2 is always
present in the φ3 theory); see the next section.
Here, we briefly discuss the intuitive meaning of the

extension above. The ε prescription makes the particle φ
“slightly unstable,” because the pole is realized for
s ¼ m2 − iε=2, see Appendix B. Since the particle φ is
unstable and its width is proportional to ε, its mass
distribution is not exactly a Dirac delta (it becomes such
for ε → 0). Then, the scattering below the threshold 2m is
possible (even though very small and vanishing for ε → 0
as expected). The bound state, if existent, is itself slightly
unstable, the width is also proportional to ϵ ∝ ε (see the
next subsection), and thus can be seen as a resonance
produced in a scattering process. In this way, as discussed
in Sec. III. A an alternative view is possible to understand
the inclusion of the bound state and one may show that the
pressure as a function of the coupling is continued when
the latter forms. Yet, the result is not dependent on ε in the
limit ε → 0.
We conclude this subsection with some general consid-

erations. As discussed above, Eq. (26) does not fix the real
part of the loop. The two subtractions used for the
determination of the loop function ΣðsÞ of Eq. (24)
guarantee convergence and the absence of unphysical
states, but any number of subtractions would be consistent
with Eq. (26), even though it would be hard to physically
justify a choice with many subtractions. Alternatively, one
may also include a form factor by modifying the imaginary

part itself, ImΣðsÞ ¼ 1
2

k
8π

ffiffi
s

p e−k
2=Λ2

with k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

q
.

Such form factors are sometimes used in hadronic theories
(e.g., [43,63,64]) since they model the finite extension of
hadrons. In this case, the real part is finite even without
applying a subtraction (for technical details, see
e.g., Ref. [65]).
Indeed, various unitarization approaches have been

explored in the literature, e.g., Refs. [62,66]; some of them
go beyond the on-shell approximation used here. One

interesting unitarization scheme that was widely used in the
past is the so-called N=D approach [51,55,61,62,66–68],
whereN stays for the numerator andD for the denominator.
The basic idea is that the unitarized amplitude can be
written as a ratio of functions, where the numerator
contains the left-hand cut and the denominator the right-
hand cut. In Appendix B we present this unitarization
scheme (for simplicity, at its lowest order) for the φ3-case.
In this way, we can compare the results of this alternative
unitarization scheme (phase shifts, the critical value of the
coupling for the emergence of a bound state and the mass
of the latter as a function of g, as well as the behavior of
the pressure) with the results presented in the main text. As
the outcomes show, the overall qualitative picture is left
unchanged, which makes us confident that the features that
we present are not just inherent to the employed unitariza-
tion approach.

C. Bound state

We describe here the emergence of the bound state that
takes place when the attraction is sufficiently strong. The
bound state equation (s channel, for the Mandelstam
variable s continued below the threshold) corresponds to
a pole of the amplitude in Eq. (28):

½A−1
0 ðsÞ − ΣðsÞ� ¼ 0: ð37Þ

In Fig. 5 the mass of the bound state MB=m is plotted as a
function of the coupling g. For the critical value g ¼
gc þ ϵ ≈ 14.45m the bound state forms exactly at threshold,
and for g > gc it ranges between

ffiffiffi
3

p
<

ffiffiffi
s

p
=m < 2, in

which ReΣðsÞ > 0. Note that when a bound state is close to
threshold forms, it can be also understood via nonrelativ-
istic approaches, see e.g., Refs. [67,69,70].
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1.9

2
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M

FIG. 5. Dependence of the bound state mass [Eq. (37)] with the
coupling g. The vertical line indicates the critical coupling gc, for
which MB ¼ 2m.
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In particular, the limitMBðg → ∞Þ ¼ ffiffiffi
3

p
m holds. Thus,

the results are finite also for arbitrarily large values of g.
However, this property is a consequence of the employed
unitarization but is not physical. Namely, one could choose
other unitarization approaches that deliver different results
for the limit g → ∞. In the already mentionedN=Dmethod
(see Appendix B), the bound state forms for a similar
critical value of the coupling constant (gc ¼ 13.02m) and
the behavior of the bound state as a function of g well
compares to Fig. 5 for g up to (and even slightly above)
20m, but then the results deviate from each other. In
particular, in the N=D approach MBðg → ∞Þ ¼ m. This
is also an artifact of that particular method with the
constraints described in Appendix B.
In general, different unitarization approaches usually

come up with similar values for the critical coupling for
which the bound state emerges, but depart from each other
when the attraction is too strong. Actually, for g very large
one should encounter a solution of the type M2

B < 0 that
signalizes an instability, as the potential of Eq. (2) suggests,
but this feature is not described by the twice-subtracted on-
shell unitarization approach used in this work.
Summarizing our discussion, the plateauMBðg → ∞Þ ¼ffiffiffi
3

p
m, see also Fig. 5, is an artifact of our unitarization. For

this reason, we consider a value of g=m of about 40 (before
the plateau sets in) as an upper limit of our approach (in our
numerical examples, we shall actually limit our studies to
g=m≲ 20). Thus, the introduction of unitarization allows
us to go further than what the tree-level results do, yet not to
arbitrarily large coupling constants. More advanced uni-
tarization approaches could extend the range of g, but this is
left for the future.
In Fig. 6 we present the s-wave phase shift and its

derivative by using the extended version of Eq. (40) that
contains also the continuation below the threshold. This is

indeed an important extension since it allows to accom-
modate the bound state in the phase-shift formula. In order
to discuss these aspects, we recall that for s < 4m2

AU
l ImΣ ¼ ϵ

A−1
0 − Σ

¼ ϵ

A−1
0 − ReΣ − iImΣ

¼ ϵ

A−1
0 − ReΣ − iϵ

: ð38Þ

For g < gc no bound state occurs, thus δUl ðx ¼ ffiffiffi
s

p Þ ¼ 0 forffiffiffi
3

p
m ≤ x ≤ 2m. For g > gc a bound state occurs for a

certain s ¼ M2
B belonging to the interval ð3m2; 4m2Þ, thus

ðAU
l ImΣÞs¼M2

B
¼ ϵ

−iϵ
¼ i; ð39Þ

which in turn shows why it is important to keep track of
the iϵ factors in the energy region below the threshold. It
then follows that δUl ðx ¼ MBÞ ¼ n π

2
. Upon requiring (for ϵ

small but finite) a continuous phase shift, δUl ðxÞ for ϵ → 0

reads

δUl ðx ¼ ffiffiffi
s

p Þ ¼ −π þ πθðx −MBÞ for
ffiffiffi
3

p
m ≤ x ≤ 2m

and g > gc; ð40Þ

whose derivative is a Dirac delta: πδðx −MBÞ. In a certain
sense, this result is quite intuitive: even though the physical
range is realized for s ≥ 4m2, when the continuation to the
region below the threshold is performed the bound state
corresponds to a very narrow object (width proportional
to ϵ) that is encountered along the s axis and implies an
increase of the phase shift of π (see also Sec. IV for the
conceptually analogous case of a resonance).
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FIG. 6. Left: energy dependence of the s-wave phase shift at g ¼ 20m > gc below and above the threshold. One may note the jump
from −π=2 at the bound state mass MB. Right: corresponding energy dependence of the derivative of the phase shift. At

ffiffiffi
s

p ¼ MB a
Dirac-delta function appears.
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Moreover, the amplitude AU
l has a second pole for s ¼ m2

(the single-particle pole that is also exchanged in the s
channel). Then, also for this value Eq. (39) applies. The
phase shift can be further extended below the threshold as

δUl ðx ¼ ffiffiffi
s

p Þ ¼ −2π þ πθðx −mÞ þ πθðx −MBÞ
for 0 ≤ x ≤ 2m and g > gc; ð41Þ

whose derivative is πδðx −mÞ þ πδðx −MBÞ, hence includ-
ing both the particle φ and the bound state B.
In the end, we have verified that the phase shifts studied

above fulfill the so-called causality Wigner condition in the
form discussed in Ref. [71]:

dδl
dx

≥ −
x2

8ðx2
4
−m2Þ : ð42Þ

See Appendix C for more details and related plots.

III. THERMODYNAMIC PROPERTIES
OF THE φ3-QFT

In this section, we study the φ3 theory at nonzero
temperature. In particular, we shall concentrate on the
evaluation of the different contributions to the pressure. To
this end, we use the phase shift (or S-matrix) formalism
[33–42] (for a brief recall see Appendix A), which allows
calculating the pressure (or any other thermodynamic
quantity) from the vacuum’s phase shifts. Intuitively, the
idea behind this approach is that the energy levels En

entering into the partition function Z ¼ P
n e

−En=T are
determined in the vacuum. Basically, the derivatives of
phase shifts are proportional to the density of states that
enter in Z.
In this respect, this approach is different from thermal

field theory [72] (see for instance works involving the
Cornwall-Jackiw-Tomboulis formalism as well as other
thermal approaches in Refs. [73–80] and references
therein), since one needs only vacuum results to obtain
thermodynamic quantities. The knowledge of the latter is
relatively simple if one considers only elastic two-body
scattering, but becomes more and more complicated when
inelastic processes and multiple channels become relevant
[42]. Thus, the S-matrix approach is expected to be valid
for (relatively) low temperatures.
In practice, we shall evaluate the (various contributions

to the) pressure of the system as a function of g for fixed T
and as a function of T for selected g. Then, we shall discuss
deviations from the simple free gas results.

A. Nonzero-T formalism

The noninteracting part of the pressure for gas of
interacting particles with mass m reads

Pφ;free ¼ −T
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p i
; ð43Þ

where
R
k ≡

R
d3k=ð2πÞ3 and β ¼ 1=T. Let us then include

interaction and, at first, assume that no bound state forms.
In the scattering-matrix or the S-matrix formalism [33–41],
the interacting part of the pressure is related to the
derivative of the phase shift with respect to the energy
by the following relation:

PU
φφ-int ¼ −T

Z
∞

2m
dx

2lþ 1

π

X∞
l¼0

dδUl ðs ¼ x2Þ
dx

×
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i
¼

X∞
l¼0

PU
φφ-int;l; ð44Þ

where x ¼ ffiffiffi
s

p
. In the previous equation, the usual thermal

integral’s contribution for gas of particles with running
mass x is weighted by the vacuum’s phase shift derivatives;
see Appendix A. Equation (44) shows that the contribution
to the pressure of a certain wave is positive if dδl

dx > 0 and

negative if dδl
dx < 0. For x close to the threshold, these two

cases correspond to attraction and repulsion, respectively
(but this is not true in general). If, for instance, δl increases
from the threshold up to a certain maximum and then
decreases to zero for large x, the overall contribution is
expected to be positive, since low values of

ffiffiffi
s

p ¼ x are the
dominant ones in the thermal integrals.
It may be at first sight puzzling that an attraction

generates an increase of pressure, since one is rather used
to thinking in terms of a classic van der Walls gas of
particles in which (for a fixed number of particles) an
attraction implies a smaller pressure (and vice versa, a
repulsion means a larger pressure). Yet, our case here is
different: An attraction implies that the density of states
increases (roughly speaking, more states are present),
thus the pressure becomes larger (the opposite applies to
a repulsion).
Summarizing, the total pressure reads

PU
tot ¼ Pφ;free þ PU

φφ-int: ð45Þ

Above, it should be noted that the free part is calculated at
the physical mass m which, due to suitable resummations,
is left unchanged by loop corrections. In this way, in the
interacting case, Pφ;free may be interpreted as the pressure
of the asymptotic states of the system.
Next, let us move to the case in which a bound state

exists, that is the coupling g is larger than the critical value
g ¼ gc. The following considerations are in order:

(i) The pressure of Eq. (45) has a jump as a function
of g at gc at a given temperature T. This is due to
the different behavior of the s-wave phase shift
if the bound state is present: the corresponding
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contribution changes sign. This abrupt jump in the
pressure signalizes that “something is missing” in
Eq. (45). It is rather natural to think that the missing
element is indeed the emerging bound state.

(ii) The first approach is to consider that a bound state is
an additional asymptotic state of the system. In this
way, the bound state with mass MB is expected to
correspond to an additional state that needs to be
added to the expression of Eq. (44), thus

PB ¼ −θðgc − gÞT
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

B

p i
; ð46Þ

where the theta function takes into account that for
g < gc there is no bound state B. Indeed, this simple
and intuitive expression turns out to be consistent
with the regulating procedure adopted in this
work; see below. The total pressure of the system
is written as

PU
tot ¼ Pφ;free þ PB þ PU

φφ-int: ð47Þ

On top of the φφ interactions, there are also Bφ and
BB interactions, which however can be neglected in
the energy and temperatures of interest.

(iii) Another way to justify and obtain the result above
goes via the ε-driven extension of the phase-shift
formula below the threshold presented in Sec. II C
(see also Appendix B and Ref. [32]). Namely, the
bound state (if it forms) can be seen as a manifes-
tation of the interaction among the φ particles and is
interpreted as a very narrow resonance below the
threshold. Thus, upon extending the interaction
range in Eq. (44), the whole interaction contribution
(including the bound state if existent) reads

PU
φφ-int þ PB ¼ −T

Z
∞ffiffi
3

p
m
dx

2lþ 1

π

X∞
l¼0

dδUl ðs ¼ x2Þ
dx

×
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i
; ð48Þ

where the lowest range of the integral is set to
ffiffiffi
3

p
m,

since the bound state mass belongs to the interval
ð ffiffiffi

3
p

m; 2mÞ. The bound state contribution (if the
bound state forms) corresponds to the integral range
between ð ffiffiffi

3
p

m; 2mÞ:

PB ¼ −T
Z

2mffiffi
3

p
m
dx

2lþ 1

π

X∞
l¼0

dδUl ðs ¼ x2Þ
dx

×
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i

¼ −θðgc − gÞT
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

B

p i
; ð49Þ

where the rhs is obtained by using Eq. (40). The
properties discussed above are actually applicable
to any QFT that displays bound states: if present,
they appear as infinitely narrow states that can be
(formally) created by particle scattering extended
below the threshold.

(iv) The two interpretations above (including the bound
state as an additional asymptotic state or as part of the
interaction as a narrow resonance) lead to the same
result of Eq. (47). Yet, in the latter case, one still has
the same set of asymptotic states that coincide with
the states of the theory realized for g ¼ 0, because the
bound state is seen as part of the interaction. (A subtle
difference between the g > 0 and the g ¼ 0 case is
present in the model described in Sec. IV.)

(v) As anticipated in the Introduction and shown later on
in various examples, the expression in Eq. (48) is
continuous as a function of g for any fixed value
of T. This is an additional confirmation of the
consistency of the proposed expression, since a
nonanalytic point of the pressure as a function of
the coupling constant would not be a physical
feature. The jump due to the emergence of the
bound state is compensated by a jump in the
contribution to the pressure arising from the particle
interaction above the threshold. Indeed, upon con-
sidering a small quantity α, one has that

1

π

��
dδU0 ðxÞ
dx

�
g¼gc−α

−
�
dδU0 ðxÞ
dx

�
g¼gcþα

�

≃ δðx − 2mÞ; ð50Þ

thus the jump of the interaction pressure due to the
change in the phase-space behavior matches a state
just at threshold:

ðPU
φφ-intÞg¼gc−α

− ðPU
φφ-intÞg¼gcþα

¼ ðPBÞMB¼2m; ð51Þ

thus showing that the pressure is continuous as a
function of g.

(vi) Interestingly, in the particular case of the φ3 theory,
one may go even further and describe the total
pressure via the phase shift formula as

PU
tot ¼ −T

Z
∞

0

dx
2lþ 1

π

X∞
l¼0

dδUl ðs ¼ x2Þ
dx

×
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i
; ð52Þ

in which the lowest range of the integral is set to
zero. This is not possible in general but holds here
because of the nature of the φ3 self-interaction: the
very same particle φ is also exchanged in the s
channel of φφ scattering.
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In the end, we stress that above we have presented a
series of plausible arguments to properly include a bound
state in the phase-shift formalism. Surely a formally more
rigorous approach would be needed in the future to fully
clarify the procedure and the issues raised here.

B. Numerical results

Next, we turn to numerical examples and plots that allow
showing the properties of the system at nonzero temperature.
The unitarized pressure (PU

φφ-int;l=T
4) is shown in Fig. 7

as a function of g=m at T=m ¼ 1 for the partial waves
corresponding to l ¼ 0; 2; 4. The s wave is interesting: up
to g ¼ gc ≈ 14.45m, increases, then it abruptly jumps to
negative values. The reason is that above gc a bound state
exists. The normalized pressure (PB=T4) for the bound state

[see Eq. (46)] is also shown: it is zero below gc and nonzero
(and positive) above this value. The jump has the same
magnitude but the opposite sign of the s-wave interacting
channel. Moreover, the normalized total pressure PU

tot=T
4

with g=m as evaluated via Eq. (47), shown in the right panel
of Fig. 7, varies continuously with g in all four temperatures
shown in this figure. This fact confirms one of the main
outcomes of the paper: when interactions are taken into
account, the formation of a new state does not correspond
to any sudden jump in the pressure or energy density of the
system.
Next, Fig. 8 shows the interacting parts of the normalized

pressure (PU
φφ-int;l=T

4) for the s, d and g waves as a function
of T=m for g ¼ 10m < gc (no bound state). This figure
offers also an additional indication of the range of
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temperatures for which we may trust our results. For
T=m ∼ 1 the s wave dominates and the higher waves
represent a small correction. For T=m ∼ 2, the d wave
contribution becomes as large as the s-wave one, thus
caution is required. Yet, the g-wave contribution is still
safely small and we may argue that the further contributions
are still negligible. In addition, we recall that at T=m ∼ 3
inelastic channels become relevant. We thus consider T=m ∼
3 as an upper limit of our study. For these reasons, in this
figure (as well as in all other figures presenting the pressure
contributions as a function of T=m) we use a logarithmic plot
in order to underline the low-T part of our results up to
T=m ∼ 3. Whenever a fixed T=m value is required, the
maximal one used in this work is T=m ¼ 2; see e.g., Fig. 7.
The total normalized pressure as a function of T=m is

shown in Fig. 9 for three different values of g (the free case
g ¼ 0, g=m ¼ 10 and g=m ¼ 20). At high T the massless
limit ðPφ;free=T4Þm¼0 ¼ π2=90 ≈ 0.1096 is reached.

For completeness, we have studied the speed of sound,

c2s ¼
∂P
∂ε

¼ P0ðTÞ
ε0ðTÞ ¼ P0ðTÞ

TP00ðTÞ ; ð53Þ

which is safely smaller than one for all investigated
temperatures, see Appendix C for details (in the rhs above,
the thermodynamical self-consistency ε ¼ TP0 − P has
been used).
An important point concerns the quantification of the

contribution of the interaction to the pressure. We discuss
the scenarios without and with the bound state separately.
When no bound state forms (g < gc), it is useful to define
the quantity:

η ¼ PU
tot

Pφ;free
¼ 1þ PU

φφ-int

Pφ;free
: ð54Þ

The absence of interactions (g → 0) corresponds to η ¼ 1
and departures from this value quantify the naive result that
one obtains by neglecting them.
The left panel of Fig. 10 shows the temperature depend-

ence of η for two different values of g < gc. For both cases
η ≈ 1 when T is low. This indicates that the role of the
interaction is negligible at low temperatures. With the
increase of T=m, η increases and becomes maximal at
around T=m ≈ 2. Moreover, we notice that for g ¼ gc − ϵ
the maximum is reached for η ≈ 1.23, which indicates that
the effect of interaction is non-negligible at certain inter-
mediate temperatures.
Let us now define an analogous quantity to be used when

a bound state forms (g > gc):

ζ ¼ PU
φφ-int þ PB

PB
; ð55Þ

out of which the total pressure of the system is given by
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PU
tot ¼ Pφ;free þ ζPB; ð56Þ

which is simply the sum of two free gases, one for the
particles of the type φ with mass m and one for the bound
state B with mass MB. Yet, the latter is rescaled by the
factor ζ, whose departure from unity quantifies how much
of the bound state contribution remains after the partial
cancellation induced by the interaction has been taken into
account.
In the right panel of Fig. 10 we show the temperature

dependence of ζ for the values g ¼ gc þ ε and g ¼ 20m.
For g ¼ gc þ ε, the quantity ζ ≈ 0.4 at T=m ¼ 0.1, which
then decreases for increasing T=m and saturates to ≈0.08.
For g ¼ 20m, ζ ≈ 0.7 at low T=m and decreases to ≈0.08 at
high T=m. Thus, in both cases, the joint role of the bound
state and interaction can be summarized by a contribution
of free gas of bound state particles which is sizably reduced
by ζ. The amount of reduction depends both on the value of
g as the value of temperature, being typically larger at small
T and smaller at large T.
We conclude this section with two additional remarks:
(i) The introduced unitarization is a suitable tool for the

study of bound states. It goes beyond perturbative
results, which are not capable to generate poles
below the threshold. Yet, even when no bound state
forms but the coupling is not small, the role of
unitarization is also non-negligible. This point has
been already mentioned in Sec. II B in connection
with the scattering length. We show this feature also
at nonzero T in Fig. 11, where the ratio of the s-wave
tree-level pressure and the unitarized one is plotted
as a function of T for g=m ¼ 10. It is visible that
the effect of the unitarization is in general non-
negligible both at small and at large T.

(ii) The potential in Eq. (1) is unbounded from below.
A simple improvement is to add to the potential a
term λ

4!
φ4 with λ > 0. This case is presented in

Appendix D: in general, there are quantitative but
not qualitative changes with respect to the results
presented in this section, but also some additional
problems related to this extension appear. The
Wigner condition is not always fulfilled and the
speed of sound exceeds 1 at high T, meaning that
additional studies are required in the future.

IV. AN INTERMEDIATE STATE S

In this section, we study the case in which two distinct
particles, φ with massm and S with massM, are considered.
Their interaction is a three-leg gSφ2 vertex. Thus, the decay
of S into φφ, if kinematically allowed, takes place. Then, the
state S is a resonance with a certain decay width. Since two φ
particles interact via an exchange of S, an attractive Yukawa
interaction between them is induced: if it is strong enough, a
bound state forms. The main question here is how this
system behaves at nonzero T.

A. Vacuum’s formalism

The Lagrangian under study takes the form

L ¼ 1

2
ð∂μφÞ2 −

1

2
m2φ2 þ 1

2
ð∂μSÞ2 −

1

2
M2S2 þ g

2!
Sφ2;

ð57Þ

where g is the coupling constant. The tree-level decay width
S → φφ (allowed for M > 2m) reads (e.g., Ref. [43])

ΓS ¼
g2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

4
−m2

q
8πM2

; ð58Þ

and the tree-level scattering is

Aðs; t; uÞ ¼ −g2

s −M2 þ iϵ
þ −g2

t −M2 þ iϵ
þ −g2

u −M2 þ iϵ
:

ð59Þ

The first three tree-level partial wave amplitudes are
evaluated as

A0ðsÞ ¼
1

2

Z þ1

−1
dξAðs; θÞ

¼ −
g2

s −M2 þ iϵ
þ 2g2

ln
h
1þ s−4m2

M2

i
s − 4m2 þ iϵ

; ð60Þ

A2ðsÞ ¼
−2g2

ðs − 4m2Þ3
�
3ð4m2 − sÞð4m2 − 2M2 − sÞ

þ ð16m4 þ 6M4 þ 6M2sþ s2 − 8m2ð3m2 þ sÞÞ

× ln

�
1þ s − 4m2

M2

��
; ð61Þ
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FIG. 11. Dependence of the ratio of tree-level pressure and
unitarized pressure for the s wave with T=m.
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A4ðsÞ ¼
−2g2

3ðs − 4m2Þ3
�
5ð4m2 − sÞð4m2 − 2M2 − sÞð80m4 − 8m2ð21M2 þ 5sÞ þ 42M4 þ 42M2sþ 5s2Þ

− 6ð256m8 − 256m6ð5M2 þ sÞ þ 96m4ð15M4 þ 10M2sþ s2Þ − 16m2ð35M6 þ 45M4sþ 15M2s2 þ s3Þ

þ 70M8 þ 140M6sþ 90M4s2 þ 20M2s3 þ s4Þ ln
�
1þ s − 4m2

M2

��
: ð62Þ

Also, in this case, we limit our study to two-body φφ
scattering processes. Within our framework, the state S is a
resonance, therefore it is not an asymptotic state of the
theory. Namely, the scattering of the type Sφ → Sφ should
be understood as part of the more general process
φφφ → φφφ. They are omitted here since they are not
expected to contribute much to the energies and temper-
atures of interest.
The unitarization is carried out by repeating analogous

steps as in Sec. II B. As previously, the loop function for
M < 2m (when the state S is stable) has therefore two
subtractions, one at the massM and one at the branch point
4m2 −M2:

ΣðsÞ ¼ −
ðs −M2Þðs − ð4m2 −M2ÞÞ

π

×
Z

∞

4m2

1
2

ffiffiffiffiffiffiffiffiffi
s0
4
−m2

p
8π

ffiffiffi
s0

p

ðs − s0 þ iεÞðs0 −M2Þðs0 − ð4m2 −M2ÞÞ ds
0:

ð63Þ

Yet, forM > 2m (that is above the threshold) the state S is a
resonance, therefore we should only require that the real
part of the loop vanishes at M2, thus Re½Σðs ¼ M2Þ� ¼ 0
(the whole loop does not, since the imaginary part, propor-
tional to the decay width of S, is nonzero). Then, upon
considering a single subtraction

ΣðsÞ ¼ −
ðs − ð4m2 −M2ÞÞ

π

×
Z

∞

4m2

1
2

ffiffiffiffiffiffiffiffiffi
s0
4
−m2

p
8π

ffiffiffi
s0

p

ðs − s0 þ iεÞðs0 − ð4m2 −M2ÞÞ ds
0 þ C;

ð64Þ

where the subtraction C is such that Re½Σðs ¼ M2Þ� ¼ 0.
The unitarized amplitudes are given by

AU
k ðsÞ ¼ ½A−1

k ðsÞ − ΣðsÞ�−1; ð65Þ

just as in Eq. (28).
Here, if the mass M is sufficiently larger than the

threshold 2m, the s channel can be regarded as dominant
for values of s of the order of M2. In fact, the tree-level

result (neglecting t and u channels) reads Al¼0ðsÞ ≃ −g2
s−M2.

Yet, the pole atM2 is an artifact of the tree-level result. The
unitarized amplitude (keeping only the s channel) reads

AU
l¼0ðsÞ ≃ −g2

s−M2þg2ΣðsÞ: the pole on the real axis moves to the

complex plane (spole ≃M2 − g2ImΣðM2Þ) and the unita-
rized amplitude is simply proportional to the one-loop
resumed propagator for the scalar resonance Swith the loop
function ΣðsÞ presented in Eq. (64).
The critical value of the coupling g for obtaining a bound

state in the s channel is determined by

A−1
0 ð4m2Þ − Σð4m2Þ ¼ 0 ð66Þ

with

A0ðs ¼ 4m2Þ ¼ −g2

4m2 −M2
þ 2g2

M2
; ð67Þ

Σð4m2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − 4m2

p
ln
h
−1þ MðMþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−4m2

p
Þ

2m2

i
32Mπ2

: ð68Þ

Note the fact that a critical g is needed to obtain a bound
state is well known in the quantum mechanical counterpart
of the Yukawa interaction, e.g., Refs. [81,82].
The energy dependence of the unitarized phase shifts

for s, d and g waves and their derivatives are shown Fig. 12
for the choice M ¼ 3m and g ¼ 10m < gM;c ≈ 22.83m.
The s-wave phase increases rapidly near

ffiffiffi
s

p ¼ 3m ¼ M
and tends towards ≈π (from above). Compared to the s
wave, magnitudes of the d- and g-wave phase shifts are
significantly smaller and hence they are multiplied by a
factor of 100 to show them in this plot. At the threshold,
the derivative of the s-wave phase shift is infinite, but the
area under the curve is finite, hence there is no problem
in evaluating thermodynamical quantities. As expected, a
resonance peak is observed near

ffiffiffi
s

p ¼ 3m ¼ M. The
reason for this peak is the presence of the particle S of
mass 3m.
Note in Fig. 12 we display the (derivatives of the) phase

shifts by using a logarithmic plot up to large values offfiffiffi
s

p
=m in order to verify that the phase shifts tend to a

multiple of π. We recall, however, that inelastic channels
are not taken into account. At nonzero T, the left parts of
the plots are the relevant ones.
In Fig. 13 the case g ¼ 30m > gM;c is shown. A drastic

change in the s-wave phase shift is observed, which is
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negative for 2m <
ffiffiffi
s

p
⪅ 4m, as a consequence of the

presence of a bound state below the threshold. In this
region, the s-wave phase shift decreases and reaches −π=2
around

ffiffiffi
s

p
=m ≈ 3, then starts increasing and becomes

positive above
ffiffiffi
s

p
=m ≈ 4. It tends to zero at largeffiffiffi

s
p

=m. For the other two waves, the behavior is similar
to Fig. 12, but somewhat larger in magnitude. The
derivative of the s-wave phase shift starts from −∞ at
the threshold, it then increases rapidly with the increase offfiffiffi
s

p
=m and becomes positive. Around

ffiffiffi
s

p
=m ≈ 3.5 it shows

a peak and starts decreasing towards zero above that. The
variation of derivatives of the d and g waves are similar to
Fig. 12, but larger in magnitude.
Finally, we refer to Appendix C for the study of causality

(Wigner condition and speed of sound) for this theory. Both
of them confirm that it is not violated.

B. Thermodynamic properties of the system
in the presence of S

In this subsection, we discuss the thermodynamical
properties of the system in the presence of an intermediate
state Swith massM. The pressure is evaluated via Eq. (44),
which we report for convenience:

PU
φφ-int þ PB ¼ −T

Z
∞

0

dx
2lþ 1

π

X∞
l¼0

dδUl ðs ¼ x2Þ
dx

×
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i
; ð69Þ

which gives the overall interacting contribution. In par-
ticular, it should be stressed that:
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(i) The pressure of the bound state PB is, as usual,
nonzero only for g > gM;c.

(ii) The contribution of the state S is contained in the
term PU

φφ-int; in the limit g → 0, one has

1

π

dδU0 ðs ¼ x2Þ
dx

¼ δðx −MÞ; ð70Þ

thus PU
φφ-int reduces to the pressure of free S particles

with massM. In other words, the contribution of the
resonance S for thermodynamic quantities is taken
into account by the φφ → φφ scattering process.
In Ref. [41] this point was discussed in detail in
connection with the example of the ρ meson, which
is not added as an independent state to the thermo-
dynamics but is reproduced by the ππ phase shift’s
derivative in the appropriate scattering channel.

(iii) Care is needed when g ¼ 0. For this choice, the
interaction contribution is, clearly, exactly zero. The
state S is a free field that cannot be obtained from
the interaction part of the φ field. This issue is
discussed in detail in Ref. [41]: Eq. (69) and is valid
for nonzero (even if infinitesimal) g:

lim
g→0

PU
φφ-int ¼ PS;free ≠ ðPU

φφ-intÞg¼0
¼ 0: ð71Þ

(iv) In connection to the discussion of Sec. III A, the
limit of small (but nonzero) g, the set of asymptotic
states of the theory consists of the field φ only. The
total pressure in this framework is Pφ;free þ PU

φφ-int,
since the state S is a resonance and not an asymptotic
state, no matter how small g is.

Next, we turn to numerical examples for the specific
choice M ¼ 3m. The interacting part of the normalized

pressure of s, d and g waves as a function of g=m is shown
in the left panel of Fig. 14, in which the temperature is
taken as T ¼ m. When g=m is small, the interacting part of
the pressure of the s wave is dominated by the free particle
S with mass M ¼ 3m. As the coupling g increases, the
interacting part of the pressure of the s-wave contribution
also increases. Up to the critical value of gM;c (≈22.83m),
the s wave has a positive contribution to the pressure, while
it is negative above it. The interacting part of the normal-
ized pressure of d and g waves are always positive, but the
magnitudes are much smaller compared to that of the s
wave. In this plot, we also show the normalized pressure
for the bound state (which is clearly nonzero only for
g > gM;c). As for the φ3 case, the pressure of the bound
state exactly compensates for the abrupt jump in the s-wave
pressure at the critical value gM;c. The normalized total
pressure as a function of g=m for four different T is shown
in the right panel of Fig. 14. Similar to Fig. 7, the total
pressure is continuous in g, showing that also in this
case the emergence of the bound state does not imply a
discontinuity for the pressure.
Next, we calculate the temperature dependence of the

pressure for s, d and g waves in the presence of an
intermediate state S of mass M ¼ 3m. In the left panel
of Fig. 15 we show the PU

φφ-int;l=T
4 for g=m ¼ 10 (the d-

and g-wave contributions are multiplied by 10 to make
them visible). For all three waves, the normalized pressure
increases and saturates at large T=m. The right panel of
Fig. 15 shows the case g ¼ 30m > gM;c, for which a bound
state forms.
The temperature dependence of the normalized total

pressure as a function of T=m is shown for three values of g
in Fig. 16. When g ¼ m ≪ gM;c, the attraction is very small
and the resonance S behaves almost like a free particle, thus
basically the two free particles φ and S contribute to the
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intermediate state S of mass M ¼ 3m. The normalized pressure of the bound state is also shown. The right panel shows the normalized
total pressure at four different temperatures.
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pressure. At large T the normalized pressure saturates to
2π2=90 ≈ 0.219. For the larger coupling g ¼ 10m, the state
S has a sizable width. As a result, the normalized total
pressure is larger than the one for g ¼ m. For g ¼ 30m,
there is, in addition, also a bound state. Although the
pressure of the s wave is negative up to a certain T=m (see
the right panel of Fig. 15), the overall effect of the
interaction for g ¼ 30m is, as expected, positive.
Finally, in order to study the overall effect of the

interaction, we define the following ratios:

ηS ¼
PU
tot

Pφ;free þ PS;free
; ð72Þ

and

ζS ¼
PU
φφ-int þ PB

PS;free þ PB
: ð73Þ

In the left panel of Fig. 17 we show ηS as a function of
T=m at two different g below the critical value gM;c. For
both cases, ηS is greater than one. This implies that
neglecting interaction would lead to an underestimation
of the overall actual pressure. In the right panel of Fig. 17
we show ζS with T for three different g, one just above the
critical value gM;c ≈ 22.83m and for g ¼ 30m. For the first
case, ζS ≈ 1 at low temperature but, as T=m increases,
it decreases and reaches a minimum value ≈0.43 for
T=m ≈ 0.5. With a further increase of T=m, the ratio ζS
slightly increases and saturates at a value ≈0.52. For
g ¼ 30m, the behavior of ζS is qualitatively similar to
the previous one, but at high T=m it saturates to ≈0.55. In
both cases, neglecting the interaction would lead to a quite
large overestimation of the actual results.

V. CONCLUSIONS

In this work, we have investigated the role of particle
interaction in a thermal gas in the context of selected scalar
QFTs that contain three-leg vertices and can lead to the
formation of bound states, if the attraction is strong enough.
To this end, we have calculated the scattering phase shifts
of the s, d, and g waves using the partial wave decom-
position of two-body scattering and we implemented a
nonperturbative unitarized one-loop resummed approach
for which the theory is a unitary, finite and well defined for
a large range of the three-leg coupling constant g.
In all cases, we studied the role of the interaction and

realized that, in general, it is non-negligible. Even in the
case when no bound state is present, a sizable role of the
interaction implies that the simple inclusion of a gas of free
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φ particles may not be sufficient. In general, an attractive
interaction (alias, a positive phase shift derivative close to
threshold) implies an increase in pressure and vice versa.
This is understandable in gas at zero chemical potential
determined only by the vacuum’s density of states, but it
should be stressed that this is quite different from the
classical case, e.g., the van der Waals gas, in which (at a
fixed number of particles) a repulsion induces an increase
of the pressure; see also the discussion in Ref. [83].
Conversely, when a bound state forms, the simple

inclusion of the bound state into the thermal gas is not
enough for a correct description of the pressure of the
system. The derivative of the phase shift switches sign and
a partial cancellation between the corresponding negative
contribution of the interaction with the positive one of the
bound state occurs.
We summarize our results in Tables I and II. In Table I, the

cases in which the interaction does not lead to the formation

of a bound state are presented, while in Table II the cases for
which a bound state appears are listed. It is then clear that
the answer to our original questions about the role of the
interaction as well as that of the bound state and resonances is
not a simple one. The results depend on the coupling strength
and eventually on other parameters and on the temperature
range. Yet, as a general statement, our results show that the
role of the interaction can be sizable and the consideration of
a simple free gas is in most cases insufficient.
In the end, we turn back to the original question

formulated in the Introduction about the quite peculiar
production of a bound state at a nonzero temperature in
thermal models, according to which the multiplicity
depends solely on the mass of the bound state but is not
affected by the typically large dimension or the binding
energy of the composite object. In our approach, the phase
shift calculated in the vacuum is the quantity that is used to
obtain the properties of the system at any temperature.

TABLE I. Estimate of the interaction’s role when no bound state forms (g less than the respective
critical values). In each case, the expected value in the absence of the interaction is one.

QFT Quantity Total pressure PU
tot Figure

g
3!
φ3 η PU

tot ¼ ηPφ;free 10 (left panel)
g
3!
φ3 þ λ

4!
φ4 ηλ PU

tot ¼ ηλPφ;free 28 (left panel)

g
2!
Sφ2 ηS

PU
tot ¼ ηSðPφ;free þ PS;freeÞ 17 (left panel)¼ Pφ;free þ ζSPS;free

TABLE II. Estimate of the interaction’s role when a bound state forms (g greater than the respective
critical values). In each case, the expected value in the absence of the interaction is one.

QFT Quantity Total pressure PU
tot Figure

g
3!
φ3 ζ PU

tot ¼ Pφ;free þ ζPB 10 (left panel)
g
3!
φ3 þ λ

4!
φ4 ζλ PU

tot ¼ Pφ;free þ ζλPB 28 (left panel)
g
2!
Sφ2 ζS PU

tot ¼ Pφ;free þ ζSðPS;free þ PBÞ 17 (left panel)
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FIG. 17. Dependence of the ratio η [Eq. (72)] (left) and ζ [Eq. (73)] (right) with T=m in the presence of an intermediate state of mass
M ¼ 3m (no bound state present).
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Since the partition function Z ¼ P
n e

−En=T is determined
by the energy eigenvalues En calculated in the vacuum,
once these are known, the quantity Z is fixed for each
temperature. In other words, Z is solely fixed by vacuum
physics. In our work, the sum over the states is replaced
by an integral over the derivatives of the spectral function,
but the basic idea is the same since the pressure is still
determined by vacuum quantities. One may then speculate
that the production (alias the multiplicity) of a bound state
is not related to the dimension of the composite objects but
is solely controlled by the corresponding thermal integral as
thermal models suggest, but one needs to investigate this
issue more in detail in the future.
As an additional important outlook, we mention the

extension of the present work to particles with spins (both
bosons and fermions), with particular attention to the study
of nuclei as bound states of nucleons, the easiest of such
systems being the deuteron, as well as to resonances that do
not fit into the quarkonium picture, such as the famous
exotic meson Xð3872Þ.
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APPENDIX A: BRIEF RECALL OF THE PHASE
SHIFT FORMULA

In this Appendix, for completeness, we recall a simple
QM-based justification of the phase shift formula [46] that
shows how it is linked to the density of states. The radial
wave function with angular momentum l of a particle
scattered by central potential UðrÞ is

ψ lðrÞ ∝ sin½kr − lπ=2þ δl�; ðA1Þ

where k is the length of the three-momentum and δl is the
phase shift due to the interaction with the potential.
If we confine our system into a sphere of radius R, the

condition kR − lπ=2þ δl ¼ nπ with n ¼ 0; 1; 2;… holds
because ψ lðrÞmust vanish at the boundary. Conversely, the
number of states n0 when k belongs to the range ð0; k0Þ is
given by n0 ¼ ðk0R − lπ=2þ δlÞ=π. Then, the density of
states that one can place between k and kþ dk is given by

dnl
dk

¼ R
π
þ 1

π

dδl
dk

; ðA2Þ

where the first term describes the density of states
dnfreel
dk in

absence of interactions, while the second term 1
π
dδl
dk

describes the effect of the interacting potential. When
translating these results from QM to QFT, we replace
the momentum k by the invariant mass x ¼ ffiffiffi

s
p

. For
instance, in the case of the φ3-QFT and for l ¼ 0 and no
bound state, one has

dn0
dx

¼ δðx −mÞ þ 1

π

dδ0
dx

; ðA3Þ

where the phase shift is nonzero for x ≥ 2m. If a bound
state in the s-wave channel forms, one has

dn0
dx

¼ δðx −mÞ þ δðx −MBÞ þ
1

π

dδ0
dx

: ðA4Þ

Indeed, the formal extension outlined in Sec. II C amounts to

dn0
dx

¼ 1

π

dδðextendedÞ0

dx
: ðA5Þ

APPENDIX B: LOOP FUNCTION FOR SMALL
BUT NONZERO ε

The loop function Σ is, in general, a complex function
which (on its first Riemann sheet) is regular everywhere
apart from a cut that starts from a certain threshold sth to∞.
Upon considering (at first) the case without subtractions,
its general form as a function of the complex variable z is
given by

ΣðzÞ ¼ −
1

π

Z
∞

sth

ds0
fðs0Þ
z − s0

; ðB1Þ

which is well defined for each z ∈ C except for the cut
ðsth;∞Þ. Above, fðsÞ is a well-defined function [that can be
continued to the whole complex plane: fðsÞ → fðzÞ; this is
necessary to go to the second Riemann sheet, yet we will
not deepen this matter here]. In our specific case (see also
below) we have

fðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
32π

ffiffiffi
s

p ; sth ¼ 4m2: ðB2Þ

When convergence is not guaranteed [as for the fðsÞ
above], subtractions are necessary. For instance, with
two subtractions (as in the main text) one has

Σ2SðzÞ ¼ −
1

π
ðz − s1Þðz − s2Þ

×
Z

∞

sth

ds0
fðs0Þ

ðz − s0Þðs0 − s1Þðs0 − s2Þ
; ðB3Þ
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for s1;2 < sth. It is, however, important to stress that
subtractions do not affect the behavior of the imaginary
part that we shall describe below. We shall then omit them
in the following.
As it is common (being an outcome of the Feynman

prescription, as we show explicitly below in the case of
scalar QFT) the cut is moved to the negative axis by a small
amount, leading to

ΣðzÞ ¼ −
1

π

Z
∞

sth

ds0
fðs0Þ

z − s0 þ iε
: ðB4Þ

Namely, the cut is now located at ðsth − iε;∞− iεÞ, where
ε is an infinitesimal (but nonzero) number.
Since the cut is below the real axis, we can now consider

z ¼ s ∈ R [including ðsth;∞Þ]. The imaginary part for
z ¼ s ∈ R takes the form

ImΣðz ¼ sÞ ¼
Z

∞

sth

ds0fðs0Þ 1
π

ε

ðs − s0Þ2 þ ε2
: ðB5Þ

It is useful to distinguish three regions for this object.
(i) For s − sth ≪ −ε, the previous expression reads

ImΣðz ¼ sÞ ¼ ε

Z
∞

sth

ds0fðs0Þ 1
π

1

ðs − s0Þ2
¼ εhðsÞ ∼ ε; ðB6Þ

where hðsÞ is a certain finite function for the
considered range of interest; thus ImΣðz ¼ sÞ is
an infinitesimal (but nonzero) quantity for a non-
vanishing ε.

(ii) For −ε≲s−sth≲ε (for s close to threshold), one hasZ
∞

sth

ds0fðs0Þ 1
π

ε

ðs − s0Þ2 þ ε2
∼

ffiffiffi
ε

p
; ðB7Þ

as can be seen by a lengthy but explicit calculation.
A simple verification can be obtained by setting s ¼
sth and by approximating fðsÞ as fðsÞ ≃ c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sth

p
(valid close to threshold, where the dominant part of
the integral comes from). In this case, the integral
reads c

ffiffiffiffiffiffiffi
ε=2

p
(with c being a positive constant).

(iii) For s − sth ≫ ε, the quantity 1
π

ε
ðs−s0Þ2þε2

can be safely
replaced by δðs − s0Þ when ε is sufficiently small,
leading to

ImΣðz ¼ sÞ ¼ fðsÞ: ðB8Þ

By going to the next order in ε, one has

ImΣðz ¼ sÞ ¼ fðsÞ þ εrðsÞ; ðB9Þ

where rðsÞ is a certain finite function given by

rðsÞ ¼ limε→0þ
R∞
sth
ds0fðs0Þ 1π ðs−s0Þ2−ε2

½ðs−s0Þ2þε2�2. [Note, the

function rðsÞ can be calculated by taking the Fourier
transform of the Lorentzian δ function, which then
leads to rðsÞ¼Rþ∞

−∞
dqffiffiffiffi
2π

p ð−jqjÞFðq;sÞ, where Fðq;sÞ¼R
∞
sth

ds0ffiffiffiffi
2π

p fðs0Þe−iq·ðs0−sÞ.]
Finally, in the transition regions between (i) and (ii) the

small quantity rises from ε to
ffiffiffi
ε

p
, while between (ii) and

(iii) from
ffiffiffi
ε

p
to a finite number.

Thus, we may summarize the outcome as

ImΣðz ¼ sÞ
8<
:

ϵ ∝ ε for s − sth ≪ −ε
ϵ ∝

ffiffiffi
ε

p
for − ε≲ s − sth ≲ ε

fðsÞ þ ϵwith ϵ ∝ ε for s − sth ≫ ε

; ðB10Þ

whose schematic and illustrative behavior is reported
in Fig. 18. In particular, one may appreciate that the
function is continuous and very small (but nonzero) below
threshold [84]. By expressing the part below threshold
by an infinitesimal quantity ϵ (to be distinguished from
the original ε), we obtain Eq. (26) presented in the main
text. Of course, in this respect ϵ is in general a rather
complicated function of ε and s, but the important point
here is that it is a very small number that approaches 0 when
ε goes to zero.
As a final step, we show how the loop function of

Eq. (B1) emerges from the standard Feynman rules. We
start with the very well-known expression of the loop of
two scalar particles with massm as a function of the overall
momentum p2 (p being the overall momentum of the two-
particle system):

−iΣðp2Þ ¼ 1

2

Z
d2q
ð2πÞ4

i
ðp=2þ qÞ2 −m2 þ i ε

2

×
i

ðp=2 − qÞ2 −m2 þ i ε
2

; ðB11Þ

1.5 2 2.5 3

s m/

0

0.002

0.004

0.006

0.008

]Σ
Im

[

FIG. 18. Energy dependence of the function ImΣðz ¼ sÞ for a
nonzero ε [Eq. (B10)].
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where the infinitesimal quantity ε is chosen according to
the Feynman prescription (roughly speaking, positive
energy solutions propagate forward in time and negative
energy solutions backward). In other words, we add a small
imaginary part to the particle φ, thus making itself unstable.
The factor 1=2 in front of the integral is due to identical
particles. The choice of ε=2 is for future convenience.
Taking for simplicity p ¼ ð ffiffiffi

s
p

; 0Þ (rest frame for the
colliding particles), we have

ΣðsÞ ¼ −i
1

2

Z
d4q
ð2πÞ4

1

ð ffiffiffi
s

p
=2þ q0Þ2 − q2 −m2 þ i ε

2

×
1

ð ffiffiffi
s

p
=2 − q0Þ2 − q2 −m2 þ i ε

2

: ðB12Þ

The integral over q0 can be performed by a standard
residuum calculus (here, we keep track of the ε, since this is
important for our purposes):

ΣðsÞ ¼ −
1

2

Z
d3q
ð2πÞ2

1

E − i ε
4E

1

s − 4E2 þ iε
ðB13Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
(note, formally ε has dimension

[Energy2]). Since E > 0 (we do not consider the case of
zero masses), the previous expression simplifies as

ΣðsÞ ¼ −
1

2

Z
d3q
ð2πÞ2

1

E
1

s − 4E2 þ iε
: ðB14Þ

As a last step, upon introducing s0 ¼ 4E2 as a variable, we
get

ΣðsÞ ¼ −
1

2 · 16π2

Z
∞

sth¼4m2

ds0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − 4m2

p
ffiffiffiffi
s0

p 1

s − s0 þ iε

ðB15Þ

which coincides with the loop of Eq. (B1).

APPENDIX C: N=D UNITARIZATION SCHEME

In this Appendix, we present an alternative unitarization
scheme for the case of the φ3-QFT. To this end, we choose
the well-known N=D scheme [51,55,61,62,66–68]. At the
lowest order, the unitarized amplitude reads [61,68]

AN=D
l ðsÞ ¼ NlðsÞ

DlðsÞ
; ðC1Þ

where NlðsÞ ¼ AlðsÞ (tree-level result, see Sec. II), and the
denominator takes the form

DlðsÞ ¼ 1 −
ðs −m2Þ

π

Z
∞

4m2

ρðs1ÞNlðs1Þ
ðs1 − s − iεÞðs1 −m2Þ ds1:

ðC2Þ

The right-hand cut is contained in DlðsÞ [ImDl ¼
−ρðsÞNlðsÞθðs − 4m2�, while the left-hand cut is contained
in NlðsÞ. Here, a single subtraction (at the particle pole
s ¼ m2) is implemented: this is enough to guarantee
convergence and, within this method, there is no problem
with emerging ghosts.
Quite interestingly, the once-subtracted on-shell unitar-

ization scheme is obtained if we approximate DlðsÞ as

DlðsÞ≈ 1−NlðsÞ
ðs−m2Þ

π

Z
∞

4m2

ρðs1Þ
ðs1 − s− iεÞðs1 −m2Þds1:

ðC3Þ

Roughly speaking, the quantity NlðsÞ is taken outside the
integral. Yet, as discussed in the main text, this scheme
leads to issues related to the emergence of a ghost pole.
As a consequence of Eq. (C2), the bound state in the

N=D approach, in any given wave, is realized byDlðsÞ ¼ 0

for s < 4m2, but only the case l ¼ 0 is relevant for our
purposes. In the present unitarization, the bound state mass
(if existent) belongs to the interval ðm; 2mÞ, thus the range
is different from the one of the on-shell approximation
ð ffiffiffi

3
p

m; 2mÞ. This aspect shows explicitly what was dis-
cussed in Secs. II B and II C: Different unitarization
schemes typically agree when the bound state mass is
not too far from the threshold, but may be quite different
when the coupling constant becomes too large.
Let us now discuss in more detail the s wave. The

numerator reads explicitly

N0ðsÞ ¼ A0ðsÞ ¼
−g2

s −m2
þ 2g2

ln ½1 − s−4m2
m2 �

s − 4m2
; ðC4Þ

thus the left-hand cut with branch point at s ¼ 3m2 as well
as a single-particle pole is encoded in the numerator. The
denominator D0ðsÞ can be then evaluated numerically
from Eq. (C2).
In Fig. 19 we present the s-wave phase shifts for g=m ¼

10 (no bound state in both N=D and on-shell schemes) and
g=m ¼ 20 (bound state present in both approaches), where
they are compared to the result of the on-shell scheme. As it
is visible, both results are very similar.
Next, the critical value of gc for obtaining a bound state

reads gN=D
c =m ¼ 13.0177, which compares well to gc=m ¼

14.4551 discussed in Sec. II B. The behavior of the mass of
the bound state as a function of g is depicted in Fig. 20 for
both approaches, displaying a comparable behavior.
Finally, in Fig. 21 we show the s-wave contribution of

the pressure for both unitarization schemes. Also, in this
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case, the results are numerically close to each other for the
considered range of temperatures.
In conclusion, the results of the N=D approach confirm

qualitatively the ones shown in the main part of the
manuscript. Of course, one could go beyond the lowest
order in N=D and/or also attempt other unitarizations. This
task is left for the future.

APPENDIX D: CAUSALITY OF THE φ3

AND Sφ2 QFTs

In this Appendix, we verify that causality is fulfilled for
the φ3 and Sφ2 QFTs by evaluating the Wigner condition
for the phase shifts in the vacuum as well and as the speed
of sound cs in the medium.
In Fig. 22 we show the Wigner’s causality condition

of Eq. (42) (see Ref. [71]) for φ3 and the Sφ2 interactions
at g=m ¼ 10, which show that this condition is always

fulfilled. A test with different values of g confirms this
result.
Next, for both theories, we show in Fig. 23 the temper-

ature dependence of the square of the speed of sound c2s
[Eq. (53)], which is less than one in the whole considered
range of the T=m.

APPENDIX E: ADDING A FOUR-LEG
INTERACTION

In this Appendix, we show how the results change when
adding an interaction term proportional to φ4:

L ¼ 1

2
ð∂μφÞ2 −

1

2
m2φ2 −

g
3!
φ3 −

λ

4!
φ4; ðE1Þ

whose tree-level scattering amplitude reads

Aðs; t; uÞ ¼ −λ −
g2

s −m2 þ iϵ
−

g2

t −m2 þ iϵ

−
g2

u −m2 þ iϵ
: ðE2Þ

Only the s-wave amplitude is modified by including the φ4

term, hence we concentrate on the lowest wave. The new
expression for the tree-level s-wave amplitude reads

A0ðsÞ ¼
1

2

Z þ1

−1
dξAðs; θÞ

¼ −λ −
g2

s −m2
þ 2g2

ln ½1þ s−4m2

m2 �
s − 4m2

; ðE3Þ

out of which the tree-level scattering length takes the form

aSL0 ¼ 1

2

A0ðs ¼ 4m2Þ
8π

ffiffiffiffiffiffiffiffiffi
4m2

p ¼ −λ
32πm

þ 1

32πm
5g2

3m2
: ðE4Þ
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FIG. 19. Comparisons of the energy dependence of s-wave phase shifts in two different unitarization approaches. The left panel is for
g=m ¼ 10 and the right panel is for g=m ¼ 20.
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The loop function allows calculating the unitarized ampli-
tudes in the s-channel as

AU
0 ðsÞ ¼ ½A−1

0 ðsÞ − ΣðsÞ�−1; ðE5Þ

where ΣðsÞ is the loop function reported in Eq. (24), see
also Ref. [55]. The unitarized scattering length reads

aU;SL
0 ¼ aU0 ðs ¼ 4m2Þ ¼ 1

2

1

16πm
1

A−1
0 ð4m2Þ − Σð4m2Þ

¼ 1

32πm
1h

−λþ 5g2

3m2

i
−1

− 1

64
ffiffi
3

p
π
:
: ðE6Þ

For a certain fixed value of λ, the new critical value of g is
given by

−λþ 5g2

3m2
¼ 64

ffiffiffi
3

p
π; g2λ;c ¼ g2c þ

3m2

5
λ: ðE7Þ

In Fig. 24 we show the s-wave phase shift as a function
of

ffiffiffi
s

p
=m for g=m ¼ 10 and for three different values of λ

[λ ¼ 0 as a reference, λ ¼ 100 (repulsive) for which
gλ;c=m ≈ 16.4, and λ ¼ −100 (attractive) for which
gλ;c=m ≈ 12.2, thus no bound state forms in any of these
cases]. Interestingly, the case λ ¼ −100 is similar to λ ¼ 0.
Yet, the situation is completely different for λ ¼ 100, where
the phase shift decreases and saturates to −π at large
energies.
Figure 25 is obtained for g ¼ 20m > gλ;c, for which a

bound state forms. Also here, the case λ ¼ −100 is similar
to λ ¼ 0. Quite different behavior is observed in the case of
λ ¼ 100 where at large

ffiffiffi
s

p
=m the phase shift saturates to

−2π. The phase shift derivatives are plotted in the right
panel. Interestingly, a deep trough near

ffiffiffi
s

p
=m ¼ 6 is

observed for λ ¼ 100.
The case λ > 0 needs some care. There is a certain value

of s ¼ s0 ≃ 6m2 for which the tree level and the unitarized
amplitudes vanish: Aðs0Þ ¼ AUðs0Þ ¼ 0. At this point, the
attractive φ3 term cancels the repulsive φ4 term. For this
energy, δUðx ¼ ffiffiffiffiffi

s0
p Þ ¼ nπ, where the choice n ¼ −1 is

dictated by the requirement of continuity. Indeed, the dip in
Fig. 25 corresponds to the s0 value. For s > s0 the φ4 term
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becomes dominant and the phase shift tends slowly to
−2π. Yet, the Wigner condition of Eq. (42) is violated
around s0, as the right plot of Fig. 25 shows. This violation
takes place at energy for which inelastic channels and
higher waves are also expected to be relevant and is a
further indication that a limited range of s should be
considered. Indeed, the proper treatment of inelasticities
and/or the use of other unitarization approaches could
solve this issue.
Next, we turn to the pressure. In the left panel of Fig. 26

we show the normalized s-wave interacting pressure as a
function of g=m for three values of λ and for T=m ¼ 1.
Note, the discontinuity in the s-wave pressure corresponds
to gλ;c: the larger λ, the larger gλ;c needed to form a bound
state, see Eq. (E7). The normalized pressure of the bound
state is shown in the middle panel of Fig. 26, which—just
as before—starts abruptly at gλ;c. The total pressure is,
as expected, continuous in g, which is shown in the
right panel.
The temperature dependence of total normalized pres-

sure for g ¼ 10m and 20m is shown in Fig. 27 (left and

middle plots). Note, for λ ¼ 100 total pressure is signifi-
cantly reduced with respect to the case λ ¼ 0.
In the right panel, we present the speed of sound for

λ ¼ 100. It overshoots one at about T=m ∼ 3.3, which then
represents a clear upper limit for the present model. As
mentioned above, other effects are expected to be relevant
for these temperatures.
In the end, we define quantities similar to Eqs. (54)

and (55) as

ηλ ¼
PU
tot

Pφ;free
; ζλ ¼

PU
φφ-int þ PB

PB
; ðE8Þ

which are used to quantify the effect of the interaction.
Figure 28 shows the variation of ηλ and ζλ with T=m at
λ ¼ 100 and for different g values. The quantity ηλ is close
to one at low T, then it increases and reaches a maximum:
the further decrease takes place in a region of T where
caution is needed. The quantity ζλ implies a partial
cancellation of the single bound state contribution, in
agreement with the other QFTs studied in this work.
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