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The scattering of neutral particles by an atomic nucleus can lead to electronic ionization and excitation
through a process known as the Migdal effect. We revisit and improve upon previous calculations of the
Migdal effect, using the Dirac-Hartree-Fock method to calculate the atomic wave functions. Our methods do
not rely on the use of the dipole approximation, allowing us to present robust results for higher nuclear recoil
velocities than was previously possible. Our calculations provide the theoretical foundations for future
measurements of the Migdal effect using neutron sources, and searches for dark matter in direct detection
experiments. We show that multiple ionization must be taken into account in experiments with fast neutrons,
and derive the semi-inclusive probability for processes that yield a hard electron above a defined energy
threshold. We present results for the noble elements up to and including xenon, as well as carbon, fluorine,
silicon and germanium. The transition probabilities from our calculations are publicly available.
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I. INTRODUCTION

Despite decades of searching, the precise nature of
particle dark matter (DM) remains an enduring mystery.
There is a wide-ranging program of direct detection experi-
ments dedicated to measuring the properties of astrophysi-
cal DM in terrestrial laboratories [1]. These are based
primarily on the possibility that DM scatters and imparts an
OðkeVÞ kinetic energy to an atomic nucleus. However,
for DM masses less than a few GeV this method loses
sensitivity, since the nuclear recoil energy becomes smaller
than the experimental energy threshold.
An alternative approach for DM direct detection is to

search for electromagnetic signals that may be produced
when the DM interacts with the atomic nucleus [2–5]. The
possibility that an electron may be emitted from an atom
after the sudden perturbation of the nucleus has been
known since the early 1940s [6–9] and has become known

as the ‘Migdal effect’ within the DM community [5]. The
broader importance of the Migdal effect for direct detection
searches has only recently been established in [10,11], and
further studied in [12–23]. Although the production of
electromagnetic signals is suppressed relative to the rate of
conventional elastic nuclear scattering, there is a window
for sub-GeV DM where the nuclear recoil energy falls
below threshold while the electromagnetic signal remains
observable.1 Several experiments have now exploited this
to constrain the sub-GeV DM parameter space [29–36].
Despite the importance of the Migdal effect for DM

searches, the emission of an electron after a sudden jolt
to the nucleus by an electrically-neutral projectile has
not been measured experimentally.2 This has motivated
several experimental proposals that aim to systematically
study the Migdal effect over a wide range of energies and
with different atomic species [46–48]. The proposals follow
the standard practice within the DM community of using
neutrons as the electrically-neutral proxy for DM and cover
a range of neutron energies from 17 keV in Ref. [47],*peter.cox@unimelb.edu.au

†dolan@unimelb.edu.au
‡christopher.mccabe@kcl.ac.uk
§quiney@unimelb.edu.au

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Polarization (or atomic) bremsstrahlung produces a similar
effect [24–28], but its rate is suppressed relative to the Migdal
effect [14].

2The Migdal effect has been measured experimentally in
related scenarios where the recoil is due to α-decay [37–40] or
β-decay [41–45].
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565 keV in Ref. [46], to 2.5 MeV and 14.7 MeV in the
MIGDAL experiment [48].
The characteristic signal of the Migdal effect is a

recoiling ion and an ionization electron emerging from a
common vertex. While the use of lower-energy neutrons
allows the Migdal effect to be studied in the kinematic
regime relevant for DM experiments, it has the disadvant-
age that the nuclear recoil and ionization electron cannot be
separately resolved, either spatially or energetically; precise
modeling of nuclear recoil quenching and the detector
response is then required to test the Migdal effect (see e.g.,
[49,50]). In contrast, higher-energy neutrons probe a
different energy regime from DM experiments, yet offer
the possibility of indirectly or directly imaging the Migdal
effect; indirectly in high-pressure gas, where the Migdal
effect followed by de-excitation of the atom induces a ‘two-
cluster’ topology [46]; and directly in low-pressure gas,
where nuclear recoil and ionization electron tracks can be
imaged emerging from a common vertex [48].
The qualitatively different scattering regimes for DM and

neutron scattering are illustrated in Fig. 1. This figure also
introduces the dimensionless ratio v=α, the magnitude of
the nuclear recoil velocity relative to the fine-structure
constant multiplied by the speed of light (we work in
natural units with ℏ ¼ c ¼ 1), which will serve as a key
parameter. While DM direct-detection experiments operate
in the regime v ≪ α, neutron experiments can potentially
test a much wider parameter space, up to v ≃ α.

The purposes of this article are threefold. Firstly, given the
increasing interest in theMigdal effect for DM searches, and
given that there is the potential for upcoming experiments to
use this effect for DM discovery [51], precise predictions are
needed for the low-energy regime probed by DM experi-
ments. The previous state-of-the-art calculations appeared in
Ref. [10] and used a relativistic self-consistent mean-field
approach with the approximation of a local central potential
[52].We provide two additional, independent calculations of
theMigdal effect. The first uses the GRASP [53–55] and RATIP

[56] codes to calculate the bound and continuum wave
functions, respectively. The second uses the BERTHA [57]
code, and serves primarily as a cross-check of our results.
Both approaches employ the canonical Dirac-Hartree-Fock
method, and include the full nonlocal exchange potential in
place of the empirical local potential employed in [10,52].
Secondly, the calculation of the Migdal effect in Ref. [10]

assumed the dipole approximation. While this is a good
approximation in the regime v ≪ α characteristic of DM
experiments, it is expected to fail at the higher values of v=α
that can be probed in neutron scattering. We therefore
calculate the Migdal transition probabilities without making
this approximation, instead evaluating the multielectron
matrix elements. Furthermore, we provide a detailed
characterization of the regime of validity of the dipole
approximation.
Thirdly, multiple electrons can be ionized through the

Migdal effect in the regime where v ≃ α [58–64], and so we
calculate the probability of double ionization events in
neutron-beam experiments, as well as in DM scattering.
We also introduce the ‘semi-inclusive’ probability to produce
a hard electron in addition to one or more soft electrons
(which would be below typical experimental thresholds and
therefore not observable). We find that this semi-inclusive
rate is needed to obtain accurate predictions for high-energy
neutron-beam experiments; this is due to the importance of
multiple ionization, which causes the semi-inclusive rate to
grow with the energy of the recoiling nucleus.
We present results for the noble elements from helium to

xenon, as well as for carbon, silicon, germanium and
fluorine. The noble elements are widely used in DM
scattering experiments, with CYGNUS planning to operate
with gaseous He [65,66], NEWS-Gwith gaseous He and Ne
[67–69], while Darkside [70] and DEAP-3600 [71] operate
with liquid Ar, and LZ [72], PANDA-X [73], XENONnT
[74], and the proposed XLZD [51,75] experiment use liquid
Xe. The MIGDAL experiment [48] plans to operate with C
and F in the form of low-pressure CF4 gas, as well as CF4
mixed with other gases including the noble elements, Si, and
Ge.3 The Migdal transition probabilities we have calculated
are publicly available [77] for use by the community.

FIG. 1. Schematic representation of the different regimes for
DM- and neutron-induced Migdal processes. The dimensionless
quantity v=α is the nuclear recoil velocity relative to the fine-
structure constant (c ¼ 1). Bottom left: DM and low-energy
neutron scattering, where the recoiling ion (N) is represented with
a short arrow since its energy often falls below the detection
threshold. Center: Midenergy neutron scattering in high-pressure
gas can induce a distinctive two-cluster topology. The recoiling
ion and the electron ionized through the Migdal effect induce one
cluster, while the x ray emitted following de-excitation of the
recoiling ion induces a second cluster, separated by several cm.
Top right: High-energy neutron scattering from D-D/D-T fusion
generators typically produces one hard and multiple soft ioniza-
tion electrons, as represented by one longer and multiple shorter
electron arrows.

3A number of DM experiments use Si and Ge semiconductor
detectors; the relevant formalism for the Migdal effect in semi-
conductors has been derived in [16,21,76].
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The paper is organized as follows. In Sec. II we discuss
the evaluation of the Migdal matrix element and introduce
the semi-inclusive transition probability. In Sec. III we
present our numerical results in the context of select
illustrative examples. Section IV applies our results to
DM and neutron-scattering experiments, and we conclude
in Sec. V. Several appendixes contain details pertinent to
our calculations.

II. MIGDAL PROBABILITY: GENERALITIES

There are several derivations of the Migdal effect in the
literature [7,10,78], all of which converge on the same
result (discussion on this point can be found in [79]). The
most straightforward and intuitive way to derive the
transition matrix element for an N-electron atom is through
an argument due to A. Migdal [7,9]. In the rest frame of the
nucleus it is the electron cloud that is boosted due to the
nuclear recoil. Final-state electronic wave functions in this
frame are therefore obtained by applying a Galilean boost
to the electronic wave functions of the atom at rest. The
required matrix element is then given by

�
Ψf

���� exp
�
imev ·

XN
k¼1

rk

�����Ψi

�
; ð1Þ

where me is the electron mass, v is the nuclear recoil
velocity, and the sum is over the position operators rk of the
N electrons. The initial and final state electronic wave
functions of the atom in the v ¼ 0 frame are denoted by Ψi
and Ψf, respectively.
Although the above argument relies on the sudden/

impulse approximation (the assumption that the projec-
tile-nucleus interaction timescale is short with respect to the
electronic response time), the matrix element in Eq. (1)
holds in general, up to corrections of Oðme=mNÞ. If the
interaction with the nucleus is long range, as in the case of
dark matter scattering via a light mediator, then there is an
additional form factor FðqÞ ∼ 1=q2. The situation is more
complicated if the projectile interacts with electrons, in
which case there will be an atomic form factor [58]. While
neutrons interact with electrons via a magnetic dipole
interaction, this effect is estimated to be negligible [9,61].

A. Exclusive transition probability

We first consider the probability to transition to a specific
final state, which we term the exclusive transition proba-
bility. The matrix element in Eq. (1) contains an N-electron
operator. As was pointed out in Ref. [61] in the context of
closed-shell atoms, this can be rewritten in terms of single-
electron matrix elements when the initial and final state
wavefunctions are expressed as anti-symmetric products of
single-electron wave functions. We denote the initial and
final states by

jΨii ¼ jψa1ψa2…ψaN i;
jΨfi ¼ jχb1χb2…χbN i; ð2Þ

where fjψaig and fjχbig are two orthonormal bases of
four-spinor single-electron wave functions from which the
initial and final wave functions are constructed, respec-
tively. The subscripts ai and bi denote the set of quantum
numbers that describe the wave function; for relativistic
bound states these are ni (Ei for continuum states), κi, and
mi (see Appendix A 1). The transition matrix element for
the Migdal effect then simplifies to

hΨfjeimev·
P

k
rk jΨii ¼ detðMÞ; ð3Þ

with the N × N matrix of single-electron matrix elements

Mβα ¼ hχbβ jeimev·rjψaαi: ð4Þ

Following the standard approach, we evaluate these matrix
elements by expanding the exponential operator in spheri-
cal tensors, as discussed in detail in Appendix A 1.
The exclusive transition probability is then

pvðjΨii → jΨfiÞ ¼ detðMM†Þ: ð5Þ

In practice, the relevant initial state is the atomic ground
state, with jψaαi the occupied orbitals in the ground state.
On the other hand, for excitation (ionization) processes
jΨfi will include one or more excited (continuum) orbitals.
In this section we have, for clarity of presentation,

considered the case where the atomic wave function can
be expressed as a single Slater determinant. However,
eigenstates of the atomic Hamiltonian are more accurately
represented by configuration state functions (CSFs), which
are linear combinations of Slater determinants. The gen-
eralization of Eqs. (3) and (5) to this case is provided in
Appendix A 2.

B. Semi-inclusive transition probability

The probability for multiple ionization becomes signifi-
cant when the recoil velocity v ≳ α, as we shall see in
explicit examples in Sec. III. However, for atoms with more
than a handful of electrons, the large number of possible
final states makes it impractical to calculate all of the
exclusive transition probabilities. This motivates us to intro-
duce the semi-inclusive probability pvðjΨii → jχb1XsoftiÞ,
which includes all final states with an electron in the state
jχb1i and the remaining electrons, denoted collectively by
Xsoft, in either boundor continuumstateswith energies below
some threshold Eth.
The semi-inclusive rate is of particular relevance for

experiments aiming to observe the Migdal effect in neutron
scattering. This is because the differential probability falls
rapidly with increasing ionization electron energy; hence,
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in an experiment where the electron energy threshold is
Eth ∼OðkeVÞ, the expected signal is one hard electron with
additional subthreshold excited or ionization electrons.
The semi-inclusive transition probability is

pvðjΨii→ jχb1XsoftiÞ

¼ 1

ðN − 1Þ!
XðE<EthÞ

b2;…;bN

jhχb1…χbN jeimev·
P

k
rk jΨiij2; ð6Þ

where the sum is over all states where N − 1 electrons have
energy less than Eth (here and in the following, the sum

should be understood to include both the sum over
bound orbitals and the integral over continuum orbitals).
For N > 2 it is impractical to directly evaluate this
expression but, given that the probability of producing
multiple electrons above an OðkeVÞ threshold is
negligible (justified below), a good approximation to
the semi-inclusive probability is obtained by replacingPðE<EthÞ

b2;…;bN
→

P
all states
b2;…;bN

. In other words, the semi-inclusive
probability is approximately equal to the probability of
producing one hard electron with additional hard or soft
electrons, pvðjΨii→ jχb1XsoftiÞ≈pvðjΨii→ jχb1XalliÞ. This
leads to

pvðjΨii → jχb1XsoftiÞ ≈ hΨije−imev·
P

k
rk

�
1

ðN − 1Þ!
Xall states

b2;…;bN

jχb1…χbN ihχb1…χbN j
�
eimev·

P
k
rk jΨii

¼
XN
α¼1

jhχb1 jeimev·rjψaαij2; ð7Þ

where the final result contains only single-electron matrix
elements, with the sum over the occupied orbitals in the
initial state. In going from the first to the second line of
Eq. (7) we have used the orthogonality and completeness of
the fjχbig.
In deriving Eq. (7), we assumed that the probability of

producing multiple electrons above threshold is negligible.
We verify this numerically for several atoms in Sec. III, but
it is expected to be true in general for sufficiently large Eth.
This is because the high-energy continuum radial wave
functions oscillate rapidly, with wave number ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2meEe

p
,

which suppresses the radial integral with the initial-state
bound electrons in the single-electron matrix elements [see
Eq. (A6)]. However, this suppression disappears at high
recoil velocities where the spherical Bessel function
jLðmevrÞ in the integral oscillates with a comparable wave
number. We therefore expect the approximation in Eq. (7)
to eventually break down when v ≳ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Eth=me

p
and the

probability for multiple hard emission becomes significant.
For a typical experimental threshold, this corresponds to
v=α ≳ 8.6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEth=1 keVÞp
, which is larger than the maxi-

mum recoil velocity with a D-T neutron source (where the
neutron energy is ∼14 MeV) for every element except
helium. We have confirmed numerically for helium that
this expression provides an excellent estimate for ∼keV
thresholds.
Note that the above derivation can also be straightfor-

wardly extended to obtain, for example, the two electron
semi-inclusive rate pðjΨii → jχb1χb2XsoftiÞ. However, this
is unlikely to be of practical relevance due to the very low
probability of producing two high-energy ionization elec-
trons. The generalization of Eq. (7) to open-shell systems is
provided in Appendix A 2.

C. Dipole approximation

Most previous works have evaluated the matrix element
in Eq. (1) using the dipole approximation, where the
exponential is expanded to first order in v,

exp

�
imev ·

XN
k¼1

rk

�
≈ 1þ imev ·

XN
k¼1

rk þ…: ð8Þ

It is important to establish the regime of validity of this
approximation. A simple estimate uses the fact that atomic
wave functions have support on distances of order the
Bohr radius, a0; the relevant expansion parameter is then
meva0 ¼ v=α. It has previously been argued [18] that for
ionization from inner shells a0 should be replaced by the
effective Bohr radius a0=Zn, where Zn is the effective
nuclear charge for the given shell. However, for the
exclusive single ionization rate, this argument is incorrect.
There is an additional subtlety, which is that the dominant
correction to the dipole approximation comes not from the
bound-continuum matrix element, but from outer shell
bound-bound matrix elements appearing in the determinant
of Eq. (4).
The breakdown of the dipole approximation can be

understood using hydrogenic wave functions. The leading
correction comes from the ns → np matrix element, which
at leading order in v is proportional to vn2=ðαZnÞ [80]. The
dipole approximation is therefore expected to be valid only
when v ≪ αZn=n2, where n should be taken as the
principal quantum number of the valence shell. This means
that the dipole approximation generally fails at lower v for
larger atoms. While the above argument relies on hydro-
genic wave functions, the same behavior is found in our
numerical results, as we discuss in Sec. III C.
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Interestingly, the dipole expansion provides a much
better approximation to the semi-inclusive rate. This is
because the latter depends only on the bound-continuum
matrix elements in Eq. (7) and, for sufficiently high Eth,
inner shell ionizations provide the dominant contribution.
The dipole approximation to Eq. (7) therefore holds when
v ≪ Zn=ðmea0Þ ¼ αZn, where Zn here denotes the effec-
tive charge for the shell that gives the largest contribution. It
is interesting that despite the dipole operator only allowing
for single electron transitions, it provides a good approxi-
mation to the semi-inclusive probability, including multiple
ionization, up to corrections of order ðv=ðαZnÞÞ2.

III. MIGDAL PROBABILITY: NUMERICAL
RESULTS AND ILLUSTRATIVE EXAMPLES

The previous section provided a general discussion of the
Migdal effect and the methods for calculating transition
probabilities when atomic wavefunctions are expressed as
anti-symmetric products of single-electron wave functions.
In this section, we describe our implementations of the
general theory, and discuss select examples to illustrate
particularly interesting aspects of our results.
We calculate the atomic wave functions with two

independent implementations of the canonical Dirac-
Hartree-Fock (DHF) formalism (for a recent review, see
Ref. [81]), which use either basis-set or finite-difference
methods for the radial functions. The basis-set approach, as
implemented in the BERTHA [57] package, is ideally suited
for the calculation of integrated probabilities, since the sum
over states approaches completeness in a systematic way as
the size of the basis set is increased. For the calculation
of differential ionization probabilities we use the GRASP

[53–55] and RATIP [56] packages to calculate the bound and
continuum wave functions, respectively. Further details of
our atomic calculations are provided in Appendixes A 3
and A 4. The use of two completely independent imple-
mentations also allows for important cross-checks of our
results, and we find excellent agreement between the two
approaches. The outputs from our numerical calculations
are tables of transition probabilities, which we utilize in the
subsequent discussion, and are made available for use by
the community [77].

A. Integrated transition probabilities

We begin by discussing the integrated transition prob-
abilities for helium and neon, as plotted in Fig. 2 as a
function of the nuclear recoil velocity. These atoms cleanly
illustrate many of the general features seen in larger atoms.
Helium and neon are also of interest as proposed target
gases for both the NEWS-G direct DM and MIGDAL
neutron-scattering experiments.
In the upper panel of Fig. 2, the solid lines show the

ground state-to-ground state (green, p0
v), single transition

(cyan, p1
v) and double transition (purple, p2

v) probabilities,

and their sum (dark blue, psum
v ). These include all possible

transitions to bound-excited-orbitals or ionized continuum
states, integrated over electron energies. For low nuclear
recoil velocities, the most probable outcome is that the
entire atom recoils, remaining in the electronic ground
state; on the other hand, for sufficiently high-velocity
recoils the atom is always fully ionized. In the special
case of helium, all of the above quantities can be expressed
purely in terms of ground-state matrix elements, using the

FIG. 2. Integrated transition probabilities as a function of
nuclear recoil velocity for helium (upper) and neon (lower).
The solid lines show the probability for no electronic transition
p0
v, single transition p1

v, double transition p2
v, and, for neon,

triple transition p3
v. Upper panel: The dotted lines correspond to

single (cyan) and double (purple) ionization (i.e. transitions
without bound excitations). Lower panel: The solid lines
were calculated using BERTHA and the dashed ones with
GRASP/RATIP. The lower subpanel shows the difference between
them, 100 × ðpGRASP

v =pBERTHA
v − 1Þ.
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completeness of the single electron wave functions and
conservation of probability. Our implementations with
BERTHA and GRASP/RATIP give near identical results for
these matrix elements.
The dotted lines in the Fig. 2 upper panel show the

probabilities for single ionization (cyan) and double ion-
ization (purple) calculated with GRASP/RATIP; the dark blue-
dotted line shows the sum of the ionization probabilities
and p0

v. From the difference between the ionization-only
and single/double transition (solid) curves we see that, in
helium, the final states with excited bound electrons
contribute at most 20% of the total probability, and are
completely negligible at high recoil velocities.
In the lower panel of Fig. 2 we show similar results for

neon. Here, the solid lines were obtained using BERTHA and
we include up to triple transitions. The neon calculation
illustrates an important general feature for many-electron
atoms, which is the significant probability for multiple
ionization with increasing recoil velocity. We have not
calculated quadruple and higher transitions, since it is
computationally intensive, but it is clear that these become
important in neon when v ≳ α and psum

v ¼ p0
v þ p1

v þ p2
v þ

p3
v (dark blue curve) falls significantly below one.

Ultimately, for nuclear recoil velocities exceeding the
orbital velocity of the inner shell electrons we expect the
nucleus to effectively leave the entire electron cloud
behind, leading to the complete ionization of the atom.
For neon this corresponds to a velocity of v≳ 10α or a
recoil energy of around 50 MeV; recalling that the binding
energy per nucleon is around 8 MeV for neon, it seems
unlikely that the complete ionization of the atom from the
Migdal effect would be achievable in practice.
The fact that psum

v ¼ 1 to a high accuracy at low recoil
velocities, where quadruple and higher transitions are
negligible, provides a strong consistency check of our
results. A further cross-check is provided by our two

separate implementations, with the lower subpanel of
Fig. 2) showing the percentage difference between our
two calculations (pGRASP

v =pBERTHA
v − 1). For ground-ground

transitions the agreement is nearly perfect, and for single
transitions the calculations agree within 2%. For double
transitions the agreement has greater dependence on the
recoil velocity, but is never worse than 5%.4 The reason that
the GRASP/RATIP calculation yields slightly lower proba-
bilities is that it includes only a subset of the transitions to
excited bound states5; BERTHA, on the other hand, does not
distinguish between bound and continuum states, and the
basis-set set we have used is sufficiently large to achieve
good convergence.

B. Transition probabilities in the presence
of an energy threshold

Although the probability of multiple ionization increases
with the nuclear recoil velocity, the additional final-state
electrons would only be observed by experiments with a
very low electron energy threshold. The reason for this can
be seen in Fig. 3, which shows the probabilities for double
transitions in carbon (left) and argon (right) that yields
either one (dashed purple line) or two (solid purple line)
electrons with energies higher than 1 keV. The probability
of obtaining two hard electrons is orders of magnitude
smaller than having a single hard-electron across the whole
range of nuclear recoil velocities, which extend to the

FIG. 3. Semi-inclusive ionization probabilities with Eth ¼ 1 keV as a function of nuclear recoil velocity (solid gray). The dashed cyan
and purple curves show the contributions from exclusive single and double transitions, respectively. The solid purple line shows the
probability for double ionization with both electron energies above 1 keV. The panels are for carbon (left) and argon (right).

4We also compared our results for neon with Ref. [61], finding
good agreement for v=α < 0.8. At higher recoil velocities,
Ref. [61] obtains larger single and double transition probabilities
than both of our calculations (which are in close agreement).

5For neon, we have included orbitals up to 8s; 8p; 6d; note that
the excited bound orbitals from GRASP are also not strictly
orthogonal to the continuum states from RATIP, as discussed in
Appendix A 3.
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maximum velocity induced by D-T neutron scattering.
Accordingly, it is unlikely that Migdal events with multiple
energetic electrons will be observed in either neutron-beam
or DM experiments.6

The more relevant quantity for experiments is, therefore,
the semi-inclusive probability to produce one ionization
electron above threshold, with additional bound excitations
or subthreshold ionization electrons. This is shown by the
solid gray line in Fig. 3 with a threshold of Eth ¼ 1 keV for
carbon (left) and argon (right). The dashed cyan and purple
curves show the contributions to the semi-inclusive prob-
ability from single and double transitions, respectively. The
semi-inclusive and exclusive single ionization curves are
closely matched at low recoil velocities, but for recoil
velocities v=α≳ 0.3 double and higher transitions cannot
be neglected and eventually dominate.
The upper panel of Fig. 4 shows the contributions from

individual initial-state orbitals to the single ionization
probability, as a function of the ionization electron energy
Ee. Ionization from the valence shell provides the dominant
contribution at low Ee, while high-energy electrons are
more likely to be ionized from the inner shell. Relativistic
effects are small for fluorine, and the p1=2 and p3=2 curves
are the same up to a multiplicity factor of 2=3.
The middle panel of Fig. 4 shows the contributions of

transitions from particular pairs of initial-state orbitals to the
double ionization probability. In this panel we focus on the
scenario where one ionization electron is soft and below a
threshold ofEth ¼ 1 keV;we integrate over the energy of the
soft electron and show the differential probability as a
function of the hard electron’s energy. For clarity, we have
combined the 2p1=2 and 2p3=2 contributions and use non-
relativistic notation. The combination of ionization from the
inner shell together with the valence shell (1s; 2p) provides
the dominant contribution at these energies. This behavior is
consistent with that observed for single ionization, where
ionization from the 1s and 2p subshells dominates for hard
and soft electrons, respectively.
Finally, the lower panel of Fig. 4 shows the individual

contributions to the sum over orbitals in Eq. (7) for the
semi-inclusive probability. Again, we see that the leading
contribution is from the 1s matrix element. The qualitative
behavior observed in Fig. 4 is the same for all of the atoms
we have studied, and does not change significantly with the
recoil velocity up to overall normalization.

C. Validity of the dipole approximation

In Fig. 5 we provide some examples that demonstrate the
accuracy of the dipole approximation. First, in the upper
panel we show the difference between the exclusive single ionization probability and the dipole approximation,

pdipole
v =psingle

v − 1. The solid and dashed curves show
ionization from the 1s and valence subshells, respectively,
of neon (blue) and xenon (red). As discussed in Sec. II C,
and contrary to previous expectations in the literature, we
see that the dipole approximation fails at roughly the same

FIG. 4. Contributions to the differential ionization probability
for fluorine from different initial-state orbitals. The upper panel is
for single ionization; the middle panel shows double ionization
when one ionization electron is soft (E2 < 1 keV) while the other
is hard (E1 > 1 keV); and the lower panel shows the semi-
inclusive probability. The upper and lower panels label the curves
by the relativistic quantum numbers while, for clarity, the middle
panel uses nonrelativistic notation.

6Ionization by the Migdal effect necessarily leads to atomic de-
excitation, which may result in additional electrons through
Auger (or Coster-Kronig) emission. For light atoms, the Auger
electron will also be sub-keV. See Ref. [48] for further discussion.
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recoil velocity for both subshells. In fact, it is only the
valence subshell that behaves slightly differently and all
other subshells closely follow the 1s curve. We also see that
the dipole approximation breaks down at a lower recoil
velocity for xenon than neon. More generally, we find
that the dipole approximation provides a good approxima-
tion to the exclusive ionization probability only when
v ≪ αZn=n2, with n the principal quantum number of
the valence shell, which is consistent with the expectations
from Sec. II C.
The lower panel of Fig. 5 shows the difference between

the semi-inclusive probability and the dipole approxima-
tion, ps-inc

v =pdipole
v − 1, as a function of the nuclear recoil

energy for several different atoms. The endpoints of the
curves correspond to the maximum nuclear recoil energy
from incident D-T neutrons. Recall from section II C that
the dipole result is expected to provide a good approxi-
mation to the semi-inclusive probability when v ≪ αZn.
For helium, this corresponds to ER ≪ 0.4 MeV, which is
entirely consistent with our numerical results in Fig. 5.
For heavy atoms, such as xenon, we see that the dipole

approximation should be sufficiently accurate for most
cases of practical interest; however, this is clearly not the
case for lighter atoms, where it significantly underestimates
the semi-inclusive probability for large nuclear recoil
energies.

IV. MIGDAL PHENOMENOLOGY

In this section we present two applications of our
calculations. The first is to sub-GeV DM direct detection,
where the nuclear recoil velocity is small, v ≪ α, and
single ionization is the dominant process. The second is to
neutron scattering, where we assume the neutrons originate
from D-D or D-T fusion generators and the nuclear recoil
velocity can satisfy v ≃ α, so that multiple ionization
dominates.

A. Dark matter

Consider DM that interacts with the nucleus via the usual
spin-independent operator. The differential rate (per unit
target mass) to produce a nuclear recoil with energy ER and
an ionization electron with energy Ee factorizes and can be
cast in the form

d2R
dERdEe

¼ ρχA2σn
2mχμ

2
χn
jFNj2

X
nκ

dpvðnκ → EeÞ
dEe

gχðvminÞ; ð9Þ

where the local DM density is ρχ ≃ 0.3 GeV cm−3, mχ is
the DM mass, A the atomic mass number of the target, μχn
the DM-nucleon reduced mass, σn the spin-independent
DM-nucleon scattering cross-section at zero-momentum
transfer, and for FN we use the Helm nuclear form factor
[82]. The probability to ionize an electron with initial
quantum numbers ðn; κÞ into a final state with kinetic
energy Ee is pvðnκ → EeÞ. Finally, the standard integral
over the DM velocity distribution is

gχðvminÞ ¼
Z

∞

vmin

fχðv⃗χ þ v⃗⊕Þ
jv⃗χ j

d3v⃗χ ; ð10Þ

where fχðv⃗χÞ is taken to be a truncated Maxwell-
Boltzmann distribution and we follow the recommenda-
tions in Ref. [83] and set v0 ¼

ffiffiffi
2

p
σv ¼ 238 km s−1 and

vescape ¼ 544 km s−1. We neglect the time dependence of
v⃗⊕, the motion of the Earth with respect to the galactic rest
frame [84]. The minimum velocity of DM that can
inelastically scatter to produce a nuclear recoil with energy
ER and an electronic excitation of energy EEM is

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mNER

2μ2

s
þ EEMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mNER
p ; ð11Þ

where mN is the nucleus mass and EEM ¼ Ee þ Enκ, with
Enκ the (positive) binding energy of the electron before

FIG. 5. Upper panel: Difference between the exclusive single
ionization probabilities and the dipole approximation for the 1s
and valence subshells of neon and xenon. Lower panel: Differ-
ence between the semi-inclusive ionization probability and the
dipole approximation for various atoms. The open circles denote
where v ¼ α.
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emission. Note that since vmin depends on ðn; κÞ through
Enκ, gχðvminÞ should be included in the sum in Eq. (9). For
multiple ionization, EEM is modified to include the sum of
the binding energies of each of the electrons.
In Fig. 6 we show the differential DM scattering rate as a

function of the total electronic energy, EEM, for helium,
argon and xenon. Results for He, relevant for the CYGNUS
and NEWS-G experiments, have not been presented in the
literature before. We have assumed a DM mass of 1 GeV
and a DM-nucleon scattering cross section of 10−40 cm2.
For argon (xenon), one can clearly identify the thresholds
where ionization from the n ¼ 2, 1 (n ¼ 3) shells becomes
kinematically accessible. The dashed line shows the rate of
double transitions in helium, including both double ioniza-
tion and ionization with excitation, where the second
electron is soft (E2 < 0.1 keV). As expected, the double
transition rate is highly suppressed due to the low nuclear
recoil velocity (v=α≲ 0.1) induced by the scattering DM.
The dipole approximation is expected to be valid in

the kinematic regime relevant for DM scattering. In the
bottom subpanel of Fig. 6 we compare (for Ar and Xe) the
rate obtained with our transition probabilities to the dipole
approximation results of Ref. [10], ðdR=dEEMÞdipole=
ðdR=dEEMÞ − 1. We indeed find good agreement between
the two calculations, verifying existing DM limits based on
the Migdal effect. In fact, the differences are primarily due
to the differing calculations of the atomic wave functions,
rather than the use of the dipole approximation.
Specifically, we use the local DHF exchange potential in

contrast to the effective central potential approximation
employed in Ref. [10]. In Fig. 6 we have used the
theoretical values for the orbital binding energies in
EEM, which differ between the two calculations. This is
the source of the larger differences near thresholds. We
provide further comparisons of our ionization probabilities
with the dipole results of Ref. [10] in Appendix B.

B. Neutron scattering

There are several experimental proposals to test the
theory underlying the Migdal effect with neutron sources.
These experiments will probe an energy regime above that
being exploited by DM experiments, but the systematic
study of the Migdal effect in various atomic species will test
theoretical predictions of the Migdal effect over a wide
energy regime. We focus on the phenomenology relevant to
the MIGDAL experiment since it uses the highest-energy
neutron sources and results in phenomenology that is most
distinct from DM scattering—and was one of the key
motivations for the present work.
A schematic representation of the MIGDAL experiment

is shown in Fig. 7. The experiment will operate with intense
neutron beams from D-D and D-T fusion generators, which
are directed towards an optical time-projection chamber
(OTPC) situated 1 meter away for the D-T generator and
0.5 meters away for the D-D generator.7 The OTPC will be
filled with low-pressure gas; initially pure CF4 and later
CF4-based mixtures with noble elements or Si or Ge
compounds. Nuclear and electron recoils within the low-
pressure gas result in ionization tracks. The telltale sign of a
Migdal event is a nuclear recoil track and an electron
ionization track emerging from a common vertex. The
ionization tracks must be sufficiently long to discriminate

FIG. 6. Differential DM scattering rate (per unit target mass) as
a function of the total electronic energy for helium, argon and
xenon targets, with a DM-nucleon spin-independent cross section
of σn ¼ 10−40 cm2 and a DM mass of 1 GeV. The lower panel
shows the difference between our result and the rate obtained
using the dipole approximation for dpv=dEEM from Ref. [10],
ðdR=dEEMÞdipole=ðdR=dEEMÞ − 1. The cyan dashed line shows
the rate of double transitions in helium, where we integrated over
the energy of the second, soft electron up to 0.1 keV.

FIG. 7. Schematic representation of the MIGDAL experiment.
The D-D (D-T) generator emits mono-energetic neutrons at 2.47
(14.7) MeV and approximately isotropically at an intensity of
109 ð1010Þ neutrons per second. Neutrons scatter in the inter-
action volume contained within an OTPC, which images nuclear
and electron ionization tracks. Long and short electron arrows
represent one hard ionization electron and additional subthresh-
old electrons, the dominant Migdal process for these generators.

7We ignore the mild dependence of the neutron intensity on
the orientation of the generator and assume that the neutrons
are emitted isotropically. We use the neutron energies for
the generator orientations that will be used by the MIGDAL
experiment.

PRECISE PREDICTIONS AND NEW INSIGHTS FOR ATOMIC … PHYS. REV. D 107, 035032 (2023)

035032-9



between electron and nuclear recoils; at a pressure of
50 Torr, this implies an electron energy threshold of appro-
ximately 5 keV and a nuclear recoil threshold of around
150 keV [48].
The rate for neutron-induced Migdal events in a gas

mixture again factorizes and can be expressed as

d2R
dERdEe

¼ ϕn

X
i

Ni
T
dσis
dER

X
nκ

dpi
vðnκ → EeÞ
dEe

; ð12Þ

where ϕn is the neutron flux, the sum over i runs over all
species in the gas mixture (e.g., i ¼ fC; F;Arg in a CF4 þ
Ar mixture), and Ni

T , σ
i
s, and pi

vðnκ → EeÞ are the number
of target atoms in the interaction volume, the neutron-
nucleus cross section, and the transition probability for the
ith atomic species, respectively. The number of target
atoms is calculated assuming the gas is at ambient temper-
ature (293.15 K) and the interaction volume is 80 cm3 so
that, for instance, CF4 gas at 50 Torr contains 1.3 × 1020

molecules. To calculate Ni
T , we treat each CF4 molecule as

one carbon atom and four fluorine atoms.
An important difference with respect to DM scattering is

that the neutron has sufficient energy to excite the nucleus.
Immediately after the scattering, the excited nucleus is
moving with respect to the electron cloud and so can still
lead to electron emission through the Migdal effect.
Therefore, σs should include the contributions from all
reactions that result in the topology in Fig. 7: elastic
scattering, inelastic scattering, ðn; 2nÞ reactions and radi-
ative capture reactions, since all produce bare nuclear
recoils (i.e. without accompanying charged tracks) and
the photon released during de-excitation of the nucleus
escapes the low-pressure gas without interacting. Differ-
ential and integrated neutron-nucleus cross sections that we
use in this work are given in Appendix C.
Treating the molecule as a sum of discrete atomic nuclei

should be a very accurate approximation in the context of
the neutron-nucleus interaction, since the de Broglie wave-
length of the neutron at D-D or D-T energies is ∼10−14 m,
which is orders of magnitude smaller than the C-F bond
length. The approximation of using the atomic result for the
transition probability, pi

vðnκ → EeÞ, rather than performing
a molecular calculation, requires a more careful justifica-
tion. As a starting point, it has been shown that the general
form of the transition matrix element, Eq. (1), remains the
same for both atoms and molecules (up to corrections of
orderme=mN) [78]. It is also common practice to model the
molecular electronic wave functions in terms of antisym-
metric products of single-electron wave functions (molecu-
lar orbitals). Taken together, this implies that the formalism
in Sec. II extends to the case of molecules; this particularly
applies to the derivation of the semi-inclusive rate where
the only assumption made about the soft-electron wave
functions is that they are orthogonal and complete, which
holds for both atoms and molecules.

In the context of the MIGDAL experiment, we expect
that the atomic result for the semi-inclusive transition
probability will provide a good approximation to the
molecular result. This is because the MIGDAL experiment
employs an OðkeVÞ energy threshold, so as Fig. 4 dem-
onstrates, the transition probability is dominated by the
core (innermost) electrons. This is important because, after
molecular bonding, the core electrons in the CF4 molecule
are only slightly modified from their atomic forms. This is
evidenced by the experimental values of the binding
energies: the 1s binding energy in the fluorine atom is
697 eV [85], while the 1t2=1a1 states in CF4 (the core states
equivalent to 1s) have a binding energy of 695 eV [86]. We
therefore expect that when the core electrons dominate the
scattering rate, which is the case for the MIGDAL experi-
ment, the atomic transition probability will provide a
reasonable approximation to the full molecular result.

FIG. 8. Differential scattering rate as a function of the nuclear
recoil energy for fluorine in CF4 gas at 50 Torr from a D-D (top)
and D-T (bottom) neutron generator. Electron energies above the
threshold of Eth ¼ 5 keV have been integrated over. The solid
gray curve shows the semi-inclusive rate while the dashed cyan
and purple curves show the contributions from single and double
transitions, respectively.
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Further work is warranted to quantify the level of agree-
ment but such a study lies beyond the scope of this work.
With the above assumptions, the result for the fluorine

differential scattering rate with an electron energy threshold
of Eth ¼ 5 keV in CF4 gas at 50 Torr is shown in the upper
(lower) panel of Fig. 8 for the D-D (D-T) neutron generator.
The dotted lines show the rate for single ionization (cyan)
and double transitions (purple), while the solid gray line
shows the semi-inclusive rate. In both cases the semi-
inclusive curve matches the sum of the single and double
rates at v=α ≈ 0.3. However for higher values of v=α, and
most dramatically in the case of the D-T generator, the
semi-inclusive rate departs significantly from the combined
single and double rates. This behavior is consistent with
that shown in Fig. 3 for the transition probabilities.
Helium provides an interesting example since we can

directly compare the semi-inclusive calculation with the
sum of the exclusive transitions. The differential scattering
rate induced by a D-D generator directed at helium gas at
50 Torr is shown in Fig. 9.8 The solid gray line again shows
the semi-inclusive rate, while the dashed purple line shows
the double transition rate. As expected, the single ionization

rate dominates at low values of v=α, while the double
transition rate dominates at larger values. The lower
panel shows the percentage difference between the sum
of exclusive transitions and the semi-inclusive rate,
ðdR=dERÞe−þ2e−=ðdR=dERÞs:-inc − 1. We find good agree-
ment at the level of a few % or better across the whole
nuclear recoil range; ðdR=dERÞe−þ2e− slightly underesti-
mates dR=dERjs:-inc, with the small difference arising
because the excited bound orbitals from GRASP and the
continuum states from RATIP are not strictly orthogonal, as
discussed in Appendix A 3, so the ionization with excita-
tion rate is slightly underestimated.
In Fig. 10, we compare the number of Migdal events

induced by a D-D generator (left set of columns) and a D-T
generator (right set of columns) in several single-species
gas targets. The expected number of events per day is listed
above the column for each element, assuming a gas
pressure of 50 Torr and an experimental setup as in
Fig. 7. These were obtained by integrating the semi-
inclusive rate above an electron energy threshold of
5 keV and a nuclear recoil energy threshold of 150 keV.
The only exception is for xenon with the D-D generator
where the endpoint energy is approximately 75 keV, so we
instead integrated over nuclear recoil energies above
50 keV. With both neutron generators, we see that there
is the possibility of inducing tens or hundreds of Migdal
events over a short data-taking period consisting of a
few days.
The cyan columns in Fig. 10 show the single ionization

event rate relative to the semi-inclusive rate. The purple

FIG. 9. Differential scattering rate as a function of the nuclear
recoil energy for helium gas at 50 Torr from a D-D neutron
generator. Electron energies above Eth ¼ 5 keV have been
integrated over. The solid gray curve shows the semi-inclusive
rate while the dashed cyan and purple curves show the con-
tributions from single and double transitions, respectively. The
lower panel shows the percentage difference between the sum of
the exclusive single and double transition rates and the semi-
inclusive rate, ðdR=dERÞe−þ2e−=ðdR=dERÞs:-inc − 1.

FIG. 10. Event rates for several atomic elements with D-D (left
set of columns) and D-T (right set of columns) generators and
electron and nuclear recoil energy thresholds of 5 keV and
150 keV, respectively. (For xenon with the D-D generator
EthðNRÞ ¼ 50 keV.) The numbers above each column give the
events-per-day for 50 Torr gas. The coloured columns show the
stacked event rates for single (cyan) and double (purple)
transitions relative to the semi-inclusive rate. The black line in
each column shows the dipole approximation event rate relative
to the semi-inclusive rate.

8Experimentally, it may be more favorable to operate with
helium gas at higher pressure [48], but for ease of comparison
with other elements, we present results for 50 Torr.
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columns show the event-rate from double transitions,9

again relative to the semi-inclusive rate, stacked above
the single ionization contribution. For helium the single
plus double transition rate (i.e. the total height of the cyan
and purple columns) almost exactly matches the semi-
inclusive rate, consistent with Fig. 9. However, for all of the
other gases it underestimates the semi-inclusive rate. The
discrepancy is largest for lighter atoms (helium excluded)
and for the D-T generator where the nuclear recoils extend
to larger values of v=α.
Finally, the black line in each column of Fig. 10 indicates

the event-rate obtained using the dipole approximation,
relative to the semi-inclusive rate. The general trend is
consistent with that shown in Fig. 5; the dipole approxi-
mation provides a good approximation for the heavier
atoms, while for lighter atoms it significantly underesti-
mates the semi-inclusive rate, especially for the larger
nuclear recoil energies induced by the D-T generator.

V. CONCLUSIONS

The excitation or emission of an electron after a sudden
jolt to the atomic nucleus by an electrically-neutral pro-
jectile is known as the Migdal effect. In recent years, the
Migdal effect has gained prominence in direct detection
searches for sub-GeV DM, and there are now several
proposals to measure the effect using neutron sources. The
parameter that characterizes the probability of electron
emission is v=α, the dimensionless ratio of the nuclear
recoil velocity relative to the fine-structure constant multi-
plied by the speed of light. Previous studies have focused
on the regime where v=α ≪ 1, which is most relevant for
DM direct detection searches. We have advanced the theory
underlying the Migdal effect in the v ≃ α regime, intro-
ducing the semi-inclusive probability that is essential for
accurate predictions in fast neutron scattering.
We have undertaken two independent calculations of the

Migdal effect, solving the Dirac-Hartree-Fock equations
using the finite difference and basis-set methods as imple-
mented in GRASP and BERTHA, respectively. We have
calculated electron-transition probabilities for noble ele-
ments from helium to xenon, as well as for carbon, silicon,
germanium and fluorine. In addition to calculating single
ionization probabilities, which are in good agreement with
previous calculations when v=α ≪ 1, we have undertaken
calculations of multiple ionization. We have shown that
multiple ionization dominates when v ∼ α, but that the
probability of obtaining multiple electrons with energies
above an OðkeVÞ experimental threshold is extremely
small. Accordingly, we have emphasized the importance
of the semi-inclusive transition probability, which accounts

for all processes that yield one hard electron, with any
number of additional soft, subthreshold electrons. We have
also clarified the role of the dipole approximation. While
this approximation is only formally defined for single
transitions, we have found that it, perhaps surprisingly,
yields a good estimate of the semi-inclusive probability for
all but the lightest atoms.
We have applied our results for the Migdal effect in the

context of both DM direct detection and neutron scattering
experiments. In the DM case, we found good agreement
between our single ionization calculations and previous
results. Furthermore, we confirmed that the double ioniza-
tion rate is highly suppressed, owing to the low nuclear
recoil velocities involved, and can be safely ignored. We
have performed the first calculations of the Migdal effect in
DM-helium scattering, which will enable experiments that
use this element to increase their sensitivity to sub-GeV
DM. For neutron scattering, we focused on the phenom-
enology relevant to the MIGDAL experiment, which
employs D-D and D-T neutron generators. At the nuclear
recoil velocities induced by these generators, we have
shown that the multiple ionization rate is significant and
cannot be ignored; it is imperative that the semi-inclusive
probabilities are used to provide the most accurate descrip-
tion of the Migdal effect.
Our work has been carried out in the context of atomic

systems. While we have argued that the atomic calculations
should provide a good approximation for the core electrons
in CF4, a molecular gas that will be used in the MIGDAL
experiment, work remains to extend the formalism so that it
applies to all electrons in the molecular system. Similarly,
we have ignored complications due to the electronic band
structure in liquid noble elements, relevant for DM direct
detection experiments. Further work is warranted to extend
the theory to these systems. We hope to address some of
these issues in the future.

Data Access Statement: The data supporting the find-
ings reported in this paper are openly available from the
GitHub repository at [77].
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APPENDIX A: ATOMIC PHYSICS

1. Relativistic single-electron matrix elements

To evaluate the Migdal transition matrix element, we
require single-electron matrix elements of the form

Mn0κ0m0
nκm ≡ hn0; κ0; m0j expðimev · rÞjn; κ; mi; ðA1Þ

where hrjn; κ; mi is a four-component atomic Dirac spinor
that satisfies

hrjhDjn; κ; mi ¼ hrjα · pþ βme þ VðrÞjn; κ; mi
¼ Enhrjn; κ; mi; ðA2Þ

with n denoting the principal quantum number, m the Jz
quantum number, VðrÞ the potential, and α and β are
the 4 × 4 Dirac matrices [87]. The quantum number κ is the
eigenvalue of the operator K ¼ −1 − σ · l and can be
written as

κ ¼
�−ðlþ 1Þ j ¼ lþ 1=2 ðκ < 0Þ
þl j ¼ l − 1=2 ðκ > 0Þ; ðA3Þ

with l and j the orbital and total angular momentum
quantum numbers respectively. For continuum states the
discrete label n is replaced with the continuous label E.
We normalize our continuum spinors with respect to
energy,

R
dEhψE0;κ0;m0 jψE;κ;mi ¼ δðE − E0Þ.

The four-component spinors are separable in radial
and spin-angular coordinates and can be written as (see
e.g., [88])

hrjn; κ; mi ¼ 1

r

�
Pn;κðrÞχκ;mðϑ;φÞ
iQn;κðrÞχ−κ;mðϑ;φÞ

�
; ðA4Þ

where Pn;κðrÞ and Qn;κðrÞ are, respectively, the large and
small component radial functions and χ�κ;mðϑ;φÞ are
two-component spin-angular functions.
As usual, the operator expðimev · rÞ is written as the

spherical tensor expansion

expðimev · rÞ ¼ 4π
X
L;M

iLjLðmevrÞYM�
L ðv̂ÞYM

L ðr̂Þ; ðA5Þ

where jLðxÞ is the spherical Bessel function. The spin-
angular parts of the matrix element are independent of
sgnðκÞ and sgnðκ0Þ, which allows us to write the matrix
element in the form

Mn0κ0m0
nκm ¼

ffiffiffiffiffiffi
4π

p X
L;M

iL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ 1

p
YM
L ðv̂ÞdLMðj0; m0; j; mÞ

×
Z

∞

0

dr jLðmevrÞ½Pn;κðrÞPn0;κ0 ðrÞ

þQn;κðrÞQn0;κ0 ðrÞ�: ðA6Þ

The angular coefficients can be determined via the Wigner-
Eckart theorem and are given by

dLMðj0;m0; j;mÞ ¼ ð−1Þ2j0−m0þ1=2½j; j0�1=2Πeðκ; κ0;LÞ

×

�
j0 L j

−m0 M m

��
j0 L j

1=2 0 −1=2

�
;

ðA7Þ

where ½j; j0� ¼ ð2jþ 1Þð2j0 þ 1Þ, and Πeðκ; κ0;LÞ imple-
ments the even-parity selection rule and is equal to one if
lþ l0 þ L is even and zero otherwise. In practice, the limits
on the sum over L in Eq. (A6) are determined by the
selection rules of the 3j symbols that appear in Eq. (A7).

2. Transition probabilities with configuration
state functions

As usual, we describe atomic wave functions with
configuration state functions. These are linear combina-
tions of Slater determinants that, in the relativistic case,
are eigenfunctions of energy, the total angular momentum
operators, J and Jz, and parity. In this appendix we
generalize the results of Sec. II, which were derived for
wave functions consisting of a single Slater determinant.
We write the initial and final-state atomic wave functions as

jΨii ¼
X
γ

Cγ
i jΨγ

i i;

jΨfi ¼
X
γ

Cγ
fjΨγ

fi; ðA8Þ

with jΨγ
i i ¼ jψaðγÞ1…ψaðγÞN i, jΨγ

fi ¼ jχbðγÞ1…χbðγÞN i sin-
gle-Slater-determinant wave functions and Cγ

i , C
γ
f constant

coefficients.

a. Exclusive transition probability

Using the above expressions for the initial and final state
wave functions, the generalization of the exclusive tran-
sition probability from Eq. (5) is

pvðjΨii → jΨfiÞ ¼
����X
γ;γ0

ðCγ0
f Þ�Cγ

i detðMγ0γÞ
����2: ðA9Þ

As in Eq. (4), Mγ0γ is an N × N matrix of single-electron
matrix elements

ðMγ0γÞβα ¼ hχbðγ0Þβ j expðimev · rÞjψaðγÞαi; ðA10Þ
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where jψaðγÞαi and jχbðγ0Þβi are occupied orbitals in jΨγ
i i and

jΨγ0
f i, respectively.

b. Semi-inclusive transition probability

In Sec. II we defined the semi-inclusive transition
probability, which includes all final states containing a

single continuum electron with Ee > Eth and any number
of additional subthreshold excitations. To perform the sum
over final states it is more convenient to work in the
determinant basis for the final states. The initial-state atomic
wave function, on the other hand, is given by a particular
linear combination of determinants, as in Eq. (A8). The semi-
inclusive probability can then be written as

pvðjΨii → jχb1XsoftiÞ ¼
1

ðN − 1Þ!
XðE<EthÞ

b2;…;bN

jhχb1…χbN jeimev·
P

k
rk jΨiij2

≈ hΨije−imev·
P

k
rk

�
1

ðN − 1Þ!
Xall states

b2;…;bN

jχb1…χbN ihχb1…χbN j
�
eimev·

P
k
rk jΨii

¼
X
γ;γ0

ððCγ0
i Þ�Cγ

i hΨγ0
i je−imev·r1 jχb1i1ðN−1Þhχb1 jeimev·a1 jΨγ

i iÞ: ðA11Þ

In the second line we have approximated
PðE<EthÞ

b2;…;bN
→P

all states
b2;…;bN

, as discussed in Sec. II. In going from the second
to the third line we have substituted Eq. (A8) for the initial-
state wave function and used the completeness of the
fjχbig. The identity operator that acts on the subspace of
the remaining N − 1 electrons is denoted by 1ðN−1Þ. The
above expression for the semi-inclusive probability can be
further simplified in specific instances. One such case is
when each of the determinants that make up the initial-state
wave function differ by two or more orbitals. This occurs
for the group 14 (group IV) elements we consider (C, Si,
Ge), where the atomic ground state has J ¼ 0 and in
relativistic jj-coupling is a linear combination of valence
configurations ðnp1=2Þ2 and ðnp3=2Þ2. In this case, the
cross-terms in Eq. (A11) vanish and the semi-inclusive
probability is

pvðjΨii → jχb1XsoftiÞ

≈
X
γ

jCγ
i j2

XN
α¼1

jhχb1 jeimev·rjψaαij2: ðA12Þ

Finally, for the group 17 and 18 (group VII and VIII)
elements the ground state wave function is described by a
single Slater determinant and the semi-inclusive probability
is simply given by Eq. (7).

3. Implementation in GRASP and RATIP

This appendix briefly describes our computation of the
atomic wave functions using the GRASP [53–55] and RATIP

[56] packages.
GRASP is an implementation of the multiconfiguration

Dirac-Hartree-Fock method in which wave functions are
expressed as a weighted sum of CSFs. The integrodiffer-
ential DHF equations for the radial functions are solved

using finite-difference methods as part of an iterative, self-
consistent field procedure. GRASP employs an exponential
radial grid; we use the default value for the first grid point,
r0 ¼ 2.0 × 10−6=Z with Z the atomic number, and a step
size in the range h ¼ 0.006–0.008 depending on the
element. The nuclear charge distribution is modeled by
the default Fermi distribution. The Breit interaction and
vacuum polarization and self-energy corrections are
included in the configuration interaction.
We initially solve for the atomic ground state wave

function in an optimal level calculation. The radial func-
tions for the excited orbitals are then obtained via an
extended optimal level calculation that includes configu-
rations with a single excitation from the valence subshell.
This is repeated several times, successively increasing the
maximum principal quantum number, n, with all radial
functions with lower n held fixed. The resulting set of radial
functions is then used to construct all excited and ionized
states. We therefore do not allow for relaxation of the
orbitals; this is consistent with the sudden approximation
employed in the derivation of the Migdal matrix element.
For ionized states, the radial functions for the continuum

spinors are calculated using RATIP, which is also based on
the GRASP implementation of the multiconfiguration DHF
method. RATIP employs a radial grid that is exponential at
small r and transitions to linear at large r. We fix the grid
parameters to be r0 ¼ 2.0 × 10−6=Z, h ¼ 0.006, and
hp ¼ 0.0033. For our maximum electron energy of Ee ¼
20 keV this corresponds to 50 grid points per wavelength at
large r. The continuum radial functions are each obtained in
an optimal level calculation using a configuration with a
single excitation from the valence subshell. This set of
continuum radial functions is then used to describe all
ionized states.

RATIP enforces orthogonality between the continuum
wave functions and the occupied ground state orbitals.
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However, the excited bound orbitals obtained using GRASP

and the continuum orbitals from RATIP are not strictly
orthogonal. As a result, the basis of single-electron wave
functions obtained using GRASP and RATIP does not
approach completeness. This does not impact the single,
double, and semi-inclusive ionization probabilities we
are primarily interested in, but does affect the total
integrated probabilities (except for helium where the
integrated probabilities can be expressed purely in terms
of ground-state matrix elements). This is one of the reasons
that the alternative basis-set approach of BERTHA provides a
valuable cross-check of our results.
To evaluate the transition matrix elements in Sec. II and

Appendix A 2, the wave functions need to be converted
from the CSF basis to the determinant basis, for which we
use the CESD component of RATIP. Finally, our transition
probabilities include contributions up to L ¼ 10 (L ¼ 4 for
xenon double ionization), which we find is sufficient to
achieve good convergence up to the maximum recoil
velocity for D-T neutrons. The one exception to this is
helium, for which we include up to L ¼ 30. This results in
excellent convergence up to v=α ∼ 6, while from v=α ¼ 6
to the D-T endpoint at v=α ≃ 9.6 conservation of proba-
bility is still maintained at the level of 4% or better.

4. Implementation in BERTHA

In this appendix we briefly describe the use of basis-set
methods to compute the atomic wave functions and single-
electron matrix elements, as implemented in the software
package BERTHA [57].
The radial functions are expanded in a finite basis set. A

conventional choice is the so-called G-spinor basis set,
which takes the form

fLi;κðrÞ ¼ NL
i;κr

lþ1 expð−λi;κr2Þ; ðA13Þ

fSi;κðrÞ ¼ NS
i;κ

�
d
dr

þ κ

r

�
fLi;κðrÞ;

¼ NS0
i;κððlþ κ þ 1Þ − 2λi;κr2Þrl expð−λi;κr2Þ;

ðA14Þ

where NL
i;κ, N

S
i;κ and NS0

i;κ are normalization constants that
prove useful in maintaining numerical accuracy in the
calculation of matrix elements. The basis set parameters,
fλi;κg, are chosen following well-established practices that
generate accurate bound-state energies and which approach
completeness in a systematic fashion.
In this basis, the radial amplitudes are expressed in terms

of the basis set by

Pn;κðrÞ ¼
XNκ

i¼1

cLn;κ;i f
L
i;κðrÞ; ðA15Þ

Qn;κðrÞ ¼
XNκ

i¼1

cSn;κ;i f
S
i;κðrÞ; ðA16Þ

where Nκ is the rank of the expansion and 2Nκ is the
dimension of the matrix representation of the Dirac
operator for symmetry-type κ. The expansion coefficients
are determined by the solution of a generalized matrix
eigenvalue equation of the general form

Fκcn;κ ¼ En;κSκcn;κ: ðA17Þ

The matrix Fκ is a matrix representation of the Dirac-
Hartree-Fock operator, and includes the effects of the
Coulomb interactions in the self-consistent field. The
matrix Sκ is the block-diagonal Gram (or overlap) matrix
in the given G-spinor basis set.
With this basis set, the single-electron matrix elements in

Eq. (A6) can be expressed in closed form in terms of a
single class of radial integral,

IðL;M; ζÞ ¼
Z

∞

0

rM jLðmevrÞ expð−ζr2Þdr;

¼ ðmevÞL
2Lþ2

ffiffiffi
π

p
ζðMþLþ1Þ=2

ΓðMþLþ1
2

Þ
ΓðLþ 3

2
Þ e

− 1
4ζðmevÞ2

×M
	
L −M

2
þ 1; Lþ 3

2
;
ðmevÞ2
4ζ



; ðA18Þ

where M½a; b; x� is the confluent hypergeometric function
and ζ is a real, positive parameter derived from the
constituent basis set parameters λiκ and λjκ0 . The parameters
L and M are both odd or even positive integers and satisfy
the subsidiary condition that M − L is an even integer
greater than 2, so that the confluent hypergeometric
function always takes the form of a polynomial with a
finite number of terms. The radial matrix elements are
evaluated by taking appropriate linear combinations of the
primitive integrals in Eq. (A18).
The solution of the DHF equations using G-spinors is

achieved using the computer program BERTHA. For a basis
set of rank Nκ, the solution of equations of the form (A17)
generates a set of Nκ positive-energy states and Nκ

negative-energy states for symmetry-type κ. The posi-
tive-energy states can be further categorized as being
bound states if En;κ < mc2, or virtual states if En;κ > mc2.

APPENDIX B: COMPARISON WITH PREVIOUS
CALCULATIONS

In this appendix we provide a comparison of our
results for the differential single ionization probability,
dpv=dEe, with the results from Ref. [10]. The dipole
approximation is used in Ref. [10], so we make the
comparison at v ¼ 10−4 where the dipole approximation
provides accurate results.

PRECISE PREDICTIONS AND NEW INSIGHTS FOR ATOMIC … PHYS. REV. D 107, 035032 (2023)

035032-15



In Fig. 11, the colored lines in the upper part of each
panel show our results for ionization from each subshell in
carbon, fluorine, neon, argon and xenon. The black dashed
lines in each panel show the 1=ð2πÞdpc=dEe values from
Ref. [10]. We use a different convention to normalize the
continuum spinors, so our differential probability does not
require the 2π factor. Following Ref. [10], we label the
states with the nonrelativistic quantum numbers ðn;lÞ.
This means that the p-state probabilities are the sum of
those for the p1=2 and p3=2 relativistic states, while the d-
state probabilities are the sum of d3=2 and d5=2. The lower
part of each panel shows ½1=ð2πÞdpc

e=dEe�=½dpv=dEe� − 1

expressed as a percentage.

In general, we find good agreement at the level of about
30% or better across all of the atomic species. Larger
departures occur but typically at very low values of the
electron energy, 1 eV≲ Ee ≲ 100 eV, where the precise
form of the potential has more of an impact. Some degree
of deviation is expected since Ref. [10] employs a relativistic
self-consistent mean-field approach with a local central
potential, while we use the canonical Dirac-Hartree-Fock
method, which includes the full nonlocal exchange potential.

APPENDIX C: NEUTRON CROSS SECTIONS

This appendix gives the neutron–nucleus cross-sections
used in this work. The numerical values of the cross

FIG. 11. The upper part of each panel compares our results (colored lines) for the differential single ionization probability, dpv=dEe,
with the equivalent results from Ibe et al. [10] (dashed black lines). Following Ref. [10], we label the states with the nonrelativistic
quantum numbers and, for clarity, we have separated the s and p, d states for germanium and xenon into separate panels. The lower part
of each panel shows the difference, ½1=ð2πÞdpc

e=dEe�=½dpv=dEe� − 1, expressed as a percentage.

COX, DOLAN, McCABE, and QUINEY PHYS. REV. D 107, 035032 (2023)

035032-16



sections in Table I are from the ENDF/B-VIII.0 library
[89]. The values on the left (right) correspond to nominal
neutron energies from a D-D (D-T) neutron generator. We
have listed cross sections for elastic scattering, inelastic
scattering, ðn; 2nÞ reactions, and radiative capture proc-
esses as all of these processes can give rise to an electron
and nuclear recoil track with a common vertex: the signal
for which the MIGDAL experiment is searching [48].

Figure 12 shows the combined differential cross-
section for all signal-inducing processes as a function
of the nuclear recoil energy. The left and right panels
show the spectra expected from an incoming neutron
with energy 2.47 MeV and 14.7 MeV, respectively, and
the curves extend to the end-point recoil energies. The
spectra were generated with GEANT4 v10.5.1 (G4NDL
4.5) [90].
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