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Despite the immense success of the Standard Model (SM), the hunt for physics beyond the Standard
Model (BSM) has continued. Extension of the SM gauge group or the particle content of the SM remains a
viable solution to many observed anomalies, such as the anomalous magnetic moment of muon, flavor
violation, dark matter, etc. In this work, we consider a BSM model which includes a leptoquark, a
vectorlike lepton, and a real scalar singlet. The model accounts for a dark matter candidate through a Z2

symmetry in addition to predicting the muon (g − 2) in agreement with the experimental measurement. We
also show that the experimental measurements of the lepton flavor violation are satisfied in a wide range of
parameter space. The viable parameter space of the model is used to study the collider signatures arising
from the pair production of the leptoquark in the 2μþ 2bþ =ET channel at the 14 TeV LHC run.
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I. INTRODUCTION

The success of the Standard Model (SM) predictions of
particle physics is astonishingly precise. All the predicted
particles have been observed in various experiments. The
last particle to be discovered is the Higgs boson [1,2].
Despite its huge success, it has limitations in explaining
several anomalies observed in precision measurements
and other experiments [3–9]. These limitations include
neutrino mass and mixing observations, dark matter (DM)
in the universe, several anomalies in the flavor sector,
and ðg − 2Þμ anomaly, among many others. The quest for
physics beyond the Standard Model (BSM) that could
account for these observations has become a popular area
of research in particle physics.
One particular anomaly, which has been of interest for a

long time, is the gyromagnetic ratio of the electromagnetic
interaction of leptons, especially for muon (μ). There seems
to be a 4.2σ discrepancy between the SM prediction and the
latest measurement at the E989 experiment at Fermi
National Laboratory (FNAL) [4]. This discrepancy was

at 3.7σ in the earlier observation at the Brookhaven
National Laboratory (BNL) [10]. The solution to this
long-term discrepancy between the SM prediction and
the experimentally observed value exist in many new
physics (NP) scenarios. The most popular ones invoke
new particles and/or symmetries that provide additional
contributions to the SM prediction. There are, for example,
the popular nonsupersymmetric models with single-field
extensions are Z0 models [11–18], singlet-scalar extension
[19–22], vectorlike lepton (VLLs) [23–31], or extensions
of the Higgs doublet to two [32–38] or more doublets.
While these extensions might give rise to enough contri-
bution to the anomalous magnetic moment of μ, they also
contribute to the lepton flavor violation. Since we do not
have any evidence for any lepton flavor violation (LFV),
simultaneously achieving both goals in a simplistic and
universal model is difficult. The usual way around this is to
consider nonuniversal couplings of the new particles with
the SM particles. There are models with two-particle
extensions where it is relatively easy to explain muon
anomaly and nonobservation of LFV at the same time
[39–42]. The most popular two-particle extensions usually
consider a combination of scalars and fermions. For the
lepton sector analysis, the fermion is usually a VLL. In
addition to such extensions, other ideas also have possible
explanations for the ðg − 2Þμ anomaly. These ideas mainly
include extra-dimensional models [43,44], technicolor
models [45], composite models [46–49], leptoquark mod-
els [50,51], etc. In this work, we attempt to explain the
ðg − 2Þμ anomaly while allowing solutions to some of the
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observed flavor anomalies by extending the SM particle
content. In our scenario, we have a scalar leptoquark, a real
scalar singlet, and a pair of VLLs added to the SM [52,53].
The leptoquark and singlet scalar usually contribute to the
magnetic moment of muon via the chiral breaking terms
which are proportional to the mass of the heavy particle
running in the loop. The VLL is responsible in giving
necessary couplings to the μ, τ, and e, so that we get
significant contribution to the ðg − 2Þμ, while the LFV does
not receive any large contributions. In our scenario, due to
an explicit Z2 symmetry the scalar leptoquark is instru-
mental in only addressing the meson flavor anomalies but
the VLL and singlet scalars contribute to muon anomaly as
well as LFVat one-loop. This model was considered before

for explaining various flavor anomalies, for example, Rð�Þ
D ,

b → sμμ, Bs − Bs oscillation [53]. In addition, the presence
of a neutral scalar or the lightest neutral component of the
VLL also explains the dark matter puzzle where the neutral
scalar or fermion play the role of dark matter. The presence
of a leptoquark and charged VLL in the model also lead to
interesting collider signals. We note that most models
(unlike ours), introduce a leptoquark but do not augment
it with an odd Z2 parity. The absence of the Z2 parity
allows the leptoquark to couple to SM particles singly,
which leads to its direct decay to SM final states. These give
strong bounds on the leptoquark mass that can be produced
via strong interactions at hadron colliders and then recon-
structed through the SM decay products [54–57]. In our
case, the production of the leptoquark followed by its decay
to VLL and quarks lead to a different signal when
compared to the studies available in the literature. The
VLL then decays to charged SM leptons and a neutral
singlet scalar. The decays finally lead us to a signal of
dimuon plus dijet with missing transverse energy. We study
the viability of observing the signal at the current and future
runs of the Large Hadron Collider (LHC) in this work.
The paper is organized as follows. In Sec. II, we describe

the model. In Sec. III, we discuss the allowed parameter
space of our model that explain the muon anomalous
magnetic moment and lepton flavor violations. We discuss
the constraints from electroweak precision (EW) measure-
ments in Sec. IV. In Sec. V, we examine the constraints
coming from quark flavor-violating processes. We finally
look for distinctive collider signals at LHC and discuss our
results in Sec. VI and conclude in Sec. VII.

II. MODEL

We propose a new physics model that may resolve
several flavor anomalies observed in recent experiments.
The model extends the SM particle content by adding new
particles that include a leptoquark (Φ), a pair of SUð2Þ
doublets (L4L; L4R), and a real scalar singlet field (S). We
augment the SM symmetry with an additional discrete
Z2 symmetry under which all the SM states are even while

the new states are odd. The charge of the new fields under
the G ¼ SUð3ÞC × SUð2ÞL × Uð1ÞY × Z2 is tabulated in
Table I.
The gauge invariant Lagrangian for the BSM sector can

be written as

L ⊃ −M2
ΦΦ†Φ −M2

SS
2 − λHΦH†HΦ†Φ − λSΦΦ†ΦS2

− λHSH†HS2 − λΦðΦ†ΦÞ − λSS4

− fhiL4RQLiΦ† þ h0jL̄4RLLjSþMFL̄4LL4R þ H:c:g;
ð1Þ

whereH is the SM Higgs doublet,QLi and LLj, (i, j¼ 1, 2,
3) are the SM quark and lepton doublets, respectively. The
VLL doublet L4 ¼ ðν4;l−

4 ÞT has ν4 and l−
4 as the neutral

and charged components, respectively. Since all the new
particles are odd and SM particles are even under
the unbroken Z2 symmetry, the odd particles do not
mix with the even particles. This prevents any modifica-
tion to the couplings of the particles in the SM sector as
the unbroken Z2 prevents the scalar S from acquiring a
vacuum expectation value (VEV). However, the presence
of λHΦ and λHS terms lead to modified mass for Φ and S
which shift from MΦ and

ffiffiffi
2

p
MS after electroweak

symmetry breaking. The absence of mixing between
the SM Higgs boson and S keeps the couplings of SM
particles with the SM Higgs boson unaffected. The new
scalars in the model are taken to be heavier than the SM
Higgs boson such that we do not have any additional
decay modes of the SM Higgs boson with respect to the
SM. However, the effect of these new heavy states which
are both colored and electrically charged would appear
through loops. This would alter the hgg and hγγ effective
couplings, which appear at the one-loop level. We further
discuss this in Sec. VI.
We note that almost all the properties of the SM scalar

sector remain unaffected at the tree-level in this model.
There would be corrections to SM interactions at the loop-
level, giving the necessary contributions to the muon
(g − 2) that could explain the anomaly. The terms in the
Lagrangian with the Yukawa couplings hi and h0j are
responsible for these contributions, where i, j ¼ 1, 2, 3
represent the generation indices. Note that the Yukawa term
in Eq. (1) containing hi is written in terms of the flavor
eigenbasis of quarks which finally mix via the Cabibbo-
Kobayashi-Maskawa (CKM) mixing. After CKM mixing,

TABLE I. New fields and their charges.

Particles SUð3ÞC SUð2ÞL Uð1ÞY Z2

Φ 3 1 2=3 −1
L4L 1 2 −1=2 −1
L4R 1 2 −1=2 −1
S 1 1 0 −1

GHOSH, RAI, and SAMUI PHYS. REV. D 107, 035028 (2023)

035028-2



the couplings of SM quarks in the physical (mass)
eigenbasis become

hphi →
X3
j¼1

hjUd
ji; ð2Þ

where Ud is the mixing matrix of down-type quarks. The
new Yukawa couplings would also give rise to new
contributions to several other phenomena. For example,
the presence of the hi term in the Lagrangian leads to

additional contributions to the K0 − K0 and B0 − B0

oscillations. These two oscillation measurements
agree well with the SM prediction. Therefore any new

physics contribution to the K0 − K0 and B0 − B0 oscil-
lations must be small and will help in constraining the
parameters of the BSM model. In our model this is
achieved by choosing leptoquark coupling to the first
generation quark to be negligible, i.e., hph1;2 ≃ 0 [53].
At the same time, there is still room for new physics

in the B0
s − B0

s oscillation data which gives a constraint
jhph2 hph3 j≲ 0.65 [53,58,59].
The lepton sector is affected by the term containing h0j

coupling. Instead of leptoquark, we have a real scalar
involved in this coupling. The enhancement in the ðg − 2Þμ
can be achieved by considering VLL and the real scalar in
the loop. At the same time, the lepton flavor violating decay
like μ → eγ should not yield a large value. This can be
achieved by taking large values for the h02 and keeping other
h0 negligible. Moreover, if the real scalar is the lightest
among all the new states, it may play the role of DM in this
model. The possibility of explaining the DM in this model
will be discussed in the later part of this article. In this
work, we mainly focus on the muon anomaly, lepton and
quark flavor violation, and the signatures of the leptoquark
at the LHC.

III. MUON ANOMALY AND LEPTON
FLAVOR VIOLATION

The gyromagnetic ratio of muon (gμ) is exactly 2
at the tree-level. However quantum corrections are
induced through contributions from higher-order
loops within the SM and the deviation from its tree-level

value is denoted by aμ ¼ gμ−2
2
, known as the anomalous

magnetic moment of the muon. In the SM, the current
value reads [60–80]

aSMμ ¼ 116591810ð43Þ × 10−11: ð3Þ

The recent results from the “Muon g − 2” at Fermilab [3]
from their first run data provides the anomalous magnetic
moment to be [4]

aexp -FNALμ ¼ 116592040ð54Þ × 10−11: ð4Þ
The combined new world average (combination

of recent FNAL [4] and older BNL(2006) [10] data) is
published as [81]

aexp -comb
μ ¼ 116592061ð41Þ × 10−11: ð5Þ

The difference between the experimental observation
and the SM prediction, defined as Δaμ, amounts to a 4.2σ
discrepancy, which provokes one to look beyond the SM.

Δaμ ¼ aexp -comb
μ − aSMμ ¼ 251ð59Þ × 10−11: ð6Þ

The aμ is chirality flipping and is generated in our model
by the Feynman diagram corresponding to the new physics
(NP) contribution at one-loop as shown in Fig. 1. The
contribution comes from the scalar S and the VLL in the
loop and the expression for Δaμ is given by [52]

Δaμ ¼
m2

μjh02j2
8π2M2

l4

f

�
M2

S

M2
l4

�
; ð7Þ

where mμ is the mass of muon and

fðxÞ ¼ 1 − 6x − 6x2 ln xþ 3x2 þ 2x3

12ð1 − xÞ4 : ð8Þ

We show the allowed range of the parameter space in
Fig. 2 which satisfies the experimental value of Δaμ within
a 3σ range. The parameters in our model are scanned over:

Ml4 ∈ ½102.6∶500� GeV; MS ∈ ½100∶400� GeV;
h02 ∈ ½1∶3.5� ð9Þ

to highlight the regions of parameter space which can
explain the ðg − 2Þμ observation. The mass of the charged
lepton Ml4 has a lower bound of 102.6 GeV from Large

FIG. 1. Feynman diagram for the NP contribution to ðg − 2Þμ at
one-loop.

COLLIDER SIGNATURES OF A SCALAR LEPTOQUARK AND … PHYS. REV. D 107, 035028 (2023)

035028-3



Electron Positron collider (LEP) [59] and hence, in the
scan, the lower range of Ml4 has been set to this value.
From Fig. 2(a), we see that Ml4 ≲ 400 GeV is preferred to
satisfy the muon anomaly data. Larger values ofMl4 would
render the Yukawa coupling h02 nonperturbative. The
allowed values for the scalar mass can be, however, equal,
heavier or lighter than the VLL mass. In our model, we
preferably set the scalar S to be the DM candidate, which
sets MS < Ml4

. It is worth pointing out that the leptoquark
mass MΦ does not play any role which is expected, as the
leptoquark which is odd under Z2 will not contribute at
one-loop. The anomaly prefers a large value for the Yukawa
coupling as one can see from Fig. 2(b). We find that h02 ≳
1.5 are more favorable for all mass values of the VLL. The
parameters that explain the muon anomaly are chosen for
our collider analysis which we discuss later in Sec. VI.
We note that similar diagrams as the muon anomaly

diagram, with external muons replaced by appropriate
leptons, will contribute to the LFV decay modes.
Though the violation of lepton flavor has been observed
in neutrino oscillation [82,83], nonobservation of any
significant LFV in the charged lepton sector put strong
constraints on LFV processes. The strongest bound in the
μ–e sector (BRðμ → eγÞ < 4.2 × 10−13Þ comes from the
MEG experiment [5]. Similar to the μ–e sector, we also get
constraints from ðτ → eγÞ and ðτ → μγÞ decay branching
ratios (BR). The current bound on these lepton flavor
conversions are [6]

BRðτ→ eγÞ< 3.3×10−8; BRðτ→ μγÞ< 4.4×10−8:

As pointed out before, these constraints can be avoided
easily in our model by choosing h01 and h03 small. We
choose values for these parameters in the following range:
h01 ∈ ½10−5∶10−4�, and, h03 ∈ ½0.01∶0.1� which are allowed
by the above LFV constraints.

IV. ELECTROWEAK PRECISION
MEASUREMENT

We note that the observed anomalous magnetic moment
of the muon and Rð�Þ

K anomaly prefers a relatively large
value of h02 in our model. A large Yukawa coupling could
have several unwanted consequences as it can lead to large
contributions to various subprocesses within the SM, even
when the new physics particles appear in the loops. We
already discussed how our model avoids LFV constraints
but an immediate concern arises from electroweak preci-
sion measurements at the Large Electron-Positron Collider
(LEP). The choice of large values for h02 cannot only cause
corrections for the muon mass but also alter the SM Zμþμ−
coupling, which was precisely determined at LEP. In our
model, the additional contribution to the interaction vertex
of Zμþμ− comes from a similar one-loop diagram shown in
Fig. 1. The relative change of Zμþμ− coupling with respect
to its SM value can be expressed as

δgμL
gμL;SM

ðq2Þ ¼ q2

32π2M2
l4

jh02j2G
�
M2

S

M2
l4

�
; ð10Þ

where q is the momenta carried by the Z boson and the loop
function

GðxÞ ¼ 7 − 36xþ 45x2 − 16x3 þ ð12x3 − 18x2Þ log x
36ðx − 1Þ4

ð11Þ

From the LEP, the upper limit for the absolute value of
δgμL=g

μ
L;SMðq2 ¼ M2

ZÞ is 0.8% [52]. For our model, we
plotted a contour plot of jδgμL=gμL;SMðq2 ¼ M2

ZÞj as function
of MS and Ml4 in Fig. 3 with h02 ¼ 3.0. The number on the
contour lines represent the value of jδgμL=gμL;SMðq2 ¼ M2

ZÞj
in our model. As can be seen from Fig. 3, within the range
of the contour plot, the relative change of Zμþμ− coupling
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FIG. 2. The allowed parameter space satisfying muon anomaly in (a) MS −Ml4 and (b) h02 −Ml4 plane. For these plots, we have
varied the parameter as given in Eq. (9).
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due to new physics is always less than 0.3%. Since we
are interested in the mass range MS > 100 GeV and
Ml4 > 100 GeV, we are safe from the LEP constraints
in the range of parameters which we shall use for our LHC
analysis that can simultaneously explain the muon
anomaly.

V. QUARK FLAVOR VIOLATION

The presence of leptoquarks and their interactions with
SM quarks and leptons can also induce flavor-violating
decays of hadrons. As pointed out earlier, the terms
containing hi and h0i couplings induce extra contributions
to flavor violation in the quark sector via loop. In this work,
we consider the one-loop contribution to the quark flavor
violation (QFV), primarily focusing on the constraints
coming from b → s transition, observed in the decays of
B meson. The quark level transitions in such decays arise
primarily from three modes, viz. (i) b → slþl−,
(ii) b → sν̄ν, and (iii) b → sγ. In addition to B meson
decays, the Bs − B̄s mixing also provides the information
for b → s transition.
We first provide a brief account of the recent exper-

imental results and SM predictions for b → s transition.
The most recent observation for b → slþl− transition
comes from the measurement of the ratio

RKð�Þ ¼ BRðB → Kð�Þμþμ−Þ
BRðB → Kð�Þeþe−Þ

by LHCb [7]. The measurement is in tension with SM
and stands 2.6σ away from the SM prediction [84]. The

b → sν̄ν transition is constrained from B → Kð�Þν̄ν
transition [85] and our model gives no additional contri-
bution to this mode. The meson decay B → Xsγ provides
constraints on b → sγ transition. The current experimental
result and SM prediction for this decay probability BRðb →
sγÞ are ð3.43�0.21�0.07Þ×10−4 [8] and ð3.36� 0.23Þ ×
10−4 [86], respectively. In the Bs − B̄s system, the exper-
imental result for ΔMBs

is 1σ below the SM prediction [9].
From the theory side, the relevant NP contributions to

b → sμþμ− come from the following effective Hamiltonian

H ⊃ −
αemGFffiffiffi

2
p

π
VtbV�

tsðC9O9 þ C10O10Þ; ð12Þ

where αem and GF are fine-structure constant and
Fermi constant, respectively. Vtb and Vts are CKM matrix
elements and C9 and C10 are the Wilson coefficients of the
operators

O9¼ðs̄γαPLbÞðμ̄γαμÞ; O10¼ðs̄γαPLbÞðμ̄γαγ5μÞ: ð13Þ

For b → sγ, the NP contribution comes from the effec-
tive Hamiltonian

H ⊃ −
mbGF

4
ffiffiffi
2

p
π2

VtbV�
tsðC7O7 þ C8O8Þ; ð14Þ

where mb is the mass of bottom quark and C7 and C8 are
Wilson coefficients corresponding to the operators

O7¼ eðs̄σμνPRbÞFμν; O8¼ gsðs̄σμνTaPRbÞGa
μν: ð15Þ

For the Bs − B̄s mixing, the effective Hamiltonian is
given by

H ⊃ CBB̄ðs̄γμPLbÞðs̄γμPLbÞ: ð16Þ

The constraints coming from experimental measurements
can then be translated to give constraints on the above
Wilson coefficients. The combined fit provides the follow-
ing bounds on the Wilson coefficients [52].

−1.14 ≤ C9 ¼ −C10 ≤ −0.23 ð3σÞ;
−2.8 ≤ CBB̄ × ð105 TeV2Þ ≤ 1.3 ð3σÞ;
−0.098 ≤ C7 þ 0.24C8 ≤ 0.070 ð2σÞ: ð17Þ

For this model, the NP contribution to these Wilson
coefficients can be obtained using the expressions given
in Ref. [52]. One, of course, needs to ensure that the Wilson
coefficients satisfy the bounds given in Eq. (17). This can
be ensured by choosing appropriate values for h2 and h3
couplings which will be briefly discussed in the next
section.

FIG. 3. Contour plot of jδgμL=gμL;SMðq2 ¼ M2
ZÞj as a function of

MS and Ml4 with h02 ¼ 3.0.
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VI. COLLIDER SEARCHES

In this section, we look at the collider signatures in our
model. The most interesting signal comes from the lep-
toquark production. Since the leptoquark is Z2 odd its
signals will not only entail a baryon and lepton number
violation but also give large missing transverse momentum
due to the presence of a final Z2 odd state in its decay
cascade, which will go undetected. For this study we shall
focus on the parameter space which can account for both
muon anomaly and satisfy constraints coming from lepton
and quark flavor violation.
We consider the pair production process of the lepto-

quark.

pp → ΦΦ̄ ð18Þ

The leptoquark carries charge Qem ¼ þ2=3 and therefore
can decay to both up-and down-type quark flavor. A few
interesting points about the leptoquark in our model is
worth highlighting before we discuss the signals arising
from its production at LHC. Due to the unbroken Z2 parity,
the leptoquark is forced to decay to a SM quark and the new
exotic lepton. This leads to an interesting possibility where
its decay may not remain within the same fermion gen-
eration. This is because the VLL (L4) couples more
strongly to muon and the scalar S compared to the other
SM leptons. This enabled our model to account for the
muon anomaly as discussed earlier. Note that the lepto-
quark, which couples mostly to the third generation of SM
quarks, is weakly constrained compared to the leptoquarks
which couple to the first two generations. We therefore
consider the leptoquarks which have larger coupling to
third generation SM quark and the exotic lepton. In such a
case, and if kinematically allowed, the decay modes of the
leptoquark will be as follows:

Φ → blþ
4 → bμþS → tν̄4 → bWþνS

As a multilepton final state at LHC will be much more
clean, we will consider only the leptonic decay of the W
boson.1 The collider signature of our interest then becomes
a final state given by 2μþ 2bþ =ET. The SM subprocesses

that can give rise to the same final state are dominated by
the inclusive tt̄ðþ1jetÞwith at least one extra hard jet,2 and
subdominant contributions come from the tt̄h, tt̄V, VV, and
VVV, where V ¼ W�; Z. In principle, the diboson plus
dijets can also be a source of the background if both the
light jets are mistagged as b-jet. However, the mistagging
efficiency of a light jet identified as a b-jet is ≈1% for u, d,
s and ≈10% for the c quark. In addition the production
cross section is much smaller than the inclusive tt̄ðþ1jetÞ
background. We also note that the requirement of a high pT
b-jet removes almost all of this background. For our
analysis, we have chosen four benchmark points. We list
them and the corresponding pair-production cross sections
for the leptoquark in Table II. For all the benchmark points,
we have fixed the hi and h0i couplings which are shown in
Table III. We have ensured that the benchmark points
satisfy the bounds discussed in Secs. III–V. For the QFV
bounds, the values of the Wilson coefficients have also
been tabulated in Table II. These values are within the
bounds provided in Eq. (17).
For the scalar sector, the modification of Higgs

boson couplings is measured experimentally in terms of
Higgs boson signal strength, which is defined, in the γγ
channel, as

μγγ ¼
½σðpp → hÞ × BRðh → γγÞ�exp
½σðpp → hÞ × BRðh → γγÞ�SM

; ð19Þ

where σðpp → hÞ is the production cross section of the
Higgs and BR denotes the branching ratio of the Higgs
boson decaying to two photons. In our model, we have
calculated the values of the μγγ using the effective hgg and
hγγ couplings [88–90]. For the four benchmark points, we

TABLE II. The benchmark points and the production cross sections at 14 TeV LHC are shown in columns (2–5). The corresponding
Wilson coefficients [Eq. (17)] are given in columns (6–8). The Higgs boson signal strength is also provided in the last column.

MΦ (GeV) Ml4
(GeV) MS (GeV) σLOðpp → ΦΦ̄Þ (fb) C9 (−C10) CBB̄ ðTeV2Þ C7 þ 0.24C8 μγγ

BP1 750.8 280.0 244.9 33.61 −1.03 0.07 × 10−5 −0.006 0.98
BP2 826.8 290.0 260.0 17.44 −0.90 0.05 × 10−5 −0.005 0.98
BP3 902.02 300.0 270.0 9.8 −0.79 0.04 × 10−5 −0.004 0.98
BP4 1001.8 320.0 282.8 5.0 −0.67 0.03 × 10−5 −0.003 0.98

TABLE III. The values of the Yukawa-type couplings kept
fixed for all the benchmark points.

h1 h2 h3 h01 h02 h03
0.01 −0.01 0.52 5.0 × 10−5 3.0 0.01

1Hadronic decays of the W boson will provide lower sensi-
tivity due to the presence of huge QCD background.

2To generate this particular background, we have generated the
pp → tt̄ and pp → tt̄j in MadGraph [87] and used MLM
matching scheme for the additional jet.

GHOSH, RAI, and SAMUI PHYS. REV. D 107, 035028 (2023)

035028-6



provide these values in Table II. These values lie well
within the 2σ range of the CMS data 1.1� 0.08 [91].
The standard search for scalar leptoquarks at the collider

experiments are carried out by looking at the 2lþ 2j
channels [54–57]. These searches generally assume that the
leptoquarks couple to a SM lepton and a SM quark. For
such an assumption the leptoquark can be produced singly
and in a pair and the decay of the leptoquark will give no
missing transverse momenta when the decay contains a
charged SM lepton. As expected, selection cuts on =ET are
usually kept low for such scenarios. On the other hand, in
our model, the leptoquark couples to a SM quark and a
BSM VLL, owing to the discrete Z2 parity. This BSM
lepton then decays to a scalar DM and a SM lepton. As a
result, in our model, one expects large =ET from the decay of
leptoquark. Therefore, the current searches for leptoquark
at the LHC do not put very strong constraints on our model
parameters. In some cases, the leptoquark has been studied
in the 2lþ 2t channel [57,92,93], where one expects a
little more =ET , if the top quark decays leptonically.
However, these searches also do not constrain the model
parameters of our model significantly.
Interestingly, the search for the leptoquark in this

particular channel (2μþ 2bþ =ET) has been carried out
by the ATLAS and CMS collaborations at the 13 TeV LHC
run [94–97]. The strongest bound comes from the search
for top squark pair production in the same channel [94] and
hence this analysis when recasted for our model, could
constrain our model parameters as well. We have scanned
our model parameters using the recasting tool, i.e., the
CheckMATE [98] package and have realized that leptoquarks,
heavier than 750 GeVare not excluded by the above search
at 95% C.L. We have also checked that all the benchmark
points are allowed by the above search.
Since we demand that the BSM particles are odd under

Z2 symmetry, the lightest particle may become the DM
candidate. In the above four benchmark points, the real
scalar S is the lightestZ2 odd particle and hence it plays the
role of DM candidate. To study the DM phenomenology,
the CalcHEP [99] compatible model files are obtained from
SARAH [100] and then included in micrOMEGAs [101],
which calculates the DM observables like relic density
ΩDMh2, spin-dependent (σSD) and spin-independent (σSI)
cross sections, and the thermally averaged annihilation
cross sections (hσvi). As the scalar DM does not couple
with the nucleons, the direct detection constraints are easily
satisfied in our model. We also find that our benchmark
points are compatible with relic abundance obtained from
the PLANCK experiment [102]. For our four benchmark
points, BP1, BP2, BP3, and BP4, the relic density is
7.79 × 10−3; 4.16 × 10−3; 3.98 × 10−3, and 7.28 × 10−3

respectively. This suggests that the DM is underabundant
for these benchmark points. However, tuning the Yukawa
coupling (h0) parameters could give us the correct relic
abundance. Since we are more interested in the leptoquark

signal at LHC, we postpone the discussion about dark
matter for separate work.
For the LHC analysis, we implement the model file in

SARAH [100] and generate the required UFO which is used
to generate events in MadGraph [87]. The spectrum files for
the benchmark points are generated using SPheno [103]. The
events generated in MadGraph are then passed on to PYTHIA8

[104] for showering and hadronization. The detector
simulation is done in DELPHES [105] using the default
CMS card, where the jets are constructed using the anti-KT
algorithm with a jet formation radius of R ¼ 0.4. For the
SM background processes with hard jets, proper MLM
matching scheme [106] has been applied. The charged
leptons in the final state are isolated by choosing
ΔRli > 0.4, where i represents either a jet or a lepton.
For generating signal and background events at the parton
level, we use the following kinematic acceptance cuts on
the partons and leptons (electron and muon):

pTðj; bÞ > 20 GeV; jηðjÞj < 4.7; jηðbÞj < 2.5;

pTðlÞ > 10 GeV; jηðlÞj < 2.5: ð20Þ

The b-jets are tagged using a pT dependent efficiency
given as

ϵb ¼ 0.85 tanhð0.0025pTÞ
25.0

ð1þ 0.063pTÞ
:

Similarly a mistagging efficiency for c-jets being wrongly
identified as b jets, given by

ϵc→b ¼ 0.25 tanhð0.018pTÞ
1

ð1þ 0.0013pTÞ
;

is included and a mistag efficiency of ϵl→b ¼ ð0.01þ
0.000038pTÞ for the light jets is also included.
We now provide the details of our cut-based analysis of

the signal and SM background events, which maximize the
signal to background ratio. Along with the basic cuts
mentioned in Eq. (20), we put additional selection cuts
on the following kinematic variables as described below:

(i) pTðμÞ: We depict the pT distribution of the leading
and subleading muon in Figs. 4(a) and 4(b), re-
spectively. As our signal contains two muons, we
select one leading and one subleading muon with
transverse momentum pT > 10 GeV and reject
events containing more than two muons. We can
see that the signal and background events peak in the
same pT range. We find that the muon in the signal
events have a pT cut-off dependent on the mass of
the VLL. Therefore a lower cut on the pT does not
help to reduce the background. Instead, an upper cut
on the leading muon pTðμ1Þ < 180 GeV is helpful
in removing the SM tail and improving the signal
sensitivity.
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(ii) pTðbÞ: We show the normalized pT distribution
for the leading and subleading b-jet in Figs. 4(c)
and 4(d), respectively. To ensure that our signal
contains only two b-jets, we reject events with a
third b-jet with pT > 20 GeV. For the background,
the b-jets come from the decay of top quark, whereas
for the signal the b-jets come directly from much
heavier leptoquarks. So the signal distribution peaks
at a higher value compared to the SM background.
We put a lower cut on the transverse momentum
pTðb1Þ > 200 GeV and pTðb1Þ > 100 GeV to en-
hance the signal over background. This cut also
helps in drastically suppressing the tt̄V and
dibosonþ dijet backgrounds, finally leaving us with
background events coming dominantly from the
inclusive tt̄ðþ1jetÞ production in SM.

(iii) =ET: The =ET distribution is plotted in Fig. 4(e).
As our signal contains a heavy dark matter scalar
candidate S, the =ET peaks at a higher value in
contrast to the background where the =ET comes only
from the neutrinos arising from the W� decay. We
put a lower cut on missing transverse energy as
=ET > 200 GeV to suppress the SM background
further.

The detailed outcome of our cut-flow choice for different
benchmark points is shown in Table IV.
The signal significance is then calculated by using the

formula [107]

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
ðSþ BÞ log
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B
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− S
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FIG. 4. Normalized distribution of the kinematic variables for the signal and dominant SM background.
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where SðBÞ represents the number of signal (background)
events surviving after all the cuts are applied. It can be seen
from Table IV that, as the leptoquark mass increases, the
signal significance decreases Although the cut efficiencies
are more useful for the signal coming from the heavier
states, the production cross section falls as shown in
Table II. We find that it will be possible to probe the
benchmark points BP1, BP2, and BP3 with statistical
significance of 11.0σ; 5.7σ; 3.2σ respectively, while BP4
with the leptoquark mass of 1 TeV gives a 1.6σ statistical
significance with 3000 fb−1 integrated luminosity.

VII. CONCLUSION

The observation of muon and flavor anomalies has
generated a lot of renewed interest in new ideas of BSM
physics in the particle physics community. The extension of
SM by new fields usually provides contributions to these
anomalies via higher-order loops.
In this work, we have studied a model which extends the

SM by a scalar leptoquark, one generation of VLL and one

SM singlet scalar. The new fields are odd under a Z2

symmetry. By virtue of this Z2 symmetry the scalar or the
lightest neutral VLL acts as a DM candidate. Any mixing
with the SM fields is also avoided due to this discrete parity
being unbroken in the model. The new fields couple to the
SM particles via Yukawa-type interactions. The VLL and
the scalar contribute to the anomalous magnetic moment
of muon at the one-loop. We see that for a significant
range of the parameter space, this anomaly can be satisfied
within the 3σ error bar of the current data. The Yukawa
interaction also provides an extra contribution to the LFV.
We check for parameter space that is allowed by all such
LFV constraints and QFV constraints, namely b → sμμ,
b → sγ, and Bs − Bs mixing.
We then chose representative benchmark points for

leptoquark mass and look for a distinct signal in 2μþ
2bþ =ET final states which can be probed at the 14 TeV
LHC run. We also note that the chosen benchmark points
satisfy DM constraints as well as account for the measured
muon anomaly. Based on a simple cut-based analysis we
find that most of the benchmark points lead to signals with
more than 3σ significance at 3000 fb−1 integrated lumi-
nosity. We also conclude that a scalar leptoquark with
masses above ≳1 TeV would be difficult to observe in the
simple-minded cut-based analysis and may require more
sophisticated machine-learning methods to have any
chance of observation. Our analysis also shows that current
limits on the scalar leptoquarks which decay directly to SM
particles would become much weaker in the presence of
nonstandard decays of the leptoquark. This can be a highly
probable scenario if one considers explaining the flavor and
muon anomalies in a common setup and looks at the
collider signatures of such a model.
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