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In some extensions of the Standard Model (SM), two neutrons are allowed to decay into two sterile
antineutrinos (nn → χ̄ χ̄) via new scalar bosons. This process violates both the baryon number (B) and the
lepton number (L) by two units but conserves their difference ðB − LÞ. Neutron stars contain a large
number of neutrons, and thus the nn → χ̄ χ̄ process can be greatly enhanced inside a neutron star. This
process could result in nontrivial effects that are different from the SM predictions and can be explored
through astrophysical and laboratory observations. Furthermore, a large number of sterile antineutrinos,
which may be dark matter candidates, can be emitted from the interior of the neutron star. The properties of
the emitted particles show a particular pattern that can be uniquely determined by the mass and radius of the
neutron star. In addition, the dineutron decay may contribute to the orbital-period change of the binary
systems containing neutron stars. We analyze the possibility of constraining the mass of the new scalar
bosons using the observations of the binary’s orbital-period changes. It is found that the mass of the new
scalar bosons is roughly restricted in the range from 1 TeV to several TeV, which is possibly within the
reach of direct searches at the LHC or future high-energy experiments. The joint analysis which combines
the astrophysics and particle phenomenology could provide an excellent opportunity for the study of the
new physical effects beyond the SM.
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I. INTRODUCTION

The fundamental particles and three of the fundamental
interactions, such as the strong, weak, and electromagnetic
interactions, can be properly described by the Standard
Model (SM) of particle physics [1]. The discovery of the
SM-like Higgs boson [2–4] indicates one of the major
achievements of the SM. However, there are still many
open questions that cannot be well explained by the SM.
One of the great challenges is the matter-antimatter
asymmetry, which refers to the observed excess of matter
over antimatter in our universe [1]. According to the big
bang theory [5,6], equal amounts of matter and antimatter
should have been created in the early Universe. It seems
that, so far, the initial antimatter has disappeared, and such
a disappearance remains a puzzle [1].
The baryon number (B) and lepton number (L) are

usually considered as accidental symmetries in the

framework of the SM [7]. Some nonperturbative effects
may violate the B, L, or (B þ L) symmetries, but the
difference (B − L) is still conserved [8–12]. For example,
some nonperturbative sphaleron processes may violate the
ðB þ LÞ symmetry but preserve the ðB − LÞ symmetry
[12]. B violation is one of the three conditions presented by
Sakharov to explain the observed matter-antimatter asym-
metry [13]. Furthermore, B violation plays a critical role in
the construction of the extensions to the SM as it is
implemented as an important feature in many new-physics
models [1].
The dineutron decay into dilepton final states has been

mathematically predicted by many new-physics models
[14–17] and intensively explored in a wide variety of
experiments [18–21]. From the experimental aspects, the
limits on the lifetimes for the decay modes with invisible
(or weakly interacting) final states have been reported by
various experiments, such as LNGS (1.2 × 1025 yr [18]),
KamLAND (1.4 × 1030 yr [19]), SNOþ (1.3 × 1028 yr
[20], 1.5 × 1028 yr [21]), etc. Among various processes,
the dineutron decay into two sterile antineutrinos
(nn → χ̄ χ̄) has many interesting signatures, distinguishing
it from other decay modes. Here, χ (χ̄) denotes the sterile
neutrino (antineutrino), which may have a nonzero lepton
number L≡ 1 (−1) and does not exist in the framework of
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the SM. The nn → χ̄ χ̄ process violates the B, L, and
(B þ L) symmetries but conserves (B − L) symmetry. The
sterile antineutrino barely interacts with the SM particles
and could be a dark matter candidate [22]. From the
theoretical aspects, some new-physics models have been
constructed with (B − L) symmetry. For instance, the
model based on the group SUð3Þc × SUð2ÞL × SUð2ÞR ×
Uð1ÞB−L [23–26] implements (B − L) as a conserved
quantity [27,28], rather than B alone or L alone. This
model can be further accommodated in the models with
additional symmetries for a unified description of quarks
and leptons, such as the Pati-Salam model [23,29] and its
variants [27,28] based on the SUð4Þc × SUð2ÞL × SUð2ÞR
group. Therefore, the nn → χ̄ χ̄ process can serve as a
promising probe for such new-physics models. However,
the transition rate for this process is highly suppressed by
the new-physics energy scale. Furthermore, this process is
featured with the decay of two neutrons into two back-to-
back energetic sterile antineutrinos. Since the sterile anti-
neutrinos barely interact with the ordinary matter, they are
almost invisible in the present detectors. These factors
impose a great challenge for the detection of the sterile
neutrinos in the laboratory experiments.
Neutron stars are one of the densest objects in our

universe and can serve as a neutron-rich environment
where many interesting processes and phenomena
associated with neutrons occur [30], making it possible
to search for B-violating effects through astrophysical
observations. B-violating effects can be induced by high-
dimension operators and thus are highly suppressed by
the new-physics energy scale. Specifically, the nn → χ̄ χ̄
process can be mediated by the new scalar bosons
through the interactions described by dimension-12 oper-
ators. The direct searches for new particles at the LHC
show that no significant evidence of such new scalar
bosons beyond the SM has been found so far, suggesting
that the new-physics energy scale tends to be so large
that direct laboratory detection might be inappropriate
through the present experimental techniques. By con-
trast, neutron stars contain a large number of neutrons,
and the dineutron decay inside them can emit a large
number of sterile antineutrinos. Because of this process,
the neutron star would gradually lose mass and change its
properties, bringing in observable effects in astrophysical
observations.
In this paper, we organize our discussions as follows. To

begin with, we review the new-physics models with addi-
tional new scalar bosons that lead to the nn → χ̄ χ̄ process.
Next, based on such models, we estimate the decay rate for
the nn → χ̄ χ̄ process. After that, we briefly review the
structure of neutron stars and the equation of state for
the neutron-star matter. Then, we transfer our attention
to the observable consequences of the nn → χ̄ χ̄ process on
the properties of neutron stars, such as particle emission
and orbital-period change. In the following discussions,

unless otherwise specified, we will adopt the natural units
(i.e., c≡ 1, ℏ≡ 1).

II. THE MODEL

Figure 1 shows a possible diagram at the tree level for the
dineutron decay into two sterile antineutrinos (nn → χ̄ χ̄)
mediated by the new scalar bosons, namely diquarks and
dileptons [31,32]. This is not the only diagram that is
responsible for the nn → χ̄ χ̄ process. Such a process can
also be mediated by diquarks and leptoquarks. The new
scalar bosons can be accommodated in some new-physics
models with additional symmetries, such as the left-right
symmetric (LRSM) model based on the group SUð3Þc ×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L [23–26]. The LRSM can be
further embedded in some (partially) grand unified models
with higher symmetries, such as the Pati-Salam model
[23,29] or its adapted versions [27,28] based on the group
SUð4Þc × SUð2ÞL × SUð2ÞR. These models are character-
ized by treating quarks and leptons on equal footing. For
instance, before SUð4Þc breaking, the right-handed quarks
and leptons of the first generation, which transform as a
singlet under SUð2ÞL, can be arranged into the same
doublet under SUð2ÞR (see, e.g., Refs. [28,33,34]):

ψR ¼
�
u1 u2 u3 χ

d1 d2 d3 e

�
R

: ð1Þ

Here, the right-handed spinor is defined as ψR ≡ PRψ , with
PR ≡ ð1þ γ5Þ=2 being the right-handed chiral projection
operator. χR denotes the right-handed sterile neutrino. After
symmetry breaking, the right-handed fermions transform
under the LRSM group in the following way [31,32]:

qR

�
3; 1; 2;

1

3

�
¼
�
u

d

�
R

; lRð1; 1; 2;−1Þ ¼
�
χ

e

�
R

:

ð2Þ

Under the same symmetry group, the relevant new scalar
bosons can be given by [31,32,35–38]

FIG. 1. A possible diagram for the dineutron decay into two
sterile antineutrinos (nn → χ̄ χ̄) mediated by the new scalar
bosons at the tree level.
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ΔðRÞ
q

�
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2

3

�
¼
 Δudffiffi

2
p Δdd

Δuu − Δudffiffi
2

p

!
R

; ð3Þ

ΔðRÞ
l ð1; 1; 3; 2Þ ¼

0
B@

Δχeffiffi
2

p Δee

Δχχ − Δχeffiffi
2

p

1
CA

R

: ð4Þ

The new scalar bosons may lead to the instability of protons
and nuclei (see, e.g., Ref. [39]). As argued in Ref. [32],
additional discrete symmetry can be imposed on the
corresponding Higgs potential so that the compatibility
with the current experimental bounds on the proton lifetime
τp ≳ 1031–1033 yr [40] can be guaranteed.
Following Refs. [28,31–33,41,42], the relevant operators

that are responsible for the nn → χ̄ χ̄ process depicted in
Fig. 1 can be given by

Os ≡ gαβqαTR C−1iσ2Δ
ðRÞ
q qβR þ fαβlαTR C−1iσ2Δ

ðRÞ
l lβR

þ fΔϵikmϵjlnΔ
ij
ddΔkl

ddΔmn
uuΔχχ þ H:c: ð5Þ

where C denotes the charge conjugation operator. gαβ, fαβ,
and fΔ are dimensionless coupling constants. The SUð3Þc
indices are denoted by i, j, k, l, m, and n. The SUð2ÞR
indices are denoted by α and β.
At the nucleon level, the nn → χ̄ χ̄ process can be

effectively described by

−L eff ≡Gsjψqð0Þj4ðn̄cχÞðχ̄cnÞ; ð6Þ

or

−L eff ≡Gsjψqð0Þj4ðn̄cnÞðχ̄cχÞ: ð7Þ

Here, the quark wave function at the origin takes the value
jψqð0Þj2¼0.0144ð3Þð21ÞGeV3where the numbers inparen-
theses are the statistical and systematic errors respectively,
according to the lattice QCD calculations [43]. The super-
script c represents charge conjugation. The scalar interaction
couples states with opposite chirality, and we have omitted
the symbol of chirality for notational convenience. Following
relevant studies (see, e.g., Refs. [31,32,36,44–48]), the
effective coupling constant Gs can be given by

Gs ≃
guug2ddfχχfΔ

M2
Δuu

M4
Δdd

M2
Δχχ

: ð8Þ

In our analysis, we assume that all the members of the new
scalar bosons have similar masses [44], i.e., MΔ ≡MΔuu

≃
MΔdd

≃MΔχχ
, and all the coupling constants are also

assumed to have similar values, i.e., λ≡ guu ≃ gdd≃
fΔ ≃ fχχ . These assumptions tend to be reasonable in the
SUð4Þc symmetry limit [33,49]. Even though there could be
a hierarchy in the coupling constants and in the masses of
the new scalar bosons, the above two relations can always
be satisfied by adjusting the strengths of the coupling
constants and the masses of the new scalar bosons so that
a compatibility between these relations and the present
limits on the stability of nuclei can be guaranteed as argued
in Ref. [32,36]. To some extent, the mass of the new scalar
bosons MΔ can be interpreted as the energy scale of
new physics.
The new scalar bosons may also lead to the flavor-

changing neutral current (FCNC) effects [33,34,49–61].
The phenomenology of the FCNC effects has been inten-
sively studied. Since the FCNC processes are highly sup-
pressed in the SM but relatively less suppressed in some
new-physics models, the measurements of such processes
can provide a powerful tool to test the SM and to put severe
constraints on the parameter space of new-physics models
[33,34,49–61]. As an important feature, the derived bounds
from theFCNCprocesses are not usually imposed on a single
coupling constant, but instead they are imposed on the
product of the coupling constants with different generations
or flavors. Furthermore, the derived bounds also depend on
themasses of the new scalar bosons. In addition, such bounds
in the literature vary remarkably, and it is difficult to compare
them in view of the different choices of theoretical models
and experimental data. If themasses of the new scalar bosons
(i.e., the new-physics energy scales) are within the range
from several TeV to several 10 TeV, which are accessible to a
direct detection at the LHC or future high-energy experi-
ments, the derived upper bounds on the product of the
coupling constants can be roughly restricted in the range
from the order of 10−4 to the order of 1. A relevant study
shows that the coupling constants are more preferred to take
the values in the range from the order of 10−3 to the order of
10−2 [62]. For purposes of illustration, we choose some
typical values for the coupling constants in the range from
10−3 to 10−2 in this work. Such choices are roughly
consistent with the FCNC constraints.
The nn → χ̄ χ̄ transition rate can be derived based on the

formula presented in Ref. [63]. Under quasifree assump-
tions, the transition rate can be further simplified as [17,64]

Γðnn → χ̄ χ̄Þ ≃ ρn
32πSm2

n
Kð1; ξ; ξÞ12jM ðnn → χ̄ χ̄Þj2;

¼ Kð1; ξ; ξÞ12
32πS

Nfρnjψqð0Þj8
�

guug2ddfχχfΔ
M2

Δuu
M4

Δdd
M2

Δχχ

�
2

ðmn −mχÞ2: ð9Þ
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Here, ρn is the neutron number density. The Kallen triangle
function is defined as Kðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy−
2yz − 2zx. The parameter ξ is defined as ξ≡m2

χ=ð4m2
nÞ

[17], wheremn andmχ are themass of the neutron and sterile
antineutrino, respectively. Since the sterile neutrinos (anti-
neutrinos)may have a very lightmass [65,66], we assume the
limitmχ ≪ mn is satisfied. S is a symmetry factor and takes
the value S ¼ 2 [17]. Nf is a numerical factor from the
squared amplitude and takes the valueNf ¼ 4. In the second
step of Eq. (9), the squared amplitude is evaluated by
averaging over all initial spin configurations and summing
over all final spin configurations:

jM ðnn → χ̄ χ̄Þj2

¼ 1

4
½Gsjψqð0Þj4�2Tr½ðp1 þmnÞðp3 −mχÞ�

× Tr½ðp2 þmnÞðp4 −mχÞ�

≃ Nfjψqð0Þj8
�

guug2ddfχχfΔ
M2

Δuu
M4

Δdd
M2

Δχχ

�
2

m2
nðmn −mχÞ2: ð10Þ

Here, p1 ðp2Þ and p3 ðp4Þ are the four-momenta of the
neutrons and sterile antineutrinos, respectively. Since our
discussions are only valid up to the order of the magnitude,
the terms with permutations of color and flavor indices and
the corresponding numerical factors are omitted for simplic-
ity of notation. Hence, the squared amplitude presented here
is different from the one given in Ref. [17] by a numerical
factor. This omission always makes sense because we could
absorb the possible numerical factors associated with per-
mutation terms into the coupling constants by redefiningGs
without causing any inconsistencies with the present exper-
imental limits. Furthermore, since the transition rate shows a
very high power suppression by the mass of the new scalar
bosons, the derived bounds on the mass of the new scalar
bosons are insensitive to the omission of the numerical
factors. Therefore, for the purpose of this study,we can safely
omit such numerical factors. Note the transition rate formula
in Eq. (9) was initially derived for the 16O nucleus [17,64]. If
the magnitude of the Fermi motion and nuclear binding
effects in neutron stars is not too far from that in atomic
nuclei, or if the rate for the dineutron decay only weakly
depends on the energyof neutrons, Eq. (9) can alsobe applied
to the neutron-star matter. At present, there is a lack of direct
experimental information on the neutron-star interior and
neutron-star matter. Wewill accept these assumptions unless
they break down through future experimental data.

III. NEUTRON STAR AND EQUATION
OF STATE

In this section,we first review the structure of neutron stars
and equation of state (EOS) for the neutron-star matter
briefly.We emphasize our considerations in the choice of the

EOS. Assuming that the neutron star is a static spherically
symmetric object, the metric takes the form [67–69]

ds2 ¼ gμνdxμdxν

¼ e2ΦðrÞdt2 −
�
1 −

2GM
r

�
−1
dr2 − r2dΩ2; ð11Þ

with the metric on the 2-sphere defined by

dΩ2 ≡ dθ2 þ sin2 θdϕ2: ð12Þ

Here, G is the gravitational constant. ΦðrÞ is a parameter
associated with the g00 component of the metric tensor and
plays the role analogous to the Newtonian gravitational
potential (i.e., effective gravitational potential).
In hydrostatic equilibrium, the structure of the neutron

star can be described by the Tolman-Oppenheimer-Volkoff
(TOV) equations (c≡ 1) [70,71]:

dPðrÞ
dr

¼ −
½ϵðrÞ þ PðrÞ�½MðrÞ þ 4πr3PðrÞ�

r½r − 2GMðrÞ� ;

dMðrÞ
dr

¼ 4πr2ϵðrÞ;
dΦðrÞ
dr

¼ r
r − 2GMðrÞ

�
GMðrÞ

r2
þ 4πGrPðrÞ

�
; ð13Þ

whereMðrÞ is the mass within the radial distance r. PðrÞ is
the pressure, and ϵðrÞ is the energy density. Since the
thermodynamic property and the chemical composition of
the matter in neutron stars may vary greatly from the center
to the surface, the internal structure of neutron stars can be
divided into several internal layers or regions according to
the current theories [72,73]. The energy density ϵðrÞ in
each region can be generally related to the mass density
ρðrÞ by [74]

ϵðrÞ≡ ð1þ cjÞρðrÞ þ
Kj

γj − 1
ρðrÞγj ; ð14Þ

where Kj and γj are the normalization factor and the
adiabatic index for the jth region. The parameter cj can be
determined by requiring that the energy density needs to be
smoothly joined at the dividing density ρj [74]

c0 ¼ 0; ð15Þ

cj ¼ cj−1 þ
Kj−1

γj−1 − 1
ρ
γj−1−1
j −

Kj

γj − 1
ρ
γj−1
j : ð16Þ

Based on a phenomenological analysis, the EOSs of neu-
tron stars can be parametrized by a piecewise-polytropic
model with three adiabatic indices (γ1, γ2, and γ3) and
one pressure (P1) at the first dividing density [75]. The
piecewise-polytropic model is useful in the analysis of
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astrophysical data [76]. The effectiveness of the piecewise-
polytropic parametrization has been explored in describing
inspiralling binary neutron-star systems [77]. In this work,
we use the parametrization scheme of the EOSs presented
in Ref. [75].
Because of the dineutron decay, the density of a neutron

star would decrease gradually. However, since the transition
rate for the nn → χ̄ χ̄ process is so slow neutron stars have
sufficient time to adjust theirmatter distribution andmaintain
the hydrostatic equilibrium (see, e.g., Ref. [30]). In this case,
the TOV equations can still hold in the presence of the
dineutron decay. In this work, we employ the Fourth-Order
Runge-Kutta (RK4) [78] approach to solve TOV equations
under the boundary conditions ρð0Þ≡ ρc, PðRÞ≡ 0, where
ρc is the mass density at the center and R is the radius of the
neutron star.
At present, the EOSs of the neutron-star matter depend

highly on theoretical assumptions about high-density mat-
ter and are not well constrained, largely due to the lack
of direct experimental information on the interiors of the
neutron star [76]. Consequently, the numerical results would
inevitably depend on the choice of EOSs. Nevertheless,
the results obtained with various EOSs are in general con-
sistent with each other up to 1 order of the magnitude. In this
manner, the qualitative trends can still be identified [30],
and useful constraints on the observable consequences can
still be extracted.
The first step toward a reasonable choice of EOSs is to

examine the maximum neutron-star mass determined by
various EOSs. According to the astrophysical observations
to date, the most massive pulsar is PSR J0740þ 6620 with
a mass of 2.08þ0.07

−0.07 M⊙ [79]. A recent astrophysical
observation shows that the binary merger GW190814
contains an unknown compact object with a mass in the
range of 2.5−2.67 M⊙ [80]. If such a compact object is
confirmed as a neutron star, a large class of EOSs for which
the predicted maximum mass of neutron stars is smaller
than 2.5 M⊙ can be excluded. In practice, we solve the
TOV equations numerically based on various EOSs and
compare the yielded maximum masses of neutron stars.
Massive neutron stars with masses heavier than 2 M⊙
can be predicted by several EOSs, such as SLy [81],
WFF1 [82], APR3 [83], ENG [84,85], ALF2 [86], H4 [87],
MPA1 [88], MS1b [89], etc. A more complete list of EOSs
that lead to masses of the neutron stars greater than 2 M⊙
can be found in Ref. [90]. Some of these EOSs have been
employed to model neutron stars with baryon-number
violation [30,91] and gravitational-wave emission [77,92].
Furthermore, a selection criteria for the EOSs can be found,
for example, in Ref. [93]. A Bayesian model selection
based on multimessenger observations shows that the
MPA1 or APR3 EOSs can be more favorable in predicting
the properties of neutron stars, such as the radius and the
dimensionless tidal deformability of neutron stars [90]. In
view of this, we choose the MPA1 EOS in our calculations.

The MPA1 EOS is developed based on the relativistic
Dirac–Brueckner–Hartree–Fock calculations and incorpo-
rates contributions from the interactions mediated by π
mesons and ρ mesons [88].
In what follows, we focus on the nn → χ̄ χ̄ process in

neutron stars. We analyze the physical consequences on the
properties of neutron stars and discuss the expected signal
observability of the present or future experiments.

IV. OBSERVABLE CONSEQUENCES

A. Emission of sterile antineutrinos

The most direct physical consequence arising from the
nn → χ̄ χ̄ process in neutron stars is the emission of sterile
antineutrinos. As mentioned above, since the sterile anti-
neutrinos (χ̄) barely interact with ordinary matter and could
be dark matter candidates [22], they can escape from the
interior of the neutron star nearly without any collisions.
During this process, theneutron star losesmassgradually, and
a large number of the sterile antineutrinos are emitted into
space. Unfortunately, no significant evidence for the sterile
neutrinos has been found so far owing to the limitations of the
present experimental techniques [66]. Nevertheless, these
particles are expected to liewithin the reach of direct searches
at future high-energy experiments or future astrophysical
observations. In order to develop the experimental systems
more efficiently before observations and to interpret the
results more correctly after observations, calculations on the
properties of the emitted particles are needed.
When the emitted particles escape from the interior of the

neutron star, they will lose kinetic energy to climb out of
the gravitational potential, and thus a gravitational redshift
occurs [94]. The redshift formula can be derived in two
different ways, such as equivalent mass approach [95–97]
and frequency shift approach [95–97]. Although the
equivalence mass approach can reproduce the results of
the frequency shift approach, to some extent, it is consid-
ered to be conceptually erroneous [97]. In the frequency
shift approach, the gravitational redshift can be evaluated
by [96,98–102]

η≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðremÞ
g00ðrobÞ

s
¼ eΦðremÞ

eΦðrobÞ : ð17Þ

Here, rem and rob are the radial coordinates of the location
of the emission and detection, respectively. The effective
gravitational potential ΦðrÞ can be defined by [103]

ΦðrÞ≡
Z

R

r

r
r − 2GMðrÞ

�
GMðrÞ

r2
þ 4πGrPðrÞ

�
dr

−
1

2
ln

�
1 −

2GMðRÞ
R

�
; 0 < r ≤ R: ð18Þ

Since the sterile antineutrino has a negligible mass by
assumption, it can escape to infinity from the interior of the
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neutron star. Following Refs. [94,104], the energy of the
sterile antineutrinos as measured from infinity can be
defined by

Einf ≃ EG þ EF

¼
�
eΦðr∞Þ − eΦðremÞ

eΦðr∞Þ

�
mn þ

�
3π2XnNa

V

�1
3

¼ ½1 − eΦðremÞ�mn þ
�
3π2XnNa

V

�1
3

; ð19Þ

where EF is the average Fermi energy of the neutron and
EG is the total energy excluding the Fermi energy as
measured from infinity. In the second step, we choose the
reference point for zero gravitational potential energy at
infinity [eΦðr∞Þ ≡ 1]. We also assume that the fraction of
neutrons (Xn) inside the neutron star has approximately the
value of 0.89 [30]. The total number of nucleons Na can be
estimated by [100]

Na ≡ 4π

Z
R

0

r2ρaðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GM

r

q dr; ð20Þ

where ρaðrÞ is the nucleon number density.
As will be discussed below, the emission rate of the

sterile antineutrinos and the transition rate for the nn → χ̄ χ̄
process depend on the coupling constants and the masses of
the new scalar bosons. Here, we present some illustrative
examples by choosing a few typical values for the coupling
constants and the masses of the new scalar bosons. These
values are generally consistent with the limits imposed by
the FCNC effects as well as with the limits imposed by the
observation of the binary’s orbital-period changes (see
Sec. IV B for more details).
Figure 2 shows the rate of particle emission in the mass-

radius diagram of neutron stars in various scenarios
corresponding to different values of the coupling con-
stants and the masses of the new scalar bosons. As can be
seen, a huge number of sterile antineutrinos per second

(∼1038–1040 s−1) can be emitted from the neutron star.
Furthermore, the emission rate has a maximum at a specific
radius, and this behavior is similar to that of the neutron-
star mass. This is simply due to the fact that the transition
rate for the nn → χ̄ χ̄ process is proportional to the number
density of neutrons as indicated in Eq. (9), and thus it is
determined by the total number of neutrons contained in the
neutron star. For this reason, neutron stars with a large mass
and a small radius provide a more promising opportunity to
search for the emitted sterile antineutrinos.
Figure 3 shows the energy of the emitted sterile anti-

neutrinos as measured from infinity in the mass-radius
diagram. As can be seen from Fig. 3(a), the estimated
average Fermi energy is roughly within the range from 100
to 400 MeV. The sterile antineutrinos gain kinetic energy
from the dineutron decay and escape from the interior of the
neutron star. Because of gravitational attraction, the emitted
particles lose some energy after traveling a large distance,
as shown in Fig. 3(b). Supposing the detector is very far
from the neutron star, we could use the energies at infinity
to estimate the energies as measured at the location of the
detector. The results are presented in Fig. 3(c). As can be
seen, the total energy of the emitted sterile antineutrino as
measured from infinity depends on both the radius and the
mass of the neutron star. The relationships between the
energy of the emitted particles and the radius and mass of
the neutron star are described by multivalued functions.
Each output value in the multivalued mappings corresponds
to a different configuration of the central density ρc. Given
a certain radius and mass of the neutron star, the energy
spectrum of the emitted particles has a unique pattern.
Quantitatively, the dineutron decay inside a neutron star is
characterized by the emitted sterile antineutrinos with the
energy from 800 to 1200 MeV as measured from infinity.
From the experimental aspects, no significant evidence for
such sterile particles has been observed so far. Since the
number of the emitted sterile antineutrinos is huge, neutron
stars provide an excellent opportunity for the study of
such particles. If such sterile antineutrinos were observed, it

(a) (b) (c)

FIG. 2. The rate of sterile antineutrino emission in the mass-radius diagram of the neutron star in three different scenarios:
(a) λ≡ 1 × 10−3, MΔ ≡ 1 TeV; (b) λ≡ 5 × 10−3, MΔ ≡ 3 TeV; (c) λ≡ 1 × 10−2, MΔ ≡ 5 TeV.
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would be a clear signal for the grand (or partially) unified
models.

B. Orbital-period changes of binary systems

The orbital-period change of a binary system can be
related to its mass change by the expression [105]

_Pb

Pb
¼ −2

_M
M

; ð21Þ

wherePb is the orbital period, and _Pb denotes the rate of the
orbital-period change. M is the total mass, and _M denotes
the rate of the total mass change.
In the presence of the nn → χ̄ χ̄ process, the rate of the

mass change for a specific neutron star i (i ¼ 1, 2)
contained in the binary system can be approximately
given by

_Mi ≡ d
dt

Z
RðtÞ

0

4πr2ϵðr; tÞdr

¼ 4πRðtÞ2ϵ½RðtÞ; t� _RðtÞ þ
Z

RðtÞ

0

4πr2 _ϵðr; tÞdr

≃
X
j

Z
4πr2

�
ð1þ cjÞρþ

Kjγjρ
γj

γj − 1

�
Γðnn → χ̄ χ̄Þdr:

ð22Þ

The summation runs over all the internal layers inside the
neutron star. As mentioned above, we have also assumed
that the magnitude of the Fermi motion and nuclear binding
effects in neutron stars is not too far from that in atomic
nuclei and the dineutron-decay rate only weakly depends
on the energy of neutrons; thus Eq. (9) can also be applied
to the neutron-star matter. In the second step, we have used
the Leibniz integral rule for differentiation under the
integral sign. In the last step, we have used the boundary
conditions: ϵ½RðtÞ; t� ≃ 0 and Γðnn → χ̄ χ̄Þ is defined by

Eq. (9). Here, we have assumed that the fraction of neu-
trons change very slowly (i.e., _Xn ≃ 0) and the following
expression is satisfied:

���� _ρρ
����≃
���� _ρnρn −

_Xn

Xn

����≃
���� _ρnρn
���� ¼ Γðnn → χ̄ χ̄Þ: ð23Þ

The changes in the orbital period of the binary systems can
be contributed to a number of possible sources [30,91,106],
such as gravitational waves, electromagnetic emission,
galactic corrections, kinematic Shklovshii effects, etc.
After accounting for these contributions, there are still
possible discrepancies (or possible anomalous changes) that
cannot be well explained within the present theories
[30,91,104]. Previous studies show that the possible dis-
crepancies may mainly be attributed to the baryon-number
violation (BNV) [30,91,104]. Motivated by these studies
[30,91,104], we assume that the possible discrepancies may
have resulted from the nn → χ̄ χ̄ process. In the following
discussions, we analyze the corresponding physical conse-
quences of the nn → χ̄ χ̄ process on the orbital period of the
binary systems.
Table I lists the possible discrepancies associated with the

orbital-period changes or mass losses of the binary systems
in previous studies [30,91,104] and shows the derived
bounds on the mass of the new scalar bosons in the present
work. The binary systems of interest in previous studies
include PSR J0437-4715 [107], PSR B1913þ 16 [108],
PSR J1952þ 2630 [109], PSR J0737-3039A/B [110], PSR
J1713þ 0747 [111], and PSR J1141-6545 [112]. Among
them, two binary systems, namely B1913þ 16 [113] and
J0737-3039A/B [110], consist of two neutron stars. The
remaining binary systems consist of a neutron star and a
white dwarf [106,109,111,112]. The possible discrepancies
associated with the relative rate of the orbital-period changes
j _P=PjBNV were evaluated for the binary systems, such as
J0737-3039A/B (7.3 × 10−13 yr−1 [30]) and J1713þ 0747

(a) (b) (c)

FIG. 3. The energy of the emitted sterile antineutrinos as measured from infinity and shown in the mass-radius diagram of a neutron
star. (a) The average Fermi energy per particle. (b) The total energy excluding the average Fermi energy per particle from infinity. (c) The
total energy per particle from infinity.

DINEUTRON DECAY INTO STERILE ANTINEUTRINOS IN … PHYS. REV. D 107, 035026 (2023)

035026-7



(1.8 × 10−12 yr−1 [30]). The possible discrepancies associ-
ated with the relative rate of the mass losses j _M=MjBNV were
evaluated for the binary systems, such as J0437-4715
(1.6 × 10−11 yr−1 [104]), B1913þ 16 (6.5 × 10−13 yr−1

[91]), J1952þ 2630 (7 × 10−12 yr−1 [104]), and J1141-
6545 (1.6 × 10−12 yr−1 [104]). Similar to the previous study
[111], we assume that the nn → χ̄ χ̄ process only occurs
inside neutron stars but does not occur inside white dwarfs.
As mentioned above, the coupling constants have been
shown to be roughly restricted in the range from the order of
10−3 to 10−2 [62]. For the purpose of illustration, we choose
some typical values for the coupling constants in our
estimation. In Table I, the derived bounds on the mass of
the new scalar bosons are presented for two different cases
with the coupling constants λ≡ 10−3 and 10−2, respectively.
In the case with the coupling constant of 10−3, the derived
lower bounds are roughly restricted in the range from 1.1 to
1.4 TeV. In the other casewith the coupling constant of 10−2,
the derived lower bounds are roughly restricted in the
range from 4.7 to 5.9 TeV. These bounds are higher than
the existing limits reported by the direct searches at the
ATLAS [114,115] and CMS [116,117] experiments on the
present LHC but could still lie within the reach of direct
searches at the experiments on the upgraded LHC or future
high-energy experiments.
Figure 4 shows the derived bounds imposed by various

binary systems listed in Table I on the mass of the new scalar
bosons as a function of the coupling constants. The shaded
regions have been excluded. As can be seen, the derived
bounds on the mass of the new scalar bosons depend on the
values of the coupling constants.A smaller coupling constant
tends to give a smaller bound. The bounds arising from

different binary systems are close to each other. Among
them, themost stringent bound comes from theorbital-period
change of the J0737-3039A/B system presented in Ref. [30].
Figure 5 shows the constraints on the mass of the new

scalar bosons imposed by the mass loss of neutron stars as a
function of the neutron-star radius. The calculations are
performed with the coupling constant λ≡ 10−3. Dashed
lines with different colors indicate different mass losses of
neutron stars, namely j _M=MjBNV ≡ 10−15, 10−14, 10−13,
10−12, and 10−11 yr−1. One can see that there is little
change in the derived bounds with the neutron-star radius
for each mass loss. In order to discern the effect of the

TABLE I. Constraints on the mass of the new scalar bosons imposed by the binary’s orbital-period changes that
may have resulted from the baryon-number violation (BNV).

Parameter

Binary sys M1 (M⊙) M2 (M⊙) j _P=PjBNV j _M=MjBNV MΔ (TeV)j MΔ (TeV)k

J0437-4715 1.76a 0.254a � � � 1.6 × 10−11
g 1.11 4.69

B1913þ 16 1.438b 1.390b � � � 6.5 × 10−13
i 1.34 5.67

J1952þ 2630 1.35c 0.93–1.48c � � � 7 × 10−12
g 1.16 4.88

J0737-3039A/B 1.338185d 1.248868d 7.3 × 10−13
h � � � 1.39 5.86

J1713þ 0747 1.33e 0.29e 1.8 × 10−12
h � � � 1.31 5.54

J1141-6545 1.27f 1.02f � � � 1.6 × 10−12
g 1.27 5.33

aRef. [105].
bRef. [106].
cRef. [107].
dRef. [108].
eRef. [109].
fRef. [110].
gRef. [104].
hRef. [30].
iRef. [91].
jThese bounds correspond to the coupling constant 10−3.
kThese bounds correspond to the coupling constant 10−2.
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FIG. 4. Constraints on the mass of the new scalar bosons
imposed by the observation of the binary’s orbital-period
changes.
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coupling constants, the results calculated with λ≡ 10−2 are
shown in Fig. 6 for comparison. The decreasing trend in the
derived bounds with respect to the neutron-star radius can
still be identified. Furthermore, the steep decrease almost
appears at the same neutron-star radius. This suggests that
the neutron stars with radii greater than 12 km tend to give
less competitive bounds.
Figures 7 and 8 show the constraints on the mass of the

new scalar bosons as a function of the neutron-star mass in
two typical cases of the coupling constant λ≡ 10−3 and
10−2. For both cases, the derived bounds almost remain
unchanged throughout the entire range of the allowed

neutron-star masses. In contrast to the decreasing tendency
with respect to the neutron-star radius, the derived bounds
show an increasing trend with respect to the neutron-star
mass. The neutron stars with heavier masses tend to give a
more competitive bounds, but this trend is not significant.
Currently, theoretical analyses have shown that the

possible discrepancies in the orbital-period changes of
the binary systems roughly lie within the range from
the order of 10−13 to the order of 10−11 yr−1 (see, e.g.,
Refs. [30,91,104]). On the one hand, with anticipation
of upgraded experiments in astrophysics, the combined
analysis between future astrophysical observations and
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FIG. 5. Constraints on the mass of the new scalar bosons
imposed by the mass loss of a neutron star as a function
of neutron-star radius in the case with the coupling constant
λ≡ 10−3.
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theoretical calculations may reduce the possible discrep-
ancies to 10−14 yr−1 or even to 10−15 yr−1. This would put
more severe constraints on the parameter space of new-
physics models. On the other hand, if such discrepancies
cannot be reduced and do indeed exist, they would be a
clear signal of new physics.
We next analyze the compatibility between our derived

bounds and the present laboratory bounds of the stability of
atomic nuclei. On the one hand, similar to the statements
made in Ref. [30], we could assume that the nn → χ̄ χ̄
process can only occur, if the neutron number density
exceeds a certain threshold density. Moreover, if the
threshold density is lower than that in neutron stars but
higher than that in atomic nuclei, the nn → χ̄ χ̄ process can
only occur in neutron stars but cannot occur in atomic
nuclei. On the other hand, we could move a step back
and estimate the lifetime of atomic nuclei in the presence
of the nn → χ̄ χ̄ process and compare it with the labora-
tory limits. In laboratory, the present best limit on the
lifetime of the dineutron decay into invisible final states is
Tnn→inv ≳ 1.4 × 1030 yr, which has been reported by
the KamLAND Collaboration based on the carbon 12C
nucleus [19]. More recently, another limit (Tnn→inv ≳
1.3 × 1028 yr [20]) has been reported by the SNOþ
experiment based on the 16O nucleus. Since the latter limit
is weaker than the former one, we choose the limit reported
by the KamLAND Collaboration in our analysis. As
indicated by Eq. (9), the rate of the dineutron decay is
highly suppressed by the mass of the new scalar bosons,
and a larger mass tends to give rise to a longer lifetime of
the dineutron decay. To be conservative, we choose the
mass of the new scalar bosons to be 1 TeV, which roughly
corresponds to the coupling constant λ ≃ 10−3. We assume
that the 12C nucleus has a spherical shape and the neutrons
are uniformly distributed in the 12C nucleus. The charge
radius of the 12C nucleus has the value rC ≡ 2.4702 fm
[122]. A rough estimate shows that the lifetime of the
dineutron decay into sterile antineutrinos in the 12C nucleus
satisfies the limit Tnn→χ̄ χ̄ð12CÞ≳ 6 × 1053 yr, which is
much longer than the present experimental limits.
Moreover, a larger mass would strengthen this argument.
Therefore, our results are compatible with the laboratory
limits, and the stability of nuclei can be assured with
respect to the allowed masses of the new scalar bosons.

V. SUMMARY

The dineutron decay into sterile antineutrinos (nn → χ̄ χ̄)
violates the B, L, and (B þ L) symmetries but conserves
the (B − L) symmetry. This process is characterized by the
decay of two neutrons into two back-to-back energetic
sterile antineutrinos. From the theoretical aspects, this
process can be mediated by the new scalar bosons and
described by some new-physics models with the (B − L)
symmetry or the unified description of quarks and leptons.

Therefore, the nn → χ̄ χ̄ process can serve as a promising
probe for such new-physics models.
Neutron stars contain a large number of neutrons, and the

nn → χ̄ χ̄ process can be significantly enhanced inside
neutron stars. Owing to this process, a large number of
sterile antineutrinos can be emitted from the interior of the
neutron star into space and meanwhile the neutron star
loses mass and changes its properties gradually. Since the
sterile antineutrinos barely interact with the ordinary
matter, they can escape from the interior of the neutron
star nearly without any collisions and may give rise to
observable effects in astrophysical observations.
In order to estimate the impact of the nn → χ̄ χ̄ process

on the properties of the neutron star, we have solved the
TOV equations numerically based on the MPA1 EOS [88]
using the RK4 approach [78]. The MPA1 EOS can yield a
reasonable maximum mass of the neutron star and has been
widely used in describing neutron stars contained in the
binary systems in the literature.
In the presence of the nn → χ̄ χ̄ process, we have

estimated the emission rate and energy spectrum of the
sterile antineutrinos emitted from the neutron star. The
emission rate has a maximum at a specific radius, and this
behavior is similar to that of the neutron-star mass.
Furthermore, this process is characterized by the emitted
sterile antineutrinos with the energy from 800 to 1200MeV.
We have also pointed out that heavy neutron stars provide a
more promising opportunity to observe the emitted sterile
antineutrinos.
We have also evaluated the constraints imposed by the

observations of the binary’s orbital-period changes on the
mass of the new scalar bosons in some typical cases of
the coupling constant. In the case with the coupling
constant λ≡ 10−3, the lower bounds are roughly restricted
in the range from 1.1 to 1.4 TeV. In the other case with the
coupling constant λ≡ 10−2, the lower bounds are roughly
restricted in the range from 4.7 to 5.9 TeV. Such bounds are
higher than the existing limits reported by the direct
searches at the LHC but may still lie within the reach of
direct searches at the upgraded LHC or future high-energy
experiments.
It is expected that the combined analysis between future

astrophysical observations and theoretical calculations
may reduce the possible discrepancies in the binary’s
orbital-period changes to 10−14 yr−1. Even a possible dis-
crepancy as low as 10−15 yr−1 is achievable. Such improve-
ments might be obtained with the upgraded experiments in
astrophysics and have a better chance to put more severe
constraints on the parameter space of new-physics models.
However, if such discrepancies cannot be reduced and do
indeed exist, they would be a clear signal of new physics.
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