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Current experimental data guarantees the presence of physics beyond the Standard Model in the neutrino
sector. The responsible physical description might show itself through virtual effects on low-energy
observables. In particular, massive neutrinos are able to produce contributions to the triple gauge coupling
WWγ. The present paper deals with the calculation, estimation and analysis of one-loop contributions from
Majorana neutrinos to the Lorentz-covariant WWγ parametrization. Our calculations show that CP-odd
effects vanish exactly, whereas CP-even contributions, Δκ and ΔQ, remain. According to our estimations,
the effects from heavy neutrinos with masses in the range of hundreds of GeVs dominate over those from
light neutrinos. This investigation shows that contributions from heavy Majorana neutrinos to the anomaly
Δκ could be as large as ∼Oð10−3Þ, one order of magnitude below the Standard-Model contribution. We
find that the International Linear Collider, sensitive to triple gauge couplings participating in WW
production, might measure these effects in electron-positron collisions at a center-of-mass energy of
800 GeV, as long as heavy-neutrino masses are ≳300 GeV and below ∼1500 GeV.
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I. INTRODUCTION

Nowadays, the Standard Model [1–3] (SM) remains our
best description of fundamental physics. While most
experimental data leans towards this field-theory formu-
lation, phenomena beyond the Standard Model (BSM) have
been confirmed. Experimental data has established the
presence of new physics within the neutrino sector, namely,
as opposed to the SM, neutrinos are massive and mix with
each other. Nearly 70 years after the introduction of
neutrinos by Pauli, the first evidence of neutrino mass
materialized though the measurement of neutrino oscilla-
tions [4], by the Kamiokande Collaboration [5], which was
confirmed four years later by the Sudbury Neutrino
Observatory [6]. Before that, the lack of experimental
evidence in favor of neutrino mass and the observed
absence of right-handed neutrino states, in agreement with
the Weyl description of massless fermions, motivated
the assumption of massless neutrinos in the definition of

the SM. The determination that neutrinos are massive bears
great relevance per se, and yet it comes along with a quite
interesting physical consequence; the possibility that the
correct characterization of neutrinos is not provided
by Dirac spinors [7], but by Majorana fields [8] instead,
in which case neutrino fields, ν, and their charge-conjugate
fields, νc, coincide with each other. This is an open
problem, whose answer may come from the elusive
neutrinoless double beta decay, which, if observed, would
incarnate strong evidence upholding Majorana neutrinos,
as this physical process is forbidden if such particles
are Dirac-like. So far, there is no experimental support
implying the occurrence of the neutrinoless double
beta decay, despite efforts by several experimental
collaborations [9–15].
Contrary to the case of the Dirac field, which provides a

proper description of SM fermions, Majorana mass terms
do not preserve lepton number, but they rather violate it in
two units. Such a framework allows for the occurrence of
the Weinberg operator1 [18], an effective-Lagrangian term
of mass-dimension 5, built solely upon SM fields and
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1It has been pointed out that lepton-number conserving
generalizations of the Weinberg operator can be set, but they
require the introduction of extra scalar fields [16,17].
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compatible with a universe in which the seesaw mechanism
is responsible for the generation and definition of neutrino
masses [19,20]. If nature turns out to be such that known
neutrinos get their masses by a seesaw mechanism, heavy
neutrinos must exist, with masses proportional to some
high-energy scale associated to spontaneous symmetry
breaking. The theoretical framework for the present inves-
tigation has been set in Ref. [21], where the SM is
extended, to a certain level of generality, by the inclusion
of Dirac mass terms, generated as a consequence of the SM
electroweak symmetry breaking [22,23], and Majorana
mass terms, presumably originating from a fundamental
description of nature in which spontaneous symmetry
breaking at some high-energy scale, w, takes place. In this
context, the necessary conditions are met for a type-1
seesaw mechanism to operate, which defines neutrino
masses at the tree level, with the distinctive seesaw-
mass profile. Light-neutrino masses, being as tiny as
mν < 0.8 eV [24], require a large suppression provided
by the energy scale w, characterizing the fundamental
formulation. Such a large energy scale greatly increases
the values of heavy-neutrino masses and pushes their
effects out from experimental sensitivity. The author of
Ref. [21] eluded this issue by imposing a condition aimed
at the elimination of tree-level masses of light neutrinos.
These masses were generated through radiative corrections
instead, thus enabling heavy-neutrino masses to be smaller
and, consequently, improving expectations regarding the
size of the corresponding new-physics effects.
BSM effects from virtual heavy neutrinos on SM observ-

ables might be within the reach of current experi-
mental sensitivity, which motivates the present work. We
aim at the calculation, estimation, and analysis of the
contributions from massive Majorana neutrinos, both light
and heavy, to theWWγ vertex at one loop, in the framework
given by the neutrino model of Ref. [21]. The general
parametrization of such an interaction was given long
ago [25], from which W-boson production mechanisms in
linear colliders [26,27] and from pp collisions [28] were
explored, in the context of the electroweak SM. Since then,
SM extensions have been considered in order to estimate
their one-loop contributions to WWγ. We calculate new-
physics contributions by assuming both external W bosons
to be on shell, but keeping the external photon off the mass
shell. From the form factors constituting the WWγ
parametrization, which yield the definitions of the electro-
magnetic properties of the W boson, both CP-even and
CP-odd,we identify the corresponding contributions engen-
dered by the aforementioned neutrino model. Nonetheless,
an exact cancellation ofCP-odd contributions happens, thus
leaving CP-even effects only. Moreover, the remaining
contributions are found to be ultraviolet finite and gauge
invariant. Pointing towards an estimation of the impact of the
new physics, we consider nearly-degenerate heavy-neutrino
mass spectra, which is required by this Majorana-neutrino

model [21]. Our calculations and estimations show that
effects from virtual heavy neutrinos are dominant over
contributions from their light counterparts, by about one
order of magnitude, for a wide range of heavy-neutrino
masses. In optimistic scenarios, in which heavy-neutrino
masses lie between∼ 300 GeV and∼ 1500 GeV, the effects
from virtual heavy neutrinos are found to be smaller than the
one-loop SM contributions by ∼ 1 order of magnitude.
Furthermore, our analysis suggest that new-physics contri-
butions might be within the reach of the sensitivity of the
International Linear Collider, expected to set bounds as
stringent as Oð10−4Þ on the CP-even anomalous couplings
of the vertex WWγ, from the process eþe− → WþW−, at a
center-of-mass energy (CME) of 800 GeV.
This paper has been organized as follows: we establish

our framework by discussing the neutrinomodel of Ref. [21]
in Sec. II, where all the couplings and approximations,
relevant for our calculation, are covered. Then, in Sec. III,
the parametrization of WWγ is discussed, which is then
followed by the calculation of the analytic expressions for
the new-physics contributions to the form factors of such a
coupling. The previously-obtained results are then utilized
in order to perform numerical estimations in Sec. IV, which
are analyzed and discussed, and finally, a summary of the
paper and our conclusions are presented in Sec. V.

II. MAJORANA NEUTRINOS AND THE SM

Neutrinos are the only known existing elementary
fermions characterized by electric neutrality.2 Since electric
charge is the mean to distinguish particles from their
corresponding antiparticles, massive neutrinos meet the
conditions to be depicted by Majorana spinors [8], which
fulfill the so-called Majorana condition, νc ¼ ν. Even
though the experimentally-confirmed phenomenon of neu-
trino oscillations, first proposed by Pontecorvo [4], requires
neutrinos to be massive, with all neutrino masses different
of each other, it provides no information regarding whether
these particles fit the Dirac o the Majorana description. On
the other hand, the electromagnetic properties of neutrinos
have been shown to differ in these cases [30]. Nowadays,
the sensitivity of experiments aimed at the measurement of
electromagnetic properties of neutrinos lies far away from
the prediction of the SM minimally extended by massive
neutrinos [31], by about eight orders of magnitude [30],
thus meaning that BSM physics is the only hope to measure
such electromagnetic interactions in the near future. The
conventional probe of the Majorana nature of neutrinos is
the neutrinoless double beta decay, which can occur only as
long as neutrinos are Majorana fermions, but is not allowed
if these particles are Dirac-like. If neutrinos are Majorana,
this physical process must be quite rare in nature, for no
signals have been found in experiments so far, even though

2Note, however, that Ref. [29] has explored the possibility of
millicharged neutrinos.
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several collaborations have been pursuing it for
decades [9–15,32]. The GERDA Collaboration and the
KamLAND-Zen Collaboration have established lower
bounds of order 1026 yr on the neutrinoless double-beta
decay half-life [12,15].
Consider a BSM model, characterized by some

Lagrangian density LBSM, upon which two phases of
spontaneous symmetry breaking operate, namely, a first
stage of symmetry breaking at some high-energy scale,
here denoted by w, and, then, the Brout-Englert-Higgs
mechanism [22,23], through which the electroweak-SM
gauge group, SUð2ÞL ⊗ Uð1ÞY , is broken down into the
electromagnetic group, Uð1Þe, at v ¼ 246 GeV. Instances
of field-theory formulations in which this happens are
left-right symmetric models [33–35], based on the gauge
group SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞY , 331 models [36,37],
endowed with SUð3ÞC ⊗ SUð3ÞL ⊗ Uð1ÞX symmetry, and
grand unification models [38,39], defined by larger gauge
groups, such as SU(5) and SO(10). Then assume that this
chain of events gives rise to the Lagrangian

LBSM ¼ Lν
mass þ LSM

CC þ � � � ; ð1Þ

with the ellipsis standing for other terms, some of them
specified by the BSM model under consideration. The
Lagrangian term Lν

mass is assumed to be given as

Lν
mass ¼ −

X3
j¼1

X3
k¼1

ðν0j;LðmDÞjkν0k;R

þ 1

2
ν0cj;RðmMÞjkν0k;RÞ þ H:c:; ð2Þ

where ν0j;L is a left-handed neutrino field and ν
0
k;R represents

a neutrino field with right chirality, whereas ψ c ¼ Cψ̄T is
the charge-conjugate field of the spinor ψ, with C the
charge-conjugation matrix. Dirac mass-like terms, involv-
ing the 3 × 3matrixmD and its conjugate-transposem†

D, are
assumed to emerge from electroweak symmetry breaking.
On the other hand, Lν

mass involves Majorana mass-like
terms as well, which are thought to emerge from sponta-
neous symmetry breaking at the high-energy scale w. The
3 × 3 matrix mM, lying within these terms, is symmetric,
but general in any other regard. By defining the 3 × 1
matrices

fL ¼

0
B@

ν01;L

ν02;L

ν03;L

1
CA; FL ¼

0
B@

ν0c1;R

ν0c2;R

ν0c3;R

1
CA; ð3Þ

and then denoting fR ¼ CfL
T, FR ¼ CFL

T, which empha-
sizes the chirality properties of these charge-conjugated
fields, the neutrino-mass Lagrangian, Lν

mass, is written as

Lν
mass ¼ −

1

2
ðfL FLÞM

�
fR
FR

�
þ H:c:; ð4Þ

where M is a 6 × 6 matrix, both complex and symmetric,
given in terms of 3 × 3 matrix blocks as

M ¼
�

0 mD

mT
D mM

�
: ð5Þ

In order to express the neutrino fields in the base of mass
eigenspinors, a unitary diagonalization transformation is
implemented through the unitary 6 × 6 matrix Uν, given by
3 × 3 matrix blocks Ukj as

Uν ¼
�
U11 U12

U21 U22

�
: ð6Þ

The corresponding unitary transformation yields [40]

UT
νMUν ¼

�
mν 0

0 mN

�
; ð7Þ

where mν and mN are 3 × 3 real-valued diagonal matrices,
whose entries are ðmνÞjk ¼ mνjδjk and ðmNÞjk ¼ mNj

δjk,
with mνj > 0 and mNj

> 0. Thus, Lν
mass acquires the form

Lν
mass ¼

X3
j¼1

�
−
1

2
mνjνjνj −

1

2
mNj

NjNj

�
; ð8Þ

comprising all the mass terms of the mass-eigenspinor
neutrino fields νj and Nj, which satisfy νcj ¼ νj, Nc

j ¼ Nj,
meaning that they are Majorana-neutrino fields.
The Lagrangian term LSM

CC , which is part of Eq. (1),
comprises the set of charged currents (CC) in which the SM
W boson participates. After implementing the change of
basis defining the neutrino mass eigenspinors, LSM

CC is
expressed as

LSM
CC ¼

X
α

X3
j¼1

�
gffiffiffi
2

p BανjW
−
ρ lαγρPLνj

þ gffiffiffi
2

p BαNj
W−

ρ lαγρPLNj

�
þ H:c:; ð9Þ

with the index α running over lepton flavors, that is α ¼ e,
μ, τ. Moreover,

Bανj ¼
X3
k¼1

Vl
αkðU�

11Þkj; ð10Þ

BαNj
¼
X3
k¼1

Vl
αkðU�

12Þkj; ð11Þ
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have been defined. In these equations, the 3 × 3 matrix Vl

is a lepton-sector analog of the Kobayashi-Maskawa
matrix [41], lying within the quark sector of the SM. In
massive-neutrino BSM descriptions, such as those provided
by the Weinberg operator [18] and the minimally extended
SM [31], lepton mixing is characterized by the matrix
UPMNS, dubbed the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) [42,43] matrix, which is unitary. Note that, by
contrast, Vl is not necessarily unitary. In models of
Majorana neutrinos, UPMNS is determined by three mixing
angles, θ12, θ13, and θ23, by the Dirac phase, δD, and by
three Majorana phases, ϕ1, ϕ2, and ϕ3 [31]. The Majorana
phase ϕ1 is usually taken ϕ1 ¼ 0. The parametrization of
the PMNS matrix for the case of Dirac neutrinos lacks the
Majorana phases, so it is given by four parameters
only [31]. The set of coefficients Bανj and BαNj

constitute
the 3 × 3 matrices Bν and BN , respectively. Such matrices
are conveniently arranged to define the 3 × 6 block matrix

B ¼ ðBνBNÞ; ð12Þ

with entries

Bαj ¼
�
Bανk if j ¼ 1; 2; 3;

BαNk
if j ¼ 4; 5; 6;

ð13Þ

where νk ¼ ν1; ν2; ν3 and Nk ¼ N1; N2; N3. The matrix B
fulfills the conditions BB† ¼ 13 and B†B ¼ C, which are
more explicitly expressed as

X6
j¼1

BαjB�
βj ¼ δαβ; ð14Þ

X
α¼e;μ;τ

B�
αjBαk ¼ Cjk: ð15Þ

In these equations, δαβ ¼ ð13Þαβ, with 13 the 3 × 3 identity
matrix. Moreover, the matrix C, 6 × 6 sized, is given by its
components as

Cjk ¼

8>>>>><
>>>>>:

Cνiνl ; if j ¼ 1; 2; 3 and k ¼ 1; 2; 3;

CνiNl
; if j ¼ 1; 2; 3 and k ¼ 4; 5; 6;

CNiνl ; if j ¼ 4; 5; 6 and k ¼ 1; 2; 3;

CNiNl
; if j ¼ 4; 5; 6 and k ¼ 4; 5; 6;

ð16Þ

with the definitions

Cνiνl ¼
X3
j¼1

ðU11ÞjiðU�
11Þjl ≡ ðCννÞil; ð17Þ

CνiNl
¼
X3
j¼1

ðU11ÞjiðU�
12Þjl ≡ ðCνNÞil; ð18Þ

CNiνl ¼
X3
j¼1

ðU12ÞjiðU�
11Þjl ≡ ðCNνÞil; ð19Þ

CNiNl
¼
X3
j¼1

ðU12ÞjiðU�
12Þjl ≡ ðCNNÞil; ð20Þ

in terms of the matrix blocks introduced in Eq. (6). Note
that νj; νk ¼ ν1; ν2; ν3 and Nj; Nk ¼ N1; N2; N3, so the
matrix C is written in terms of 3 × 3 matrix blocks Cνν,
CνN , CNν, and CNN , which we defined in Eqs. (17)–(20), as

C ¼
�
Cνν CνN
CNν CNN

�
: ð21Þ

The property CC† ¼ C, expressed in terms of matrix
components as

P
6
i¼1 CjiC

�
ki ¼ Cjk, holds.

Unitarity of the diagonalization matrix Uν and usage of
Eq. (7) allows for the approximation [21]

Uν ≃

 
13 − 1

2
ξ�ξT ξ�ð13 − 1

2
ξTξ�ÞJ

−ξTð13 − 1
2
ξ�ξTÞ ð13 − 1

2
ξTξ�ÞJ

!
; ð22Þ

where the 3 × 3 matrix

ξ ¼ mDm−1
M ; ð23Þ

has been defined, with jξjkj < 1, in which case the smaller
the entries of the 3 × 3 matrix ξ, the more reliable this
approximation will be. Moreover, J is a 3 × 3 matrix, both
diagonal and unitary. From Eq. (22), we find that the matrix
B, defined by Eqs. (10)–(13), is approximated as

B ≃

 
Vl

�
13 −

1

2
ξξ†
�
Vlξ

�
13 −

1

2
ξ†ξ

�
J�
!
: ð24Þ

If mD ∼ v and mM ∼ w are assumed, with v ≪ w, type-1
seesaw mechanism takes place, defining light-neutrino
masses mνj ∼

v2
w and heavy-neutrino masses mNj

∼ w, in
line with Eq. (7). Masses of light neutrinos generated by the
seesaw mechanism place a severe lower bound on w, which
is restricted to be greater than ∼1013 GeV, thus resulting in
huge heavy-neutrino masses mNj

. In the present paper, we
rather follow Ref. [21], in which the set of conditions
ðMUνÞjk ¼ 0, with j ¼ 1, 2, 3, 4, 5, 6, are stated to be
sufficient and necessary for the kth neutrino mass to vanish
at tree level, that is mνk ¼ 0 in Eq. (7). On the other hand,
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the tree-level masses of heavy neutrinos are left untouched,
so they are defined by the diagonalization of the mass
matrix, Eq. (7), as [21]

mN ≃ JmM

�
1þ 1

2
m−1

M ðξ†mD þmT
Dξ

�Þ
�
J: ð25Þ

In this manner, very large values of heavy-neutrino masses
and, consequently, quite suppressed contributions from new
physics are avoided. Then, in Ref. [21], massiveness of light
neutrinos is achieved radiatively, via neutrino self-energy
diagrams. Furthermore, thatwork provides and discusses the
one-loop calculation of the light-neutrinomassmatrixmloop

ν .
A noteworthy observation of such a calculation is that the
smallness of light-neutrino masses comes about if the heavy
neutrinos are nearly mass degenerate.

III. ONE-LOOP EFFECTS FROM MAJORANA
NEUTRINOS ON THE VERTEX WWγ

The present section is devoted to the analytic calculation,
at the one-loop level, of the contributions from Feynman
diagrams involving virtual Majorana neutrinos νj and Nj,
emerged from the neutrino model discussed in Sec. II, to
the vertex WWγ. The presence of the CCs given in Eq. (9)
yields vertices which make it possible for one-loop WWγ
diagrams, with such virtual neutrinos, to exist. The
Lorentz-covariant structure of this vertex defines contribu-
tions to the electromagnetic moments of theW boson, with
a couple of them CP even and other two being CP odd. As
we show and discuss below, contributions to CP-odd
electromagnetic form factors vanish, thus leaving only
CP-even effects.

A. Parametrization of WWγ

We start our discussion by considering the effective
Lagrangian [26,27]

LWWγ
eff ¼ Leven

WWγ þ Lodd
WWγ; ð26Þ

with the definitions

Leven
WWγ ¼ −ieg1ðWþ

μνW−μAν −W−
μνWþμAνÞ

− ieκWþ
μ W−

νFμν −
ieλ
m2

W
Wþ

μνW−ν
ρFρμ; ð27Þ

Lodd
WWγ ¼ −ieκ̃Wþ

μ W−
ν F̃μν −

ieλ̃
m2

W
Wþ

μνW−ν
ρF̃ρμ; ð28Þ

where κ, λ, κ̃, and λ̃ parametrize, at low energies, the effects
of some new-physics formulation, whereas e is the electric
charge of a positron. While, as usual, Fμν ¼ ∂μAν − ∂νAμ is
the electromagnetic tensor, the dual tensor F̃μν ¼ 1

2
ϵμνρλFρλ

is defined. The definitionsW�
μν ¼ ∂μW�

ν − ∂νW�
μ have been

used as well. The criterion to separate LWWγ
eff into the

Lagrangian terms Leven
WWγ andL

odd
WWγ has been their properties

with respect to the discrete transformation CP, under
which, as indicated by our notation, such terms are either
even or odd, respectively. Violation of CP symmetry holds
great physical interest, for its presence is a requirement for
the occurrence of baryon asymmetry in the universe, as
stipulated by the Sakharov conditions [44]. Furthermore,
since the only source of CP violation in the SM is the
Kobayashi-Maskawa matrix, physical quantities not pre-
serving CP symmetry incarnate means to look for BSM
new physics and are quite relevant.
With the objective of writing down, in momentum space,

the expression for the vertex function WWγ associated to
the effective Lagrangian LWWγ

eff , we provide Fig. 1, which
displays the momenta conventions used for theWWγ vertex
throughout the present investigation. First introduced in
Ref. [25], this choice already takes into account momentum
conservation of the whole vertex. With the assumptions that
the external photon line is off shell and both W-boson
external lines are on shell, the momenta conventions of
Fig. 1 are used to derive, from the Lagrangian terms
comprised by Leven

WWγ, the CP-even WWγ vertex function

Γeven
σρμ ¼ ie

�
g1ð2pμgσρ þ 4ðqρgσμ − qσgρμÞÞ

þ 4ΔQ
m2

W
pμ

�
qσqρ −

q2

2
gσρ

�

þ 2Δκðqρgσμ − qσgρμÞ
�
; ð29Þ

with the definitions Δκ ¼ −g1 þ κ þ λ and ΔQ ¼ −2λ.
Furthermore, Lodd

WWγ leads to the CP-odd vertex function

Γodd
σρμ ¼ ie

�
2Δκ̃ϵσρμαqα þ

4ΔQ̃
m2

W
qρϵσμαβpαqβ

þ g̃1pλϵσρλαðq2δαμ − qαqμÞ
�
; ð30Þ

FIG. 1. Conventions for momenta in the WWγ vertex.

NEW PHYSICS IN WWγ AT ONE LOOP VIA … PHYS. REV. D 107, 035025 (2023)

035025-5



where Δκ̃ ¼ κ̃ þ m2
W−2q2

m2
W

λ̃, ΔQ̃ ¼ −2λ̃, and g̃1 ¼ − 4λ̃
m2

W
.

Note that implementation of on-shell conditions on the
photon external line eliminates contributions associated to
the parameter g̃1. At tree level in the SM, g1 ¼ 1, κ ¼ 1, and
λ ¼ 0, whereas κ̃ ¼ 0 and λ̃ ¼ 0. These effective vertex
functions fulfill Ward identities [45], with respect to the
electromagnetic field: QμΓeven

σρμ ¼ 0 and QμΓodd
σρμ ¼ 0, where

Q ¼ 2q is the incoming momentum of the external photon.
The electromagnetic properties of the W boson comprise a
set of four electromagnetic moments, which are defined, in
terms of the parameters characterizing the WWγ vertex
functions of Eqs. (29) and (30), as [26,27]

μW ¼ e
2mW

ð2þ ΔκÞ; ð31Þ

QW ¼ −
e
m2

W
ð1þ Δκ þ ΔQÞ; ð32Þ

μ̃W ¼ e
2mW

Δκ̃; ð33Þ

Q̃W ¼ −
e
m2

W
ðΔκ̃ þ ΔQ̃Þ: ð34Þ

The W-boson electromagnetic moments μW and QW are
both even with respect to the CP discrete transformation.
These quantities are given the names “magnetic dipole
moment” and “electric quadrupole moment”, respectively.
In the SM, these electromagnetic moments are nonzero at
tree level. On the other hand, the “electric dipole moment”,
μ̃W , and the “magnetic quadrupole moment”, Q̃W , are CP
odd and vanish at the tree level in the SM, so these
quantities are interesting places to look for traces of BSM
physics.

B. One-loop contributions to WWγ

The contributions from the CCs Lagrangian term LSM
CC ,

Eq. (9), to the WWγ vertex function, ΓWWγ
σρμ , are generated

by the sum of Feynman diagrams

ð35Þ

in accordance with the momenta conventions of Fig. 1.
Also note that α ¼ e, μ, τ, so the sum

P
α runs over the

three lepton flavors. In general, calculations of amplitudes
featuring neutrinos differ depending on whether, in the
model at hand, such fermions are described by Dirac or
Majorana fields. For starters, a main difference lies in the

Feynman rules corresponding to each of these cases [46].
Furthermore, lepton number violation allows for the
occurrence of a larger number of Feynman diagrams if
neutrinos are Majorana, as compared to the Dirac case. Let
us point out that the present calculation, in which neutrinos
are characterized by Majorana fields, does not entail any
such additional diagrams. Moreover, those Feynman dia-
grams to be considered have the same structure as if
neutrinos were Dirac type. Therefore, the calculation does
not distinguish between the Dirac and Majorana cases,
except for a possible role played by the Majorana phases.
To perform the calculation, we have taken the external W
bosons on shell, whereas the external photon has been
assumed to be off the mass shell. The set of contributing
Feynman diagrams includes virtual effects from both light
and heavy Majorana neutrinos, νj and Nj, with Feynman
rules determined from Eq. (9), in Sec. II. Note that the
superficial degree of divergence of any of the diagrams
displayed in Eq. (35) is 1, which warns us that ultraviolet
divergences, growing as fast as linearly, might arise.
With this in mind, we use the method of dimensional
regularization [47,48] to regularize loop integrals,
which, accordingly, are set in D spacetime dimensions;R

d4k
ð2πÞ4 → μ4−D

R
dDk
ð2πÞD, with μ the renormalization scale. To

calculate the analytic expressions corresponding to these
diagrams, we have followed the tensor-reduction method
[49], implemented through the software Mathematica,
by Wolfram, with the packages FeynCalc [50–52] and
Package-X [53]. Consequently, the analytic expressions
of the contributions are given in terms of 1-point, 2-point,
and 3-point Passarino-Veltman scalar functions.
Let us rearrange the vertex function ΓWWγ

σρμ , just given in
Eq. (35), as

ΓWWγ
σρμ ¼

X
α

X6
k¼1

jBαkj2ðΓeven
σρμ ðmα; mkÞ þ Γodd

σρμðmα; mkÞÞ:

ð36Þ

In Eq. (36), the contribution from the one-loop Feynman
diagram involving the αth virtual charged lepton, with mass
mα, and the νkth virtual neutrino has been splitted into CP-
even and CP-odd contributions, denoted by Γeven

σρμ ðmα; mkÞ
and Γodd

σρμðmα; mkÞ, respectively. While our notation explic-
itly advises the reader about the dependence of the vertex
function on the masses of charged leptons and neutrinos, let
us point out that Γeven

σρμ ðmα; mkÞ and Γodd
σρμðmα; mkÞ also

comprise the W boson mass, mW , and the squared
external-photon momentum, Q2. In contrast with
Eq. (35), this expression of ΓWWγ

σρμ features the sumP
6
k¼1, which takes all the neutrinos, both light and heavy,

into account at once. For that reason, the masses of all the
neutrinos have been generically denoted by mk, where
k ¼ 1, 2, 3, 4, 5, 6, so m1 ¼ mν1 , m2 ¼ mν2 , and m3 ¼ mν3
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are the masses of light neutrinos, whereas the masses of the
heavy neutrinos are m4 ¼ mN1

, m5 ¼ mN2
, and m6 ¼ mN3

.
Similarly, factors Bαk, defined in Eq. (13), have been
utilized.
The structure of the CP-even vertex-function term

Γeven
σρμ ðmα; mkÞ matches Eq. (29), so it satisfies the corre-

sponding Ward identity. This CP-even vertex function
carries individual contributions gαk1 , ΔQαk, and Δκαk. We
found ultraviolet divergences nested within individual
contributions gαk1 , which do not vanish from the total form
factor g1 ¼

P
α

P
6
k¼1 jBαkj2gαk1 . Nonetheless, this diver-

gent contribution is absorbed by the SM through renorm-
alization. The form-factor contributionsΔQαk and Δκαk, on
the other hand, turned out to be free of ultraviolet
divergences. We provide their explicit expressions in the
Appendix. The full set of individual contributions ΔQαk

and Δκαk sum together to give the anomalous couplings

Δκ ¼
X
α

X6
k¼1

jBαkj2Δκαk; ð37Þ

ΔQ ¼
X
α

X6
k¼1

jBαkj2ΔQαk: ð38Þ

As shown by Eq. (36), the WWγ vertex function ΓWWγ
σρμ

includes CP-odd contributions as well, lying within the
term Γodd

σρμðmα; mkÞ. After processing via software tools, we
got an expression with Lorentz-covariant structure

Γodd
σρμðmα;mkÞ¼ ϵμρσαpαF1þpαqβðqσϵμραβF2þqρϵμσαβF3Þ;

ð39Þ

where F1, F2, and F3 are some functions of masses, given
in terms of Passarino-Veltman scalar functions. Let us
point out that the three form factors are ultraviolet finite.
Merging Schouten identities [54] with the on-shell
W-boson transversality conditions on momenta, we rewrite
Γodd
σρμðmα; mkÞ as

Γodd
σρμðmα; mkÞ ¼ −ϵσρμαpαF1 − qρϵσμαβpαqβðF2 þ F3Þ

− pλϵσρλαðq2δαμ − qαqμÞF2: ð40Þ

When compared with Eq. (30), the second term of this
expression, whose Lorentz-covariant structure is

qρϵσμαβpαqβ, leads to the identification ΔQ̃ ¼ iðF2þF3Þm2
W

4e .
We have verified that, even assuming the external photon to
be off shell, the cancellation F2 þ F3 ¼ 0 happens, so the
CP-odd one-loop contribution ΔQ̃ vanishes exactly.
Moreover, Eq. (40) shows no contribution to the form
factor Δκ̃. On the other hand, we note that the off-shell
contribution g̃1 ¼ iF2

e is generated, in line with Eq. (30).
The first term of Eq. (40), characterized by the Lorentz-

covariant structure ϵσρμαpα, is not part of the general
parametrization of the WWγ vertex, shown in Eq. (30).
Furthermore, this extra term, which does not vanish even
when taking the vertex on the mass shell, spoils the Ward
identity QμΓodd

σρμðmα; mkÞ ¼ 0. Ward identities may fail if
gauge symmetry, valid in some classical formulation,
ceases to hold at the quantum level, in which case the
theory is said to have anomalies [55–57]. Consistent field
theories are anomaly free, as it is the case of the SM, where
a set of conditions relating hypercharges are fulfilled in
order to eliminate anomalies. Ward identities, customarily
understood as a test of gauge invariance, often serve as a
criterion to probe consistency of calculations of amplitudes,
since failure of some Ward identity may hint at a mistake in
the execution of a given calculation. However, there is
another plausible reason for Ward identities not to occur in
the context of an anomaly-free theory, namely, the presence
of the chirality matrix, γ5, which turns out to be
incompatible with the method of dimensional regulariza-
tion [48,58]. In order to tackle amplitudes involving the
chirality matrix, modi operandi have been posed. For
instance, the γ5 is taken to anticommute with all the
Dirac matrices γμ, present in D spacetime dimensions, in
the so-called naive dimensional regularization. Another
approach, by t’Hooft and Veltman [48], takes the γ5 to
anticommute with the four original Dirac matrices, γ0, γ1,
γ2, and γ3, while commutation relations with the rest of
such matrices, in D dimensions, are imposed to hold.
Extensions of the t’Hooft-Veltman approach, such as the
Breitenlohner-Maison scheme [59], are available as well.
The author of Ref. [58] claims that loop integrals involving
the γ5 can be regularized only as long as either the trace
condition trfγμγνγργσγ5g ≠ 0 or gauge invariance is aban-
doned. This author suggests, in practice, usage of the naive
dimensional regularization, as this avoids both spurious
anomalies and complications. Returning to our calculation,
we have verified that the use of the naive dimensional
regularization, which comes along with the trace condition
trfγμγνγργσγ5g ¼ 0, renders the CP-odd contribution
zero, that is Γodd

σρμðmα; mkÞ ¼ 0, in which case the Ward
identity QμΓodd

σρμðmα; mkÞ ¼ 0 is trivially fulfilled. On the
other hand, after implementation of the cancellation
F2 þ F3 ¼ 0, commented above, Eq. (40) suggests that
traces trfγμγνγργσγ5g do not contribute to the electromag-
netic form factors, so we can pragmatically ignore these
traces by using the naive dimensional regularization.
Moreover, both approaches coincide in that CP-odd
electromagnetic form factors vanish, even if the photon
is off shell. We arrive at the conclusion that this model of
Majorana neutrinos does not produce any contribution to
the CP-odd WWγ anomalous couplings Δκ̃ and ΔQ̃, so no
contributions to the CP-odd electromagnetic moments of
the W boson, μ̃W and Q̃W , arise.
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IV. ESTIMATIONS AND DISCUSSION

The main purpose of the present section is the estimation
of the one-loop contributions from the Majorana-neutrino
model discussed in Sec. II to the electromagnetic form
factors characterizing the WWγ vertex. As we previously
showed, in Sec. III, only CP-even contributions are
generated, which are given by the anomalous couplings
Δκ and ΔQ, as displayed by Eq. (29). In Ref. [60], a
calculation and estimation of the one-loop contributions
from the SM to the vertex WWγ, with the external photon
taken off shell, was carried out. The authors of this work
derived expressions in terms of the masses of the Higgs
boson and the top quark, none of which had been measured
at the time. They performed numerical estimations of Δκ
and ΔQ, as functions on the external-photon quadratic
momentum, from which they arrived at the conclusion that
SM contributions to Δκ could be as large as 10−2, meaning
that any measurement of a larger value of this anomaly
should be interpreted as a manifestation of BSM physics.
Moreover, SM contributions to ΔQ were determined to be
as large as 10−4. Shortly later, the SM effects onWWγ were
reexamined in Ref. [61], in which, by usage of the so-called
Pinch Technique [62–64], contributions to Δκ and ΔQ
were found to be gauge independent, ultraviolet and
infrared finite, and well behaved for large off-shell photon
momentum. The effects of BSM physics on the vertex
WWγ have been addressed as well. In Refs. [65,66], for
instance, the 331 model was the framework to execute one-
loop calculations of WWγ, whereas Ref. [67] considered
contributions to this vertex, at one loop, from a model of
universal extra dimensions [68]. In Ref. [69], the one-loop
contributions to the CP-odd electromagnetic moments μ̃W
and Q̃W generated by the vertex HWW emerged from an
effective Lagrangian were calculated and estimated.
A calculation of contributions to WWγ from BSM
scalar particles originated in the context of the Georgi-
Machacek model [70] was carried out by the authors
of Ref. [71].
Our expressions for the electromagnetic form factors Δκ

andΔQ, given in Eqs. (37)–(38), share the generic structure
Δf ¼Pα

P
6
k¼1 jBαkj2Δfαk, so they can be written as

Δf ¼
X
α

X3
k¼1

ðjBανk j2Δfανk þ jBαNk
j2ΔfαNkÞ; ð41Þ

where the contributions from light and heavy neutrinos, νk
and Nk, have been separated from each other. We express
the 3 × 3 matrix ξ, defined in Eq. (23), as

ξ ¼ ρ̂X; ð42Þ

where X is a 3 × 3 matrix whose largest entry has
magnitude 1, whereas ρ̂ is some positive real number
which equals the modulus of the largest entry of ξ, so
ρ̂ < 1. Thus, the 3 × 3 matrices Bν and BN , whose entries
are Bαν and BαN , respectively, are expressed as

Bν ¼ Vl

�
13 −

1

2
ρ̂2XX†

�
; ð43Þ

BN ¼ VlX

�
ρ̂ · 13 −

1

2
ρ̂3X†X

�
J�: ð44Þ

The presence of the matrices X and J anticipates the
involvement of a large number of parameters. We have
tested different X textures to estimate heavy-neutrino
contributions to Δκ and ΔQ, but found no important
variations of our results. So, for the sake of practicality,
and aiming at an estimation of the new-physics effects
carried by our analytical results, we take X ¼ 13 and
J ¼ 13. As we commented before, in Sec. II, the lepton-
mixing matrix Vl, which appears in Eqs. (43) and (44),
needs not to be unitary. However, for practical purposes, in
our estimations we assume that this matrix is approximately
unitary, and then we use it as if it was the PMNS matrix,
that is, we take Vl → UPMNS.
The PMNS matrix is given, in any context of Majorana

neutrinos, as UPMNS ¼ UDUM. On the one hand, the 3 × 3
unitary matrix UD can be conveniently parametrized in
terms of three mixing angles and one phase as [31]

UD ¼

0
B@

c12c13 s12s13 s13e−iδD

−s12c23 − c12s23s13eiδD c12c23 − s12s23s13eiδD s23c13
s12s23 − c12c23s13eiδD −c12s23 − s12c23s13eiδD c23c13

1
CA; ð45Þ

where the standard compact notation cjk ¼ cos θjk,
sjk ¼ sin θjk, for the cosine and the sine of the mixing
angles θ12, θ23, and θ13 has been employed. Also, there lies
the parameter δD, commonly referred to as the Dirac phase.
On the other hand, the factor UM is the diagonal 3 × 3
matrix [31]

UM ¼ diagð1; eiϕ2 ; eiϕ3Þ; ð46Þ

with ϕ2 and ϕ3 the Majorana phases, only occurring as long
as neutrinos correspond to Majorana fields. The Particle
Data Group (PDG) recommends the following values for
the neutrino-mixing angles [32]:
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sin2 θ12 ¼ 0.307� 0.013; ð47Þ

sin2 θ23 ¼ 0.546� 0.0021; ð48Þ

sin2 θ13 ¼ 0.0220� 0.0007; ð49Þ

which we used for our numerical estimations. The value
given by the PDG for θ12 is based on the 2016 measurement
by the Super-Kamiokande Collaboration [72]. Meanwhile,
for the PDG value of θ23, data reported by the collabora-
tions T2K [73], Minos+ [74], NOvA [75], IceCube [76],
and Super-Kamiokande [77] were considered. Further-
more, measurements given by Double Chooz [78],
RENO [79,80], and Daya Bay [81,82] were utilized by
the PDG in order to set the afore-displayed value of θ13. In
the case of the Dirac phase, we used

δD ¼ −
π

2
; ð50Þ

favored by the T2K Collaboration in their 2014 paper [83].
A more recent analysis on the Dirac phase, by the same
team, can be found in Ref. [84]. About the Majorana
phases, we have taken the values ϕ2 ¼ 0, ϕ3 ¼ 0.
Since the external photon has been assumed to be off

shell, our expressions for the anomalies Δκ and ΔQ are
functions depending on the squared incoming momentum,
Q2, associated to the external photon line (see Fig. 1).
Moreover, the contributions are also determined by the
masses of the heavy neutrinos. In order to carry out an
analysis, a heavy-neutrino mass spectrum must be defined.
Such a spectrum is restricted to be nearly degenerate, for it
to be compatible with loop-generated tiny light-neutrino
masses, as required by the Majorana-neutrino model under
consideration [21]. With this in mind, in what follows, our
discussion considers a heavy-neutrino mass spectrum in
which mN1

≈mNh
, mN2

≈mNh
, and mN3

≈mNh
, for some

mass mNh
. While small variations among the masses of

heavy neutrinos can be considered for the analysis, let us
comment that our estimations showed practically no
differences in the resulting contributions to Δκ and ΔQ.
Hadron colliders bear the ability to probe the vertex

WWγ. This is achieved through Wγ and WW production
resulting from proton-proton collisions, from which con-
straints on the form factors Δκ and ΔQ can be established.
In Refs. [85,86], the CMS and the ATLAS Collaborations
released upper bounds on Δκ and ΔQ, of order 10−2, from
LHC data collected at a CME of 8 TeV. An improved upper
limit on ΔQ, of order 10−3, was determined, just last year,
from CMS-experiment data onWγ production at a CME of
13 TeV [87]. The D0 Collaboration, at Tevatron, has also
constrained these anomalies, reporting upper bounds of
orders 10−1 on Δκ and 10−2 on ΔQ [88]. Linear electron-
positron colliders provide clean environments, suitable
for high-precision studies, thus complementing hadron

colliders in the identification of new-physics traces and
their proper characterization. In particular, such devices are
sensitive to the gauge coupling WWγ, as it participates in
the process eþe− → WþW−. The Large Electron-Positron
Collider, better known as LEP and which is located at
CERN, analyzed combined data, gathered from its four
detectors, on WW production from electron-positron colli-
sions with a CME ranging from 130 GeV to 209 GeV. Such
an analysis yielded constraints of order 10−2 on both Δκ
and ΔQ [89]. While nowadays the LEP Collider is the
largest of its kind, other similar devices are on the way. The
International Linear Collider, commonly referred to by its
acronym ILC, shall be able to establish constraints as
restrictive as [90–92]

jΔκj ≤ 6.1 × 10−4;

jΔQj ≤ 8.4 × 10−4;

�
at a CMEof 500 GeV; ð51Þ

jΔκj ≤ 3.7 × 10−4;

jΔQj ≤ 5.1 × 10−4;

�
at a CMEof 800 GeV; ð52Þ

on the anomalous triple gauge couplings, from
eþe− → WþW−. The authors of Ref. [93] explored the
processes γγ → WþW−, eþγ → eþγ�γ → eþW−Wþ, and
eþe− → eþγ�γ�e− → eþW−Wþe−, then arriving at the
conclusion that the CERN Compact Linear Collider, the
CLIC, might reach upper bounds as stringent as 10−5 to
10−4 on Δκ and ΔQ. The Circular Electron-Positron
Collider, also called the CEPC, is another electron-positron
collider in plans. According to the investigation performed
in Ref. [92], its sensitivity to trilinear gauge couplings shall
allow it to set upper bounds of order 10−4 on Δκ and ΔQ.
With the previous elements in mind, we refer the reader

to the graphs of Fig. 2, which display our estimations for
the contributions from virtual neutrinos, both heavy and
light, to the CP-even anomalies Δκ and ΔQ, in the
framework set by the neutrino model discussed in
Sec. II of the present paper. Such contributions have
been plotted as functions on the heavy-neutrino mass
mNh

,3 within the range 10 GeV ≤ mNh
≤ 1500 GeV, atffiffiffiffiffiffi

Q2
p

¼ 800 GeV, as considered for analyses of the
expected ILC sensitivity [90–92]. Aiming at a comparison
between the orders of magnitude of the contributions, these
graphs have been plotted in base 10 logarithmic scale. The
Feynman diagrams contributing toWWγ at one loop, which
are displayed in Eq. (35), involve vertices Wνklα and
WNklα, among which the former connects an external W
boson with the virtual loop fields νk and lα, where mW >
mα þmνk is fulfilled. That this relation holds means that
the resulting contributions from virtual light neutrinos to
the on-shell form factors ΔκðQ2 ¼ 0Þ and ΔQðQ2 ¼ 0Þ are

3The heavy-neutrino mass mNh
has been denoted simply by

mN , in all the graphs of the present paper.
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complex quantities. The rest of the diagrams, in which
participating virtual neutrinos are heavy, produce on-shell
form factors that are strictly real if heavy-neutrino masses
meet the condition mW < mα þmNk

. However, the calcu-
lation has been performed with the external photon off the
mass shell, so the contributions from virtual heavy neu-
trinos to the anomalies Δκ and ΔQ are allowed to be
complex quantities, even if virtual heavy-neutrino masses
satisfy this condition. While these anomalies have real and
imaginary parts, the contributions plotted in Fig. 2 corre-
spond to the moduli jΔκj and jΔQj. Each curve in the
graphs of Fig. 2 corresponds to some value of the parameter
ρ̂, defined in Eq. (42); solid curves arise for ρ̂ ¼ 0.10, the
value ρ̂ ¼ 0.35 generates dashed plots, dot-dashed curves
are associated to the value ρ̂ ¼ 0.58, and ρ̂ ¼ 0.65 yields
dotted curves. A horizontal line, corresponding to the ILC
upper bound jΔκj ≤ 3.7 × 10−4 as estimated in Ref. [92],
has been added to the left graph, which displays contri-
butions jΔκj. The upper shaded region, limited from below
by this ILC-bound line, comprehend thoseΔκ values which
shall be accessible to the ILC. Conversely, the nonshaded
lower region comprises the set of values out of the reach of
the expected sensitivity for this collider. According to the
left graph of Fig. 2, couplings with ρ̂ below ∼0.5 shall be

beyond the reach of the ILC, at
ffiffiffiffiffiffi
Q2

p
¼ 800 GeV. For

instance, in this graph, the plots given by values ρ̂ ¼ 0.58
and ρ̂ ¼ 0.65 enter the ILC-sensitivity region for a range of
masses mNh

≳ 350 GeV. This graph also shows that, even
in the most optimistic context among those considered for
the present paper, the BSM effects from the Majorana-
neutrino model are smaller than the SM contribution by
about one order of magnitude. No ILC-bound line has been
included in the right graph of Fig. 2, corresponding to the
jΔQj anomaly, because the corresponding contributions are
way below ILC expected sensitivity. At this point, it is
worth mentioning Ref. [94], by the CMS Collaboration.

In that work, the coefficients BeNk
and BμNk

, for some
heavy neutrino Nk, were investigated. This was carried out
by searching for the decay of a Majorana heavy neutral
lepton, with mass 1 GeV < mNk

< 1200 GeV, into a SM
charged lepton and the SM W boson. For such a range of
heavy-neutrino masses, upper bounds were established on
jBeNk

j2 and jBμNk
j2, displayed in the planes ðmNk

;BeNk
Þ

and ðmNk
;BμNk

Þ. Recall that, according to Eq. (44), the size
of such quantities, which are entries of the 3 × 3matrix BN ,
is given by the parameter ρ̂. Keeping this in mind,
we observe that the values ρ̂ ¼ 0.58, 0.65 are compatible
with the bounds on jBeNk

j, of Ref. [94], as long as
mNk

≳ 850 GeV. Regarding the bounds on jBμNk
j, the

values ρ̂ ¼ 0.58, 0.65 are allowed for mNk
≳ 1000 GeV.

Our preceding discussion indicates that the plausibility
of an ILCmeasurement of the anomalyΔκ, produced by the
virtual Majorana neutrinos of the new-physics model under
consideration, is more promising than the observation of a
ΔQ effect. For this reason, from here on our discussion
develops around the Δκ coupling. In the framework of the
present investigation, the participation of the parameter ρ̂ is
weighty in the definition of the size of the contributions, so
it plays a significant role in whether the ILC shall be able to
sense it or not. To further illustrate this, we show the graphs
of Fig. 3, in which our estimations for the anomaly
contribution Δκ have been plotted for a couple of different
values of ρ̂, namely, ρ̂ ¼ 0.58 for the left graph and
ρ̂ ¼ 0.65 in the case of the right graph. The plots
of this figure, all of them given in base 10 logarithmic
scale, are displayed as functions on the squared
incoming momentum of the external photon Q2, or more

precisely in terms of
ffiffiffiffiffiffi
Q2

p
, for values running within

0 GeV ≤
ffiffiffiffiffiffi
Q2

p
≤ 1000 GeV. Both graphs include a

couple of horizontal lines, which represent attainable
ILC Δκ sensitivity [90–92], lying at 6.1 × 10−4 for

FIG. 2. Contributions from neutrinos, both light and heavy, to the anomalies Δκ (left graph) and ΔQ (right graph) as functions on the

heavy-neutrino mass mNh
, in the range 10 GeV ≤ mNh

≤ 1500 GeV, at
ffiffiffiffiffiffi
Q2

p
¼ 800 GeV, in logarithmic scale (base 10), for different

values of the parameter ρ̂: ρ̂ ¼ 0.10 (solid); ρ̂ ¼ 0.35 (dashed); ρ̂ ¼ 0.58 (dot-dashed); and ρ̂ ¼ 0.65 (dotted).
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ffiffiffiffiffiffi
Q2

p
¼ 500 GeV and 3.7 × 10−4 for

ffiffiffiffiffiffi
Q2

p
¼ 800 GeV.

Moreover, two dotted vertical lines have been plotted in
both graphs of the figure, corresponding to the valuesffiffiffiffiffiffi
Q2

p
¼ 500 GeV and

ffiffiffiffiffiffi
Q2

p
¼ 800 GeV. Each graph com-

prises two curves, each of which is associated to one of two
considered values of the heavy-neutrino mass mNh

; the
solid curves come from the choice mNh

¼ 900 GeV, and
the neutrino mass mNh

¼ 1200 GeV has been utilized to
plot the dashed curves. Note, from the graphs of this figure,
that disparities among contributions arisen from different
heavy-neutrino masses mNh

do not amount to orders of
magnitude, so they are not fairly large. The left graph of
Fig. 3, with its plots corresponding to ρ̂ ¼ 0.58, shows that
the effects of the contributions barely lie within ILC reach
at 800 GeV, whereas sensitivity of this collider at

ffiffiffiffiffiffi
Q2

p
¼

500 GeV is not achievable. If ρ̂ ¼ 0.65, the contributions
associated to the two heavy-neutrino spectra under con-
sideration clearly enter ILC expected-sensitivity region atffiffiffiffiffiffi
Q2

p
¼ 800 GeV. Again, the Majorana-neutrino contribu-

tion at
ffiffiffiffiffiffi
Q2

p
¼ 500 GeV is clearly beyond ILC sensitivity.

Up to this point, our discussion of the contributions from
Feynman diagrams involving virtual Majorana neutrinos to
theWWγ vertex has been carried out by considering all the
neutrinos, both light and heavy, at once. A comparison
among the contributions from the virtual light neutrinos
with those produced by the heavy ones is opportune, since
it may be helpful in the discrimination and proper
identification of their effects. We split our result for the
CP-even anomalous coupling Δκ into two terms as
Δκ ¼ Δκν þ ΔκN , with Δκν the contribution generated
by virtual light neutrinos and ΔκN the contribution corre-
sponding to virtual heavy neutrinos. Now consider Fig. 4,
which shows the moduli of such contributions, jΔκνj and
jΔκN j, separately. This graph has been performed for

ffiffiffiffiffiffi
Q2

p
¼ 800 GeV, fixed, and ρ̂ ¼ 0.58. As in previous

cases, the plots are displayed in base 10 logarithmic
scale. The horizontal dotted line, included in this graph,

delimits the sensitivity region for ILC at
ffiffiffiffiffiffi
Q2

p
¼ 800 GeV.

The Δκ contributions have been plotted against the
heavy-neutrino mass mNh

, within the interval 10 GeV ≤
mNh

≤ 1500 GeV. The contribution from the light neutri-
nos is represented in this figure by the horizontal solid line,
at jΔκνj ¼ 3.7 × 10−5, or log10fjΔκνjg ¼ −4.43 in the
logarithmic scale. The dashed curve, on the other hand,
depicts the behavior of the anomaly contribution jΔκN j,
associated to the heavy neutrinos. This graph shows that
most values of mNh

yield heavy-neutrino contributions
which are larger than those corresponding to light neutrinos
by about one order of magnitude. Therefore, a measure-

ment of a BSM anomaly at
ffiffiffiffiffiffi
Q2

p
¼ 800 GeV, in the

FIG. 3. jΔκj plotted against
ffiffiffiffiffiffi
Q2

p
, in the range 0 GeV ≤

ffiffiffiffiffiffi
Q2

p
≤ 1000 GeV, for the values ρ̂ ¼ 0.58 (left graph) and ρ̂ ¼ 0.65 (right

graph). The curves have been plotted for heavy-neutrino massesmNh
¼ 900 GeV (solid curves), andmNh

¼ 1200 GeV (dashed curves).

Dotted vertical lines represent the values
ffiffiffiffiffiffi
Q2

p
¼ 500 GeV and

ffiffiffiffiffiffi
Q2

p
¼ 800 GeV, whereas solid horizontal lines stand for ILC

sensitivity at
ffiffiffiffiffiffi
Q2

p
¼ 500 GeV (upper line) and

ffiffiffiffiffiffi
Q2

p
¼ 800 GeV (lower line).

FIG. 4. Plots, in logarithmic scale (base10), of light- and heavy-
neutrino contributions jΔκνj and jΔκN j, with respect to heavy-
neutrino mass mNh

, within 10 GeV ≤ mNh
≤ 1500 GeV, atffiffiffiffiffiffi

Q2
p

¼ 800 GeV and ρ̂ ¼ 0.58.
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assumed context of neutrino physics, by the ILC should not
be linked to light neutrinos, but to heavy neutrinos with
nearly-degenerate masses in the hundreds of GeVs.

V. SUMMARY AND CONCLUSIONS

Throughout the present paper, we have addressed the
calculation, estimation, and discussion of effects on the
vertex WWγ from physics beyond the Standard Model,
produced by virtual Majorana neutrinos participating in
one-loop Feynman diagrams. To this aim, the external
Standard-ModelW bosons have been taken on shell and the
external photon has been assumed to be off the mass shell.
The framework for the execution of this investigation has
been a new-physics neutrino model in which both Dirac-
like and Majorana-like mass terms are assumed to emerge
after a couple of stages of spontaneous symmetry breaking
occurring in the context of some high-energy description of
nature. While conditions are set for a type-1 seesaw
mechanism to naturally take place, we rather follow
Ref. [21], in which this mechanism of neutrino-mass
generation is avoided. Current upper bounds on the masses
of light neutrinos are as stringent as mνk ≲ 0.8 eV [24], so
light-neutrino masses defined at tree level by a seesaw
mechanism push the masses of heavy neutrinos into very
large values. By imposing a condition of light-neutrino
mass cancellation at tree level, the Majorana-neutrino
model under consideration defines such masses radiatively,
which allows for smaller masses of heavy neutrinos [21]. In
this context, heavy-neutrino mass spectra are constrained to
be nearly degenerate, in order to get tiny masses for light
neutrinos [21].
Our calculation engendered contributions to the

Lorentz-covariant parametrization of the gauge vertex
WWγ [26,27], which includes, in general, both CP-even
and CP-odd effects, and which abides by electromagnetic
gauge invariance. A CP-odd contribution ΔQ̃ seemed to
appear at first glance, but usage of Schouten identities
yielded its exact cancellation, thus leading to the conclu-
sion that the contributions to WWγ from this model lack
CP-odd effects. Contributions to CP-even anomalies Δκ
and ΔQ were found to be, on the other hand, nonzero and
free of ultraviolet divergences. By virtue of the off-shell
assumption on the external photon, our calculation gave
rise to anomalous couplings Δκ and ΔQ depending on the
external-photon squared momentum Q2, though notice that
such quantities are determined by heavy-neutrino masses as
well. Furthermore, the resulting anomaly contributions
turned out to be complex quantities for several Q2 values.
We carried out numerical estimations that led us to

conclude that most values of the heavy-neutrino masses
yield effects which dominate over those coming from the
virtual light neutrinos, with a disparity amounting to ∼ 1

order of magnitude. Our discussion comprehended the
analysis of both sorts of virtual-neutrino contributions,
which were estimated and discussed in the light of the
sensitivity of the International Linear Collider, expected
to set bounds of order Oð10−4Þ on these anomalous
couplings [90–92] through WW production from the
process eþe− → WþW−. A parameter ρ̂ > 0 was defined
to characterize the size of the couplingsWNklα, among the
Standard Model W boson, the heavy neutrinos and the
Standard Model charged leptons, with the constraint ρ̂ < 1.
The ρ̂ parameter turned out to be quite relevant in the
determination of the size of the contributions. We found
that ρ̂ values larger than ∼0.5 give rise to contributions to
the anomaly Δκ as large as ∼10−3, which are smaller than
the Standard Model contribution by ∼1 order of magnitude.
Moreover, an anomaly contribution this size would be
attainable by the International Linear Collider, though
eþe− → WþW− at a center-of-mass energy of 800 GeV.
According to our analysis, the observation of such a new-
physics effect should be associated to heavy neutrinos with
masses in the range of the hundreds of GeVs. The CP-even
anomaly ΔQ, on the other hand, receives contributions as
large as ≲10−4, which are too small to be observed by the
International Linear Collider.
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APPENDIX: EXPLICIT EXPRESSIONS
OF THE FORM-FACTOR CONTRIBUTIONS

In this appendix we provide the explicit expressions of
the form-factor contributions Δκαk and ΔQαk, produced by
the Feynman diagram involving the α-th virtual charged
lepton and the kth virtual neutrino, in accordance with
Eqs. (37) and (38). Since the calculation was effectuated
by means of the Passarino-Veltman tensor-reduction
method [49], these contributions are given in terms of
scalar functions [95], which we denote as

Að1Þ
0 ¼ A0ðm2

αÞ; ðA1Þ

Að2Þ
0 ¼ A0ðm2

kÞ; ðA2Þ

Bð1Þ
0 ¼ B0ðm2

W;m
2
α; m2

kÞ; ðA3Þ

Bð2Þ
0 ¼ B0ðQ2; m2

α; m2
αÞ; ðA4Þ

C0 ¼ C0ðm2
W;m

2
W;Q

2; m2
α; m2

k; m
2
αÞ: ðA5Þ

The form factors have the structure
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Δκαk ¼ g2

ð4πÞ2 ðξ
ð1Þ
αk A

ð1Þ
0 þ ξð2Þαk A

ð2Þ
0 þ ηð1Þαk B

ð1Þ
0 þ ηð2Þαk B

ð2Þ
0 þ βαkC0Þ; ðA6Þ

ΔQαk ¼ g2

4π2
ðζð1Þαk A

ð1Þ
0 þ ζð2Þαk A

ð2Þ
0 þ λð1Þαk B

ð1Þ
0 þ λð2Þαk B

ð2Þ
0 þ ωαkC0Þ; ðA7Þ

with the definitions

ξð1Þαk ¼ 1

ðD − 1Þm2
WðQ2 − 4m2

WÞ2
ð4m2

WððDþ 2Þm2
k − ðDþ 2Þm2

α þDm2
WÞ þQ2ð−m2

k þm2
α þm2

WÞÞ; ðA8Þ

ξð2Þαk ¼ 1

ðD− 1Þm2
WðQ2 − 4m2

WÞ2
ðQ2ðð3− 2DÞm2

W þm2
k −m2

αÞ þ 4m2
Wð−ðDþ 2Þm2

k þ ðDþ 2Þm2
α þ ðD− 4Þm2

WÞÞ; ðA9Þ

ηð1Þαk ¼ 1

ðD − 2ÞðD − 1Þm2
Wð4m2

W −Q2Þ3 ððD − 2ÞQ4ð2m2
αððD − 2Þm2

W −m2
kÞ þ 2ðD − 2Þm2

km
2
W þm4

k

þm4
α þm4

WÞ þ 4Q2m2
Wð2m2

αðð3D − 7Þm2
k þ ðð11 − 3DÞD − 12Þm2

WÞ − 2ððD − 9ÞDþ 12Þm2
km

2
W

þ ð7 − 3DÞm4
k þ ð7 − 3DÞm4

α þ ðDð2D − 7Þ þ 9Þm4
WÞ þ 16m4

Wð2m2
αðððD − 7ÞDþ 9Þm2

W

− ðDðDþ 2Þ − 6Þm2
kÞ þ 2ððD − 5ÞDþ 7Þm2

km
2
W þ ðDðDþ 2Þ − 6Þm4

kðDðDþ 2Þ − 6Þm4
α

− ðD − 4ÞðD − 2Þm4
WÞÞ; ðA10Þ

ηð2Þαk ¼ −2
ðD − 2ÞðD − 1Þð4m2

W −Q2Þ3 ðm
2
αð−4m2

Wð8ðD − 1Þm2
k þ ðDð3D − 10Þ þ 11ÞQ2Þ

þ ðD − 1ÞQ2ððD − 3ÞQ2 − 4ðD − 1Þm2
kÞ þ 16ðD − 3Þ2m4

WÞ þ 2m4
Wð8ðD − 3ÞðD − 1Þm2

k

þ ðDðDþ 2Þ − 11ÞQ2Þ þ ðD − 1Þ2Q2m2
kð2m2

k þQ2Þ þm2
Wð−4ðD − 5ÞðD − 1ÞQ2m2

k

þ 16ðD − 1Þm4
k − ðD − 5ÞQ4Þ þ 2ðD − 1Þm4

αððD − 1ÞQ2 þ 8m2
WÞÞ; ðA11Þ

βαk ¼
1

ðD − 2Þð4m2
W −Q2Þ3 ð−ðD − 2ÞQ6m2

k þ 2Q4ðm2
kð2ðD − 1Þm2

α þ 3ðD − 4Þm2
WÞ − 2ðD − 1Þm4

k

þ ðD − 2Þm2
Wðmα −mWÞðmα þmWÞÞ þ 4Q2ð−ðD − 1Þm4

αð3m2
k þ 5m2

WÞ þm2
αð2ðDþ 5Þm2

km
2
W

þ 3ðD − 1Þm4
k þ ð3Dþ 1Þm4

WÞ þ 3ðD − 5Þm4
km

2
W þ ð19 − 7DÞm2

km
4
W − ðD − 1Þm6

k þ ðD − 1Þm6
α

þ ðD − 5Þm6
WÞ þ 32m2

Wðmα −mkÞðmk þmαÞðm2
kððD − 4Þm2

W − 2m2
αÞ

þ ðmα −mWÞðmα þmWÞððD − 3Þm2
W þm2

αÞ þm4
kÞÞ; ðA12Þ

ζð1Þαk ¼ −1
ðD − 1ÞQ2ðQ2 − 4m2

WÞ2
ðm2

kð2ðD − 1Þm2
W þQ2Þ −m2

αð2ðD − 1Þm2
W þQ2Þ þ 2m2

WððD − 3Þm2
W þQ2ÞÞ; ðA13Þ

ζð2Þαk ¼ 1

ðD − 1ÞQ2ðQ2 − 4m2
WÞ2

ðm2
kð2ðD − 1Þm2

W þQ2Þ −m2
αð2ðD − 1Þm2

W þQ2Þ þDQ2m2
W − 2ðD − 1Þm4

WÞ; ðA14Þ

λð1Þαk ¼ 1

ðD − 2ÞðD − 1ÞQ2ðQ2 − 4m2
WÞ3

ð2m2
kððD − 2ÞðQ2Þ2m2

α þQ2m2
Wð4ð4 − 3DÞm2

α þ ð2D − 3ÞQ2Þ

þ 2m4
WðððD − 4ÞDþ 5ÞQ2 − 4ðD − 3ÞðD − 1Þm2

αÞÞ þm4
kð4ð3D − 4ÞQ2m2

W þ 8ðD − 3ÞðD − 1Þm4
W

− ðD − 2ÞðQ2Þ2Þ þ ðm2
W −m2

αÞððD − 2ÞðQ2Þ2m2
α þ 4m4

WðððD − 3ÞDþ 1ÞQ2 − 2ðD − 3ÞðD − 1Þm2
αÞ

þQ2m2
Wð4ð4 − 3DÞm2

α þDQ2Þ − 8ðD − 3ÞðD − 1Þm6
WÞÞ; ðA15Þ
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λð2Þαk ¼ 1

2ðD − 2ÞðD − 1ÞQ2ðQ2 − 4m2
WÞ3

ðm2
Wð4m2

αð2ðD2 þD − 10ÞQ2m2
W − 8ðD − 3Þm4

W þ 3ðQ2Þ2Þ

− 4ðD − 1Þm4
kððDþ 2ÞQ2 − 4m2

WÞ − 4ðD − 1Þm2
kð−2ðDþ 2ÞQ2m2

α þ 2m2
WððD − 6ÞQ2 þ 4m2

αÞ
þ 8m4

W þ 3ðQ2Þ2Þ − 8ðD − 3ÞðQ2Þ2m2
W − 4ðD − 1Þm4

αððDþ 2ÞQ2 − 4m2
WÞ − 4ððD − 3ÞDþ 6ÞQ2m4

W

þ 16ðD − 1Þm6
W þ ðD − 4ÞðQ2Þ3ÞÞ; ðA16Þ

ωαk ¼ −
1

ðD − 2ÞQ2ðQ2 − 4m2
WÞ3

ðm2
Wð2m6

kððDþ 2ÞQ2 − 4m2
WÞ þm4

kð−6ðDþ 2ÞQ2m2
α

þ 2m2
WððD − 16ÞQ2 þ 12m2

αÞ þ ðDþ 8ÞðQ2Þ2 þ 24m4
WÞ þ 2m2

kððD − 6ÞðQ2Þ2m2
W

þ 3m4
αððDþ 2ÞQ2 − 4m2

WÞ − ðD − 14ÞQ2m4
W −m2

αð2ðD − 6ÞQ2m2
W þ ðDþ 4ÞðQ2Þ2 þ 8m4

WÞ
− 12m6

W þ ðQ2Þ3Þ þ ðm2
W −m2

αÞ2ð−2ðDþ 2ÞQ2m2
α þm2

Wð8m2
α − 2DQ2Þ þDðQ2Þ2 þ 8m4

WÞÞÞ: ðA17Þ
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