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In this work, dual electroweak phase transition (EWPT) consisting of two phases is carefully studied in
the two-Higgs-doublet model with the S3 discrete symmetry. The role of S3 here is to further separate the
stages of the electroweak phase transition, compared to that of the original two-Higgs-doublet model
(2HDM). The strength of the electroweak phase transition (S) in the model under consideration is large
enough for the first-order EWPT, specifically 1 < S < 2.8. The ratio between the two vacuum expectation
values (VEVs), tan β ¼ v2=v1, is proven to have no effects on the strength of the phase transition. This ratio
only affects the mass domain that causes the first-order phase transition. Furthermore, in this paper we will
show clearly that when studying the EWPT in models of more than one scalar field that generates masses,
one needs to analyze the problem of phase transition under multiple stages. In other words, the effect of the
first stage of symmetry breaking to the second one is to simplify by suggestion that vacuum expectation
value of the Higgs boson responsible for the initial stage is proportional to that of the field for the
next stage.
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I. INTRODUCTION

The Standard Model (SM), an outstanding achievement
of physics in particular, and a memorable milestone for the
scientific community in general, is a systematic theory of
elementary particles and their interactions. The model
predicted the results of many experiments, the existence
of the Higgs particle; together with the Higgs mechanism, it
shows us the nature of subatomic particles. However, the
model still has some shortcomings such as not being able
to unify gravity, describe dark matter or small neutrino
mass, etc.

One of the significant phenomena in cosmology that
cannot be explained by the SM is baryon asymmetry, also
known as matter-antimatter asymmetry. This problem
explains why there is an imbalance between matter and
antimatter in the universe. For a strong first-order electro-
weak phase transition, the third of Sakharov’s three
conditions [1], plays an important role in explaining this
asymmetry. It is indeed important because this condition
not only explains the thermal imbalance but also provides a
link between the violation of B and CP and the other two
conditions of Sakharov.
The thermal imbalance is expressed through a first-order

electroweak phase transition (EWPT) which should be
considered first. The SM does not have enough triggers
for a first-order phase transition [2–7]. Therefore, in the
beyond SM, this problem must be considered (see, for
example, Refs. [8–60]). The different scenarios that can be
enumerated in these references are as follows: doing high-
temperature effective potential, analysis of the trigger roles
of new particles, the decoupling conditions, bubble nucle-
ations, and sphalerons.
The triggers for the EWPT can be new particles (beyond

SM) or parameter corrections in SM [8–45,47–53,55–60].
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In the SM, it is contrary to the experiment that the mass of
Higgs boson must be less than 125 GeV, for a strong first-
order EWPT [2–7]. In a model, if the new particles are the
cause of the violent EWPT, then that model can have more
than one Higgs field [8–10,13–25,30–39,61–63]. Another
interesting point but consistent with the physical nature, the
strength of EWPT is gauge-independent [40–42,63,64].
The self-energy term or daisy loops cause a problem for
effective potentials at high temperatures. However, it is not
the main trigger for EWPT and it reduces the strength of
EWPT [65].
By making sure that the C and CP violations exist,

the third condition of baryogenesis is given as Γsph ∼
AðTÞ expð−Esph

T Þ ≪ Hrad [66–69] in the context of topologi-
cal transitions, whereΓsph andEsph are the sphaleron rate and
energy, respectively,Hrad is the Hubble expansion rate in the
radiation-dominated period, andAðTÞ ≈ T4. This is referred
to as the sphaleron decoupling situation. This condition is
frequently written as S ¼ vc=Tc > 1 in the SM using the
approximation EsphðTÞ ≈ ½vðTÞ=v�EsphðT ¼ 0Þ [46–48,70].
However, this approximation should be used with caution in
models that go beyond the SM.
Through the above brief summaries, ones have another

aspect of EWPT survey. Currently, there are two scenarios
as follows: the first one is that the EWPT process has only
one stage; the second is that this process has two or three
stages. Some of the theoretical models that study one stage
of EWPT are the SM, Zee-Babu [63], SMEFT [71], SM
with corrections to the Yukawa interaction for quarks
[72,73]. Models that study more than one stage of
EWPT are the ones that consist of more than one Higgs
field. Some of them are as follows: 3-3-1 models [8,25,74],
2-2-1 model [75].
However, there is one quite special model: the 2HDM

has two vacuum expectation values (VEVs) having values/
ranges in the electroweak scale. In this paper, the ways of
studying the EWPT with only one stage of this model will
be reconsidered. Then the strengths andweaknesses of it will
be analyzed. At the same time, there are many interesting
versions of themodel that go beyond itself, inwhich there is a
model of two Higgs doublets with a symmetry of S3. This
symmetry can account for quark mixing [76–78]. The S3
symmetry has been proposed as the basic flavor symmetry in
various frameworks. This discrete symmetry in the lepton
sector is to produce a μ − τ symmetry [79–82] or a tribimax-
imal neutrino mixingmatrix [83,84]. In the quark sector, this
symmetry can produce Fritzsch and Fritzsch mass textures
[85]. In addition, the nearest neighbor interactions (NNI)
mass texture is hidden in a S3 flavor symmetry [86].
Therefore, the model with S3 is interested, since S3 would
simplify theHiggs sector, which is very important in studying
EWPT. Furthermore, since there are only two VEVs, our
work of studying the multistages of the 2HDM-S3 would be
relatively easier compared to that of the SM.
The two-Higgs-doubletmodelwithS3 symmetry (2HDM-

S3) [87], one of the extended versions the 2HDM, that has the
potential to “possess” a strongly first-order electroweak

phase transition, because of the following factors: the model
has the heavy Higgs boson, as well as the charged Higgs
boson; at the same time, it obeys the smallest non-Abelian
discrete symmetry group.
More specifically, we will consider whether the first-

order phase transition in the 2HDM-S3 is strong or not. And
when it is strong, the range of values of the phase transition
strength and the mass of the new particles and related
parameters will be investigated.
The paper has the following structure. Except for the

Introduction (Sec. I) and the Conclusion and Outlooks
(Sec. V), the Appendix and Sec. II give a quick review of
the effective potentials, as well as some comments and
remarks on the electroweak phase transition in the 2HDM.
In Sec. III and Sec. IV, the electroweak phase transition in
the 2HDM-S3 is studied. More specifically, the effective
potential of the dual electroweak phase transition will be
studied, the strength of first-order phase transition, the mass
domain for the first-order phase transition, all of which will
be given with a parameter a that will be introduced to
replace the popular parameter tan β ¼ v2=v1.

II. REVIEW ON THE HIGGS POTENTIAL AND
COMMENTS ON EWPT IN THE 2HDM

A. The Higgs potential in the 2HDM

The fermion and scalar spectrum with their assignments
under the SUð2ÞL × Uð1ÞY gauge group are given by
[88,89]:

La ¼
�
νaL

eaL

�
∼ ð2;−1Þ; QaL¼

�
uaL
daL

�
∼
�
2;
1

3

�
;

eaR∼ ð1;−2Þ; uaR∼
�
1;
4

3

�
; daR∼

�
1;−

2

3

�
; a¼ 1;2;3;

Φi ¼
�
ϕþ
i

ϕ0
i

�
∼ ð2;1Þ; hΦii¼

1ffiffiffi
2

p
�
0

vi

�
∼ ð2;1Þ; i¼ 1;2:

ð1Þ
For details of the quark sector of different types of the

2HDM, the reader is referred to Refs. [88,89]. In the
2HDM, the charge operator is defined as

Q ¼ T3 þ
Y
2
: ð2Þ

The most general form of the effective potential in the
2HDM contains 14 parameters, and there may exist the CP
conservation (charge and mirror symmetry), CP violation,
and charge violation. When expressing the form of the
potential, we must be careful in defining the quantities and
distinguishing the parameters, since when applying the
group rotations, the physics can be changed. However, in
the studies of the phenomenology of the 2HDM, assump-
tions are often made to simplify the calculations. For
example, CP is often assumed to be conserved in the
Higgs fields (only then can we distinguish the scalar
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field from the scalar pseudo-field). Now, the CP discrete
symmetry will eliminate all the fourth power terms that
contain the odd number of one of two Higgs fields from the
potential (for instance, Φ†

1Φ1Φ
†
1Φ2). We can also assume

that all of the parameters corresponding to the fourth power
terms are of real number, including the term added to break
the symmetries.
With the above assumptions, putting in the symmetry Z2

(Φ1 → Φ1, Φ2 → −Φ2) in order not to have flavor-chang-
ing neutral current (FCNC) at the tree level. After this, the
most general form for the scalar potential for the two
doublets Φ1 and Φ2 with supercharge þ1 would have the
following form [90]:

V¼ μ211Φ2
1þμ222Φ2

2−μ212ðΦ1:Φ2þΦ2:Φ1Þþ
λ1
2
Φ4

1þ
λ2
2
Φ4

2

þλ3Φ2
1Φ2

2þλ4ðΦ1:Φ2ÞðΦ2:Φ1Þþ
λ5
2
ðΦ4

1þΦ4
2Þ; ð3Þ

where we have denoted Φ2
i ¼ Φ†

iΦi;¼ 1, 2 and
Φi:Φj ¼ Φ†

iΦj; i ≠ j. All the parameters μ11, μ22, λi
(i ¼ 1;…; 5) are all real and the term containing μ12
“softly” breaks the symmetry Z2. Following this, there
are two complex scalar doublets SUð2Þ containing eight
fields,

Φa ¼
� Δþ

a
1ffiffi
2

p ðva þ ρa þ iηaÞ
�
; a ¼ 1; 2: ð4Þ

Three of them are Goldstone bosons eaten by the
massive gauge bosonsW� and Z0 to generate their masses.
The other five are physical scalar Higgs fields, including
one scalar carrying charge, two neutral scalars, and one
pseudo scalar.
Averaging over the whole space, VEVs read

hΦ1i0 ¼
1ffiffiffi
2

p
�

0

v1

�
; hΦ2i0 ¼

1ffiffiffi
2

p
�

0

v2

�
; ð5Þ

One of the most important parameters of the model is as
follows:

tan β ¼ sβ
cβ

¼ v2
v1

; ð6Þ

where we have used the notations sβ ≡ sin β; cβ ≡ cos β.
Here β is the rotational angle when normalizing the squared
mass matrix of the charged and pseudoscalars.

Two general neutral even CP states ρ1 and ρ2 are not
physical mass states. The mass matrix corresponding to
them can be diagonalized by a rotation of a mixed angle of
ρ1 and ρ2.
Having two minima as above inserted into the

Lagrangian which contains the mass terms corresponding
to the scalar fields. First, the term that corresponds to the
charged scalar field is

Lϕ�;mass ¼ ½μ212 − ðλ4 þ λ5Þv1v2�ðΔ−
1 Δ−

2 Þ

×

�
tan β −1
−1 coth β

��Δþ
1

Δþ
2

�
: ð7Þ

After diagonalizing the above mass matrix, the squared
mass of the charged Higgs particle,

m2
H� ¼

�
μ212
v1v2

−λ4−λ5

�
ðv21þv22Þ¼

�
μ212
v1v2

−λ4−λ5

�
v2:

ð8Þ

Next, the mass term that corresponds to the pseudoscalar
field,

Lη;mass ¼
�

μ212
v1v2

−λ5

�
ðη1 η2 Þ

�
v22 −v1v2

−v1v2 v21

��
η1

η2

�
:

ð9Þ

The physical squared mass of the pseudoscalar after
normalization,

m2
A ¼

�
μ212
v1v2

− 2λ5

�
ðv21 þ v22Þ: ð10Þ

Finally, the mass term that corresponds to the remaining
two scalar fields is

Lρ;mass ¼−ðρ1 ρ2 Þ
� μ212

v2
v1
þ λ1v21 −μ212þ λ345v1v2

−μ212þ λ345v1v2 μ212
v1
v2
þ λ2v22

�

×

�
ρ1

ρ2

�
: ð11Þ

With λ345 ¼ λ3 þ λ4 þ λ5, after normalizing the matrix in
Eq. (11), the squared masses of the light (h) and the
heavy (H) Higgs particles are, respectively:

m2
h ¼

1

2

�
ðλ1v21 þ λ2v22Þ þ μ212

v2

v1v2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ1v21 − λ2v22

2
−

μ212
2v1v2

ðv21 − v22Þ
�
2

þ ðλ345v1v2 − μ212Þ2
s

;

m2
H ¼ 1

2

�
ðλ1v21 þ λ2v22Þ þ μ212

v2

v1v2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ1v21 − λ2v22

2
−

μ212
2v1v2

ðv21 − v22Þ
�
2

þ ðλ345v1v2 − μ212Þ2
s

; ð12Þ
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From the Eqs. (8), (10), (12), the squared masses of the
Higgs particles always contain in them troublesome mixing
terms of VEVs. A quantity is introduced as follows:

M2
Higgsðv1; v2Þ ¼ m2

HH
2 þm2

hh
2 þm2

AA
2 þm2

H�ðH�ÞþH�:

ð13Þ

B. Higgs potential at the tree level

From the Higgs potential given in Eq. (3), V0 in a form
that is dependent on the VEVs as follows:

V0ðv1; v2Þ ¼
μ211
2

v21 þ
μ222
2

v22 −
μ212
2

v1v2 þ
�
λ1
8
þ λ5

8

�
v41

þ
�
λ2
8
þ λ5

8

�
v42 þ

�
λ3
4
þ λ4

4

�
v22v

2
1: ð14Þ

V0ðv1; v2Þ has a quartic form like in the SM. On the other
hand, by developing the Higgs potential Eq. (3), two
minimum equations which permit us to transform the
mixing between v1 and v2,

∂V
∂v1

¼ 0;

μ211v1 − μ212v2 þ ðλ1 þ λ5Þ
v31
2
þ ðλ3 þ λ4Þ

v22v1
2

¼ 0.

∂V
∂v2

¼ 0;

μ222v2 − μ212v1 þ ðλ2 þ λ5Þ
v32
2
þ ðλ3 þ λ4Þ

v2v21
2

¼ 0: ð15Þ

From Eq. (15), a relationship between VEVs, such as

μ222v
2
2 þ ðλ2 þ λ5Þ

v42
2
¼ μ212v1v2 − ðλ3 þ λ4Þ

v22v
2
1

2
: ð16Þ

Substituting Eq. (16) into Eq. (14) yields

V0ðv1; v2Þ ¼
μ211
2

v21 þ
�
λ1
8
þ λ5

8

�
v41 −

�
λ2
8
þ λ5

8

�
v42

¼ V0ðv1Þ þ V0ðv2Þ; ð17Þ

where V0ðv1Þ ¼ μ2
11

2
v21 þ ðλ1

8
þ λ5

8
Þv41 and V0ðv2Þ ¼

ð− λ2
8
− λ5

8
Þv42 are in the quartic form. In addition, there

are alternative ways to arrive Eq. (17) which has other
forms but V0ðv1Þ and V0ðv2Þ are still in the quartic form.
If the potential at the tree level had the quartic form of

each vacuum expectation value, that is there are no mixing
terms in it, the job of calculating the effective potential for
each VEV would be much easier. This will be made clear in
the following sections.

C. The masses of gauge bosons

In order to find the gauge boson masses, we starting from
the kinetic term of the Higgs fields. In the 2HDM-S3, there
are two components in the kinetic term for the two Higgs
doublets,

LGB
mass ¼ ðDμhΦ1iÞ†ðDμhΦ1iÞ þ ðDμhΦ2iÞ†ðDμhΦ2iÞ

≡ Aþ B; ð18Þ

in which, the covariant derivatives act on Φ1 and Φ2. as
follows

Dμ ¼ ∂
μ − igWμ

i Ti −
i
2
g0BμY: ð19Þ

Note that the gauge fields (Wμ
i ; B

μ) inside the covariant
derivatives of A and B are the same. So after diagonalizing,
the gauge fields in A and B are the same, and gauge bosons
γ, Z, W� are inferred.
From the term A, one obtains the mass components of the

physical gauge bosons only depends on v1,

MA
bosons ¼ m2

W�ðv1ÞWþ
μ W−μ þm2

Zðv1ÞZμZμ: ð20Þ

From the term B, one obtains the mass components of
the physical gauge bosons that only depend on v2,

MB
bosons ¼ m2

W�ðv2ÞWþ
μ W−μ þm2

Zðv2ÞZμZμ: ð21Þ

Therefore the bosons masses can be split into two parts,

m2
gauge−bosonðv1; v2Þ ¼ m2

bosonðv1Þ þm2
bosonðv2Þ: ð22Þ

Similar arguments for the problem can be found
in Ref. [25].

D. Remarks on EWPT structure in the 2HDM

The Higgs and gauge boson sectors from the full Higgs
Lagrangian,

L ¼ LGB
mass − VðΦ1;Φ2Þ; ð23Þ

where VðΦ1;Φ2Þ is given by Eq. (3).
Expanding the Higgs fields Φ1 and Φ2 around their

VEVs which are v1, v2, yields

L ¼ 1

2
∂
μv1∂μv1 þ

1

2
∂
μv2∂μv2 − V0ðv1; v2Þ þMA

gauge−bosons

þMB
gauge−bosons þM2

Higgsðv1; v2Þ þ ½mtop−quarkðv1Þ
þmtop−quarkðv2Þ�tt̄: ð24Þ

Therefore, from the Lagrangian in Eq. (24), two motion
equations according to v1 and v2 are calculated,
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∂
μv1∂μv1 −

∂V0ðv1Þ
∂v1

þ
X ∂m2

bosonsðv1Þ
∂v1

WμWμ

þ ∂mtopðv1Þ
∂v1

tt̄þ ∂M2
Higgsðv1; v2Þ
∂v1

¼ 0; ð25Þ

∂
μv2∂μv2 −

∂V0ðv2Þ
∂v2

þ
X ∂m2

bosonsðv2Þ
∂v2

WμWμ

þ ∂mtopðv2Þ
∂v2

tt̄þ ∂M2
Higgsðv1; v2Þ
∂v2

¼ 0; ð26Þ

where W runs over all gauge fields.
If M2

Higgsðv1; v2Þ is like Eq. (13), in which there are no
mixing terms of VEVs, this term can be separated into two
terms such that each of the new terms only depends on one
VEV. However, the fifth Higgs particles’ masses in the
2HDM all have mixing terms.
Next, there are an important observation, that when the

universe was cooling down to the value of v2 after the big
bang, the field Φ2 broke the electroweak symmetry, and
after that when the universe continued to cool down to the
value of v1, the fieldΦ1 continued to break the electroweak
symmetry once again. The process of this electroweak
symmetry breaking must be sequential. Hence, we cannot
combine the two stages to study.
Therefore the rules for generating the masses of the

particles through two symmetry breakings as follows:
Remark 1.—At stage 1, Φ2 breaks the symmetry or

v2 ≠ 0, but now Φ1 has not yet broken the symmetry so v1
is still equal to 0. Hence, all the Higgs particles’ masses
only contain v2.
Remark 2.—When the breaking symmetry occurs at Φ1,

the interactions between Φ2 and Φ1 are turned on and v1
would not be 0. In this stage, the further generated masses
can not only depend on v2, but also on v1 and the mixing of
v2 and v1.
Remark 3.—With the above two remarks, through the

mixing terms in the masses of the Higgs particles, the
effects of the first stage has on the second stage. But they
also make it difficult for investigating the phase transition at
the later stage.

Remark 4.—In order to view the two phase transition
stages with the separated effective potentials, we can apply
the following approximation to the mixing terms:
v1:v2 ∼ κ:v21. Since at this time, v2 can still change as
the temperature decreases, it can consider the change of v2
is now equal to κv1. This remark is actually a mathematical
treatment like the approximation v2 ¼ v21 þ v22. But when it
is combined with the above third remarks, they make
physical sense in the analysis of EWPT.
Therefore, from four remarks, all the Higgs particles’

masses can be split into two different components,

M2
Higgsðv1; v2Þ ¼ m2

Higgsðv1Þ þm2
Higgsðv2Þ: ð27Þ

Also the squared masses of the gauge and Higgs particles
all can be split into two separate components at the tree
level. From Eqs. (25) and (26), averaging over space and
using Bose-Einstein and Fermi-Dirac distributions respec-
tively for bosons and fermions to average over space, the
one-loop effective potential can be obtained at high temper-
atures. Also according to the analysis of Appendix, the
analysis of the Lagrangian of 2HDM into two separate
components (as shown in Secs. II A, II B, II C), the total
effective potential in the 2HDM model can be rewritten as

V2HDM
eff ¼ V2HDM

eff ðv1Þ þ V2HDM
eff ðv2Þ: ð28Þ

For further clarity, we restate the calculating process of the
effective potential from the contributions of one-loop
diagrams. The process of calculating the one-loop effective
potential is the process of calculating the contribution of 1-
loop diagrams with n external lines that are Higgs scalar
fields (fields that act as mass generators). In the 2HDM,
there are two Higgs fields (h, H) that act as such,
corresponding to two VEVs (v1, v2). One-loop diagrams
are shown in Figs. 1, 2, 3, and 4.
Similarly, also having diagrams where the external lines

are φ2. The mixing φ1 − φ2 diagrams as Fig. 4.
In the above diagrams, φ1 and φ2 correspond to the terms

of Higgs fields that only contain v1 or v2. Since the 2HDM

FIG. 1. The 1-loop contributions of the scalar fields.
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consists of two VEVs, having the mixing diagrams as
in Fig. 4.
For the ϕ4 theory, calculating the contributions of the

diagrams as in Figs. 1, 2, and 3 is really easy, and this has
been shown in Ref. [91]. However, the difficulty is to
calculate the contributions of the diagrams in Fig. 4. As in
the Appendix, we explicitly study the first diagram in Fig. 4
that translates to the following expression:

Γnðv1; v2Þ ¼ i
1

2n

Z
d4p
ð2πÞ4

�
i

p2 −m2ðv1; v2Þ þ iε

�
n

× ð−i2λiÞn1=2vn11 ð−i2λ2Þn2=2vn22 ; ð29Þ

with n1 þ n2 ¼ 2n. Summing over all Γn with n runs from
0 to infinity, and hence n1 and n2 will also run from 0 to
infinity. Hence calculating the integrals Γn and the infinite
sums are very tricky. Since for each value of n, there are a
sum that runs with n1 or n2.
To quickly calculate Γn, from remarks 2 and 4,

Γnðv1; v2Þ≡ Γnðv1Þ,

Γnðv1; v2Þ ¼ i
1

2n

Z
d4p
ð2πÞ4

�
i

p2 −m2ðv1Þ þ iε

�
n

× vn11 vn21 κn2ð−i2λ1Þn1=2ð−i2λ2Þn2=2 ð30Þ

¼ i
1

2n

Z
d4p
ð2πÞ4

�
−i2λ0n

i
p2 −m2ðv1Þ þ iε

�
n
v2n1 :

ð31Þ

Here, λ0n must have some very small values in order
for the series to converge. Therefore λ0n ∼ λ0. Hence,
Γnðv1; v2Þ≡ Γnðv1Þ,

Γnðv1Þ ¼ i
1

2n

Z
d4p
ð2πÞ4

�
2λ0

v21
p2 −m2ðv1Þ þ iε

�
n

: ð32Þ

Therefore the contributions from these mixing diagrams
can be combined into the contribution from the diagrams
that the external lines are just all φ1. In other words, by
calculating the contributions from the diagrams, and
applying Remarks 2, and 4, the mixing diagrams can be
processed to turn the effective potential into two clearly
separated components, one depends only on v1, while the
other depends only on v2. In other words, the effective
potential will be expressed as Eq. (28).
In the previous studies, to overcome the difficulties of

dealing with the mixing terms of VEVs and to investigate
the process of electroweak symmetry breaking similar to
the SM, the authors have converted v1 and v2 to v through
tan β [55,90]. This is a very clever technique, but in terms of
physics, it needs to be interpreted with care. Since v1 ≠ v2,
the symmetry-breaking stages must be sequential. The fact
that we write the same effective potential for v [shortly
denoted as VeffðvÞ] to calculate the strength of phase
transition is not wrong, but we should only write it when
v1 ≪ v2, to clearly show the nature of the physics in the
2HDM. The limitations and utilities of this technique will
be analyzed in the following sections where investigating
the 2HDM-S3.

FIG. 2. The 1-loop contributions of the fermion fields.

FIG. 3. The 1-loop contributions of the gauge fields.
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E. Comments on EWPT in the 2HDM

First, we have summarized of experimental as well as
theoretical calculations leading to parameter regions in
2HDM models:

(i) Since the 125 GeV Higgs boson observed at the
LHC, the model becomes consistent with the LHC
Higgs data when the model provides such a Higgs
particle [76]. 1 < tan β can be precisely determined
from the requirement of the light mass of the up- and
down-quarks [76]. From here also admit the scenario
μ1; μ2; l1; l2 ≠ 0 and having the soft-breaking po-
tential. Also according to Ref. [77], the mass of the
nonstandard particles are less than 1 TeV, 0.3 <
tan β < 17.

(ii) Some references used the data from decay channels
in LHC and investigated the value range of tan β. In
Ref. [92], the authors removed the circumstance
tan β < 1 for four types of 2HDM. In Ref. [93],
the authors saw that in the decay channel pp →
W → hH�, the scattering amplitude of that channel
is lasting over the change of tan β in the range
of 1 < tan β < 10.

(iii) The FCNC structure exists in themodel. It is therefore
compatible with current experimental data on quarks
[76,94]. The mass of exotic particle below 190 or
300 GeV has been already excluded by the data from
the LHC Run-II and the HL-LHC, the most of the
parameter region would be explored [95]. Since
having a significant amount of the bb̄ branching
ratios for the additional Higgs bosons [95].

(iv) The model under consideration contains the pseu-
doscalar field A being attached subject for recent
experimental study [96].

(v) Next, in general, there are four types of 2HDM
models of Z2 symmetry. Two of the four types were
investigated in Ref. [97] and also with parameter
domains consistent with the above conclusions.

The above conclusions lead to an instruction for survey-
ing 2HDM-S3 also with a parameter region, 1 ∼ tan β < 17
and the masses of additional bosons must be larger than
200 GeV.
More importantly, the following comments about the

EWPT in 2HDM models after the observation of the
125 GeV Higgs at LHC (2012 are in order):

(i) According to Ref. [98], with LHC data and decay
channel h0 → γγ, for a strong first order EWPT in
2HDM, mA > 400 GeV, a mass hierarchy mH� <
mH < mA and 1 < tan β < 10. This does not define
the upper bounds of the masses of the particles, but
the lower bounds are about 400 GeV.

(ii) In Ref. [99], when analyzing the inert 2HDM
model, for 500 GeV < mH < afew TeV, for a first
order EWPT, boson H could be a candidate for dark
matter.

(iii) The authors in Ref. [100] performed a nonpertur-
bation study of EWPT in 2HDM. To have a first
order EWPT, the condition is mA > mH þmZ. This
suggests that the mass of additional Higgs bosons
must be larger mass than one of SM-like Higgs
boson.

(iv) In Ref. [101], for a first order EWPT and combined
with LHC data, the masses of additional Higgs
bosons are typically 300–400 GeV. The triple Higgs
boson coupling is predicted to be 35%–55% larger
than the standard model value.

(v) In Ref. [97], analyzing decay channels A;H;H� →
tt; tb, combining with HL-LHC signal and gravita-
tional wave observations at LISA. The 2HDM
model for a first order EWPT. It also shows that
these decay channels can be key channels to
authenticate the first order EWPT in 2HDM.

(vi) In particular, in Ref. [97], Fig. 1 shows that the ratio
between two phase transition strengths of the two
model types is almost independent of tan β. Different
scenarios between the masses of the additional
Higgs particles were analyzed in the EWPT prob-
lem, such as mH� ¼ mA or mH ¼ mH�.

The summaries of the EWPT results in the 2HDMmodel
are important indicators for the parameter space in the
calculation of EWPT in the 2HDM-S3. It also shows the
effect of the S3 symmetry, which will be discussed in the
following sections.

III. REVIEW ON THE 2HDM-S3

A. Particle content

To solve with FCNC for the 2HDM, ones can realize by
implement of S3 symmetry [102]. The particle contents and
their charge assignment are given in Table I.
There are two kinds of representations for S3: real

and complex; and it is easier to work with complex
representation [103].

FIG. 4. The diagrams of one-loop contribution when there is a
mix of v1 − v2.
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B. Higgs potential

The generic scalar potential of 2HDM-S3 [87] can be
written as

VH ¼ m2
11Φ2

1 þm2
22Φ2

2 −m2
12Φ1:Φ2 − ðm2

12Þ�Φ2:Φ1

þ λ1
2
Φ4

1 þ
λ2
2
Φ4

2 þ λ3Φ2
1Φ2

2 þ λ4ðΦ1:Φ2ÞðΦ2:Φ1Þ

þ
�
λ5
2
ðΦ1:Φ2Þ2 þ ðλ6Φ2

1 þ λ7Φ2
2ÞðΦ1:Φ2Þ þ H:c:

�
;

ð33Þ

where any couplings other than m2
12, λ5, λ6, and λ7 are real.

Using v1=
ffiffiffi
2

p
and v2=

ffiffiffi
2

p
to denote the VEVs, but ignore

the factor
ffiffiffi
2

p
(however, it was still included in the

calculations).
If choosing Φ ∼ ð1; 10Þ to be the representations of S3,

then all the odd terms only containing Φ2, such as
m2

12Φ1:Φ2, ðm2
12Þ�Φ2:Φ1 and ðλ6Φ2

1 þ λ7Φ2
2ÞðΦ1:Φ2Þ must

be terminated for the Lagrangian to be invariant under
the S3 group transformation, since the representation 10
changes the sign of the fields with odd permutation. In this
case, getting a Z2 symmetric potential, in which
m2

12 ¼ λ6 ¼ λ7 ¼ 0.
In general, we can assume that Φ ∼ s, where s denotes

either of the two alternatives ð1; 1Þ or ð1; 10Þ. Because the
labels 1 and 2 were selected at random, the caseΦ ∼ ð10; 1Þ
is also included. For its simplicity, a complicated repre-
sentation can be selected to work with. The most common
Higgs potential of a S3 doublet is of the following form
where the two scalarsΦ ¼ ðϕ1;ϕ2ÞT transform as a doublet
in a complex representation [87]:

VC ¼ μ21ðϕ2
2 þ ϕ2

1Þ þ
1

2
l1ðϕ2

2 þ ϕ2
1Þ2 þ

1

2
l2ðϕ2

2 − ϕ2
1Þ2

þ l3ðϕ1:ϕ2Þðϕ2:ϕ1Þ: ð34Þ

Note that both complex and real representations provide the
similar result given in (34) which coincides with generic
one VH in (33) for the conditions [87]

m2
11 ¼ m2

22 ≡ μ21; m2
12 ¼ 0; λ1 ¼ λ2; λ5 ¼ 0:

ð35Þ

C. The soft breaking of S3 group

To break S3 softly, Ma and Melic [104] include a soft
potential by hand to the full one, while still preserving the
ϕ1 ↔ ϕ2 symmetry,

Vsoft ¼ −μ22ðϕ†
1ϕ2 þ ϕ†

2ϕ1Þ: ð36Þ

Soft breaking terms here mean that they violate the original
symmetry in the Higgs potential or the Lagrangian. They
are “soft” because the couplings associated with those
terms are small. Without the above mentioned term, we will
face the trouble of massless pseudoscalar A. Realistically,
there should be some breaking terms which will take care of
this problem.
In a spontaneously broken case, you break the symmetry

of the ground state and it naturally breaks the symmetry in
the Lagrangian. On the other hand, in this case, those terms
must be added by hand to break the symmetry. The
potential then becomes VC þ Vsoft.
The term containing Vsoft makes the mass of the

pseudoscalar Higgs particle A always nonzero in all cases.
If there is no Vsoft term, the Higgs particle A will have a
mass of 0, when v1 ¼ v2. Besides, the term Vsoft must exist,
since it represents the direct interaction between ϕ1 and ϕ2

Therefore, we must study the Higgs potential that contains
the term Vsoft.

IV. ELECTROWEAK PHASE TRANSITION IN
THE 2HDM-S3

A. A vital role of S3
First, the function of the S3 group in the 2HDM-S3 can

be shown by comparing the Higgs potential of the two
models before and after adding S3 symmetry. Let us
consider the Higgs potential of 2HDM which has the
following form

/

V2HDM
Higgs ¼ m2

11Φ
†
1Φ1 þm2

22Φ
†
2Φ2 −m2

12ðΦ†
1Φ2 þΦ†

2Φ1Þ þ
λ1
2
ðΦ†

1Φ1Þ2

þ λ2
2
ðΦ†

2Φ2Þ2 þ λ3Φ†
1Φ1Φ†

1Φ2 þ λ4Φ†
1Φ2Φ†

2Φ1 þ
λ5
2
½ðΦ†

1Φ1Þ2 þ ðΦ†
2Φ2Þ2�: ð37Þ

The above Higgs potential contains 8 parameters, and the squared masses of Higgs particles are given by

TABLE I. The particle contents and their charge assignment of
the SUð2ÞL × Uð1ÞY × S3 symmetry.

Particles Qa La Lτ uaR diR eaR τR Φ1 Φ2

SUð2ÞL 2 2 2 1 1 1 1 2 2
Uð1ÞY 1

6
− 1

2
− 1

2
2
3

− 1
3

−1 −1 1
2

1
2

S3 1 2 1 10 1 or 10 2 1 or 10 1 10
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m2
H�;2HDM ¼

�
m2

12

v1v2
− λ4 − λ5

�
v2;

m2
A;2HDM ¼

�
m2

12

v1v2
− 2λ5

�
ðv21 þ v22Þ;

m2
h;2HDM ¼ 1

2

�
ðλ1v21 þ λ2v22Þ þm2

12

v2

v1v2

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ1v21 − λ2v22

2
−

m2
12

2v1v2
ðv21 − v22Þ

�
2

þ ðλ345v1v2 −m2
12Þ2

s
;

m2
H;2HDM ¼ 1

2

�
ðλ1v21 þ λ2v22Þ þm2

12

v2

v1v2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
λ1v21 − λ2v22

2
−

m2
12

2v1v2
ðv21 − v22Þ

�
2

þ ðλ345v1v2 −m2
12Þ2

s
: ð38Þ

Looking at the formulas of masses in (38), we see that they contain the very annoying mixing terms of v1 and v2. Hence,
at nonzero temperatures, these mixing terms make the job of calculating the contributions from the particles to the effective
potential very difficult. They turn the symmetry breaking process into the process of breaking the ambiguous mixings ofΦ1

and Φ2.
Meanwhile, in the complex representation, the Higgs potential of 2HDM-S3 has a simpler form:

V2HDM⊗S3
Higgs ≡Vðϕ1;ϕ2Þ¼ μ21ðϕ2

2þϕ2
1Þþ

1

2
l1ðϕ2

2þϕ2
1Þ2þ

1

2
l2ðϕ2

2−ϕ2
1Þ2þ l3ðϕ1:ϕ2Þðϕ2:ϕ1Þ−μ22ðϕ1:ϕ2þϕ2:ϕ1Þ: ð39Þ

Seeing the structure of those Higgs potentials containing S3 symmetry, ones conclude that the Higgs potential becomes
simpler, with fewer parameters (from 8 reduced to 5). Thanks to that, the forms of Higgs mass are also simpler. By replacing
v1 and v2 by cβv and sβv, in expressions of H and h masses, ones get a form of v-dependent.

m2
H�;S3

¼ −l2v2;

m2
A;S3

¼ −
1

2
ð2l2 − l3Þv2;

m2
H;S3

¼ 1

4
v2½2l1 þ l3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16l1l2ðc2β − s2βÞ2 − 8l2l3 þ l23 − 4l1l3ðc4β − 6c2βs

2
β þ s4βÞ

q
� ¼ 1

4
fH:v2;

m2
h;S3

¼ 1

4
v2½2l1 þ l3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16l1l2ðc2β − s2βÞ2 − 8l2l3 þ l23 − 4l1l3ðc4β − 6c2βs

2
β þ s4βÞ

q
� ¼ 1

4
fh:v2: ð40Þ

The S3 symmetry has removed the mixing parts of the
two VEVs inside the mass of two charged Higgs bosons
H� and one neutral Higgs boson A. Otherwise, h and H
still have the mixing parts hiding in cβ and sβ. However,
this mixing would be simpler in the 2HDM, since there are
no such ratios as v1=v2 or v2=ðv1:v2Þ, their mass formulas
then have fewer parameters and are simpler than the ones of
2HDM without S3.
Therefore, according to the remarks for the 2HDM, S3 had

made the process of the electroweak phase transition occur in
each VEV. This will be discussed in the next section.

B. Structure of EWPT

The procedure to describe the structure of electro-
weak phase transition in this model is similar to that in

the SM, whereas Higgs and gauge bosons are the main
contributors in the breaking symmetry process. For that
reason, determination mass can also affect the phase
transition.
The 2HDM with S3 symmetry has Higgs Lagrangian

with kinetic and potential elements as

LHiggs ¼ ðDμϕ1Þ†ðDμϕ1Þ þ ðDμϕ2Þ†ðDμϕ2Þ
− Vðϕ1;ϕ2Þ: ð41Þ

Averaging all over the space, then replacing fields with
VEVs, the Higgs Lagrangian with variables v1 and v2 (with
v1 ≠ v2) has the following form:
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LHiggs ¼
1

2
∂
μv1∂μv1 þ

1

2
∂
μv2∂μv2 − V0ðv1; v2Þ

×
X

i¼vector boson

m2
i ðv1; v2ÞWμWμ

þ
X

j¼Higgs boson

m2
jðv1; v2ÞH2; ð42Þ

whereas W and H are the vector boson and scalar fields,
respectively.
Table II contains the squared mass of the particles

contributing to the EWPT, in the form of depending
VEVs; n is the degree of freedom of the fields. The masses
of known particles are in generic form and at 0K, shown in
Table III.
Table II shows us that all the particles in the model

depend on two VEVs. But v1 and v2 depend on each other,
v2=v1 ¼ tan β. The forms of mass could be changed into
one-VEV-depended (v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
) by replacing v1 ¼

vcβ and v2 ¼ vsβ. Therefore, in this model, assuming
the remark 4, the electroweak phase transition can be
considered as a dual transition, with two VEVs accom-
plished to the condition v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
and at 0K,

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v201 þ v202

p
¼ 246 GeV.

Here in remark 4, it is also a note that the coefficient κ is
now equal to tan β. Carefully observing Table II, although
the masses of h and H can be split, there still exists the
coefficient κ in fh and fH. These constants are only
meaningful in that the masses of h and H can be split
into terms that each one of them depends only on one VEV.
In other words, the contributions of the mixing of v1 and v2

are all brought back to only one VEV is v1 or v2, and the
difference between v1 and v2 is put into the constants fh
and fH. Hence, the investigation of phase transition is
somewhat relatively easier. But in the end, the replacement
is really not that important, since in the next sections, this
coefficient in fact will not have any effects on the strength
of phase transition.

C. The effective potential

This dual-phase transition has the participation of new
particles as two charged Higgs H�, one neutral CP-odd A,
and one neutral CP-even H. More importantly, there are
also the presence of SM particles as one neutral CP-even
Higgs boson h, two charged gauge bosonsW�, one neutral
boson Z and top quark t.
The effective potential for each stage can be calculated in

two ways. The effective potentials only contain the con-
tributions from the particles outside of the SM and the
gauge bosons, SM-like Higgs boson and top quark. The
other particles have small values of mass so they can be just
ignored. The process of calculating the effective potential is
in detail given in Ref. [71].
The effective potential of one phase transition without

daisy loops has the form:

VeffðV; TÞ ¼ V0ðVÞ þ
1

64π2

�
6m4

W�ðVÞ ln
m2

W�ðVÞ
Q2

þ 3m4
ZðVÞ ln

m2
ZðVÞ
Q2

þ 2m4
H�ðVÞ ln

m2
H�ðVÞ
Q2

þm4
hðVÞ ln

m2
hðVÞ
Q2

þm4
HðVÞ ln

m2
HðVÞ
Q2

þm4
AðVÞ ln

m2
AðVÞ
Q2

− 12m4
t ðVÞ ln

m2
t ðVÞ
Q2

�

þ T4

4π2

�
6F−

�
mW�ðVÞ

T

�
þ 3F−

�
mZðVÞ

T

�
þ 2F−

�
mH�ðVÞ

T

�
þ F−

�
mhðVÞ
T

�

þ F−

�
mHðVÞ

T

�
þ F−

�
mAðVÞ

T

�
þ 12Fþ

�
mtðVÞ
T

��
; ð43Þ

TABLE II. Squared mass of the gauge bosons and scalar bosons
in 2HDM-S3; whereas mass of theW�, Z, and t is the same as the
one in SM; v2 ¼ v21 þ v22.

Particles m2ðv1; v2Þ m2ðv1Þ m2ðv2Þ n

m2
W�

g2v2

4

g2v2
1

4

g2v2
2

4
6

m2
Z ðg2 þ g02Þ v2

4
ðg2 þ g02Þ v21

4
ðg2 þ g02Þ v22

4
3

m2
h

1
4
fhv2

1
4
fhv21

1
4
fhv22 1

m2
H

1
4
fHv2 1

4
fHv21

1
4
fHv22 1

m2
A − 1

2
ð2l2 − l3Þv2 − 1

2
ð2l2 − l3Þv21 − 1

2
ð2l2 − l3Þv22 1

m2
H� −l2v2 −l2v21 −l2v22 2

m2
t f2t v2 f2t v21 f2t v22 −12

TABLE III. Mass of particles (GeV) at 0K in 2HDM-S3.

Particles mW�ðv0Þ mZðv0Þ mhðv0Þ mtðv0Þ
mðv0Þ [GeV] 80.442 91.18 125 173.1

TABLE IV. Squared mass of the gauge bosons and scalar
bosons in 2HDM-S3.

Particles m2ðv1; v2Þ m2ðv2Þ m2ðv1Þ
m2

W�
g2v2

4
m2

W�=a m2
W�ðv2Þ:ða − 1Þ

m2
Z ðg2 þ g02Þ v2

4
m2

Z=a m2
Zðv2Þ:ða − 1Þ

m2
h

1
4
fhv2 m2

h=a m2
hðv2Þ:ða − 1Þ

m2
H

1
4
fHv2 m2

H=a m2
Hðv2Þ:ða − 1Þ

m2
A − 1

2
ð2l2 − l3Þv2 m2

A=a m2
Aðv2Þ:ða − 1Þ

m2
H� −l2v2 m2

H�=a m2
H�ðv2Þ:ða − 1Þ

m2
t f2t v2 m2

t =a m2
t ðv2Þ:ða − 1Þ
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whereas

F�

�
mϕ

T

�
¼

Z mϕ
T

0

αJð1Þ� ðα; 0Þdα; ð44Þ

Jð1Þ� ðα; 0Þ ¼ 2

Z
∞

α

ðx2 − α2Þν=2
ex � 1

dx: ð45Þ

Then,

8<
:

Jð1Þ− ðα;0Þ¼ π2

3
−πα− α2

2

�
ln α

4πþC− 1
2

�
þOðα2Þ;

Jð1Þþ ðα;0Þ¼ π2

6
− α2

2

�
lnα

πþC− 1
2

�
þOðα2Þ:

ð46Þ

This process has the contribution from five Higgs
particles in total into the effective potential. However,
there are only two scalar Higgs particles h, H, which

are associated with the two nonzero vacuum expectation
values v1, v2. Therefore, the minimum conditions then are

VeffðV0; 0Þ ¼ 0;
∂VeffðV; 0Þ

∂V

				
V¼V0

¼ 0; ð47Þ

∂
2VeffðV; 0Þ

∂V2

				
V¼V0

¼ ½m2
hðVÞ þm2

HðVÞ�V¼V0
: ð48Þ

With the minimum conditions, expanding the functions
of J�, the effective potential can be rewritten as

VeffðVÞ ¼
λT
4
V4 − θTV3 þ γðT2 − T2

0ÞV2; ð49Þ

where,

λT ¼ m2
hðV0Þ þm2

HðV0Þ
2V2

0



1þ 1

8π2V2
0½m2

hðV0Þ þm2
HðV0Þ�

×

�
6m4

W�ðV0Þ ln
bT2

m2
W�ðV0Þ

þ 3m4
ZðV0Þ ln

bT2

m2
ZðV0Þ

þ 2m4
H�ðV0Þ ln

bT2

m2
H�ðV0Þ

þm4
hðV0Þ ln

bT2

m2
hðV0Þ

þm4
HðV0Þ ln

bT2

m2
HðV0Þ

þm4
AðV0Þ ln

bT2

m2
AðV0Þ

− 12m4
t ðV0Þ ln

bFT2

m2
t ðV0Þ

��
;

θ ¼ 1

12πV3
0

½6m3
W�ðV0Þ þ 3m3

ZðV0Þ þ 2m3
H�ðV0Þ þm3

hðV0Þ þm3
HðV0Þ þm3

AðV0Þ�;

γ ¼ 1

24V2
0

½6m2
W�ðV0Þ þ 3m2

ZðV0Þ þ 2m2
H�ðV0Þ þm2

hðV0Þ þm2
HðV0Þ þm2

AðV0Þ þ 6m2
t ðV0Þ�;

T2
0 ¼

1

4γ



m2

hðV0Þ þm2
HðV0Þ −

1

8π2V2
0

½6m4
W�ðV0Þ þ 3m4

ZðV0Þ þ 2m4
H�ðV0Þ

þm4
hðV0Þ þm4

HðV0Þ þm4
AðV0Þ − 12m4

t ðV0Þ�
�
: ð50Þ

The critical temperature Tc is given by

Tc ¼
T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − θ2=½γλTc

q
�
; ð51Þ

and the critical VEV can be derived as

Vc ¼
2θTc

λTc

: ð52Þ

Therefore, the strength of EWPT is

S ¼ Vc

Tc
¼ 2θ

λTc

: ð53Þ

Next, taking into account daisy loops, the effective
potential will have the form:

Vdaisy
eff ¼ VeffðVÞ − VdðVÞ; ð54Þ

in which the second component on the right-hand side of
Eq. (54) is the contribution of daisy loops [105–107]

(especially the appendix A in Ref. [107]). Here, degrees
of freedom are given by: gZ¼3;gW ¼6;gh¼gA¼gH¼1;
gH� ¼2 and

VdðVÞ ¼ T
12π

X
i¼h;W;Z;A;H;H�

gi


�
m2

i ðV0ÞV2

V2
0

þ ΠiðTÞ
�
3=2

−
m3

i ðV0ÞV3

V3
0

�
; ð55Þ

ΠWðTÞ ¼
22

3

m2
WðV0Þ
V2
0

T2;

ΠZðTÞ ¼
22

3

ðm2
ZðV0Þ −m2

WðV0ÞÞ
V2
0

T2;

ΠhðTÞ ¼
2m2

WðV0Þ þm2
ZðV0Þ þm2

hðV0Þ þ 2m2
t ðV0Þ

4V2
0

T2

þ ðΛhH þ ΛhA þ ΛhH�Þ:T2: ð56Þ
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As for exotic Higgs particles then

Πh−exotic ¼ ðΛhH þ ΛhA þ ΛhH�Þ:T2 ð57Þ

ΠAðTÞ ∼
m2

AðV0Þ
V2
0

T2;

ΠHðTÞ ∼
m2

HðV0Þ
V2
0

T2;

ΠH�ðTÞ ∼m2
H�ðV0Þ
V2
0

T2: ð58Þ

ΛhH þ ΛhA þ ΛhH� are coefficients representing the
contribution from exotic Higgs daisy loops to SM-like
Higgs boson. A, H, H� are called exotic Higgs
for short.
The daisy loops of exotic Higgs boson can be omitted,

since these masses of particles are large and mðVÞ=T ∼ 1
[105]. This can be explained in Sec. IV F.
Note that V can be v1, v2, or v. Let v2 ¼ a:v22, the

relation between tan β and a is

tan β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ða − 1Þ

p
: ð59Þ

From this, the masses of the particles in terms of a are
given in Table IV.
With v1 different from v2, this model has two stages of

phase transition. We assume that v1 < v2, which means
1 < a < 2 or 1 < tan β. As the above sections pointed out,
in 2HDM-S3, the particles’ masses can be changed such
that there are no mixing terms between v1 and v2. So the
correct effective potential for this model is

VS3
eff ¼ VS3

effðv1Þ þ VS3
effðv2Þ: ð60Þ

With the above formula for the potential, the phase
transition’s strength does not depend on a.

D. Probing the independence of
EWPT strength on tan β

Note that the EWPT in this model occurs in two stages
and the mass components of the involved particles are
given in Table IV. Let us assume that the phase transition’s
strength of the first stage has already been calculated,
S1 > 1 for V ¼ v2.
It would like to prove that the second phase transition’s

strength (S2), corresponds to V2 ¼ v21 ¼ v22ða − 1Þ will
actually not change, that it is still equal to S1. Or in other
words, it does not depend on a.
To do this, the functions λTc

ðv1Þ; θðv1Þ; γðv1Þ; Tcðv1Þ
must be indicated the independent of a (equal to themselves
when calculated with v2). First, let us consider the function
θ correspond to V ¼ v1,

θðv1Þ ¼
1

12πv31
½6m3

W�ðv1Þ þ 3m3
Zðv1Þ þ 2m3

H�ðv1Þ

þm3
hðv1Þ þm3

Hðv1Þ þm3
Aðv1Þ�: ð61Þ

The masses in the bracket and v1 all have the same power
of 3. Hence they are all proportional to ða − 1Þ3=2. By
extracting this factor out of the masses and canceling it with
the exact same factor from v1 in the denominator, θðv1Þ is
independent of a, or θðv1Þ ¼ θðv2Þ. Similarly γðv1Þ does
not depend on a, but T2

0ðv1Þ depends on (a − 1), specifi-
cally T2

0ðv1Þ ¼ ða − 1ÞT2
0ðv2Þ. Because of this dependence

on (a − 1) of T2
0ðv1Þ, λTc

ðv1Þ will not depend on a. The
proof is as follows. Consider the function λTc

corresponds
to v1,

λTc
ðv1Þ ¼

m2
hðv1Þ þm2

Hðv1Þ
2v21



1þ 1

8π2v21½m2
hðv1Þ þm2

Hðv1Þ�
�
6m4

W�ðv1Þ ln
bTc

2ðv1Þ
m2

W�ðv1Þ
þ 3m4

Zðv1Þ ln
bTc

2ðv1Þ
m2

Zðv1Þ

þ 2m4
H�ðv1Þ ln

bTc
2ðv1Þ

m2
H�ðv1Þ

þm4
hðv1Þ ln

bTc
2ðv1Þ

m2
hðv1Þ

þm4
Hðv1Þ ln

bTc
2ðv1Þ

m2
Hðv1Þ

þm4
Aðv1Þ ln

bTc
2ðv1Þ

m2
Aðv1Þ

− 12m4
t ðv1Þ ln

bFTc
2ðv1Þ

m2
t ðv1Þ

��
: ð62Þ

With Tc is given by Eq. (51) in the no daisy loop case. By the same reasoning from above, λTc
ðv1Þ will not depend on a

when the logarithmic factors do not depend on a. Indeed, we consider the general expression inside the logarithmic
functions:

T2
cðv1Þ

m2ðv1Þ
¼ T2

0ðv1Þ
½1 − θ2ðv1Þ=γðv1ÞλTc

ðv1Þ�m2ðv2Þ
¼ ða − 1ÞT2

0ðv2Þ
ð1 − θ2ðv2Þ=γðv2ÞλTc

ðv1ÞÞða − 1Þm2ðv2Þ

¼ T2
0ðv2Þ

ð1 − θ2ðv2Þ=γðv2ÞλTc
ðv1ÞÞm2ðv2Þ

; ð63Þ
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in which the functions θðv1Þ; γðv1Þ are all independent of a
as proven earlier. The expression inside the logarithmic
functions actually depends on λTc

ðv1Þ. Substitute the
expression Eq. (63) into Eq. (62), we can finally realize
that a no longer appears in the expression Eq. (62). This
proves that λTc

ðv1Þ does not depend on a. So, the functions
λTc

ðv1Þ; θðv1Þ; γðv1Þ; Tcðv1Þ is truly independent of awhen
the effective potential without daisy loops.
When the effective potential with daisy loops which is

Eq. (54), the critical temperature TCðv1Þ is not Eq. (51) but
TCðv1Þ ∼ T0ðv1Þ. So λTC

ðv1Þ still does not depend on a.
Furthermore, by the similar proof, Vdðv1Þ does not depend
on a. Because Vdðv1Þ just depends on the ratio m2ðVÞ=V2.
So finally at the critical temperature, the effective potential
with daisy loops [Vdaisy−S3

eff ðv1Þ] remains independent of
a and deduced that S in the same regardless of being
calculated with v1 or v2.
This result agrees with the conclusions in Ref. [88],

which concludes that tan β is not a meaningful parameter in
the 2HDM.
Also commented in Sec. II E, in the Fig. 1 of Ref. [97], in

the 2HDM model, since the ratio between the two phase
transition strengths may not depend much on tan β. In other
words, the strength of the phase transition can be inde-
pendent of tan β. We have clearly demonstrated this in the
2HDM-S3 model, thanks to the S3 symmetry that separates
the two phase transitions.

E. The true critical temperatures

To indicate critical temperatures in the model, the
effective potential without daisy loops is only used. The
estimation of daisy loop contributions will be done in
Sec. IV F. As analyzed in Sec. IV B, the 2HDM-S3 model
will have two critical temperatures which correspond to the
two stages.
Since the coefficients are independent of a as shown

above, the parameters of the second phase transition can be
expressed in terms of the parameters of the first phase
transition,

λT;v1 ¼ λT;v2 ¼ λT;v; ð64Þ

θv1 ¼ θv2 ¼ θv; ð65Þ

γv1 ¼ γv2 ¼ γv; ð66Þ

T2
0;v2

¼ T2
0;v1

=ða − 1Þ ¼ T2
0;v=a: ð67Þ

With these equalities, the effective potentials of the second
stage and the combined stages can be expressed in terms of
the effective potential of the first phase transition stage

VS3
effðv2Þ ¼

λT
4
v42 − θTv2v

3
1 þ γðT2

v1 − T2
0;v1

Þv21; ð68Þ

VS3
effðv1Þ ¼

λT
4
v41 − θTv1v

3
1 þ γðT2

v1 − T2
0;v1

Þv21 ð69Þ

¼ ða − 1Þ2 λT
4
v42 − ða − 1Þ2θTv2v

3
2

þ ða − 1Þ2γðT2
v2 − T2

0;v2
Þv22 ð70Þ

¼ ða − 1Þ2Veffðv2Þ; ð71Þ

VeffðvÞ ¼
λT
4
v4 − θTvv3 þ γðT2

v − T2
0;vÞv2 ð72Þ

¼ a2
λT
4
v42 − a2θTv2v

3
2 þ a2γðT2

v2 − T2
0;v2

Þv22
¼ a2Veffðv2Þ: ð73Þ

Hence, VeffðvÞ ≠ VS3
effðv1Þ þ VS3

effðv2Þ ¼ VS3
eff . From these

equations, VeffðvÞ can be deduced

VeffðvÞ ¼
a2

ða − 1Þ2 þ 1
VS3
eff ¼ fðaÞVS3

eff : ð74Þ

Here when writing down the effective potential of the
system in terms of VeffðvÞ, the correct effective potential of
the system has been multiplied by a2

ða−1Þ2þ1
times.

According to Fig. 5, it follows 1 < a < 2, and function
fðaÞ has value of 1 at a ¼ 1, that is VeffðvÞ ¼ VS3

eff , or
v1 ¼ 0, but this cannot be true. The maximum value of
function fðaÞ is 2 when a ¼ 2, which is v1 ¼ v2. Therefore
when the two VEVs are equal to each other, the difference
between the two effective potentials is at maximum. When
a > 2 or v1 > v2, it can exchange v1 ↔ v2, so that this case
is similar to the case of a < 2.
When the effective potential is rewritten as VeffðvÞ when

calculating the phase transition’s strength, our S is correct.
However, now the temperature of the phase transition TC of
the system turns out not to be correct. If v1 ≠ v2, our
system has two phase transition temperatures TC1 < TC
and TC2 < TC, respectively. Hence, writing down the

a

f a

1.2

1.4

1.6

1.8

2.0

2 4 6 8 10

FIG. 5. The function fðaÞ, the ratio between VS3
eff and VeffðvÞ.

DUAL ELECTROWEAK PHASE TRANSITION IN THE TWO- … PHYS. REV. D 107, 035020 (2023)

035020-13



effective potential for the system as VeffðvÞ is just a way to
compare it to that of SM (or putting this model in the
context of SM, we call it “the SM-like effective potential”),
and now TC is not the true temperature for the phase
transition of the system, and it should be called “the SM-
like critical temperature.”
As commented earlier in Sec. II E, when studying phase

transitions in 2HDM, studies rarely mention phase transition
temperature. Because the analysis of the phase transition
temperature of the two VEVs model would be very difficult
due to their mixing. As analyzed in this section, the S3
symmetry separates the two phase transitions, so itmakes the
determination of the transition temperature more obvious.
Figure 6(b) shows us the potential VS3

effðv2Þ at different
temperatures. These potentials all have the second nonzero
minima, with mHðv2Þ ¼ 150 GeV, mH�ðv2Þ ¼ mAðv2Þ ¼
302.087 GeV. The solid line that corresponds to
TC1 ¼ 139.739 GeV, shows that there exists a potential
well between the two minima. This is proof of the existence
of the first-order in the phase transitions.
In Fig. 6(a), the solid line is the shape of VS3

effðv2Þ at
mHðv2Þ ¼ 150 GeV, mH�ðv2Þ ¼ mAðv2Þ ¼ 302.087 GeV,
and TC1 ¼ 139.739 GeV. The dash-dotted line is VS3

effðv1Þ
when mHðv1Þ ¼ 150=

ffiffiffi
2

p
GeV, mH�ðv1Þ ¼ mAðv1Þ ¼

302.087=
ffiffiffi
2

p
GeV, and TC2 ¼ 98.761 GeV. The nonzero

minimum and maximum of the dash-dotted are smaller
than that of the solid line and TC1 > TC2, which shows
that the phase transition must occur in two stages. The
distance between the two stages is ΔTC ¼ TC1 − TC2 ¼
40.978 GeV.
To be more intuitively in the comments, we plot the

effective potentialVS3
effðv2Þ andVeffðvÞ in case of a ¼ 2 as in

Fig. 7. The blue solid line is the potential Veffðv2Þ when
mHðv2Þ ¼ 140 GeV, mH�ðv2Þ ¼ mAðv2Þ ¼ 272.647 GeV
and the phase transition’s temperature TC1 ¼
124.283 GeVV. The dashed line is for mAðvÞ ¼
198 GeV, mH�ðvÞ ¼ mAðvÞ ¼ 362.284 GeV and the criti-
cal temperature is TC ¼ 169.288 GeV.
Through Fig. 7, when a ¼ 2, that is when v1 ¼ v2, the

two stages of the EWPToccur at the same time. Each stage
of the phase transition is described by the blue solid line.
The correct temperature for the phase transition of the
system must be TC1.
However, also through Fig. 7, if we describe our system

using the composite potential VeffðvÞ, that is if we study the
phase transition of the system in just one stage as in SM, the
effective potential of the system at the phase transition
temperature is as the dashed line. Here the temperatures for
the system are TC > TC1. By describing the EWPT in only

FIG. 6. The effective potential with a ¼ 3=2.

FIG. 7. VS3
effðv2Þ and VeffðvÞwhen v1 ¼ v2 or a ¼ 2; tan β ¼ 1.
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one stage as in the SM, the two effective potentials were
turned in the solid line into the dashed line. Accidentally,
this did not change the strength of the phase transition but
instead increased the critical phase transition’s temperature
and VEV, making them different compared to the cor-
rect ones.

F. Searching the first-order EWPT and the role of tan β

In order tomeet a first-order phase transition, the transition
strength must have its value bigger or at least equal to 1.
However, there are three unknown variables mA;mH� ,
and mH in our problem. Therefore we can assume that
mA ≡mH� . This assumption is only intended to reduce the
number of variables in the problem and find the domain for
the masses of the particles in the first-order phase transition.
This assumption should not be applied to the parameters in
the Higgs potential. Also assuming that mA ¼ mH� or
mH ¼ mH� , but the results are all the same. Choosing to
usemA ¼ mH� which is consistent with the previous studies
and the data for the parameter ρ [108–112].
According to the comments in Sec. II E, especially in

Ref. [97], there can be many suggestions between the three
quantities mH� ; mH;mA but it is possible for a first order
EWPT, so from the suggestions, we can choose the scenario
mA ¼ mH� in the 2HDM-S3 model. Because the symmetry
S3 does not lose or add any of the three additional Higgs
bosons.
Furthermore, the effective potential without daisy loop

is first used to calculate S. Then daisy loops will be
additionally calculated later.
From there, the domain for the value of the masses

cannot be too broad, in fact, these domains must be closed.
Indeed, to have S > 1, and if we apply the following
conditions altogether: T2

0 > 0 and TC must be real or
according to Eq. (51), 1 − θ2=½γλTc

� > 0, mass domains
must be closed. The numerical solution for the case of a ¼
3=2 for the first stage of the phase transition that corre-
sponds to v2 is given as Fig. 8.

The contours of S ¼ 1 are plotted onto the mass axes and
then gradually increase the value of S. With different values
of a, a range of values of the phase transition strength was
find, 1 ≤ S < 2.8.
Moreover, according to Fig. 8, when S increases, the

domain for the masses of the particles must narrow down.
Therefore, in order to find these domains for different
values of a, only plotting S ¼ 1 with different a’s, which is
shown in Fig. 9.
Carefully looking at Fig. 9, when a increases, the mass

domains of the particles narrow down. Since 1 < a ≤ 2, the
mass domain for each value of a as follows:

200 GeV < mH�ðv2Þ < 800 GeV; ð75Þ

0 < mHðv2Þ < 600 GeV: ð76Þ

The second stage of the phase transition that corresponds
to v1 is similar to the first stage. And because the strength of
the phase transition does not depend on a, if the first stage
of the phase transition has the transition’s strength larger
than 1 then so does stage 2. Therefore, the domains for the
masses of the particles at stage 2 can be indicated,

200×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða−1Þ

p
GeV<mH�ðv1Þ< 800×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða−1Þ

p
GeV;

ð77Þ

0 < mHðv1Þ < 600 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − 1Þ

p
GeV: ð78Þ

Thus, according to Eq. (76) and Eq. (78), although a (or
tan β) does not affect the phase transition’s strength, it
affects the domains of the masses of the particles to have
the first-order phase transition.
Combining Eqs. (75)–(78) together, it follows that

200 ×
ffiffiffi
a

p
GeV < mH� < 800 ×

ffiffiffi
a

p
GeV; ð79Þ

FIG. 8. The strength of first stage EWPT with a ¼ 3=2.
FIG. 9. The mass domain of the particles depends on a with
S ¼ 1 in the first phase transition.
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0 < mH < 600 ×
ffiffiffi
a

p
GeV: ð80Þ

Notice that the maximum value of a is 2, it follows from
Eqs. (79), (80) that for a ¼ ffiffiffi

2
p

. So, the maximum value of
masses are only increased by about 1.41 times. Therefore,
the effect of a on the mass domain of the particles is not too
large. This is also easy to see when observing the lines in
Fig. 9, they are very close together.
One more thing, if a is closer to 2, the two stages are also

closer to each other. Hence, a can be used to define the
distance between the two-phase transition stages in this
model.
With the analysis of EWPT in 2HDM, the value of tan β

is quite wide (from 1 to 17 in all scenarios as indicated in
Sec. II E), it is almost a free parameter in the EWPT
problem. However, in the 2HDM-S3 model, due to the S3
symmetry, the two EWPT stages are separated, thereby
highlighting the role of tan β which determines the width of
the mass domain as well as the gap between the two stages.
The last important part in this section will be estimating

the contribution from daisy loops. Based on Eq. (78), the
masses of the exotic Higgs bosons are usually chosen to be
larger than the mass of the top quark. This is in keeping
with the difficulty of detecting these particles today.
Because it only consider the temperature region where

EWPT occurs or Vc
Tc

> 1. So
mA;H;H�ðVcÞ

Tc
∼ 1, the contribution

of daisy loops of exotic Higgs bosons will be small [105].
Thus when adding daisy loops, only the daisy loops of
gauge boson and SM-like Higgs boson, i.e., Eqs. (56) are
taken into account and neglecting Λh−exotic. But notice that,
in the temperature region T ≫ TC, the contributions from
daisy loops of the exotic Higgs bosons cannot be ignored.
Take a look at the graphs in Fig. 10, the red zone

indicates the difference between Veff and Vdaisy
eff , the higher

the temperature, the larger the difference, and the larger the
area of the red region. The phase transition temperatures in
this model are similar to SM, they are in the range of 100 to

150 GeV. Because v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21þv22

p
¼246GeV and v1; v2 <

246 GeV. So also from Fig. 10, when T < 150 GeV, the
area of the red region is very small.
Thus, also from Fig. 10, daisy loops will increase the

phase transition temperature. Indeed, the second pair of
lines in Fig. 10, when T ¼ 139.739 GeV is also the phase
transition temperature corresponding to Veff (the upper
line). But Vdaisy

eff (bottom line) has a second minimum that is
below the VEV axis, so T ¼ 139.739 GeV is not yet
the phase transition temperature corresponding to Vdaisy

eff ,
this phase transition temperature must be greater than
139.739 GeV. Finally, a sure result is that as the phase
transition temperature increases, the phase transition
strength will decrease.
Next to see the effect from daisy loops about S as the

above comments. The masses of H� and H are randomly
selected, then recalculate Swith and without daisy loops, as
shown in Table V.
The ring-loops reduce S by 2=3 times [40,65]. But in this

model, this ratio is about 0.97 times or the maximum value
of strength is about 2.71. However, this still ensures the
first-order EWPT.
Although the daisy loops do not significantly change the

strength of the phase transition in this model, but the role of
reducing divergences in effective potential calculations
cannot be ignored.
In addition, it should be noted that in this model the

triggers for the first order phase transitions are heavy Higgs
particles. So the daisy loops of heavy Higgs have no effect
in EWPT. However, other models exist light particles
besides the SM, surely the daisy loops of these particles
will have a great effect on EWPT.

V. CONCLUSION AND OUTLOOKS

The 2HDM-S3 was chosen to analyze the EWPT stages,
not only because it is close to the SM but also because the
structure of the EWPT process in this model is interesting
enough for us to find new things. Moreover, although these
models have some features that are new to the SM, they
are far more complicated as they have more new fields
and VEVs.
The symmetry breaking process that corresponds to the

EWPT in the 2HDM-S3, when compared with the SM, is
depicted in the below diagram.

FIG. 10. Difference between VS3
eff and Vdaisy

eff with
mHðv2Þ ¼ 150 GeV; mH�ðv2Þ ¼ mAðv2Þ ¼ 302.087GeV.

TABLE V. Strength S with and without daisy loops.

mHðv2Þ
[GeV]

mH�ðv2Þ
[GeV] Sno daisy Sdaisy Sdaisy=Sno daisy

300 500 1.116 1.0938 0.979
400 600 1.048 1.030 0.982
250 470 1.253 1.224 0.976
220 430 1.254 1.222 0.974
180 410 1.452 1.410 0.971
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2HDM-S3

⇓breaking v2

⇓breaking v1

Uð1ÞQ
We first summarize the structural analysis methods of the
EWPT from previous studies along with the method in this
article as follows:

(i) The first method as in Refs. [15,55]: The EWPT
process is considered as in the SM. The effective
potential VeffðvÞ is used and v2 ¼ v21 þ v22.

(ii) The secondmethod as in Refs. [95,97]: Assuming the
equation Eq. (A14), examining the multistep EWPT
process, and the effective potential is a function of two
variables v1 and v2. But when calculating the strength
of phase transition ξ ¼ vc

Tc
; v2 ¼ v21 þ v22, it is still

referred to as one phase as the standard model.
(iii) The third method is in this article: Analyzing the

division of the effective potential into two separate
parts [Veff ¼ Veffðv1Þ þ Veffðv2Þ] and examining
each stage separately.

The EWPT has been intensively considered in the
2HDM. Some remarks are in order.
In Refs. [113,114], the EWPT has been considered in the

2HDM type I and II. In these papers, the masses of heavy
particles are not larger than 1 TeVand their mass difference is
not bigger 400 GeV. In our results, the mass region of heavy
particles ranges from 200 to 800 GeV. Therefore, the
maximum mass difference between the heavy particles is
about 600 GeV. The lattice simulation with one-loop
effective potential for crystal has been considered in
Ref. [114], the first order EWPT happens for a scenario
mH� ¼ mA, and this agrees with our assumption. Therefore,
the results in Refs. [113,114] and ours are compatible.
It was shown that the EWPT is related to a significant

uplifting of the Higgs vacuum [115]. The first order phase
transition leads to the following condition

mA > mH þmZ: ð81Þ
The mass domain of particles in our calculation is also
compatible with this.
The first order EWPT is possible if 580 GeV < mH� <

1TeV [116]. This constraint agrees with our result mH� <
800 ×

ffiffiffi
a

p
GeV ∼ 1 TeV as in Eqs. (79) and (80).

In Ref. [117], the first order EWPT happens in the
2HDM type I and II with the mass difference between
H;H� and A in the range (100, 300) GeV. This coincides
with the mass region in Eqs. (75) and (76).
From Fig. 1 in Ref. [118] it follows that to have the first

order phase transition, the maximal mass difference among
mH and mA is about 500 GeV. In our study this value is
about 600 GeV. Hence, both results are consistent.
In Ref. [119], Fig. 3, the effective potential is plotted in

the region of masses lower than 600 GeV and the value of

tan β runs from 1 to 20. The lines of the effective potential
for different tan β values are very close to each other. The
result shows that S is almost independent on tan β, and this
supports our conclusion.
All three methods are acceptable approximations. The

effectiveness of the third method in this article is clearly
stated in Sec. IV. Mathematical techniques for analyzing
VEVs in the first and second method have been success-
fully used to analyze decay channels in multi-VEV models
[120,121].
Exploring the EWPT process into several stages has been

analyzed in many other models besides 2HDM, as shown in
Refs. [74,122]. Therefore, the results of this paper aim to
emphasize the feature of the multiphase in 2HDM-S3
model and investigate the factors that affect the division
of stages as well as the influence of tan β.
The strength of the phase transition does not depend on a

or tan β, and to study the full structure of the two stages of
the phase transition, the effective potential must not be
written as VeffðvÞ. The greater tan β is, the narrower the
mass domain of the particles in the first order of the phase
transition becomes. The S3 symmetry has shown that there
are two subsequential stages in the phase transition process,
which has not been shown clearly in the 2HDMwhere there
are many mixing terms of the VEVs in the mass domain of
the particles.
The S3 symmetry could explain the mixing of quarks or

this symmetry could be related to the Yukawa couplings that
can affect EWPT processes [76–78]. For example in
Ref. [123], changing the Yukawa coupling constants results
in a first order EWPT. Therefore, the S3 symmetry associated
with the quark mixing has an effect on EWPT processes that
need to be further elucidated after these works.
By analyzing the effect of daisy loops, a way of assessing

the contribution from daisy loops: first the EWPT was
calculated by using the effective potential without daisy
loops, to estimate the mass domain of particles; then based
on that mass domain, estimating the ratio mðvÞ=T to
consider the contribution from daisy loops.
In this paper, in order to reduce the number of variables in

our problem, mA ¼ mH� has been assumed. As said earlier,
this assumptionwas onlymade to find themass domainof the
particles, and must not be applied to the parameters in the
Higgs potential, since the real values of these 2 particles can
be different from each other, even though their domains of
mass can be identical. However, from Eq. (40) and this
assumption, l3 ≈ 0. This assumption was made by the
authors in order to satisfy the data of the parameter ρ in
the 2HDM [108–112] so that if the 2HDM-S3 also satisfies
the data of the parameter ρ, this can lead to l3 being very
small. This is one of the results of this paper that can lead to
research on the parameter ρ in the 2HDM-S3.
As stated in remark 4, the assessment of the impact the

first stage of EWPT has on the second stage of EWPT is
made through the mixing terms of the VEVs. However, the
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investigation of the effects of κ is still unclear. All these
effects of κ have been renormalized under the minimum
conditions of the later EWPT stage. Therefore, from remark
4, to assess the effects of κ, we must rebuild the whole
effective potential that contains the mixing terms of VEVs
all over. Assessing this direction is a new incoming and
interesting job after this paper.
Notice the comments in the Sec. II E, we focus on scalar

decays into heavy fermions (A;H;H� → tt; tb), which are
the most promising channels for demonstrating the first-
order EWPT through confirmation of additional bosons
[124]. Also, there is another way to check, we can measure
the gravitational waves generated by the EWPT process in
future experiments by LISA [124].
Finally, through the comments on effective potentials,

writing down the effective potentials in the form of VeffðvÞ
is imprecise, but still, it is concise and gives accurate
predictions for the strength of the phase transition.
However, there will be some small errors in calculating
the corresponding sphalaron energy, but these errors would
not be large. Since the contributions of the effective
potential term in the sphaleron energy are quite small,
about 5.5% [125], when writing down the effective
potential of the system in the form of VeffðvÞ ¼

a2

ða−1Þ2þ1
VS3
eff , this will make the sphaleron energy deviate

by about 5.5%. From this, to make the calculation of the
sphaleron become more accurate, we only need to replace

VeffðvÞ by ða−1Þ2þ1

a2 VeffðvÞ, and the methods are still the
same as in Refs. [55,56,126,127]. In addition, if the two
stages of the phase transition in this model occur at the
same time or very close to each other, the bubbles of each of
the phase transition stages can collide with each other or
collide with the bubbles from other stages, thereby causing
some big gravitational waves. For that matter, the full
estimation of the contributing terms, as well as the impact

of the ratio ða−1Þ2þ1

a2 on the sphaleron energy for the
gravitational wave calculation, will be the extension of
this paper.
The method of high-temperature dimensional reduction

to the 2HDM to obtain three-dimensional effective theories
that can be used for nonperturbative simulations [128].
These results can be used to recalculate EWPT in 2HDM,
and to check our results. This is part of the upcoming work.
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APPENDIX: EFFECTIVE ACTION OF
MULTISCALAR FIELD MODELS

In the ϕ4 theory and the single field case, calculating the
effective potential from summing the diagrams is shown in

Ref. [91]. Let us consider a toy model described by two
neutral scalar fields (ϕi; i ¼ 1, 2) with an action

Sðϕ1;ϕ2Þ ¼
Z

d4xLðϕ1ðxÞ;ϕ2ðxÞÞ; ðA1Þ

where

Lðϕ1ðxÞ;ϕ2ðxÞÞ ¼
X2
i¼1

ð∂μϕ�
i ∂

μϕi −m2
ϕi
ϕ�
iϕiÞ

−
λϕ
4
ðϕ�

1ϕ1 þ ϕ�
2ϕ2Þ2 ðA2Þ

In the path-integral representation, the generating func-
tional is as the following:

Z½J� ¼ h0outj0iniJ
≡

Z
Dϕ1Dϕ2 expfiðSðϕ1;ϕ2Þ þ ϕ1J1 þ ϕ2J2Þg;

ðA3Þ

and

Z½J�≡ expfiW½J�g; ðA4Þ

in which

ϕiJi ≡
Z

d4xϕ1ðxÞJ1ðxÞ; i ¼ 1; 2: ðA5Þ

The effective action Γ½ϕ̄1; ϕ̄2� is the Legendre transform
of Eq. (A4)

Γ½ϕ̄1; ϕ̄2� ¼ W½J� −
X2
i¼1

Z
d4x

ΔW½J�
ΔJiðxÞ

JiðxÞ ðA6Þ

where the VEVs of ϕi are

ϕiðxÞ ¼
δW½J�
δJiðxÞ

ðA7Þ

From Eqs. (A6) and (A7), the generating functionals can
be obtained

δΓ½ϕ1; ϕ̄2�
δϕi

¼ δW½J�
δJi

δJi
δϕi

− Ji − ϕi
δJi
δϕi

¼ −Ji: ðA8Þ

where using of the notation from Eq. (A5). Equation (A8)
implies in particular that
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δΓ½ϕ1; ϕ̄2�
δϕi

				
Ji¼0

¼ 0: ðA9Þ

Z½J� can be expanded in a power series of J and in terms
of Green’s functions GðnÞ as

Z½J� ¼
X∞
n¼0

in

n!

Z
d4x1…d4xnJðx1Þ…JðxnÞGðnÞðx1;…; xnÞ

ðA10Þ
and

iW½J� ¼
X∞
n¼0

in

n!

Z
d4x1…d4xnJðx1Þ…JðxnÞGc

ðnÞðx1;…;xnÞ:

ðA11Þ
However, in the next step, expanding the effective action

in terms of the one-particle irreducible Green’s functions
ðΓðnÞÞ,

Γ½ϕ1; ϕ̄2� ¼
X∞
n¼0

1

n!

Z
d4x1…d4xnϕ1ðx1Þ…ϕ1ðxn1Þ

× ϕ2ðxn1þ1Þ…ϕ2ðxn2ÞΓðnÞðx1;…; xnÞ: ðA12Þ

The number of vertices n1 and n2 are arbitrary but
n1 þ n2 ¼ 2n. We compute ΓðnÞðpi ¼ 0Þ which are the
diagrams with 2n external lines. Analyzing this in detail
with the case of one-loop as shown Fig. 11 which is
represented by the formula:

Γnðϕ1c;ϕ2cÞ ¼ i
1

2n

Z
d4p
ð2πÞ4

�
i

p2 −m2ðϕ1c;ϕ2cÞ þ iε

�
n

× ð−iλϕ1
Þn1=2ðϕ1cÞn1ð−iλϕ2

Þn2=2ðϕ2cÞn2 :
ðA13Þ

In Eq. (A13), each vertex is a factor −iλϕi
, the external

line is the factor ϕ̄i ¼ ϕic ¼ const. The above integral is
easy to calculate if the external lines are of the same type
(i.e., n1 ¼ 0 or n2 ¼ 0). However, when both n1 and n2 are
nonzero, i.e., the external lines have both fields, calculating
the above integral is not simple. Also then summing with

n ¼ 0 to infinity, it is unlikely that this infinite sumconverges.
So in general, 1-loop contributions cannot be represented as

V1ðϕ1c;ϕ2cÞ ¼
1

2

Z
d4p
ð2πÞ4 log ½p

2 þm2ðϕ1c;ϕ2cÞ�: ðA14Þ

The representation of one-loop contribution like the above
result is only a stereotype application from the calculation

results of the single-field case (i.e., from the result,V1ðucÞ ¼
1
2

R d4p
ð2πÞ4 log ½p2 þm2ðucÞ� in Ref. [91], uc is VEVof single

scalar field). But the computation of the diagrams has been
ignored. Although this is imprecise, if we unconditionally
accept the one-loop contributions as Eq. (A14), it is also a
fairly general estimate of one-loop contributions when
considering two fields at once. This is also a possible method
today in the context of calculation Eq. (A13). Nevertheless, it
is very difficult.
However, this representation is also true, if we interpret

the above result as implying ϕ2c ¼ κϕ1c, that is, the above
result represents only one field ϕ1 or ϕ2; or ignoring all the
diagrams where ϕ1 and ϕ2 are present at the same time.
Therefore V1ðϕ1c;ϕ2cÞ≡ V1ðϕcÞ with ϕ2

c ¼ ϕ2
1c þ ϕ2

2c.
This is a very good approximation that eliminates the
difficulty of summing diagrams as shown in Fig. 5. This
approximation has been used in calculating decay channels
or diagrams as in Refs. [129–131]. Also, there are basis-
independent methods for the two-Higgs-doublet model
[88,124], it is possible to rewrite 2HDM model under
one VEV. But in the sections of article, this approximation
is only imprecise in the EWPT analysis.
The next interesting thing here is what if we could

rewrite Lðϕ1ðxÞ;ϕ2ðxÞÞ ¼ Lðϕ1ðxÞÞ þ Lðϕ2ðxÞÞ, when
expanding ϕi in terms of ϕic. At that point, the generating
functional is rewritten as

Z½J� ¼ Z½J1�:Z½J2�; ðA15Þ
so that,

W½J� ¼ W½J1� þW½J2�: ðA16Þ

In other words, the effective potential can be separated
into two separate parts:

Γ½ϕ̄1; ϕ̄2� ¼ W½J� −
Z

d4x
δW½J�
δJiðxÞ

JiðxÞ ðA17Þ

¼ W½J1� −
Z

d4x
δW½J1�
δJ1ðxÞ

J1ðxÞ þW½J2�

−
Z

d4x
δW½J2�
δJ2ðxÞ

J2ðxÞ ðA18Þ

¼ Γ½ϕ̄1� þ Γ½ϕ̄2� ðA19Þ
This will make summing the diagrams easier, but they

are not always separated like that. The cases of more than
two fields are similarly constructed.

FIG. 11. The 1-loop diagram with the ϕ1 and ϕ2 external lines.
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