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The gauge bosons of the Pati-Salam model do not mediate proton decay at the renormalizable level, and
for this reason it is possible to construct scenarios in which SUð4Þ ⊗ SUð2ÞR is broken at relatively low
scales. In this paper we show that such low-scale models generate dimension-five operators that can give rise
to nucleon decays at unacceptably large rates, even if the operators are suppressed by the Planck scale.
We find an interesting complementarity between the nucleon-decay limits and the usual meson-decay
constraints. Furthermore, we argue that these operators are generically present when the model is embedded
into SO(10), lowering the suppression scale. Under reasonable assumptions, the lower limit on the breaking
scale can be constrained to be as high as Oð108Þ GeV.
DOI: 10.1103/PhysRevD.107.035019

I. INTRODUCTION

The Pati-Salam (PS) model [1–3] is a compelling
framework for quark-lepton unification and potentially a
stepping stone towards grand unification. Theories which
contain any form of quark-lepton unification are usually
expected to suffer from stringent proton decay limits on
their symmetry breaking scales. However, like the Standard
Model (SM), the theory contains an accidental baryon-
number symmetry preventing such processes. This allows
limits on the PS breaking scale to be set by the non-
observation of flavor-changing neutral currents (FCNCs)
rather than bounds on the stability of nucleons. These
FCNC bounds are significantly lower than the scale implied
by grand unified theories (GUTs). As such there is the
tantalizing prospect that the Pati-Salam model, or a similar
theory, can be experimentally tested and verified.
Investigations of PS scenarios with low-scale breaking

date to the original paper [3], but have seen a resurgence of
interest recently following indirect evidence of the lepto-
quark SU(4) gauge boson in the context of explanations of
the evolving neutral- and charged-current flavor anomalies,
see, e.g., [4–13]. Limits imposed from the experimental

absence of FCNCs generally require that the PS breaking
scale sit higher than Oð103Þ TeV. Careful choices of
parameters can act to evade these bounds by an order of
magnitude [14–20] with specific flavor structures of mixing
matrices. Generally, modifications of the theory must be
made (see, e.g., [21–23]) to allow the ultra-low-scale
breaking required to accommodate the leptoquark at a
few TeV, the scale suggested by global fits of Standard
Model Effective Field Theory (SMEFT) coefficients to
b → s and b → c measurements, see, e.g., [24], or in order
for collider probes to become relevant in such theories.
In this paper we propose that a minimal set of

ingredients generally present in low-scale SUð4Þ ⊗
SUð2ÞL ⊗ SUð2ÞR models is sufficient to induce the
accidental violation of baryon number through dimen-
sion-five effective operators. These operators mediate
nucleon decays at dangerously large rates, placing bounds
on the PS breaking scale up to two orders of magnitude
higher than those implied by lepton-flavor-violating K0

L
decays, depending on some assumptions. Importantly, as
we will show, the flavor structures required in order to
suppress K0

L decays do not align with those needed to
suppress these B-violating nucleon decays. The most
model-independent bound follows by turning on the
baryon-number violation only at the Planck scale, and
the same argument has been made for scalar leptoquarks
more generally, e.g., [25–29]. Furthermore, we argue that
these effects should in fact be present already at the scale
of SO(10) unification from an analysis of the tree-level
completions of the dimension-five operators. This leads to
a mild enhancement of the nucleon decay rates, allowing
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the breaking scale to be constrained to as high as
Oð108Þ GeV.

II. MINIMAL SETUP

In this section we outline the ingredients generically
present in those PS models that allow SU(4) breaking at
scales as low as phenomenologically possible. We try to be
maximally agnostic with regards to details of the model that
are not directly relevant to the focus of this study: accidental
baryon-number violation in the effective Lagrangian. This
includes most details concerning breaking the down-type
quark and charged-lepton mass relations, the presence of
additional fermions in the theory, and the usual hierarchy
problems.1 We intend the following discussion to define our
use of the term “low-scale PS” in this paper.
In the canonical Pati-Salam model, the fermion content

of the SM is extended by three right-handed neutrinos and
is then unified into the representations

ðfLÞp ¼
�
QL LL

�
p
∼ ð4; 2; 1Þp;

ðfRÞp ¼
�
uR νR

dR eR

�
p

∼ ð4; 1; 2Þp; ð1Þ

of the Pati-Salam gauge group GPS ≡ SUð4Þ ⊗ SUð2ÞL ⊗
SUð2ÞR, for each generation, i.e., p ∈ f1; 2; 3g. The lowest-
dimensional multiplet that breaks the gauge symmetry to
that of the SM is the scalar field χ:

χ ¼
�
χu χ0

χd χ−

�
∼ ð4; 1; 2Þ; ð2Þ

through the vacuum expectation value (vev) of the neutral
component: vR ≡ ffiffiffi

2
p hχ0i. In this minimal setup χu is the

Goldstone boson of the SU(4) vector-leptoquark gauge
boson (from hereon referred to as Xμ with mass mX) while
χ− and χ0 predominately make up the Goldstone bosons of
the W0

μ and Z0
μ, respectively [31].

The mass of the physical leptoquark scalar χd results
from minimizing the scalar potential:

m2
χd
≃ −

1

2
λχv2R; ð3Þ

where λχ is the coupling of ðχ†χÞ2. Limits on the value of
jλχ j can be derived from the unitarity of χχ scattering.
Assuming only a contribution from the λχ term and
imposing the partial-wave unitarity bound jReða0Þj ≤ 1

2
,

we find jλχ j ≤ 2π, and therefore

mχd ≤
ffiffiffi
π

p
vR: ð4Þ

The scalar field Φ ∼ ð1; 2; 2Þ,

Φ ¼
�
Φ1 Φ2

�
¼

�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�
; ð5Þ

is also introduced to break electroweak (EW) symmetry
and generate masses for the fermions of Eq. (1):

L ⊃ ypqTr½ðf̄LÞpΦðfRÞq� þ ỹpqTr½ðf̄LÞpΦ̃ðfRÞq� þ H:c:;

ð6Þ

with Φ̃≡ τ2Φ�τ2. The breaking of EW symmetry occurs
through the vevs

hΦi ¼ 1ffiffiffi
2

p
�
v1 0

0 v2

�
: ð7Þ

Expanding Eq. (6) yields the relations between the singular
values σp of the mass matrices

σpðMdÞ ¼ σpðMeÞ and σpðMuÞ ¼ σpðMνÞ ð8Þ

at the scale of EW symmetry breaking. Here we define Mi
to be the 3 × 3mass-mixing matrix for the three generations
of SM fermions of type i, expected in the minimal model.
The second of these relations is far more grievous than the
first and is most simply corrected by introducing the Weyl
state ξ ∼ ð1; 1; 1Þ to organize for light neutrino masses.
An important property of the Pati-Salam model, relevant

below when discussing B-violating nucleon-decay limits,
is the existence of eight physical mixing matrices between
the fermion generations which are generalizations of the
Cabibbo–Kobayashi–Maskawa (CKM) and Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrices in the SM.
Their definitions can be found in Ref. [20], however an
important identity that will be used later is the relationship
between them:

Kuν
L=R ¼ VL=R

CKMK
de
L=RU

L=R
PMNS: ð9Þ

Here, KL and KR are mixing matrices between Xμ, the
physical up-quarks and neutrinos, as well as between
the down-quarks and charged leptons for the left- and
right-handed fields respectively.

A. Neutrino sector

In order to more clearly illustrate the nucleon-decay
mechanism, we continue to derive the neutrino mixing and
a representative nucleon decay bound in a one-generational
model. We generalize our results to the three-generational
framework in Sec. IV.
To reduce clutter, we also write ψc

1ψ2 as ψ1ψ2 for
fermions ψ1 and ψ2, where ψc

1 is the usual charge conjugate
of ψ1.

1We note however that models with the particle content we will
assume can be made supersymmetric, e.g., [30].
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The field ξ introduces Yukawa couplings for the scalar
χ, and it could have a Majorana mass μ:

L ⊃ −
μ

2
ξξ − yRξ̄Tr½χ†fR� þ H:c: ð10Þ

Expanding out the second term using Eqs. (1) and (2),

ξ̄½ðχdÞ†dR þ ðχ−Þ†eR þ ðχuÞ†uR þ ðχ0Þ†νR�; ð11Þ

it is simple to see that a mixing will be induced between
ξ and νR once χ0 obtains a vacuum expectation value.
Therefore the first and third terms of Eq. (11) can be
interpreted as genuine leptoquark couplings, albeit sup-
pressed by mixing angles.
In the presence of these terms, the neutrino-mass matrix

takes the form

�
ν̄L νR ξ̄

�0BB@
0 mu 0

mu 0 yRvR
0 yRvR μ

1
CCA
0
BB@

νcL
νR

ξc

1
CCA: ð12Þ

Diagonalization gives rise to a pseudo-Dirac fermion,
composed of NL and NR, and a Majorana fermion ν.
Assuming the hierarchy jmu; μj ≪ jyRvRj, we find

NL ≃ sin θνL þ muμ

ðyRvRÞ2
νcR þ cos θξ;

NR ≃ −
muμ

ðyRvRÞ2
νcL þ νR þ 1

2

m2
uμ

ðyRvRÞ3
ξc;

ν ≃ cos θνL þ 1

2

m2
uμ

ðyRvRÞ3
νcR − sin θξ; ð13Þ

up to OðμÞ with

tan θ ¼ mu

yRvR
: ð14Þ

The physical masses, at lowest order in μ, are given by

mNL=R
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyRvRj2 þ jmuj2

q
� 1

2
μ ð15Þ

mν ≃
�

mu

yRvR

�
2

μ: ð16Þ

Note that in the limit μ → 0, ν is an exactly massless Weyl
fermion, whileNL and NR form a genuine Dirac fermion. In
fact, this low-scale setup was the one first proposed in the
original iteration of the model [3] to organize for exactly
massless neutrinos with μ ¼ 0. With μ taking a small but
nonzero value, ν develops a mass linearly proportional to μ
and can therefore be small in a technically natural way

without the need for large Majorana masses generated at
high PS breaking scales.
The Lagrangian contains one global U(1) symmetry:

Uð1ÞJ∶ fL;R → eiθJfL;R; χ → eiθJχ: ð17Þ

Baryon- and lepton-number can be identified with different
linear combinations of J and the diagonal generator of
SU(4) that commutes with the unbroken SU(3) subgroup,
which we call T. The normalization of T is chosen such that
Y ¼ T3R þ T=2, i.e., such that T ≡ B − L. We find

B ¼ 1

4
ðJ þ TÞ; L ¼ 1

4
ðJ − 3TÞ: ð18Þ

III. EFFECTIVE LAGRANGIAN

There are 10 combinations of fields that constitute the
effective Lagrangian at dimension five. These are presented
in Table I along with their net violation of J as well as their
permutation-symmetry properties. The operators of interest
to us are those that violate baryon and lepton numbers, and
we find these to be χ2f2X. Concretely, we define

ðOXÞpq ≡ ðfXÞαip ðfXÞβjq χγkχδlϵαβγδϵijϵkl; ð19Þ

where X ∈ fL;Rg, greek letters α, β, γ, δ are SU(4)
fundamental indices, and i, j, k, l are the relevant
SU(2) fundamental indices. The coefficients are normal-
ized such that

L ⊃
1

4Λ

X
X

ðCXÞpqðOXÞpq þ H:c: ð20Þ

The factor of 1=4 in Eq. (20) accounts for the permutation
symmetries of the operators. As suggested in Table I, for
each term there are nfðnf þ 1Þ=2 independent complex

TABLE I. Combinations of fields appearing at dimension-five
in the effective Lagrangian of our minimal setup, along with their
net global-symmetry assignment and the operator counting for nf
SM-fermion generations and nξ generations of ξ.

Field content J Number of operators

Φ†Φ†ξξ 0 nξðnξ þ 1Þ=2
Φ†χ†fLξ 0 nξnf
Φ†Φξξ 0 nξðnξ þ 1Þ=2
χ†χ†fLfL 0 nfðnf þ 1Þ=2
χ†χ†fRfR 0 nfðnf þ 1Þ
Φχ†fLξ 0 nξnf
χ†χξξ 0 nξðnξ þ 1Þ=2
χχfLfL 4 nfðnf þ 1Þ=2
χχfRfR 4 nfðnf þ 1Þ=2
ΦΦξξ 0 nξðnξ þ 1Þ=2
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coefficients for nf flavors, since each coefficient matrix is
symmetric in flavor by Fermi-Dirac statistics. Diquark
couplings for the leptoquark χd are generated after the
breaking of SUð4Þ ⊗ SUð2ÞR:

ðOXÞpq ⊃
4vRffiffiffi
2

p ðdXÞapðuXÞbqðχdÞcϵabc; ð21Þ

where a, b, c are color indices, thus allowing proton decay.
Integrating out the field χd at tree level, the dimension-six
operators

OS;LR
udd ¼ ϵabcðuaLdbLÞðν̄LdcRÞ; ð22Þ

OS;RR
udd ¼ ϵabcðuaRdbRÞðν̄LdcRÞ; ð23Þ

are generated in the LEFT basis of Ref. [32], where
generational indices have been suppressed for clarity.
Assuming one generation and using Eq. (13), we find the
following ΔB ¼ 1 dimension-six effective Lagrangian:

Lð6Þ ⊃ −
X
X

CXyRvR sin θffiffiffi
2

p
Λm2

χd

OS;XR
udd þ H:c:; ð24Þ

at tree level, where sin θ ¼ mu=mN ≈mu=jyRvRj.

IV. NUCLEON DECAY

The operators OS;RR
udd and OS;LR

udd give rise to the nucleon
decays n → π0ν and p → πþν. We show these diagram-
matically in Fig. 1 with the operators OS;XR

udd resolved.
Importantly, the contributions from these operators to the
nucleon decays will add coherently.2 The relevant rates can
be estimated as

Γðp → πþνÞ ¼ mpm2
u

16πΛ2m4
χd

����XX
CXhπþjðudÞXdRjpi

����2 ð25Þ
and [33]

Γðn → π0νÞ ¼ 1

2
Γðp → πþνÞ; ð26Þ

neglecting the mass difference between p and n. A
prediction of this scenario is thus the absence of nucleon
decays with charged-lepton final states. Lattice calculations
of the hadronic matrix elements give hπþjðudÞRdRjpi ¼
0.151 GeV2 and hπþjðudÞLdRjpi ¼ −0.159 GeV2 [34].
The experimental limit on the neutron decay is somewhat
stronger than that on the proton decay, with τðn → π0νÞ >

1.1 × 1033 yr at 90% confidence [35]. We derive the
following reference limit by turning on only CL:

mχd ≳ 8 × 106 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCLj

1019 GeV
Λ

mu

171 GeV

r
: ð27Þ

This, in combination with Eq. (4), provides a direct bound
on the SUð4Þ ⊗ SUð2ÞR breaking scale:

vR ≳ 5 × 106 GeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCLj

1019 GeV
Λ

mu

171 GeV
2π

jλχ j

s
: ð28Þ

Importantly, the limit scales inversely to the square root of
Λ, the scale of baryon-number violation. As a benchmark,
we have taken this to be the Planck scale, where all global
symmetries are expected to be violated [36–39]. In the
following section, we show that it is in fact motivated to take
Λ to be the scale of SO(10) unification, which improves the
limits by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛPlanck=ΛGUT

p
. Taking ΛGUT ∼

1016 GeV gives

vR ≳
0
B@

4 × 105 GeV

9 × 106 GeV

1 × 108 GeV

1
CA; ð29Þ

where the three values represent the choices to set mu in
Eq. (28) to the up, charm, and top masses, and the other
benchmark values are as before with jCLj ¼ 1. The analo-
gous limits for the Planck-scale suppressed operators are

vR ≳
0
B@

1 × 104 GeV

3 × 105 GeV

5 × 106 GeV

1
CA: ð30Þ

In the following we motivate the presence of mc and mt in
the limits by extending the one-generational model to three
generations. However, we emphasis that even using the
up-quark mass generates sizeable limits, comparable to the
usual PS breaking limits. For the discussion below we also
assume a UV scale of ΛGUT.

FIG. 1. The diagram shows the nucleon decay induced by the
effective operators OX , with X ∈ fL; Rg. Here q ∈ fu; dg and
the cross represents the mixing between the singlet fermion ξ and
the light neutrino ν.

2This opens up the possibility of a precise fine-tuning to avoid
these decays, but we neglect this possibility in the following
discussion.
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In Eq. (27) we have intentionally expressed the limits on
mχd as a function of the dimensionless coupling constants
CX, since their values are unknown. Should these be small,
the limits on the PS breaking scale could be significantly
suppressed compared to those presented in Eqs. (29)
and (30). As an illustrative example, if the limits on mχd

are desired to be less than 1 TeV, then this requires

jCXj≲
0
B@

1 × 10−3

2 × 10−6

2 × 10−8

1
CA Λ

1019 GeV
; ð31Þ

again assuming up-, charm-, and top-quark masses. Such
incredibly small values forCX may occur in a UV theory in a
technically natural way as Uð1ÞB is recovered up to
dimension six when CX → 0 in our minimal model, similar
to the inverse-seesawmechanism and theWeinberg operator.

A. Three-generational mixing

Below we generalize to the complete three-generational
model, which allows for a discussion of the effects of the
quark-lepton mixing matrices, the full neutrino mixing,
and opens up nucleon decays with kaons in the final state.
We intend the following discussion to simply illustrate
how the aforementioned higher-dimensional operators
produce significant limits on the breaking scale of the
minimal Pati-Salam model. We do not try to conduct an
exhaustive scan of the parameter space to derive lower
and upper bounds on the PS breaking scale from nucleon

decay limits when different flavor structures are assumed
in the theory.
Moving to three generations, the Lagrangian of Eq. (24)

now takes the form3

Lð6Þ ⊃ −
X ðCXÞpqvRffiffiffi

2
p

Λm2
χd

ΩrsðOS;XR
udd Þpqrs þ H:c:; ð32Þ

where the sum is over X ∈ fL; Rg and the flavor indices
p; q; r; s ∈ f1; 2; 3g, which enumerate the generation of the
fermions as they appear in Eqs. (22) and (23). As suggested
by Eq. (14), the neutrino mixing is proportional to the up-
quark mass matrix, and therefore the analogs of Eqs. (27)
and (28) are generically dominated by contributions propor-
tional to mt, up to specific textures for the fermion mixing
matrices that we briefly explore below. The components
Ωpq are elements of the matrix

Ω≡Kuν†
L Mu½vRYT

R�−1YRVR
CKM ð33Þ

and they couple the physical νp to dRq through χd. The
matrix Ω is defined in terms of the mixing matrices
introduced in Eq. (9), Mu ≡ diagðmu;mc;mtÞ and the
matrix of Yukawa couplings YR [the analog of yR from
Eq. (10)], defined in a mixed flavor-physical basis such that
YRVR

CKM couples ξ to χd and the physical down-type
quarks. Note that Eq. (33) agrees with Eqs. (14) and (24)
when one generation is assumed.
The generalization of Eq. (25) in the full model is

Γðp → πþνÞ ¼ mpv2R
16πΛ2m4

χd

����X
X;p

ðCXÞ11Ωp1hπþjðudÞXdRjpi
����2; ð34Þ

where the dependence of the expression on the up-type quark masses enters through Eq. (33). In addition to the pion modes,
the decays p → Kþν and n → K0ν are also relevant. The strange quark that should appear in the operatorsOS;LR

udd andOS;RR
udd

to open up these decay channels can come about from the components Ωp2, which couple the light neutrinos to the strange
quark through the leptoquark χd, or else directly from the operators ðOXÞ12 by turning Fig. 1 into a t-channel diagram:

Γðp → KþνÞ ¼ mpv2R
16πΛ2m4

χd

����X
X;p

ðCXÞ12Ωp1hKþjðusÞXdRjpi þ
X
X;p

ðCXÞ11Ωp2hKþjðudÞXsRjpi
����2: ð35Þ

The hadronic matrix elements hKþjðusÞLdRjpi¼
−0.0398GeV2 and hKþjðusÞRdRjpi¼0.0284GeV2 are
suppressed with respect to hKþjðudÞLsRjpi ¼ −0.109
GeV2 and hKþjðudÞRsRjpi ¼ 0.1006 GeV2 [34]. Here
the experimental limits on the proton decay are two orders
of magnitude more stringent than those on the corresponding
neutron decay: τðp → KþνÞ ≥ 5.9 × 1033 yr at 90% confi-
dence [40]. We derive reference limits on vR for the decay
Γðp → KþνÞ, as we did earlier for the pionic decays.

Turning on only CL and assuming diagonal textures for
the matrices in Eq. (33), we find

vR ≳ 1.3 × 107 GeV: ð36Þ

3In this expression, we have redefined CX to absorb any
unphysical mixing matrices from the dimension-six operators.
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The choice to set the mixing matrices diagonal in this case
implies Ω ¼ Mu, and therefore Γðp → KþνÞ ∝ m2

c. Taking
more democratic textures yields Γðp → KþνÞ ∝ m2

t , and
limits of order 108 GeV for Oð1Þ coefficients.
The above discussion highlights the importance of the

mixing-matrix textures that enter in Eq. (33). Importantly,
low-scale PS scenarios already require special textures for
Kde

L=R in order to suppress FCNC K0
L decays [14–20]

mediated by Xμ. As both VL
CKM and UL

PMNS are fixed in
the SM, fixing the structure of Kde

L=R to minimize the limits
on mX has the unavoidable consequence of completely
determining the structure of Kuν

L as can be seen in Eq. (9).
Of course, the right-handed unitary mixing matrices remain
totally unconstrained.
As an instructive example,4 we fix the structure of Kde

L
and therefore Kuν

L , using Table 4 of Ref. [20] such that the
rare-meson decay limits induced by Xμ are fixed to one of
their lowest possible values in the minimal Pati-Salam
model: 81 TeV. In this case we find the flavor structure that
enters the nucleon decay widths is roughly proportional to

vR
X
j

Ωji ≃ 0.5muṼ1i þ 1.3mcṼ2i þ 1.0mtṼ3i; ð37Þ

where Ṽ is the matrix resulting from absorbing the overall
phase from each term into the rows of VR

CKM. To com-
pletely suppress the top-quark contribution requires that
the (3,1) and (3,2) entries of Ṽ be zero5; however the
unitarity of the matrix now necessarily implies that jṼ21j ¼
sin θ and jṼ22j ¼ cos θ, preventing a suppression of the
charm- and up-mass contribution. Therefore, in the worst
case scenario, the contribution proportional to the charm
mass will dominate the nucleon decay, constraining vR to
roughly Oð107Þ GeV, significantly larger than the 81 TeV
implied by the Xμ-mediated FCNC meson decays.
Reversing the situation, we can fix the flavor structures of

V ¼ VR
CKM andK ¼ Kuν

L such that the relevant entries ofΩ
are as suppressed as possible. First, to suppress the top-mass
contribution again requires the condition V31 ¼ V32 ¼ 0.
One can also suppress the charm-quark contribution pro-
vided that the curious conditionX

i

Ki2 ¼ 0 ð38Þ

is satisfied.

The simplest way to satisfy such a constraint for a
column of a unitary matrix is when one entry of the column
is zero and the other two are �1=

ffiffiffi
2

p
(with appropriate

choices for the other columns of the matrix). This implies
that the up-quark mass will be the only contribution to
Eqs. (34) and (35) and a limit of around Oð100Þ TeV will
be generated from nucleon decays. However, using Eq. (9)
but now solving for Kde

L we find that, for the limited
possible choices ofKuν

L that satisfy Eq. (38) with one entry
zero, Oð1Þ entries are generated in the upper-left 2 × 2

block of Kde
L . This implies that Xμ will receive stringent

limits from K0
L decays of order Oð1000Þ TeV [20], which

we have confirmed numerically assuming that Kde
R has a

structure such that the K0
L decays are maximally sup-

pressed. Numerically we also find other examples of
unitary matrices which satisfy Eq. (38), where now each
entry in the second column is nonzero, and unsurprisingly
similar limits from K0

L decays arise. Therefore, engineer-
ing the flavor structure of the model such that these
UV-induced nucleon decays are maximally suppressed
appears to generate close to maximal limits from the usual
Xμ mediated rare-meson decays.
We find, in the minimal Pati-Salam model, that while

specific flavor structures in the mixing matrices can
suppress the limits on mX in rare meson decays, these
structures generate even larger limits on vR (and therefore
mX) from B-violating nucleon decays. This is under the
reasonable assumption that above the PS scale there exists
UV physics generating the operators of Eq. (19).
Before continuing we also comment briefly that the

scenario we present here displays some general features
that may help distinguish it from other models that predict
nucleon decays. First, as briefly touched on earlier, our
model predicts that nucleon decays to neutrinos should
dominate over decays to charged leptons, since the
Yukawa couplings of the χd to charged leptons are absent
at dimension four. We can also expect a complementarity
between nucleon-decay signals and other flavor observ-
ables, suppressed by powers of vR. Since the diquark
couplings of χd are generated at dimension five, its flavor
phenomenology is dominated by the leptoquark cou-
plings. These mediate rare semileptonic decays of B
and K mesons at tree level, i.e., B → Kð�Þνν and
K → πνν, and allow mixing effects in the neutral B and
kaon systems. Additionally, the vector leptoquark Xμ,
which should exist at a similar mass scale to χd, allows
FCNC processes such as the K0

L decays discussed above.
The combined observation of signals arising from both χd

and Xμ is therefore a key prediction in the theory. In
contrast to many GUT scenarios, this setup thus predicts a
rich flavor phenomenology, which can help pin down the
model in the event that the nucleon decays to neutrino
final states are observed.

4Here we assume YR is symmetric to simplify our discussion
related to Eq. (33). Its inclusion can only make it more difficult to
construct flavor structures that prevent mt from dominantly
contributing to the nucleon decays.

5More realistically, this requires these two entries to be less
than aboutOð10−3Þ, such that the top mass is suppressed over the
charm mass. For reference, in the SM ðVL

CKMÞ32 ≃ 10−2.
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V. UV COMPLETIONS

The operators OL and OR can arise via the tree-level
exchange of field content present at scales Λ > vR. Below
we derive the PS representations that are relevant, using
methods analogous to those used to systematically derive
tree-level completions for operators in the SMEFT [41]. We
aim to show that the tree-level generation of the operators
OX may be unavoidable in any sensible SO(10) embedding
of our minimal setup.
There are two ways6 a heavy multiplet could couple to

fX and χ so as to generate at least one of the operators OL
orOR through renormalizable interactions: (1) as a Lorentz
scalar S with couplings

L ⊃ −yXSfXfX − κS†χχ; ð39Þ

or (2) as a Majorana fermion F coupling as

L ⊃ −zXFfXχ ð40Þ

where multiple singlet contractions may exist in each case
and FfX is appropriately constructed to be a Lorentz scalar.
It is important to note that the SU(4) representations of the
heavy multiplets should be antisymmetric in order to
generate a structure like Eq. (19).
The κ term imposes that the scalar S form a singlet with

ð4; 1; 2Þ ⊗ ð4; 1; 2Þ ¼ ð10; 1; 3Þ ⊕ ð6; 1; 1Þ
⊕ ð10; 1; 1Þ ⊕ ð6; 1; 3Þ: ð41Þ

The 10 is symmetric, and so the first and third representa-
tions are discounted. Similarly, the triplet representations
under SUð2ÞR cause the κ term to vanish identically for a
single χ generation. This fixes the assignment S ∼ ð6; 1; 1Þ
as the only option. This multiplet generates both OL
and OR.
The fermion F could couple to fR or fL. In the former

case, the allowed representations are the ð6; 1; 1Þ and
ð6; 1; 3Þ, both of which are viable and generate only OR.
In the latter case, F should form a singlet with

ð4; 2; 1Þ ⊗ ð4; 1; 2Þ ¼ ð10; 2; 2Þ ⊕ ð6; 2; 2Þ; ð42Þ

of which only the ð6; 2; 2Þ works, again due to its anti-
symmetric SU(4) indices. This multiplet only generatesOL
at tree level.

A. Embedding into SO(10)

It is usual to imagine that the PS gauge group is
embedded into SO(10), of which it is a maximal subgroup,

at the scale ΛGUT ∼ 1016 GeV. The PS multiplet
Φ ∼ ð1; 2; 2Þ, if it is to couple to the SM fermions as in
Eq. (6), must be contained within

16 ⊗ 16 ¼ 10S ⊕ 120A ⊕ 126S: ð43Þ

The associated branching rules are

10→ ð6;1;1Þ⊕ ð1;2;2Þ;
120→ ð1;2;2Þ⊕ ð10;1;1Þ⊕ ð10;1;1Þ⊕ ð6;1;3Þ

⊕ ð6;3;1Þ⊕ ð15;2;2Þ;
126→ ð6;1;1Þ⊕ ð10;1;3Þ⊕ ð10;3;1Þ⊕ ð15;2;2Þ; ð44Þ

and we highlight that only the 120, owing to its antisym-
metry, does not contain the field S, which generates bothOL
andOR. Thus, any embedding of the described low-scale PS
model into SO(10) should place the bidoublet Φ into only
the 120-dimensional representation to avoid the tree-level
generation of OL and OR. This is problematic, since the
antisymmetry of the 120 impresses an antisymmetric flavor
structure onto the SM Yukawa couplings. Such a model
implies the equality of the masses of two fermion gener-
ations to all orders at the scale Λ, in the absence of some
flavor-specific dynamics. Thus we conclude that the 10 or
126 are necessary elements of a realistic SO(10) theory, and
therefore the operators OL and OR are unavoidably gen-
erated at the GUT scale.

VI. VIABILITY OF A LIGHT Xμ

Below we discuss modifications to the minimal low-scale
theory that may be able to accommodate a light Xμ gauge
boson, while still being consistent with the nucleon decay
bounds we have presented above. We also comment briefly
on the extent to which the arguments presented so far can be
applied to popular variants of low-scale PS in the literature
that can naturally arrange for a light Xμ gauge boson.
First, we emphasize that the bound derived in Eq. (27) is

particular to the case of the SUð4Þ ⊗ SUð2ÞL ⊗ SUð2ÞR
gauge group. The operators OL and OR depend on the
balance of antisymmetry coming from their SU(4) and
SUð2ÞR structures, and they can be made to vanish iden-
tically by demoting SUð2ÞR instead to a Uð1ÞR symmetry,
again, for a single generation of χ. This Pati-Salam-like
gauge group could still be consistent with SO(10) unification
if, for example, one imagines that SUð2ÞR is broken to its
Uð1ÞR subgroup at some very large scale owing to the fact
that the PS breaking scalar necessarily is charged under
SUð2ÞR. This is easily achieved with the vev of a heavy
SUð2ÞR-triplet scalar: ð1; 1; 3Þ. In such a scenario the scalar
χ breaks up into two SU(4)-fundamental scalars, one of
which is appointed to break SU(4) at a much lower scale,
while the other naturally lives at the scale of SUð2ÞR
breaking. This latter, heavy scalar contains the χd and

6We highlight the similarity here to the minimal, tree-level
completions of the Weinberg operator, which has the same
general structure as the OX.
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therefore the nucleon decay could be kept under control, but
a detailed analysis of such a model is beyond the scope of
this paper. We note that such a scenario would imply that the
W0

μ gauge boson cannot live at a common (low) scale with
the Xμ and Z0

μ, that is mW0 ≫ mZ0 ; mX.
We also point out that the ð4; 1; 2Þ is not the only possible

representation for the PS-breaking scalar, and the conclu-
sions of this paper do not immediately apply to alternative
choices. PS-breaking scalars must have the appropriate
quantum numbers to preserve the Uð1ÞY of the SM. The
next largest-dimensional scalar commonly employed in PS
model building after the ð4; 1; 2Þ is the ð10; 1; 3Þ. This scalar
generates no dimension-five operators whatsoever, assum-
ing standard fermion embeddings. While this may seem
like a good candidate to avoid unwanted nucleon decays,
such a scalar cannot allow for light neutrino masses without
vR ≳Oð1012Þ GeV, if a seesaw explanation is desired,
preventing light leptoquarks from appearing in the theory.
It may be an interesting model-building direction to try and
generate light neutrino masses without tuning by employing
this scalar. Of course, it is possible that whatever field
content is introduced may end up generating dangerous
dimension-five B-violating operators.
To the best of our knowledge higher-dimensional scalar

representations beyond these two have not been used in
any models of high- or low-scale PS, as such scalars will
not couple to the SM fermions in a renormalizable way.
In such cases, the mu ¼ mν prediction of PS can only
be broken through extreme tuning between multiple EW
Higgs multiplets. Introducing exotic fermions of appro-
priate dimension to couple such a PS-breaking scalar to the
SM fermions may avoid this tuning and allow for low-scale
PS breaking, but this must be evaluated on a model-
by-model basis before analyzing the implications of
dimension-five B-violating operators. The introduction
of large-dimensional fermion multiplets will inevitably
generate extra mass mixing for the SM fermions, e.g.,
charged-lepton mass mixing, and therefore additional
nucleon decay channels will generically be predicted
beyond the neutral channel appearing in the minimal
model if B violation occurs at dimension five.

A. Modified Pati-Salam theories

Models based on the “Pati-Salam-adjacent” gauge group7

SUð4Þ ⊗ SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ have gained popularity
recently as useful frameworks for arranging for an ultralight
Xμ gauge boson, while at the same time avoiding the
stringent meson-decay limits that the minimal model suffers
from. Such a gauge structure can arise from the breaking of
multiple copies of the Pati-Salam gauge group [42,43].
These models are successful in explaining the flavor

anomalies in charged- and neutral-current B-meson decays.
We take [44] as an illustrative example of such a model and
find that even here, in a model without an SUð2ÞR gauge
group, a dimension-five B-violating operator can also be
written down in analogy to the operators OX:

Lð5Þ ⊃ CdRdRΩ†
1Ω3; ð45Þ

where Ω1∼ð4̄;1;1;−1=2Þ;Ω3∼ð4̄;3;1;1=6Þ, dR ∼ ð1; 3; 1;
−1=3Þ, C is the operator coefficient, and flavor indices
are implicit. We note that dRdR must be antisymmetric in
flavor. The scalar Ω3 is required to break SUð4Þ ⊗
SUð3Þ → SUð3Þc, while Ω1 is required for phenomeno-
logical reasons, see, e.g., [45,46]. The operator generates
diquark couplings for the scalar leptoquarks in the theory in
a similar way. The fields Ω1, Ω3, and dR seem to appear
consistently for all model variants of this gauge group, and
therefore nucleon decay limits may be a concern8 if one
imagines such a theory couples to UV physics that generates
Eq. (19). This is particularly true in this instance, as the
primary goal in such models is to organize for a TeV scale
Xμ leptoquark. It may be the case that modifications of the
theory can be made to avoid these effects; for example,
without fundamental scalars in the theory [47] the danger-
ous operator may be avoided entirely.
A simpler alternative to modifying the gauge structure of

the theory is to instead introduce additional fermionic
multiplets which, when broken to the SM, contain states
that will mix with the down quark or charged-lepton states.
Such models can cause Xμ to couple dominantly to one
chirality of d and e (e.g., dL=XeL) but not the other, such that
a “chiral Pati-Salam”model is achieved.9 This is possible by
engineering the fermion multiplets and mass mixing matri-
ces such that the physical d and e states do not arise from the
same SU(4) multiplet [20–22,48–50], suppressing the Xμ

couplings to these states for one specific chirality. We note
that this can also simultaneously break the down-isospin
mass degeneracy predicted by PS [20] so can be a simple,
attractive and possibly testable PS variant. This induces a
helicity suppression in the rare-meson decays in analogy
with the helicity suppression of pion decays in the SM. Such
a scenario shares a common gauge structure and scalar
content with the minimal model discussed in this paper, and
therefore suffers from similar UV-induced B-violating
nucleon decays. However, while an estimate of the con-
straints on the χd mass from nucleon decay will be model
dependent, we expect that here the limits on mχd will be
even larger. In this case, the light leptons are usually
assumed to exist outside of the PS multiplets fX, but are

7A similar variant first appears in the original paper [3] and
was referred to as the “economical” model.

8We note that the nucleon decays in this model will be
suppressed by loop and CKM factors due to the antisymmetry
in dRdR.

9Again, this idea dates back to the original paper [3] where it
was referred to as the “prodigal” model.
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necessarily Yukawa coupled to them with χ in order to
generate the required mass mixing. As a result, the sin θ
suppression of Eq. (24) will likely be absent, and therefore
much larger decay rates will follow, requiring an even larger
value of mχd in order to suppress them.
In both variants of the Pati-Salammodel discussed above,

exotic fermions that mix with the SM particle content are
predicted. As a result, in both cases, additional nucleon
decay channels may open up, including decays with
charged-lepton final states, which often have even larger
bounds compared to the neutrino channels predicted in
minimal Pati-Salam. The nucleon decay modes that domi-
nate can vary between models, and therefore we believe it is
important to estimate the effects of possible dimension-five
B-violating operators on each variant of the Pati-Salam
model introduced to allow for lower limits on Xμ.

VII. CONCLUSIONS

In this paper we have studied the effects of dimension-
five B-violating operators in the context of the minimal,
low-scale Pati-Salam model. Our results show that the
nucleon decays mediated by these operators can lead to
significant constraints on the mass of the scalar leptoquark
χd and therefore the scale of SUð4Þ ⊗ SUð2ÞR breaking.
The operators are necessarily present in any reasonable SO
(10) embedding of the model, and therefore the lower-
bound on the breaking scale could be as large as
Oð108Þ GeV, under reasonable parameter choices. We
point out that even if they are suppressed by the Planck
scale, they can lead to unacceptably large nucleon-decay
rates.

Attempts to suppress the problematic nucleon decays
push the model into a region of parameter space that implies
dangerously large rates for the well known FCNC meson
decays mediated by the SU(4) gauge-boson leptoquark. Our
study highlights the importance of considering EFT scenar-
ios beyond the SM, especially at low mass dimension. We
leave open the possibility of building a low-scale Pati-Salam
model with an accidental Uð1ÞB that remains unbroken at
dimension five, while naturally generating small neutrino
masses. The extent to which this phenomenon can general-
ize beyond the minimal model we have presented here is
also an interesting line of future work. This may be
particularly relevant for known Pati-Salam variants
designed to allow for a TeV-scale Xμ leptoquark.
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