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We present a full phenomenological and analytical study for the neutrino mass matrix characterized by
two vanishing 2 × 2 subtraces. We update one past result in light of the recent experimental data. Out of the
fifteen possible textures, we find seven cases can accommodate the experimental data instead of eight as in
the past study. We also introduce few symmetry realizations for viable and nonviable textures based on non-
Abelian (A4 or S4) flavor symmetry within the type-II seesaw scenario.
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I. INTRODUCTION

The fact that neutrinos are massive was the first firm sign
of physics beyond standard model. Many flavor models for
neutrino mass matrix were conceived, motivated by phe-
nomenological data on neutrino oscillations, and the
examination of specific textures became a traditional
approach to the flavor structure in the lepton sector.
Zero textures were studied extensively [1–4], but other

forms of textures were equally studied, such as zero
minors [5,6], and partial μ − τ symmetry textures [7]. The
main motivation for such a phenomenological approach is
simplicity and predictive power, especiallywhen the texture,
under study, has a small number of free parameters but,
nonetheless, leads to simple relations and interesting pre-
dictions for observables. Most of the textures with only
one constraint were found able to accommodate data, such
as the one vanishing element (or minor or subtrace)
textures [8–10]. Textures with more constraints are more
restrictive and many fail to be viable [2,3,5,6,11–15]. One
way to constrain the number of free parameters in the
neutrinomass matrix is towork in the subspace of vanishing
nonphysical phases, which has the additional benefit of
simplifying the resulting formulas [16].

In [17], a particular texture of vanishing two subtraces
was studied. Therein, analytical expressions for the meas-
urable neutrino observables were derived, and numerical
analysis was done to show that eight patterns, out of the 15
independent ones, can accommodate data. However, new
bounds on experimental data have appeared since then, in
particular the nonvanishing value of the smallest mixing
angle [18], and the objective of this work is just to
reexamine the texture of vanishing two subtraces in light
of the new data. Moreover, we shall carry out a complete
numerical analysis, where all the free parameters are
scanned within their experimentally accepted ranges, in
contrast to [17] where slices of the parameter space were
chosen by picking up some admissible values for the
mixing angles, some of which correspond to the now
obsolete value 5o for the smallest mixing angle, and
scanning over the remaining few free parameters.1 Seven
patterns are found to accommodate data, with one of them
allowing for two types of hierarchies, another one accepting
normal hierarchy (NH) alone, and five textures accommo-
dating only inverted hierarchy (IH) type.
Furthermore, we present in this work a strategy for

justifying the textures viability/unviability by studying the
correlations, by which we mean certain formulas involving
the correlated observables under study, in the “unphysical”
subspace of vanishing solar mass squared difference δm2.
Actually, even if experimental data preclude a vanishing*ahmedEhusien@sci.asu.edu.eg
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1The procedure in [17] consisted of fixing the solar mass
squared difference, and θ13, to their best-fit experimental mea-
surements, then picking up the value of δ which, for given (θ12,
θ23) chosen within their allowed experimental ranges, would
make Rν acceptable, noting the very sensitive dependence of
Rν on δ.
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ratio of solar to atmospheric squared mass differences Rν,
however its value is of order 10−2, small enough to
approximate the full true correlations by those resulting
from imposing a vanishing Rν where the analytical expres-
sions become easier to handle and would allow to test
directly the viability. Actually, we shall distinguish between
various correlations of different precision levels. The
utmost precision level corresponds to the full numeric
correlation, possibly written as an expansion showing an
approximate truncation term, with no approximations to
δm2 at all. Then comes the intermediate precision level
correlation which originates from equalling to zero the
exact expression of δm2, and it can be presented in a
truncated form as well. The least precision level correlation,
which we shall consider in our work, results when putting
equal to zero an approximate truncated part of the δm2

exact expression. We could see that the resulting correla-
tions are in many cases very similar to the true non-
approximate correlations, which are the ones depicted in
the presented figures.
We motivate our study as follows: First, the two zero

textures can be seen as two 1 × 1 vanishing subtraces.
Therefore, the two vanishing 2 × 2 subtrace textures can be
considered as a nontrivial generalization of the two zero
textures. Second, like the two zero textures, the two
vanishing trace conditions put four real constraints on
the neutrino mass matrix, which leave only five free
parameters. Third, our model is very predictive concerning
the CP-violating phases. There exist strong restrictions on
them at all σ levels with either hierarchy types for all cases.
Fourth, one can look at the two vanishing subtraces texture,
comprising 15 cases, as a special case of the broader class
characterized by two antiequalities between elements,
which would contain 105 cases. Actually, the authors of
[11] have studied the class of 65 textures characterized by
two equalities, with no condition on the nonphysical
phases, so some of the studied textures, there, are equiv-
alent physically to the case where some equalities are
replaced by antiequalities. However, in our study, we shall
study neutrino patterns whose equivalent matrices with
vanishing nonphysical phases have the form of two
vanishing subtraces, providing thus more constraints on
the studied texture, and the study cannot be considered
related to that of [11].
The simple results one obtains are suggestive of some

nontrivial symmetries or other underlying dynamics. While
Abelian symmetries are simple and were used abundantly
within type-I and type-II seesaw scenarios (e.g., see
Refs. [10,16] and references therein), non-Abelian discrete
symmetries are considered a far richer and more interesting
choice for the flavor sector. Model builders have tried to
derive experimental values of quark/lepton masses and

mixing angles by assuming non-Abelian discrete flavor
symmetries of quarks and leptons. In particular, lepton
mixing has been intensively discussed in the context of
non-Abelian discrete flavor symmetries, as seen, e.g., in the
reviews [19,20]. We present two examples of non-Abelian
symmetries within the type-II seesaw scenario, the first one
based on the alternating A4 group (even permutations of
four objects) leading to a texture where the two vanishing
traces in question lie on the diagonal, then present a second
example based on the symmetric group S4 (permutations of
four objects) where the two traces in question do not lie on
the diagonal.
The plan of the paper is as follows. We present the

notations in Sec. II, followed in Sec. III by the texture
definition. In Sec. IV, we present the simple viability check
strategy based on imposing a vanishing solar mass squared
difference and studying the consequent correlations. In
Sec. V, we present the numerical analysis of all seven (out
of fifteen) viable patterns, where for each one we present
the analytical results and the correlation plots. In Sec. VI,
we present symmetry realizations for two cases, and end up
with conclusions and summary in Sec. VII. In Appendix A,
we present the analysis of the eight failing patterns,
whereas in Appendix B we state the analytical formulas
for the Majorana phases for the viable patterns. Appendix C
is devoted to the group theory of A4, whereas in
Appendix D, we present the group theory basics for
(Sn; n ¼ 1;…; 4) useful to understand the corresponding
realization.

II. NOTATIONS

In the “flavor” basis, where the charged lepton mass
matrix is diagonal, and thus the observed neutrino mixing
matrix comes solely from the neutrino sector, we have

V†MνV� ¼

0
B@

m1 0 0

0 m2 0

0 0 m3

1
CA; ð1Þ

with (mi; i ¼ 1, 2, 3) real and positive neutrino masses. We
adopt the parametrization where the third column of V is
real, and work in the subspace of vanishing nonphysical
phases. The lepton mixing matrix V contains three mixing
angles and three CP-violating phases. It can be written as a
product of the Dirac mixing matrix U (consisting of three
mixing angles and a Dirac phase) and a diagonal matrix P
(consisting of two Majorana phases). Thus, we have

PMaj ¼ diagðeiρ; eiσ; 1Þ;
U ¼ R23ðθ23ÞR13ðθ13Þdiagð1; e−iδ; 1ÞR12ðθ12Þ; ð2Þ
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V ¼ UPMaj ¼

0
BB@

c12c13eiρ s12c13eiσ s13
ð−c12s23s13 − s12c23e−iδÞeiρ ð−s12s23s13 þ c12c23e−iδÞeiσ s23c13
ð−c12c23s13 þ s12s23e−iδÞeiρ ð−s12c23s13 − c12s23e−iδÞeiσ c23c13

1
CCA; ð3Þ

where RijðθijÞ is the rotation matrix through the mixing
angle θij in the (i, j) plane, (δ, ρ, σ) are three CP-violating
phases, and we denote (c12 ≡ cos θ12…).
The neutrino mass spectrum is divided into two catego-

ries: normal hierarchy (NH) where m1 < m2 < m3, and
inverted hierarchy (IH) where m3 < m1 < m2. The solar
and atmospheric neutrino mass-squared differences, and
their ratio Rν, are defined as follows:

δm2≡m2
2−m2

1; Δm2≡
����m2

3−
1

2
ðm2

1þm2
2Þ
����; Rν≡ δm2

Δm2
;

ð4Þ

with data indicating (Rν ≪ 1). Two parameters which put
bounds on the neutrino mass scales, by the nuclear experi-
ments on beta-decay kinematics and neutrinoless double-
beta decay, are the effective electron-neutrino mass:

hmie ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðjVeij2m2
i Þ

vuut ; ð5Þ

and the effective Majorana mass term hmiee:

hmiee ¼ jm1V2
e1 þm2V2

e2 þm3V2
e3j ¼ jMν11j: ð6Þ

Cosmological observations put bounds on the “sum”
parameter Σ:

Σ ¼
X3
i¼1

mi: ð7Þ

The last measurable quantity we shall consider is the
Jarlskog rephasing invariant [21], which measures CP
violation in the neutrino oscillations defined by

J ¼ s12c12s23c23s13c213 sin δ: ð8Þ

The allowed experimental ranges of the neutrino oscil-
lation parameters at different σ error levels as well as the
best fit values are listed in Table I [22].
For the nonoscillation parameters, we adopt the upper

limits, which are obtained by the KATRIN and Gerda
experiment forme andmee [23,24].

2 However, we adopt for
Σ the results of Planck 2018 [26] from temperature informa-
tion with low energy by using the simulator SIMLOW:

Σ < 0.54 eV;

mee < 0.228 eV;

me < 1.1 eV: ð9Þ

TABLE I. The experimental bounds for the oscillation parameters at 1-2-3σ levels, taken from the global fit to
neutrino oscillation data [22] [the numerical values of Δm2 are different from those in the reference which uses the
definition Δm2 ¼ jm2

3 −m2
1j instead of Eq. (4)]. Normal and inverted hierarchies are respectively denoted by NH

and IH.

Parameter Hierarchy Best fit 1σ 2σ 3σ

δm2 ð10−5 eV2Þ NH, IH 7.50 [7.30, 7.72] [7.12, 7.93] [6.94, 8.14]

Δm2 ð10−3 eV2Þ NH 2.51 [2.48, 2.53] [2.45, 2.56] [2.43, 2.59]
IH 2.48 [2.45, 2.51] [2.42, 2.54] [2.40, 2.57]

θ12 (°) NH, IH 34.30 [33.30, 35.30] [32.30, 36.40] [31.40, 37.40]

θ13 (°) NH 8.53 [8.41, 8.66] [8.27, 8.79] [8.13, 8.92]
IH 8.58 [8.44, 8.70] [8.30, 8.83] [8.17, 8.96]

θ23 (°) NH 49.26 [48.47, 50.05] [47.37, 50.71] [41.20, 51.33]
IH 49.46 [48.49, 50.06] [47.35, 50.67] [41.16, 51.25]

δ (°) NH 194.00 [172.00, 218.00] [152.00, 255.00] [128.00, 359.00]
IH 284.00 [256.00, 310.00] [226.00, 332.00] [200.00, 353.00]

2In [25], a more recent lower upper bound of 0.9 eV forme was
reported. However, the results of Table V show that adopting this
newer limit will not change the conclusions and viability of the
patterns.
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Actually, for the parameter Σ, we did not opt to take neither
the most constraining cosmological bound (Σ < 0.09 eV)
[27] using data from supernovae Ia luminosity distances
with baryon acoustic oscillation observations and determi-
nations of the growth rate parameter, nor the strict con-
straint of Planck 2018 combining baryon acoustic
oscillation data in ΛCDM cosmology, which amounts to
(Σ < 0.12 eV) [26], nor the bound (Σ < 0.2 eV) stated in
PDG Live3 originating from fits assuming various cosmo-
logical considerations, for the following reasons. First,
since this constraint, as we shall see, proves to be quite
severe ruling out many viable patterns, then by relaxing this
“cosmological” constraint, we give more weight to col-
liders’ data in testing our particle physics model. Second,
we note that, even cosmology wise, this bound assumes
some cosmological assumptions which are not anonymous.
For example, in [28] it was argued that adopting the
assumption of decaying neutrino into invisible dark radi-
ation, on timescales of the age of the Universe, will
alleviate the Σ bound and push it higher up to
(Σ < 0.9 eV). Having said this though, we shall comment
on the effect of adopting the severe bounds, coming from
cosmology, where at least some patterns remain viable.
For simplification and clarity purposes regarding the

analytical formulas, we henceforth denote, in line with the
notations of the past study [17], themixing angles as follows:

θ12 ≡ θx; θ23 ≡ θy; θ13 ≡ θz: ð10Þ

However, we shall keep the standard nomenclature in the
tables and figures for rapid consultation purposes.

III. TEXTURES WITH TWO
TRACELESS SUBMATRICES

The matrix Mν is a 3 × 3 complex symmetric matrix.
Thus, it has six independent 2 × 2 submatrices. When they
are taken into pairs, we obtain 15 possibilities. Each
location at the (i, j) entry of the 3 × 3 symmetric neutrino
mass matrixMν determines, by deleting the ith line and jth
column, a 2 × 2 submatrix, denoted by Cij. We are
considering the texture characterized by two traceless such
submatrices, which are shown in Table II.
The two vanishing-trace conditions are written as

Mν ab þMν cd ¼ 0;

Mν ij þMν kl ¼ 0; ð11Þ

where ðabÞ ≠ ðcdÞ and ðijÞ ≠ ðklÞ. We write Eq. (11) in
the terms of the V matrix elements as

X3
m¼1

ðUamUbm þ UcmUdmÞλm ¼ 0;

X3
m¼1

ðUimUjm þUkmUlmÞλm ¼ 0; ð12Þ

where

TABLE II. The fifteen possible textures of two traceless submatrices. In the last column, we stated the current
viability with the accommodated hierarchy type, to be contrasted with that of [17] in that I4 ceases now to be
allowed.

Texture Symbola and viability in [17] Independent constraints Current viability

ðC33;C13Þ D1, ✓ Mee þMμμ ¼ 0;Meμ þMμτ ¼ 0 IH
ðC22;C33Þ D2, ✓ Mee þMμμ ¼ 0;Mee þMττ ¼ 0 NH, IH
ðC11;C12Þ D3, ✓ Mμμ þMττ ¼ 0;Meμ þMττ ¼ 0 IH
ðC13;C23Þ N1, ✓ Meμ þMμτ ¼ 0;Mee þMμτ ¼ 0 NH
ðC13;C12Þ N2, ✗ Meμ þMμτ ¼ 0;Meμ þMττ ¼ 0

ðC33;C23Þ I1, ✗ Mee þMμμ ¼ 0;Mee þMμτ ¼ 0

ðC33;C12Þ I2, ✓ Mee þMμμ ¼ 0;Meμ þMττ ¼ 0 IH
ðC13;C11Þ I3, ✓ Meμ þMμτ ¼ 0;Mμμ þMττ ¼ 0 IH
ðC11;C23Þ I4, ✓ Mμμ þMττ ¼ 0;Mee þMμτ ¼ 0

ðC22;C23Þ I5, ✗ Mee þMττ ¼ 0;Mee þMμτ ¼ 0

ðC33;C11Þ I6, ✗ Mee þMμμ ¼ 0;Mμμ þMττ ¼ 0

ðC22;C12Þ I7, ✓ Mee þMττ ¼ 0;Meμ þMττ ¼ 0 IH
ðC22;C11Þ I8, ✗ Mee þMττ ¼ 0;Mμμ þMττ ¼ 0

ðC22;C13Þ No symbol, ✗ Mee þMττ ¼ 0;Meμ þMμτ ¼ 0

ðC23;C12Þ No symbol, ✗ Mee þMμτ ¼ 0;Meμ þMττ ¼ 0

aThe symbols (D, N, I) corresponded, respectively, in [17] to [“degenerate” (m1 ∼m2 ∼m3), normal, inverted]
ordering type, for some candidate benchmark points taken in each pattern with “testable” θx tuned to accommodate
allowed values of (Rν, θz, θy), whereas no such θx was possible in the last two patterns.

3https://pdglive.lbl.gov/DataBlock.action?node=S066MNS.
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λ1 ¼ m1e2iρ; λ2 ¼ m2e2iσ; λ3 ¼ m3: ð13Þ

By writing Eq. (12) in a matrix form, we obtain

�
A1 A2

B1 B2

� λ1
λ3

λ2
λ3

!
¼ −

�
A3

B3

�
; ð14Þ

where

Am ¼ UamUbm þ UcmUdm;

Bm ¼ UimUjm þUkmUlm; m ¼ 1; 2; 3: ð15Þ

By solving Eq. (12), we obtain

λ1
λ3

¼ A3B2 − A2B3

B1A2 − A1B2

;

λ2
λ3

¼ A1B3 − A3B1

B1A2 − A1B2

: ð16Þ

Therefore, we get the mass ratios and the Majorana phases
in terms of the mixing angles and the Dirac phase

m13 ≡m1

m3

¼
����A3B2 − A2B3

B1A2 − A1B2

����;
m23 ≡m2

m3

¼
����A1B3 − A3B1

B1A2 − A1B2

����; ð17Þ

and

ρ ¼ 1

2
arg

�
A3B2 − A2B3

B1A2 − A1B2

�
;

σ ¼ 1

2
arg

�
A1B3 − A3B1

B1A2 − A1B2

�
: ð18Þ

The neutrino masses are written as

m3¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δm2

m2
23−m2

13

s
; m1¼m3×m13; m2¼m3×m23: ð19Þ

As we see, we have five input parameters corresponding to
ðθx; θy; θz; δ; δm2Þ, which together with four real con-
straints in Eq. (12) allow us to determine the 9 degrees
of freedom in Mν.

IV. Rν ROOTS AS A SIMPLE STRATEGY
FOR VIABILITY CHECKING

In [17], one noted the sensitivity of Rν to δ, in that
imposing the “small” allowed values of Rν singled out two
corresponding δ’s symmetric with respect to π. To see this,
we note that the expression of the U’s involving eiδ

[cf. Eq. (2)] means that doing the transformation

δ → 2π − δ ð20Þ

would correspond to complex conjugating A and B, and so
the ratios (m13,m23), and consequently Rν, remain invariant
as we have from Eq. (17):

Rν ¼
m2

23 −m2
13

j1 − 1
2
ðm2

13 þm2
23Þj

≈ 10−2: ð21Þ

Also, since Rν ≪ 1 is a very restrictive constraint on the
allowed points, one can approximate the allowed parameter
space with that corresponding to vanishing Rν, i.e. to a zero
for the ðm2

2 −m2
1Þ expression. This means that any allowed

point (θx; θy; θz; δ; δm) would lie in the vicinity of the point
(θx; θy; θz; δ; δm ¼ 0). In our textures, Rν, being a function
ofA andB and thus ofU, is a function of the angles (θx, θy, θz
and δ), so a root ofRν, or equivalently of (m2

23 −m2
13), would

impose functional relations between these angles corre-
sponding to correlations quite approaching the real ones.
We shall see that the zeros of (m2

23 −m2
13) play a decisive role

in determining the correlation between the mixing and Dirac
phase angles, and that would reflect on all other correlations
depending on these angles, like those of ρ and σ.
In fact, imposing, in the textures under discussion, a zero

for (m2
23 −m2

13) leads to determining δ as a function of the
angles ðθx; θy; θzÞ. Taking into consideration that the range
of variability for the allowed θz is quite tight, we can fix it
to its best fit value θz ≈ 8.5o, and obtain δ as a function of
ðθx; θyÞ. Drawing two curves obtained by fixing ðθxÞ to its
extreme values, one gets the approximative correlation
region between δ and θy delimited by the former two
curves. Exchanging the roles of θx and θy leads to the
correlation ðδ; θxÞ.
We illustrate this in Fig. 1 where in the left (right) part,

for one pattern to be studied later, we take the minimum
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FIG. 1. Intersection of the zero surface (m1 ¼ m2) with that of
(m2

23 −m2
13) (as a 2-dim surface in δ; θy after fixing θx) gives an

approximate correlation (θy; δ), in the texture ðC22; C12Þ, whose
delimiting curves correspond to extreme values for θx.
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(maximum) allowed value of θx ¼ θ12 ¼ 31.4oð37.4oÞ.
Then, the surface of (m2

23 −m2
13) as an expression in

(δ; θy ¼ θ23) intersects with the surface (m2
23 −m2

13 ¼ 0)
in a curve representing the correlation (δ; θy) for the
considered ðθz; θxÞ. Thus, the extreme corresponding
“intersection” curves of (δ; θy ¼ θ23) delimit the corre-
sponding correlation region.
Another remark applies here in that if the zeros of

(m2
23 −m2

13) imply (m13 ¼ 1), then the corresponding
pattern is failing and cannot accommodate data. This
comes because one cannot here get the good order of
magnitude for jm2

3 − 1
2
ðm2

1 þm2
2Þj≡ Δm2 ≈ 10−3, since,

up to order 10−5 ≈ ðm2
2 −m2

1Þ, we have m3 ¼ m1 leading
to Δm2 ¼ 1

2
ðm2

2 −m2
1Þ ¼ Oð10−5Þ which cannot be

amended to 10−3. We shall see that two patterns are failing
due to this remark. In general, one can plug any expression
resulting from imposing zeros of (m2

23 −m2
13) into the

expression of m13 to deduce the hierarchy type.
In practice, we should distinguish between various

kinds of correlations at successive levels of precision.
First, there are the “full” correlations, where no approxi-
mation was used, and all experimental constraints were
taken into consideration in the numerical scanning. One

can take successive terms up to a certain order in the
expansion of these full correlations in powers of sz to get
“truncated full” correlations. Second come the approach-
ing correlations resulting from equating the exact expres-
sion of the squared mass difference (m2

23 −m2
13) to zero,

which we would call “exact” correlations. These correla-
tions, formulas involving the observables, can in their turn
be expanded to some order in powers of sz to get
“truncated exact” correlations. Third, the squared mass
difference expression may form a complicated analytical
expression of ðθx; θy; θz; δÞ, so one might resort to
expanding this expression in increasing powers of sz,
and get “approximate” correlations resulting from putting
equal to zero the expansion, up to a fixed order in sz, of the
(m2

23 −m2
13) expression. We illustrate these different

correlations in Table III, where the first column corre-
sponds to the “physical world” with (δm2 ≠ 0), whereas
the second column corresponds to the “nonphysical
world” where (δm2 ¼ 0) leading to exact or approximate
correlations. Concretely, for the measurable quantity m13,
suppose we have the following mathematical expressions
[where, to fix the ideas, we assume the expansion is done
up to OðszÞ]:

m13 ¼ f ¼ f0 þOðszÞ; m2
23 −m2

13 ¼ g ¼ g0 þOðszÞ;
ðg ¼ 0 ⇒ m13 ¼ h ¼ h0 þOðszÞÞ; ðg0 ¼ 0 ⇒ m13 ¼ k ¼ k0 þOðszÞÞ; ð22Þ

then we have (k0 ¼ h0) and the following meanings:

full means∶m13 ¼ f; truncated full means∶m13 ¼ f0;

exact means∶m13 ¼ h; truncated exact means∶m13 ¼ h0 ¼ k0;

approximate means∶m13 ¼ k: ð23Þ

We checked that the exact correlations are very near the
full ones in all patterns, whereas the approximate correla-
tions may represent a non-negligible deviation unless one
expands up to sufficiently high order in sz.

V. NUMERICAL RESULTS

In this section, we introduce the numerical and analytical
results for all seven viable two-vanishing-subtraces cases,
and present the corresponding correlations graphs (we shall

justify the nonviability of the remaining eight cases in
Appendix A. For each texture, we give the analytical
expression for the coefficients A and B of Eq. (15), and
the leading expansion of the parameter Rν. Because of
cumbersomeness, we do not present the expressions of the
other observables (m13; m23; ρ; σ; mee; me), some of which
appear in [6], but rather make use of the roots of the δm2

expression to find approximate formulas allowing to
interpret their correlations. However, for completeness,
we put in Appendix B the leading orders of the

TABLE III. Various precision-level correlations.

Observable expression using δm2 ≠ 0 (physical world) δm2 ¼ 0 (nonphysical world)

Complete formula Full Exact

Expansion up to a certain order in sz Truncated full Approximate/truncated exact
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Majorana phases (ρ, σ), whose detailed study helps in
justifying their relatively tight extents, even though, as said
above, we shall use the Rν-roots strategy in order to
interpret, when possible, the general feature of the CP
violation phases’ narrow ranges.
As mentioned before, the free parameter space is fifth

dimensional corresponding, say, to the three mixing angles
(θx, θy, θz), the Dirac phase δ, and the solar neutrino mass
difference δm2. We throw N points of order ð107–1010Þ in
the five-dimensional parameter space (θx; θy; θz; δ; δm2),
and check first the type of the mass hierarchy through
Eqs. (17) and (19). Second, we test the experimental
bounds of Δm2 besides those of Eq. (9) in order to
determine the experimentally allowed regions. We notice
from Table I that the experimental bounds of the neutrino
oscillation parameters are different, except for θx and δm2,
in the two hierarchy cases, and so we have to repeat the
sampling for each hierarchy case. The various predictions
for the ranges of the neutrino physical parameters
(θx; θy; θz; δ; ρ; σ; m1; m2; m3; mee; me; J) at all σ error lev-
els with either hierarchy type are introduced in Table V.
We find that out of the 15 possible textures, only seven

can accommodate the experimental data. Only the texture
ðC22;C33Þ is viable for both normal and inverted hierar-
chies, whereas the texture ðC13;C23Þ can accommodate the
data only for normal hierarchy, and the textures ðC33;C13Þ,
ðC22;C33Þ, ðC11;C12Þ, ðC33;C12Þ, ðC11;C13Þ, ðC22;C12Þ
are viable for inverted hierarchy only. All cases can
accommodate data at all three σ levels except the textures
ðC22;C33Þ in normal ordering and ðC11;C12Þ, which is of
inverted type, accommodating data only at the 3σ level, and
the textures, of inverted type, ðC33;C12Þ and ðC22;C12Þ
which fail at the 1σ level.
We also find that neitherm1 for normal hierarchy nor m3

for inverted hierarchy does approach a vanishing value, so
there are no signatures for the singular textures. From
Table V, we see that the allowed ranges for θy are strongly
restricted for the texture ðC22;C33Þ in normal ordering and

in the texture ðC11;C12Þ, which is of inverted ordering,
at the 3-σ level. There exist acute restrictions on the allowed
ranges of the CP-violating phases ðδ; ρ; σÞ at all σ
levels with either hierarchy type for all textures. We note
from Eq. (8) that the J parameter depends strongly on δ
(J ∝ sin δ) because of the tight allowed experimental
ranges of the mixing angles, which makes J variations,
due to these angles’ changes, tiny compared with those
resulting from δ changes. The allowed values of the J
parameter at the 1-σ level for the texture ðC13;C23Þ, which
is of normal ordering, are negative. Therefore, the
corresponding Dirac phase δ lies in the third or fourth
quarters. Table V also reveals that mee < 0.04 eV for the
textures ðC13;C23Þ, ðC33;C12Þ, ðC13;C11Þ and ðC22;C12Þ.
However, it has a bit higher upper boundmee < 0.17 for the
remaining cases.
If we adopt the tightest bound of the sum parameter

(Σ < 0.09 eV), or the strict Planck 2018 bound
(Σ < 0.12 eV), we find that only the texture ðC22;C33Þ
in normal ordering can accommodate the data, in line with
the conclusions of [27] that this low bound highly com-
promises the viability of the inverted mass ordering. Five
patterns remain viable [ðC22;C33Þ with ðC13;C23Þ in
normal ordering, and ðC22;C12Þ with ðC33;C12Þ and with
ðC11;C13Þ in inverted ordering] if we assume the constraint
Σ < 0.2 eV as Table IV shows. However, as said earlier, we
shall take the relaxed Planck 2018 bound Σ < 0.54 eV as
we believe that by relaxing cosmological bounds, labo-
ratory data are made to carry more weight than non-
anonymously agreed upon cosmological data.
We introduce 15 correlation plots for each viable texture,

in any allowed hierarchy type, generated from the accepted
points of the neutrino physical parameters at the 3-σ level.
The red (blue) plots represent the normal (inverted) order-
ing. The first and second rows represent the correlations
between the mixing angles and the CP-violating phases.
The third row introduces the correlations amidst the CP-
violating phases, whereas the fourth one represents the
correlations between the Dirac phase δ and each of J, mee

TABLE IV. The parameter Σ predictions, evaluated in eV, in the viable patterns adopting a relaxed Planck 2018 constraint
(Σ < 0.54 eV). The second (third) line shows the corresponding viability adopting a strictest (more constrained) bound from [27] (PDG
Live).

Texture ðC22;C33Þ ðC22;C12Þ ðC11;C12Þ ðC33;C12Þ ðC33;C13Þ ðC11;C13Þ ðC13;C23Þ
Ordering N& I I I I I I N

Predictions N∶Σ ∈
[0.089, 0.211]

0.192 ≤ Σ ≤
0.205

0.532 ≤ Σ ≤
0.540

0.125 ≤ Σ ≤
0.136

0.291 ≤ Σ ≤
0.330

0.151 ≤ Σ ≤
0.163

0.163 ≤ Σ ≤
0.213

I∶Σ ∈
[0.467, 0.539]

Σ < 0.09 ✓ ✗ ✗ ✗ ✗ ✗ ✗
✗

Σ < 0.2 ✓ ✓ ✗ ✓ ✗ ✓ ✓
✗
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and m2 parameters, respectively. The last row shows the
degree of mass hierarchy plus the (mee;m2) correlation.
In order to interpret the numerical results, we write

down, for each pattern of the fifteen possible ones, the
complete analytical expression of (δm2 ¼ m2

23 −m2
12),

possibly written as an expansion in sz when the exact
expression turns out to be too complicated, and analyze its
zeros analytically and numerically. By assuming these
zeros, we can justify the viability/nonviability of the pattern
and its ordering hierarchy type, say by examining respec-
tively the resulting (Rν; m13). Moreover, whenever the
texture is viable, by assuming the zeros of the complete
(leading order of the) δm2 expression we get exact
(approximate) correlation spectrum properties which would
provide some explanations for the distinguishing features in
the corresponding full correlation plots presented at the 3-σ
level, such as those involving (ρ, σ).
Finally, we reconstructMν with either allowed hierarchy

type for each viable texture from the one representative
point at the 3-σ level in the five-dimensional parameter
space. The point is chosen to be as close as possible to the
best fit values for mixing and Dirac phase angles.

A. Texture ðC22;C33Þ ≡ ðMee +Mττ = 0;Mee +Mμμ = 0Þ
A and B are given by

A1 ¼ c2xc2z þ ð−cxcysz þ sxsye−iδÞ2;
A2 ¼ s2xc2z þ ð−sxcysz − cxsye−iδÞ2;
A3 ¼ s2z þ c2yc2z

B1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞ2;
B2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞ2;
B3 ¼ s2z þ s2yc2z : ð24Þ

We have the following truncated expression for Rν:

Rν ¼
2t2y
s2xcδ

sz þOðs2zÞ: ð25Þ

From Table V, we see that (C22,C33) texture is not viable at
the 1-2-σ levels for normal ordering. We find that the
mixing angles ðθx; θz) extend over their allowed exper-
imental ranges with either hierarchy type. However, there
exists a strong restriction on θy in the case of normal
ordering to lie in the interval ½44.87°; 45.13°�. For normal
ordering, there exists a mild forbidden gap ½252.5°; 288.4°�
for δ, whereas the phases ρ and σ are restricted to the
interval ½74°; 106°]. For inverted ordering, we find a tight
forbidden gap for δ and ρ around 270° and 90° respectively
at the 3-σ level. The phases δ, ρ, and σ are tightly restricted
at all σ levels; they are bound to the intervals
½267.36°; 272.53°�, ½87.42°; 92.68°�, and ½87.11°; 92.66°�
respectively at the 3-σ-level. Table V also shows that
neither m1 for normal hierarchy nor m3 for inverted

hierarchy does reach zero at all error levels. Thus, the
singular mass matrix is not predicted for this texture at all σ
levels.
For normal ordering plots (Fig. 2), we see a tight

forbidden gap for θy around 45° together with a mild
forbidden region for the phase δ. We find a strong linear
correlation between ρ and σ. One also notes the sinusoidal
relations for ðρ; δÞ and ðσ; δÞ correlations. We also find a
moderate mass hierarchy where 0.32 ≤ m13 ≤ 0.79 besides
a quasidegeneracy characterized by 1.01 ≤ m2

m1
≤ 1.13.

For inverted ordering plots (Fig. 3), we find narrow
disallowed regions for ρ and δ around 90° and 270°
respectively. We also see a narrow forbidden gap for θy
around 45° as in normal ordering. We notice a quasidege-
neracy characterized by m1 ≈m2 ≈m3.
In order to justify these observations, we compute

the mass-squared-difference full and approximate expres-
sions, and we use the abbreviation “Num” (“Den”) for
“Numerator” (“Denominator”):

m2
23−m2

13¼
Numðm2

23−m2
13Þ

Denðm2
23−m2

13Þ
∶

Numðm2
23−m2

13Þ¼4c2zc2y

�
1

2
s2ys2xðc2z−2Þszcδþc2yc2xs2z

�
;

Denðm2
23−m2

13Þ¼−s22xs22yð1þc2zÞs2zc2δ
þs2xs2yc2yc2xð2þc2zÞszcδ
−
1

4
s22xs

2
2yc

4
zs2z−c22yc

2
2x; ð26Þ

m2
23 −m2

13 ¼
2t2yt2xcδsz

c2x
þOðs2zÞ: ð27Þ

Few remarks are in order here. First, we see from Eq. (27)
that we should have t2ycδ > 0 in order to meet the
constraint m2 > m1, and thus we should have

θy <
π

4
⇒ δ >

3π

2
; θy >

π

4
⇒ δ <

3π

2
; ð28Þ

which is observed in the correlations between δ and θy in
both NH and IH. Second, from Eq. (25), we see that both
θy ¼ π

4
and δ ¼ 3π

2
are separately forbidden, as each will

give a too high value for Rν unable to be brought back to the
small experimental order of magnitude 10−2. This explains
why we observe a narrow gap around (θy ¼ π

4
) and around

(δ ¼ 3π
2
) in the relevant correlations for both NH and IH.

Third, and as was stated before, studying the zeros of
(m2

23 −m2
13) would put us near the allowed points in the

parameter space. From Eq. (26), we see that this corre-
sponds to two regimes.

(i) c2y ≈ 0 ⇒ θy ≈ π
4
⇒ NH:

In this regime, we get
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m2
13 ¼ m2

23 ¼
ðc2z − 2Þ2

c4z þ 4ð1þ c2zÞc2δ
≈

1

1þ 8c2δ
< 1; ð29Þ

ρ ≈ σ ¼ 1

2
tan−1

�
s2δ

1þ 2c2δ

�
þ π

2
þOðszÞ; ð30Þ

mee ¼
m3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8c2δ

p þOðs2zÞ: ð31Þ

From Eq. (29), this regime corresponds to NH. In
this regime, δ can take any of this texture’s allowed
values, except the narrow band around 3π=2. The
correlations, resulting from Eq. (30), of ρ and σ with
respect to δ are observed in the corresponding NH
plots. Likewise, Eq. (31) justifies the shape of the
correlation (mee; δ) observed in this NH regime.

(ii) ð1
2
s2ys2xðc2z − 2Þszcδ þ c2yc2xs2z ≈ 0Þ† ⇒ IH:
Here we have

m2
13 ¼ m2

23 ¼ 1þ s2z
s2yc2yc4z

> 1; ð32Þ

so this regime corresponds to IH. In this regime, we
find, by putting (cz ≈ 1) in the approximative re-
gime-defining constraint (†), the following:

cδ ≈
2sz
t2yt2x

≪ 1; ð33Þ

and so from the allowed values of δ ∈ ½200o; 353o�
(see Table I in the IH case) we see that δ should be
around the value 3π=2 without hitting it, whereas no
restrictions over θy apart from disallowing the value
π=4. This is what we observe in the relevant IH
correlation plots.

Now, with δ ≈ 3π=2 one finds

ρ ≈ σ ¼ π

2
þOðszÞ; ð34Þ

which we observe in the full, i.e. nonapproximate,
numerical results. Thus, we could interpret the very
tight ranges of the CP violation phases with
(δ ∼ 3π=2; ρ ∼ π=2 ∼ σ). Finally, with Eq. (32), we
find a quasidegenerate spectrum (m13 ≈m23 ≈ 1)
and that mee matches this common mass scale,
which we observe in the plots.

Finally, we reconstruct the neutrino mass matrix for a
representative point. For normal ordering, the representa-
tive point is taken as the following:

ðθ12; θ23; θ13Þ ¼ ð34.0696°; 45.1044°; 8.4838°Þ;
ðδ; ρ; σÞ ¼ ð195.8781°; 95.4176°; 95.3851°Þ;

ðm1; m2; m3Þ ¼ ð0.0180 eV; 0.0199 eV; 0.0530 eVÞ;
ðmee;meÞ ¼ ð0.0171 eV; 0.0200 eVÞ; ð35Þ

the corresponding neutrino mass matrix (in eV) is

Mν ¼

0
BB@

−0.0167 − 0.0034i 0.0080þ 0.0003i 0.0067þ 0.0004i

0.0080þ 0.0003i 0.0167þ 0.0034i 0.0348 − 0.0035i

0.0067þ 0.0004i 0.0348 − 0.0035i 0.0167þ 0.0034i

1
CCA: ð36Þ

For inverted ordering, the representative point is taken as the following:

ðθ12; θ23; θ13Þ ¼ ð34.3118°; 49.2414°; 8.4204°Þ;
ðδ; ρ; σÞ ¼ ð269.0126°; 90.8634°; 88.2051°Þ;

ðm1; m2; m3Þ ¼ ð0.1733 eV; 0.1735 eV; 0.1659 eVÞ;
ðmee;meÞ ¼ ð0.1660 eV; 0.1732 eVÞ: ð37Þ

The corresponding neutrino mass matrix (in eV) is

Mν ¼

0
BB@

−0.1660 − 0.0001i 0.0324 − 0.0001i 0.0377þ 0.0001i

0.0324 − 0.0001i 0.1660þ 0.0001i −0.0074 − 0.0001i

0.0377þ 0.0001i −0.0074 − 0.0001i 0.1660þ 0.0001i

1
CCA: ð38Þ
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B. Texture ðC22;C12Þ≡ ðMee +Mττ = 0;Meμ +Mττ = 0Þ
A and B are given by

A1 ¼ c2xc2z þ ð−cxcysz þ sxsye−iδÞ2;
A2 ¼ s2xc2z þ ð−sxcysz − cxsye−iδÞ2;
A3 ¼ s2z þ c2yc2z ;

B1 ¼ cxczð−cxsysz − sxcye−iδÞ þ ð−cxcysz þ sxsye−iδÞ2;
B2 ¼ sxczð−sxsysz þ cxcye−iδÞ þ ð−sxcysz − cxsye−iδÞ2;
B3 ¼ syczsz þ c2yc2z : ð39Þ

Then Rν is given by

Rν ¼
2c4yðc2x þ 2cycxsxcδÞ

jR2jsgnðR1Þ
þOðszÞ; ð40Þ

where

R1 ¼ 4c2xs2xc2ys2yc2δ þ 2cycxsxs2yð2 − c2yÞc2xcδ
þ c2xs2xc6y þ c22xc

4
y − 2c22xc

2
y þ c22x; ð41Þ

R2 ¼ 8c2xs2xc2ys2yc2δ þ 2cycxsxc2xð4þ c4y − 6c2yÞcδ
þ ð−6c2xs2x þ 1Þc4y − 4c22xc

2
y þ 2c22x: ð42Þ

Table V shows that (C22, C12) texture cannot accom-
modate the experimental data in the case of normal
ordering, whereas it is viable at the 2-3-σ levels for
inverted ordering. The allowed experimental ranges of
the mixing angles ðθx; θy; θzÞ are covered at all σ levels.
We find wide disallowed regions for δ such as
½236.26°; 322°� at the 2-σ level and ½244.54°; 353°� at the
3-σ level. The phases ρðσÞ are bounded to the intervals
½102.59°; 106.02°�ð½32.23°; 39.70°�Þ at the 2-σ level and
½95.33°; 107.77°�ð½14.34°; 46.26°�Þ at the 3-σ level. One
also notes that m3 does not approach a vanishing value,
thus the singular mass matrix is not predicted.
From Fig. 4, we see that θx increases when CP-violating

phases tend to increase. We also see a strong linear relation
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FIG. 2. The correlation plots for ðC22;C33Þ≡ ðMee þMττ ¼ 0;Mee þMμμ ¼ 0Þ texture, in the normal ordering hierarchy. The first
and second rows represent the correlations between the mixing angles (θ12; θ23) and the CP-violating phases. The third row introduces
the correlations amidst the CP-violating phases, whereas the fourth one represents the correlations between the Dirac phase δ and each
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for (σ,δ) correlation as well as quasilinear relations for
(ρ; δ) and (ρ; σ) correlations. We notice that one finds a
quasidegeneracy characterized by 1.35 ≤ m13 ≤ 1.39 and
m1 ≈m2.

In order to explain the correlation plots, one com-
pute the mass-squared-difference full and approximate
expressions:

m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ s2xcycδ½c3zðc2z − 2Þc4y þ 2ð2c2z − 3Þczðszczcy − s2zÞc2y þ s2zð−5czs2z þ 2syszÞ�
− c2x½ð7c4y − 2c2y − 1Þc4z þ 2szsyð4c2y þ c4y − 1Þc3z þ ð2 − 6c4yÞc2z − 2szsyð−1þ 3c2yÞcz þ c2y� ð43Þ

m2
23 −m2

13 ¼
c4yðc2x þ 2cysxcxcδÞ

4s2xc2xs2yc2yc2δ þ 2cys2ysxcxc2xð1þ s2yÞcδ þ c6yc2xs2x þ c22xc
4
y − c22xc2y

þOðszÞ: ð44Þ

We checked that the zeros of Numðm2
23 −m2

13Þ give
exact correlations in excellent agreement with the full
correlations, which are calculated based on numerical
exact calculations taking all constraints into consideration.

However, the zeros of the leading term of the mass-squared
difference, i.e. of (c2x þ 2cysxcxcδ), would lead to approxi-
mate correlations which agree mediocrely with the full and
one needs higher orders inclusion in order to have a better
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agreement. As an illustrative example, we find that the
full range for m13, spanned by the allowed points consid-
ering all experimental constraints, is [1.35, 1.39]. Now, if
we impose a zero for the (m2

23 −m2
13) expression

[ðc2x þ 2cysxcxcδÞ expression], in terms of (θx; θy; θz; δ),
then one gets δ, say, in terms of θx, θy, θz, and so m13 is
expressed in terms of these mixing angles which, when
scanned over their allowable ranges, give the exact
(approximate) range for m13 found to be [1.342, 1.376]
([1.35, 1.75]). This corresponds to a good (mediocre)
approximation, indicating we have an IH. Moreover,
plugging the zeros of ðm2

23 −m2
13Þ in the expression of

m13 leads to

m13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2þ t2y

q �
1 −

2sysz
c2yð1þ c2yÞ

�
þOðs2zÞ: ð45Þ

We can now calculate the truncated exact range, corre-
sponding to scanning the leading term in Eq. (45), and we
would have found [1.03, 1.32], indicating again a IH,
albeit the agreement of this correlation with the full range is
again mediocre.
Moreover, one can fix θz ≈ 8.5o, and for any given θx we

draw the surface of (m2
23 −m2

13) varying θy and δ over their
experimentally allowed regions, then the intersection of this
surface with the (m2

23 −m2
13 ¼ 0) determines an exact

correlation between θy and δ. We checked that juxtaposing
such curves, upon varying θx, generates approximately well
the full correlation (θy; δ). In the left (right) part of Fig. 1,
we take the minimum (maximum) allowed value of
θx ¼ θ12 ¼ 31:4oð37:4oÞ, and find that the corresponding
intersection curves of (δ; θy ¼ θ23) delimit the correspond-
ing correlation region.
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FIG. 4. The correlation plots for ðC22;C12Þ≡ ðMee þMττ ¼ 0;Meμ þMττ ¼ 0Þ texture in the case of inverted hierarchy. The first
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Finally, fixing θx ≈ 35o, we find from Table V that we
can take the representative points ρ ≃ 900; σ ≃ 300, and so,
with m1 ∼m2 ∼ 0.07 eV in mee ≈ jm1cos2ð35oÞeiπ þ
sin2ð35oÞeiπ=3 þm3sin2ðθzÞj we get a partial cancellation
of the contributions of (m1, m2) and we get mee ∼ 0.04 eV.
Reconstructing the neutrino mass matrix for inverted

ordering, the representative point is taken as follows:

ðθ12; θ23; θ13Þ ¼ ð34.3208°; 49.2183°; 8.5319°Þ;
ðδ; ρ; σÞ ¼ ð222.6055°; 101.8830°; 30.2439°Þ;

ðm1; m2; m3Þ ¼ ð0.0724 eV; 0.0729 eV; 0.0527 eVÞ;
ðmee;meÞ ¼ ð0.0319 eV; 0.0721 eVÞ; ð46Þ

and the corresponding neutrino mass matrix (in eV) is

Mν ¼

0
BB@

−0.0319þ 0.0003i −0.0319þ 0.0003i 0.0564 − 0.0004i

−0.0319þ 0.0003i 0.0531 − 0.0003i 0.0068þ 0.0003i

0.0564 − 0.0004i 0.0068þ 0.0003i 0.0319 − 0.0003i

1
CCA: ð47Þ

C. Texture ðC11;C12Þ≡ ðMμμ +Mττ = 0;Meμ +Mττ = 0Þ
A and B are given by

A1 ¼ c2xs2z þ s2xe−2iδ;

A2 ¼ s2xs2z þ c2xe−2iδ;

A3 ¼ c2z ;

B1 ¼ cxczð−cxsysz − sxcye−iδÞ þ ð−cxcysz þ sxsye−iδÞ2;
B2 ¼ sxczð−sxsysz þ cxcye−iδÞ þ ð−sxcysz − cxsye−iδÞ2;
B3 ¼ syczsz þ c2yc2z : ð48Þ

The Rν approximate expression will be

Rν ¼
2ðs2xcycδc2y − c2xc22yÞ

jc22yð1 − 2s2xc2xÞ − s2xc2xcyc2ycδj
þOðszÞ: ð49Þ

From Table V, we find that (C11, C12) texture can
accommodate the experimental data only at the 3-σ level
for inverted ordering. We find that the allowed experimen-
tal ranges for the mixing angles ðθx; θzÞ extend over their
allowed experimental ranges. However, the allowed range
for θy is strongly restricted to the interval ½51.16°; 51.25°�.
We also notice that the phases δ, ρ and σ are bounded
to the intervals ½262.79°; 268.92°�, ½5.71°; 9.54°� and
½168.06°; 173.00°�, respectively. Table V also reveals that
m3 does not reach a vanishing value. Therefore, the singular
mass matrix is not expected for this texture.
From Fig. 5, we see that θx increases when the CP-

violating phases tend to increase. We also find a quasilinear
correlation between σ and δ. There exists a quasidegener-
acy characterized by m1 ≈m2 ≈m3.
In order to explain the correlation plots, one computes the

mass-squared-difference full and approximate expressions:

m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ −c3zfs2xcy½c2zð6c2y − 5Þ
þ cys2ys2z þ 4s2y�cδ
− c2yc2xðczc2y þ 2szsyÞg; ð50Þ

m2
23 −m2

13 ¼
s2xcyc2ycδ − c22yc2x

c2ys2xc2x

þ −2sysz
c3yc3xs4x

½2s2xcxcyc2yc2xc2δ
− sxcδðc4xð−5s22y þ 4Þ þ 5s22yc

2
x þ c2yÞ

− cxcyð4c2y − 3Þc2ys2xc2x� þOðs2zÞ: ð51Þ

The zeros of Numðm2
23 −m2

13Þ give exact correlations in
excellent agreement with the full correlations, and all
correlations can be determined from these zeros.
However, the zeros of the zeroth order leading term of
the mass-squared difference would lead to (zeroth-order)
approximate correlations which do not agree well with the
full ones, and one has to go, say, up to the next-to-leading
term in order to get (first-order) approximate correlations
with a better agreement. Actually, even the zeroth-order
leading term of the ðm2

23 −m2
13Þ expression can give useful

interconnections. For example, from the constraint
m2 > m1, we need to have c2ycδ > 0, whence, considering
the experimental constraints on (θy; δ), we have the
following observed relations:

δ > 270o ⇒ θy < 45o; δ < 270o ⇒ θy > 45o: ð52Þ

Also, we have the (zeroth-order) approximate correlation:

cδ ¼
c2yc2x
s2xcy

; ð53Þ
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giving an approximate range (δ ∈ ½260o; 275o�). Plugging
the zeros of ðm2

23 −m2
13Þ in the expression of m13 leads to

an exact correlation whose truncated approximation is
given by

m13 ¼ m23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c22y

c2y

s
þOðszÞ ≥ 1: ð54Þ

This truncated correlation leads m13 ≈
≥
1, so the ordering is

of IH type. Taking θy in its allowed range, we see that the
spectrum is quasidegenerate (m1 ∼m2 ∼m3) and Σ ≈ 3m3.
From Table V, we find that in this texture we

have (σ ∼ 170o; ρ ∼ 7o), so in the expression of mee ¼
jm1c2xe2iρ þm2s2xe2iσj, where we put cz ∼ 1 and neglect the

contribution of m3 as it is proportional to s2z , we have
mee ≈m2. Similarly, we can show that me ∼m2.
Finally, we find that the bounds on Σ ∼ 3m3 and mee ∼

m3 in Eq. (9) are the severe ones by which, using
m2

3 ¼ δm2

m2
23
−m2

13

, most of the θy range is excluded, and only

a narrow neighborhood around the value θy ≈ 51:2o is
allowed with m13 ≈ 1.04 [cf. Eq. (54)].
For inverted ordering, the representative point is taken as

follows:

ðθ12; θ23; θ13Þ ¼ ð34.3178°; 51.2346°; 8.5674°Þ;
ðδ; ρ; σÞ ¼ ð265.0845°; 6.7720°; 169.8108°Þ;

ðm1; m2; m3Þ ¼ ð0.1811 eV; 0.1814 eV; 0.1745 eVÞ;
ðmee;meÞ ¼ ð0.1744 eV; 0.1811 eVÞ: ð55Þ
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FIG. 5. The correlation plots for ðC11;C12Þ≡ ðMμμ þMττ ¼ 0;Meμ þMττ ¼ 0Þ texture in the case of inverted hierarchy. The first
and second rows represent the correlations between the mixing angles ðθ12; θ23Þ and the CP-violating phases. The third and fourth rows
show the correlations amidst the CP-violating phases and the correlations between the Dirac phase δ and each of J, mee and m2

parameters, respectively. The last row shows the degree of mass hierarchy plus the (mee;m2) correlation.
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The corresponding neutrino mass matrix (in eV) is

Mν ¼

0
BB@

0.1742þ 0.0087i 0.0305 − 0.0002i −0.0379 − 0.0019i

0.0305 − 0.0002i 0.0305 − 0.0002i 0.1719þ 0.0002i

−0.0379 − 0.0019i 0.1719þ 0.0002i −0.0305þ 0.0002i

1
CCA: ð56Þ

D. Texture ðC33;C12Þ≡ ðMee +Mμμ = 0;Meμ +Mττ = 0Þ
A and B are given by

A1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞ2;
A2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞ2; A3 ¼ s2z þ s2yc2z ;

B1 ¼ cxczð−cxsysz − sxcye−iδÞ þ ð−cxcysz þ sxsye−iδÞ2;
B2 ¼ sxczð−sxsysz þ cxcye−iδÞ þ ð−sxcysz − cxsye−iδÞ2;
B3 ¼ syczsz þ c2yc2z : ð57Þ
Therefore, Rν takes a form

Rν ¼
2c2xs2yð1 − 3c2yÞð1þ t2xcycδÞ

jR2jsgnðR1Þ
þOðszÞ∶

R1 ¼ −4c2xc4ys2xc2δ − s2xs2ycyð1þ c2yÞc2xcδ
þ s4yð−1þ c2xð4 − c2yÞs2xÞ þOðszÞ;

R2 ¼ −8c2xc2ys2ys2xc2δ − s2xcys2yð1þ 3c2yÞc2xcδ
þ ð3 − 10c2xs2xÞc4y − 4c2xs2xc2y − 1þ 6c2xs2x: ð58Þ

Table V shows that (C33, C12) texture is not viable at all
σ error levels for normal ordering, whereas it can accom-
modate the experimental data for inverted ordering at 2-3-σ
levels. The allowed experimental ranges of the mixing
angles ðθx; θy; θz) are covered at all allowed σ levels. The
Dirac phase δ is bounded to the interval ½231.94°; 248.79°�
at the 2-σ, and the range tends to be wider at the 3-σ level
being ½226.89°; 254.21°�. There exist acute restrictions on
the phases ρðσÞ at the 2-3-σ levels. They belong to the
intervals ½100.59°; 105.16°�ð½38.47°; 51.29°�Þ at the 2-σ
level and ½99.40°; 106.17°�ð½34.65°; 57.53°�Þ at the 3-σ
level. Table V also reveals that m3 does not reach zero,
so the singular mass matrix is not predicted.
From Fig. 6, we see that θx increases when the CP-

violating phases tend to increase. We also see a quasilinear
relation for ðθx; ρÞ correlation. Figure 6 also shows a
moderate mass hierarchy characterized by 2.34 ≤ m13 ≤
2.67 together with a quasidegeneracy characterized by
m1 ≈m2.
In order to explain the correlation plots, one computes the

mass-squared-difference full and approximate expressions:

m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ s2xcycδ½3 − c2yð−2þ c2yÞc2z þ 2szsyð−2þ c2yÞc4z þ ð−2þ 12c2y þ 6c4yÞc3z
þ 2szsyð3þ c2yÞc2z − c2ycz − 2sysz� − c2x½ð4þ c4y − 8c2yÞc4z þ 2c2yszsy

ð−4þ 3c2yÞc2z þ ð2c4y − 4þ 6c2yÞc2z þ 2c2yszsycz − c2y� ð59Þ

Numðm2
23 −m2

13Þ ¼ s2yð1 − 3c2yÞðs2xcycδ þ c2xÞ þOðszÞ: ð60Þ

The zeros of Numðm2
23 −m2

13Þ give exact correlations in
excellent agreement with the full correlations (e.g., the
exact interval for m13 is [2.33, 2.64] to be compared with
the mentioned full interval [2.34, 2.67]). Also, the zeros of
the leading term of the mass-squared difference numerator
[i.e. the zeros of (s2xcycδ þ c2x)] lead to approximate
correlations which are good, but less, when compared to
the full ones.
Plugging the zeros of ðm2

23 −m2
13Þ in the expression of

m13 leads to an exact correlation whose truncated approxi-
mation is given by

m13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

c2y

s �
1þ 2sz

syc2y

�
þOðs2zÞ: ð61Þ

Scanning over the allowed values of θy and θz, we
find that this truncated correlation leads to (1 < m13 ∈
½2.12; 2.44�), so the ordering is of IH type. As to mee

we find a value around [0.054 × jcos2ð35oÞe2i103π=180þ
sin2ð35oÞe2i47π=180j ≈ 0.0339 eV].
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A corresponding benchmark point is taken as

ðθ12; θ23; θ13Þ ¼ ð34.2034°; 49.4333°; 8.5030°Þ;
ðδ; ρ; σÞ ¼ ð240.4593°; 102.7186°; 44.6611°Þ;

ðm1; m2; m3Þ ¼ ð0.0531 eV; 0.0539 eV; 0.0208 eVÞ;
ðmee;meÞ ¼ ð0.0315 eV; 0.0528 eVÞ; ð62Þ

with the reconstructed neutrino mass matrix (in eV) given as

Mν ¼

0
BB@

−0.0314þ 0.0014i −0.0212þ 0.0012i 0.0367 − 0.0017i

−0.0212þ 0.0012i 0.0314 − 0.0014i −0.0076þ 0.0013i

0.0367 − 0.0017i −0.0076þ 0.0013i 0.0212 − 0.0012i

1
CCA: ð63Þ
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FIG. 6. The correlation plots for ðC33;C12Þ≡ ðMee þMμμ ¼ 0;Meμ þMττ ¼ 0Þ texture in the case of inverted hierarchy. The first
and second rows represent the correlations between the mixing angles ðθ12; θ23Þ and the CP-violating phases. The third and fourth rows
show the correlations amidst the CP-violating phases and the correlations between the Dirac phase δ and each of J, mee and m2

parameters, respectively. The last row shows the degree of mass hierarchy plus the (mee;m2) correlation.
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E. Texture ðC33;C13Þ≡ ðMee +Mμμ = 0;Meμ +Mμτ = 0Þ
A and B are given by

A1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞ2;
A2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞ2; A3 ¼ s2z þ s2yc2z ;

B1 ¼ cxczð−cxsysz − sxcye−iδÞ
þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;

B2 ¼ sxczð−sxsysz þ cxcye−iδÞ
þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;

B3 ¼ szsycz þ syc2zcy: ð64Þ

The leading order truncated approximation for Rν is
given by

Rν ¼
−2s3y

js2xc2ycδ − c2xsyð1þ c2yÞjsgnðR1Þ
þOðszÞ∶

R1 ¼ −2c4ys22xc2δ þ cys2ys2xð1þ c2yÞc2xcδ
− 2c2ys2yð−c2ys2xc2x − 3s2xc2x þ 1Þ: ð65Þ

We see from Table V that (C33, C13) texture can
accommodate the experimental data in the case of inverted
hierarchy at all σ levels. However, the texture is not viable
for normal hierarchy. We find that the mixing angles
ðθx; θy; θzÞ extend over their allowed experimental ranges
at all σ levels. The Dirac phase δ is tightly restricted at all σ
levels, and is bound to be in the range ½262.85°; 267.59°� at
the 3-σ level. We notice that the Majorana phases ρðσ) are
strongly restricted at all statistical levels to lie in the
intervals ½92.56°; 95.16°�ð½78.67°; 84.28°�Þ at the 3-σ level.
Table V also reveals that m3 does not reach a vanishing at
all σ levels. Therefore, the singular texture is not expected
with either hierarchy type at all σ levels.
We see from Fig. 7 that the mixing angle θy increases

when the phases δ and σ tend to decrease. However, we
notice that θy increases when ρ tends to increase. We also
see that θx increases when the CP-violating phases tend to
increase. We find the quasidegeneracy characterized by
m1 ≈m2 and 1.11 ≤ m13 ≤ 1.14.
In order to explain the correlation plots, one com-

putes the mass-squared-difference full and approximate
expressions:
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FIG. 7. The correlation plots for ðC33;C13Þ≡ ðMee þMμμ ¼ 0;Meμ þMμτ ¼ 0Þ texture in the case of inverted hierarchy. The first
and second rows represent the correlations between the mixing angles ðθ12; θ23Þ and the CP-violating phases. The third and fourth rows
show the correlations amidst the CP-violating phases and the correlations between the Dirac phase δ and each of J, mee and m2

parameters, respectively. The last row shows the degree of mass hierarchy plus the (mee;m2) correlation.
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m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ 2czs2xsycδ½c4zc2yðc2y − 3Þ − 2c3zszcys2y þ c2zð6c2y − 2c4y − 1Þ þ 4szczcys2y − c2y�
þ 4czs2yc2x½c3zc2y − szc2zcyðc2y − 2Þ − czc2y − szcy�; ð66Þ

m2
23 −m2

13 ¼
cys2xs2ys2ycδ

c4ys22xc
2
δ − 1

2
cys2xs2yð1þ c2yÞc2xcδ þ s2yc2yð−c2xs2xc2y − 3s2xc2x þ 1Þ þOðszÞ: ð67Þ

We understand now why δ around 270o is singled out, as
this would make (m2

23 −m2
13) as small as possible

[cf. Eq. (67)], and, moreover, substituting (δ ≈ 2700) in
the truncated approximation we get

m2
23 −m2

13 ≈
δ→270o cys2xs2ys2ycδ

s2yc2yð−c2xs2xc2y − 3s2xc2x þ 1Þ :

As the coefficient in front of cδ in the numerator is positive
for allowed θx, θy, whereas the denominator is always
positive, we deduce ðm2

23 −m2
13 → 0þÞ ⇒ ðδ → 270oþÞ.

The higher order terms make (δ → 270o−).
The zeros of Numðm2

23 −m2
13Þ give exact correlations in

excellent agreement with the full correlations. However, we
found that the zeros of the leading plus next-to-leading
terms of the mass-squared difference numerator (i.e. the
expansion of m2

23 −m2
13 in the form of a linear form

c0 þ c1sz) lead to approximate correlations which are
not accurate, when compared to the full ones, and one
needs to go to higher orders to match the full correlations.
Plugging the zeros of ðm2

23 −m2
13Þ in the expression of

m13 leads to an exact correlation whose truncated approxi-
mation is given by

m13 ¼ 1þ 2s2z
s2yc2y

þOðs3zÞ: ð68Þ

Scanning over the allowed values of θy:θz, we find that this
truncated correlation leads to (m13 ∈ ½1.165; 1.205�),
whereas the exact range, coming from the zeros of
(m2

23 −m2
13), is [1.114, 1.143], which is very near the full

correct range, so the ordering is of IH type. As to mee, and
since we have ρ ≈ σ ≈ 90o in this pattern, we have
(mee ≈m2). Actually, at leading order, δ ≈ 3π

2
would lead

to (ρ ≈ σ ≈ π
2
).

For inverted ordering, the representative point is taken as
follows:

ðθ12; θ23; θ13Þ ¼ ð34.1770°; 49.4202°; 8.6885°Þ;
ðδ; ρ; σÞ ¼ ð264.9329°; 94.2458°; 80.6349°Þ;

ðm1; m2; m3Þ ¼ ð0.1076 eV; 0.1080 eV; 0.0955 eVÞ;
ðmee;meÞ ¼ ð0.1005 eV; 0.1074 eVÞ; ð69Þ

the corresponding neutrino mass matrix (in eV) is

Mν ¼

0
BB@

−0.1005þ 0.0001i 0.0076 − 0.0001i 0.0372þ 0.0001i

0.0076 − 0.0001i 0.1005 − 0.0001i −0.0076þ 0.0001i

0.0372þ 0.0001i −0.0076þ 0.0001i 0.0957 − 0.0001i

1
CCA: ð70Þ

F. Texture ðC11;C13Þ≡ ðMμμ +Mττ = 0;Meμ +Mμτ = 0Þ
The coefficients A and B are obtained from Eqs. (48) and (64). A and B are given by

A1 ¼ c2xs2z þ s2xe−2iδ; A2 ¼ s2xs2z þ c2xe−2iδ A3 ¼ c2z ;

B1 ¼ cxczð−cxsysz − sxcye−iδÞ þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;
B2 ¼ sxczð−sxsysz þ cxcye−iδÞ þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;
B3 ¼ szsycz þ syc2zcy: ð71Þ

The analytical approximate truncated expression for Rν is
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Rν ¼
4ðs2xcδ − 2c2xsyÞ

jsyð2s22x − 4Þ þ s4xcδj
þOðszÞ: ð72Þ

From Table V, we find that (C11, C13) is not viable
at all σ levels for normal hierarchy. However, it can
accommodate the experimental data at all σ levels in the
case of inverted hierarchy. The mixing angles (θx, θy, θz)
extend over their allowed experimental ranges at the
all σ levels. We find that the allowed range for δ is very
tight at all σ levels. It tends to be wider at the 3-σ level
to be approximately ½292°; 322°�. As for the Dirac
phase δ, the Majorana phases ρðσÞ are strongly
restricted at all σ levels. They belong to the intervals
½165.23°; 167.75°�ð½46.81°; 52.37°�Þ at the 1-σ level,
½163.81°; 169.35°�ð½43.84°; 56.57°�Þ at the 2-σ level and
½162.53°; 170.80°�ð½39.98°; 60.41°�Þ at the 3-σ level. One
also notes that m3 does not reach a vanishing value. Thus,
the singular mass matrix is not expected.

We see from Fig. 8 the quasilinear correlations with
negative slope between θx and CP-violating phases. We
also see a strong linear relation for the correlation (σ; δ)
together with quasilinear relations for (ρ; σ) and (ρ; δ)
correlations. We also find a mild mass hierarchy where
1.68 ≤ m13 ≤ 1.79 as well as a quasidegeneracy charac-
terized by m1 ≈m2.
In order to explain the correlation plots, one computes the

mass-squared-difference full and approximate expressions:

m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ 4c3z

�
1

2
s2xsycδðð1− 3c2yÞc2z

− cys2zs2y þ c2yÞ þ cys2yc2xðcycz þ szÞ
�

ð73Þ
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FIG. 8. The correlation plots for ðC11;C13Þ≡ ðMee þMμμ ¼ 0;Meμ þMμτ ¼ 0Þ texture in the case of inverted hierarchy. The first
and second rows represent the correlations between the mixing angles ðθ12; θ23Þ and the CP-violating phases. The third and fourth rows
show the correlations amidst the CP-violating phases and the correlations between the Dirac phase δ and each of J, mee and m2

parameters, respectively. The last row shows the degree of mass hierarchy plus the (mee;m2) correlation.
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m2
23 −m2

13 ¼
2syðcδs2x − 2syc2xÞ

c2xs2x
þOðszÞ: ð74Þ

The zeros of Numðm2
23 −m2

13Þ give exact correlations in
excellent agreement with the full correlations. Likewise, we
found that the zeros of the leading term of the mass-squared
difference numerator [i.e. of ðcδs2x − 2syc2xÞ giving
ðcδ ¼ 2sy cot2xÞ] lead to approximate correlations between
the mixing and phase angles which are also good when
compared to the full ones.
Plugging the zeros of ðm2

23 −m2
13Þ in the expression of

m13 leads to an exact correlation whose truncated approxi-
mation is given by

m13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2y

q �
1þ 4s2yc2ysz

1þ 4s2y

�
þOðs2zÞ: ð75Þ

Scanning over the allowed values of θy, θz, we find that this
truncated correlation leads to (m13 ∈ ½1.68; 1.79�), whereas

the exact range, coming from the zeros of (m2
23 −m2

13), is
[1.7, 1.8], which is very near the full correct range, so the
ordering is of IH type. As to mee, and since we have ρ ≈
167o; σ ≈ 50o in this pattern, we have, taking θx ≈ 35o;
m2 ≈ 0.06 eV, the value (mee ≈ 0.06jcos2ð35oÞe2i167π=180þ
sin2ð35oÞe2i50π=180j ≈ 0.032 eV).
For inverted ordering, the representative point is taken as

follows:

ðθ12; θ23; θ13Þ ¼ ð34.2712°; 49.4721°; 8.6197°Þ;
ðδ; ρ; σÞ ¼ ð306.3395°; 166.5813°; 49.8309°Þ;

ðm1; m2; m3Þ ¼ ð0.0601 eV; 0.0607 eV; 0.0338 eVÞ;
ðmee;meÞ ¼ ð0.0334 eV; 0.0598 eVÞ: ð76Þ

The corresponding neutrino mass matrix (in eV) is

Mν ¼

0
BB@

0.0334þ 0.0004i −0.0322 − 0.0000i 0.0378 − 0.0001i

−0.0322 − 0.0000i 0.0127 − 0.0000i 0.0322þ 0.0000i

0.0378 − 0.0001i 0.0322þ 0.0000i −0.0127þ 0.0000i

1
CCA: ð77Þ

G. Texture ðC13;C23Þ≡ ðMeμ +Mμτ = 0;Mee +Mμτ = 0Þ
A and B are given by

A1 ¼ cxczð−cxsysz − sxcye−iδÞ þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;
A2 ¼ sxczð−sxsysz þ cxcye−iδÞ þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;
A3 ¼ szsycz þ syc2zcy;

B1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;
B2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;
B3 ¼ s2z þ sycyc2z : ð78Þ

The leading order expression for Rν is given by

Rν ¼
2s2yðc2x þ s2xcycδÞ

js2ys22xc2δ þ s2xc2xsyð2 − sycyÞcδ þ ð1 − 6s2xc2xÞc2y − 2s2ys2xc2x − c22xjsgnðR1Þ
þOðszÞ∶

R1 ¼ −2s2ys2xc2xc2δ − s2xc2xsyð1 − sycyÞcδ − s2xc2xc4y þ ð5c2xs2x − 1Þc2y þ s2ys2xc2x þ 1 − 3s2xc2x: ð79Þ

We see from Table V that (C13,C23) texture is viable at all
σ levels for normal ordering. However, it cannot accom-
modate the experimental data for inverted ordering. The
allowed experimental ranges for the mixing angles
ðθx; θy; θzÞ can be covered at all σ levels. The Dirac phase
δ is bounded to the intervals: ½202.90°; 217.99°� at the
1-σ level, ½152.02°; 232.55°� at the 2-σ level and
½128.01°; 242.79°� at the 3-σ level. We find that ρ is tightly

restricted at all σ levels, and its allowed range tends to be
wider at the 3-σ levels to fall approximately in the interval
½73°; 108°�. For the phase σ, one notes that there exists a
strong restriction at the1-σ level besideswide forbidden gaps
at the 2-3-σ levels. The allowed values for the J parameter at
the 1-σ level are negative, consistent with δ lying in the third
quarter at this σ level. Table V also shows that m1 cannot
reach zero. Thus, a singular mass matrix is not predicted.
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From Fig. 9, we see forbidden gaps in the correlations
between the mixing angles (θx,θy) and CP-violating
phases. We also see the quasilinear relations for the
correlations between the CP-violating phases. Figure 9
also shows a mild mass hierarchy characterized by

0.68 ≤ m13 ≤ 0.79 together with a quasidegeneracy char-
acterized by m1 ≈m2.
In order to explain the correlation plots, one com-

putes the mass-squared-difference full and approximate
expressions:

m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ s2xcδ½c4zsyð3c2y − 1 − cys3yÞ þ szs2yc3zðs2y − s2yÞ þ c2zðð2 − 5c2yÞsy − cys2yc2yÞ
−szczs2yðs2y þ c2yÞ þ syc2y� þ s2yc2x½c3zðs2y þ 1 − 3c2yÞ − 2cyszc2zð2þ sycyÞ
þczðc2y − s2yÞ þ 2szcy�

¼ −c2ys2yðcδs2xcy þ c2xÞ þOðszÞ: ð80Þ

32 33 34 35 36 37

80
90

100

�
12
o

�
o

32 33 34 35 36 37

50
100
150

�
12
o

�
o

32 33 34 35 36 37
140
160
180
200
220
240

�
12
o

�o

42 44 46 48 50

80
90

100

�
23
o

�
o

42 44 46 48 50

50
100
150

�
23
o

�
o

42 44 46 48 50
140
160
180
200
220
240

�
23
o

�o

80 90 100

50
100
150

�o

�
o

80 90 100
140
160
180
200
220
240

�o 

�o

50 100 150
140
160
180
200
220
240

�o 

�o

140 160 180 200 220 240

−0.02
0

0.02

�o 

J

140 160 180 200 220 240
0.022

0.0225
0.023

0.0235

�o  

m
ee

(e
V

)

140 160 180 200 220 240
0.05

0.06

�o

m
2(e

V
)

0.05 0.055 0.06 0.065
0.022

0.0225
0.023

0.0235

m
2
  

m
ee

(e
V

)

0.07 0.075 0.08
1.01

1.015

m
3
 (eV)  

m
21

42 44 46 48 50
0.7

0.72
0.74
0.76
0.78

�
23
o   

m
13

FIG. 9. The correlation plots for ðC13;C23Þ≡ ðMeμ þMμτ ¼ 0;Mee þMμτ ¼ 0Þ texture in the case of normal hierarchy. The first and
second rows represent the correlations between the mixing angles ðθ12; θ23Þ and the CP-violating phases. The third and fourth rows
show the correlations amidst the CP-violating phases and the correlations between the Dirac phase δ and each of J, mee and m2

parameters, respectively. The last row shows the degree of mass hierarchy plus the (mee;m2) correlation.
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The zeros of Numðm2
23 −m2

13Þ give exact correlations in
excellent agreement with the full correlations. Likewise, we
found that the zeros of the leading term of the mass-squared
difference numerator giving ðcδ ¼ − 1

t2xcy
Þ lead to approxi-

mate correlations between the mixing angles (θx, θy) and the
Dirac phase angle δ which are also good when compared to
the full ones. Moreover, we see that cδ < 0, which interprets
the observation that δ lies in the second or third quadrant.
Plugging the zeros of ðm2

23 −m2
13Þ in the expression of

m13 leads to an exact correlation whose truncated approxi-
mation is given by

m13¼
sy

ffiffiffiffiffiffiffiffiffiffiffiffi
1þc2y

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þs2yþc2ys2y

q �
1þ3ðs3yþc3yÞsz

1þ6c6y

�
þOðs2zÞ: ð81Þ

One can see, for the allowed values of (θy), that the zeroth-

order leading term
sy
ffiffiffiffiffiffiffiffi
1þc2y

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þs2yþc2ys2y

p < 1, so the ordering is of

NH type. Scanning over the allowed values of θy, θz, we
find that the truncated correlation, up to order Oðs2zÞ, leads
to (m13 ∈ ½0.69; 0.82�), whereas the exact range, coming
from the zeros of (m2

23 −m2
13), is [0.69, 0.79], which is very

near the full correct range [0.68, 0.79].
For normal ordering, the representative point is taken as

follows:

ðθ12; θ23; θ13Þ ¼ ð34.1349°; 49.3654°; 8.5098°Þ;
ðδ; ρ; σÞ ¼ ð214.0038°; 100.1902°; 23.9810°Þ;

ðm1; m2; m3Þ ¼ ð0.0594 eV; 0.0600 eV; 0.0777 eVÞ;
ðmee;meÞ ¼ ð0.0232 eV; 0.0600 eVÞ: ð82Þ

The corresponding neutrino mass matrix (in eV) is

Mν ¼

0
BB@

−0.0232 − 0.0001i −0.0232 − 0.0001i 0.0503þ 0.0002i

−0.0232 − 0.0001i 0.0624 − 0.0001i 0.0232þ 0.0001i

0.0503þ 0.0002i 0.0232þ 0.0001i 0.0391 − 0.0002i

1
CCA: ð83Þ

VI. THEORETICAL REALIZATION

We present now some realizations of the texture under
study characterized by two vanishing subtraces, irrespec-
tive of whether the corresponding texture is viable or not
regarding phenomenological data. We present first a
symmetry based on the non-Abelian group A4 leading to
a texture with the related subtraces consisted of the sum of
diagonal elements. Second, we present a symmetry based
on the non-Abelian group S4 where one of the related
subtraces corresponded to nondiagonal elements. In the
realization, we introduce new scalars, but we have not
discussed the question of the scalar potential and finding its
general form under the imposed symmetry. Having these
scalars may lead to rich phenomenology at colliders, and
asking for just one SM-like Higgs at low scale requires a
situation where fine-tuning of the many parameters in the
scalar potential, to ensure new scalars are out of reach at
current experiments, is heavily called upon.
Note that for each presented realizable pattern, there are

automatically two other realizable patterns by transposi-
tion. Thus, by presenting an S4 realization for the hitherto
viable but now disallowed (C11, C23), then automatically
we have, by the transposition (1 ↔ 3), a realization for the
viable pattern (C33, C21), and another realization, by doing
now the transposition (2 ↔ 3) on the latter, for the unviable
pattern (C22, C31). Similarly, the A4 realization of the viable
pattern (C22, C33) can automatically be translated into a

realization of the unviable patterns (C22, C11) and
(C33, C11).

A. A4-non-Abelian group realization

We present a realization based on the non-Abelian
group A4 leading to a texture of two vanishing subtraces
where the related elements lie on the diagonal. We
summarize the irreducible representations (irreps) of A4

in Appendix C.

1. A4 realization of two equalities: (Mν11 =Mν22 =Mν33)

We review briefly the setup given in [11] leading to a
texture of two equalities (Mν11 ¼ Mν22 ¼ Mν33). Taking
the matter content shown in Table VI, one could form a
“neutrino” singlet under SUð2ÞL gauge, A4 flavor and
Lorentz symmetries as

TABLE VI. Matter content and symmetry transformations,
leading to texture with two equalities. i ¼ 1;…; 3 is a family
index.

Fields DLi
lRi

ϕ1 ϕ2 ϕ3 Δi Δ4

SUð2ÞL 2 1 2 2 2 3 3
A4 3 3 1 10 100 3 1
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L ∋ Y½ðDT
LμC

−1iτ2Δ1DLτ þDT
LτC

−1iτ2Δ1DLμÞ
þ ðDT

LτC
−1iτ2Δ2DLe þDT

LeC
−1iτ2Δ2DLτÞ

þ ðDT
LeC

−1iτ2Δ3DLμ þDT
LμC

−1iτ2Δ3DLeÞ�
þ Y 0½DT

LeC
−1iτ2Δ4DLe þDT

LμC
−1iτ2Δ4DLμ

þDT
LτC

−1iτ2Δ4DLτ�; ð84Þ

where τ2 is the weak isospin matrix, and Δi ¼ ð Δþ
iffiffi
2

p
Δo

i

ffiffi
2

p
Δþþ

i
−Δþ

i
Þ

is the Higgs triplet with i ¼ 1;…; 4 as a family index.
WhenΔi acquires a small vacuum expectation value (VEV)
along the neutral direction hΔ0

i i0, then we get (Mν11 ¼
Mν22 ¼ Mν33). As to the charged lepton mass matrix, we
have

L ∋ Y1ðD̄LeeR þ D̄LμμR þ D̄LττRÞϕ1

þ Y2ðD̄LeeR þ ωD̄LμμR þ ω2D̄LττRÞϕ2

þ Y3ðD̄LeeR þ ω2D̄LμμR þ ωD̄LττRÞϕ3: ð85Þ

When ϕi acquire a VEV then we get a diagonal charged
lepton mass:

Ml ¼ diagðY1hϕ1i0 þ Y2hϕ2i0 þ Y3hϕ3i0;
Y1hϕ1i0 þ Y2ωhϕ2i0 þ Y3ω

2hϕ3i0; Y1hϕ1i0
þ Y2ω

2hϕ2i0 þ Y3ωhϕ3i0Þ: ð86Þ

The charged lepton matrix has enough free parameters
fYi; hϕii0g to produce the observed mass hierarchy.

2. A4 realization of two antiequalities:
(−Mν11 =Mν22 =Mν33)

We show here how one can transform the past setup from
two equalities into two antiequalities.
(1) Strategy of basis choice.—Actually, one can con-

sider the two-equalities texture as arising from
invariance under symmetry defined by the gener-
ators G such that

GTMνG ¼ Mν ⇒ equalities: ð87Þ

If one performs a similarity transformation on the
generators G → G0 ≡ I−1GI such that I is unitary
(I−1 ¼ I†), then we see that the form invariance of
Mν under G is equivalent to the invariance of M0

ν ≡
ITMνI under the generators (G0):

GTMνG ¼ Mν ⇒ ITGTIT
−1
ITMνII−1GI ¼ ITMνI

⇒ G0TM0
νG0 ¼ M0

ν: ð88Þ

The question is thus to find I such that equalities in
Mν translate as antiequalities in M0. Actually, in
order to flip the sign of the element at the entry (1,1)

while keeping the signs of the entries (2,2) and
(3,3) intact, it suffices to take I ¼ diagð−i; 1; 1Þ,
such that

Mν11¼Mν22¼Mν33⇒−M0
ν11¼M0

ν22¼M0
ν33: ð89Þ

(2) Basis B0 ¼ ðS0;T0Þ.—For the irrep 3, considering
the expressions of B ¼ ðS; TÞ in Appendix C, we
have

ðx01; x02; x03ÞT ¼ Iðx1; x2; x3ÞT ¼ ð−ix1; x2; x3ÞT;
S0 ¼ I†SI ¼ S ¼ diagð1;−1;−1Þ;

T 0 ¼ I†TI ¼

0
B@

0 i 0

0 0 1

−i 0 0

1
CA: ð90Þ

Note here that the combination (x01y
0
1þx02y

0
2þx03y

0
3),

whose “unprimed” version appears in the singlet
decomposition of 3 ⊗ 3 in the basis (S, T), is not
invariant under the basis (S0; T 0). Actually, from
Eq. (90), we find the following:

ðx1y1 þ x2y2 þ x3y3Þ1 ¼ ð−x01y01 þ x02y
0
2 þ x03y

0
3Þ1

ðx1y1 þ ω2x2y2 þ ωx3y3Þ10
¼ ð−x01y01 þ ω2x02y

0
2 þ ωx03y

0
3 Þ10

ð x1y1 þ ωx2y2 þ ω2x3y3 Þ100
¼ ð−x01y01 þ ωx02y

0
2 þ ω2x03y

0
3 Þ100 : ð91Þ

One can check that when ð x01; x02; x03 ÞT transforms
under T 0, i.e. under (x01 → ix02; x

0
2 → x03; x

0
3 → −ix01),

idem for y0, then ð3 ⊗ 3Þ3s ≡ ð x02y03 þ x03y
0
2; x

0
3y

0
1þ

x01y
0
3; x

0
1y

0
2 þ x02y

0
1ÞT transforms under T 0�. The same

applies for ð3 ⊗ 3Þ3a ≡ ð x02y03 − x03y
0
2; x

0
3y

0
1 − x01y

0
3;

x01y
0
2 − x02y

0
1ÞT .

(3) Basis B0� ¼ ðS0�;T0�Þ.—For the irrep 3, we have T
as a complex matrix in the basis B0. This pushes us to
consider the basis B� ¼ ðS0�; T 0�Þ.

S0� ¼ S0; T 0� ¼

0
BB@

0 −i 0

0 0 1

i 0 0

1
CCA ¼ J−1T 0J∶J

¼ diagð−1; 1; 1Þ ⇒
ðx0�1; x0�2; x0�3ÞT ¼ Jðx01; x02; x03ÞT ¼ ð−x01; x02; x03ÞT

¼ JIðx1; x2; x3ÞT
¼ diagði; 1; 1Þðx1; x2; x3ÞT
¼ ðix1; x2; x3ÞT: ð92Þ
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From Eqs. (90) and (92), we find the following:

ð−x01y01 þ x02y
0
2 þ x03y

0
3Þ1 ¼ ðx0�1y01 þ x0�2y

0
2 þ x0�3y

0
3Þ1;

ð−x01y01 þ ω2x02y
0
2 þ ωx03y

0
3Þ10

¼ ðx0�1y01 þ ω2x0�2y
0
2 þ ωx0�3y

0
3Þ10 ;

ð−x01y01 þ ωx02y
0
2 þ ω2x03y

0
3Þ100

¼ ð x0�1y01 þ ωx0�2y
0
2 þ ω2x0�3y

0
3 Þ100 : ð93Þ

(4) Matter content.—It is the same content expressed in
Table VI, but the generators of A4 are taken to be
expressed in the ðB0 ¼ fS0; T 0gÞ basis. Note here that

ðDT
L ⊗ DLÞ3s ¼ ðDT

LμDLτ þDT
LτDLμ; DT

LτDLe

þDT
LeDLτ; DT

LeDLμ þDT
LμDLeÞT

ð94Þ

transforms as 3�.
(5) Neutrino mass matrix.—With the Lagrangian

L ∋ Y½ðDT
LμC

−1iτ2Δ1DLτ þDT
LτC

−1iτ2Δ1DLμÞ
þ ðDT

LτC
−1iτ2Δ2DLe þDT

LeC
−1iτ2Δ2DLτÞ

þ ðDT
LeC

−1iτ2Δ3DLμ þDT
LμC

−1iτ2Δ3DLeÞ�
þ Y 0½−DT

LeC
−1iτ2Δ4DLe þDT

LμC
−1iτ2Δ4DLμ

þDT
LτC

−1iτ2Δ4DLτ� ð95Þ

we get, upon acquiring small VEVs for Δo
i ; i ¼

1;…; 4, the characteristic constraints (−Mν11 ¼
Mν22 ¼ Mν33 ¼). Note that the Y term represents
the trivial singlet expression in Eq. (93), using
Eq. (94), whereas the Y 0 term represents the trivial
singlet expression of Eq. (91).
By giving appropriate values to the four VEVs

(Δo
i ; i ¼ 1;…; 4) and to the two couplings (Y, Y 0),

one can reconstruct the mass matrix of normal type
[Eq. (36)] leading to the spectrum of mixings of
Eq. (35), or of inverted type [Eq. (38)] leading to the
spectrum of mixings of Eq. (37). Thus, we have built
an explicit A4-flavor model which predicts the
masses, mixing angles and CP phases. Moreover,
one should mention that for type-II seesaw, the
Yukawa couplings (Y, Y 0) are of order unity and
the four VEVs (Δo

i ; i ¼ 1;…; 4) are quite small
compared to the electroweak scale due to the heavy
triplet mass term.

(6) Charged lepton sector.—Note that if DLi transforms
under (B0 ¼ ðS0; T 0Þ), then DLi would transform
under B0� ¼ ðS0�; T 0�Þ. Hence, with the expressions
representing the singlets of Eq. (93) and the rule
10 ⊗ 100 ¼ 1 (cf. Appendix C), the Lagrangian

L ∋ Y1ðD̄LeeR þ D̄LμμR þ D̄LττRÞϕ1

þ Y2ðD̄LeeR þ ωD̄LμμR þ ω2D̄LττRÞϕ2

þ Y3ðD̄LeeR þ ω2D̄LμμR þ ωD̄LττRÞϕ3 ð96Þ

leads, when ϕi acquire a VEV, to a diagonal charged
lepton mass:

Ml ¼ diagðY1hϕ1i0 þ Y2hϕ2i0 þ Y3hϕ3i0;
Y1hϕ1i0 þ Y2ωhϕ2i0 þ Y3ω

2hϕ3i0; Y1hϕ1i0
þ Y2ω

2hϕ2i0 þ Y3ωhϕ3i0Þ: ð97Þ

The charged lepton matrix has enough free param-
eters fYi; hϕii0g to produce the observed mass
hierarchy.

The method elaborated above allows us to move from
any realization imposing a texture involving equalities, to
another realization leading to the corresponding texture but
with equalities replaced by antiequalities. Moreover,
switching indices, say 1 and 2, allows to move from the
texture under study, which is viable even when the strict
lower bound of Σ ≥ 0.09 eV is taken, to that characterized
by (Mν11 ¼ −Mν22 ¼ Mν33) which cannot accommo-
date data.

B. S4-non-Abelian group realization of the texture
(Mν11 = −Mν23 and Mν33 = −Mν22)

We proceed now with a realization based on the non-
Abelian group S4 leading to a texture with two vanishing
subtraces, where the related elements do not lie all on the
diagonal. For completeness, we summarize the irreps of
ðSn; n ¼ 1;…; 4Þ in Appendix D. Although the realized
texture is unviable vis-à-vis data, however by switching
the indices (1 ↔ 3) one has a realization model for the
viable texture (Mν33 ¼ −Mν21 and Mν11 ¼ −Mν22) which,
as we saw, remains viable when the lower bound of Σ
reaches 0.2 eV.

1. S4 bases

The symmetric group of order 4 has two generators, and
can be defined minimally as

S4 ¼ hd; b∶d4 ¼ b3 ¼ 1; db2d ¼ bi
¼ hT; S∶T4 ¼ S2 ¼ ðSTÞ3 ¼ 1i; ð98Þ

leading to dbd ¼ bd2b from the first minimal definition,
and to ðTSÞ3 ¼ 1 from the second one, and where one can
take (T ¼ d; ST ¼ b) linking the two sets of two gener-
ators. S4 has five inequivalent irreps (1; 10; 2; 3 and 30). In
Appendix D 3, we stated the expressions of the generators
in a certain B̃ basis. As was done in the previous subsection,
and in order to flip the sign in the texture, we carry out a
similarity transformation to go from the B̃ basis to another
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basis, call it the B basis, where the symmetry assignments
for the matter fields will be given, and where the texture of
the mass matrix is of the required form. We choose to do
this only for the triplet irreps with similarity matrix given
by U ¼ diagð1;−1; 1Þ, whereas the doublet, and evidently
the singlets, will remain the same. Thus we have
[dð0;00Þ; bð0;00Þ refer to 3ð30; 2Þ] [cf. Eq. (D25)]

d ¼ U†d̃4U ¼ diagð−1;−i; iÞ;

b ¼ U†b̃1U ¼

0
BB@

0 −iffiffi
2

p −iffiffi
2

p

−1ffiffi
2

p −i
2

i
2

1ffiffi
2

p −i
2

i
2

1
CCA; ð99Þ

d0 ¼ U†d̃04U ¼ diagð1; i;−iÞ;

b0 ¼ U†b̃01U ¼

0
BB@

0 −iffiffi
2

p −iffiffi
2

p

−1ffiffi
2

p −i
2

i
2

1ffiffi
2

p −i
2

i
2

1
CCA; ð100Þ

d00 ¼ d̃004 ¼ diagð1;−1Þ;

b00 ¼ b̃001 ¼
1

2

 
−1 −

ffiffiffi
3

p
ffiffiffi
3

p
−1

!
: ð101Þ

One can then check that the following “symmetry adapted
linear combinations” (SALC) multiplication rules are valid
in the adopted working B basis:

�
a1
a2

�
2

⊗
�
b1
b2

�
2

¼ ða1b1 þ a2b2Þ1 ⊕ ða1b2 − a2b1Þ10

⊕

 
a2b2 − a1b1
a1b2 þ a2b1

!
2

ð102Þ

�
a1
a2

�
2

⊗

0
BB@

b1
b2
b3

1
CCA

3

¼

0
BB@

a1b1

−
ffiffi
3

p
2
a2b3 − 1

2
a1b2

−
ffiffi
3

p
2
a2b2 − a1b3

1
CCA

3

⊕

0
BB@

−a2b1
−
ffiffi
3

p
2
a1b3 þ 1

2
a2b2

−
ffiffi
3

p
2
a1b2 þ 1

2
a2b3

1
CCA

30

; ð103Þ

�
a1
a2

�
2

⊗

0
BB@

b1
b2
b3

1
CCA

30

¼

0
BB@

−a2b1
−
ffiffi
3

p
2
a1b3 þ 1

2
a2b2

−
ffiffi
3

p
2
a1b2 þ 1

2
a2b3

1
CCA

3

⊕

0
BB@

a1b1

−
ffiffi
3

p
2
a2b3 − 1

2
a1b2

−
ffiffi
3

p
2
a2b2 − a1b3

1
CCA

30

; ð104Þ

0
BB@
a1
a2
a3

1
CCA

3ð30Þ

⊗

0
BB@
b1
b2
b3

1
CCA

3ð30Þ

¼ ða1b1−a2b3−a3b2Þ1

⊕

0
BB@a1b1þ 1

2
ða2b3þa3b2Þffiffi

3
p
2
ða2b2þa3b3Þ

1
CCA

2

⊕

0
BB@

a3b3−a2b2
−a1b3 −a3b1
a1b2þa2b1

1
CCA

3

⊕

0
BB@
−a3b2þa2b3
a2b1 −a1b2
a1b3 −a3b1

1
CCA

30

; ð105Þ

0
BB@

a1
a2
a3

1
CCA

3

⊗

0
BB@

b1
b2
b3

1
CCA

30

¼ ða1b1 − a2b3 − a3b2Þ10

⊕

0
BB@

ffiffi
3

p
2
ða2b2 þ a3b3Þ

−a1b1 − 1
2
ða2b3 þ a3b2Þ

1
CCA

2

⊕

0
BB@

−a3b2 þ a2b3
a2b1 − a1b2
a1b3 − a3b1

1
CCA

3

⊕

0
BB@

a3b3 − a2b2
−a1b3 − a3b1
a1b2 þ a2b1

1
CCA

30

: ð106Þ

Noting that v� transforms according to the irrepD� provided
v ∼D (i.e. v → Dv), which gives v† → v†D†, and observing
that taking trace and taking conjugate commute, which leads
toD being equivalent toD� for S4 where the corresponding
character table is real (cf. Table X), we state for complete-
ness the rules involving conjugate irreps, stressing the fact
that the singlet in, say (3 ⊗ 3), changes upon conjugation
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from (a1b1 − a2b3 − a3b2) to (a�1b1 þ a�2b2 þ a�3b3) in
(3� ⊗ 3):

�
a�1
a�2

�
2�
⊗
�
b1
b2

�
2

¼ ða�1b1 þ a�2b2Þ1 ⊕ ða�1b2 − a�2b1Þ10

⊕
�
a�2b2 − a�1b1
a�1b2 þ a�2b1

�
2

ð107Þ

�
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; ð108Þ
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; ð109Þ

0
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3�ð30�Þ
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BB@
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1
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: ð116Þ

2. Type-II seesaw matter content

We present now a type-II seesaw scenario leading to a
neutrino mass matrix of the required form. The matter
content is summarized in Table VII.
The Lorentz-, gauge- and S4-invariant terms relevant for

the neutrino mass matrix are

L∋YðDT
L1C

−1iτ2DL1−DT
L2C

−1iτ2DL3−DT
L3C

−1iτ2DL2ÞΔ4

þY 0½ðDT
L3C

−1iτ2DL3−DT
L2C

−1iτ2DL2ÞΔ1

þðDT
L1C

−1iτ2DL3þDT
L3C

−1iτ2DL1ÞΔ3

−ðDT
L1C

−1iτ2DL2þDT
L2C

−1iτ2DL1ÞΔ2�: ð117Þ

The YðY 0Þ term picks up the singlet (triplet) combination
from the product of the two triplets (DT

Li
and DLi

)
[Eq. (105)], before multiplying it with the Higgs flavor
singlet Δ4 (triplet Δi). We get, upon acquiring small
VEVs for Δo

i ; i ¼ 1;…; 4, the characteristic constraints
(Mν33 ¼ −Mν22 ¼ Y 0hΔ0

1i) and (Mν11 ¼ −Mν23 ¼ YhΔ0
4i).

3. Charged lepton sector

In constructing the charged lepton mass matrix Ml, we
did not find a way to construct a nondegenerate diagonal
mass matrix. However, we can build a generic mass matrix
and impose suitable hierarchy conditions in order to
diagonalize Ml by rotating infinitesimally the left-handed
charged lepton fields. This means that, up to approxima-
tions of the order of the charged lepton mass-ratios
hierarchies, we are in the flavor basis, and the aforemen-
tioned phenomenological study is valid, especially that,
after all, these corrections due to rotating the fields are not
larger than other, hitherto discarded, corrections coming,
say, from a radiative renormalization group running from
the seesaw high scale to the observed data low scale.
Noting that DLi transforming under (D) implies that DLi

would transform under D�, one can use Eq. (110) of the
product (3� ⊗ 3) and get output irreps of (1), to bemultiplied
by a Higgs flavor singlet ϕI , and of (2), to be multiplied by a
Higgs flavor doublet ϕII [cf. Eq. (102)], and of (3�), to be
multiplied by a Higgs flavor triplet ϕIII [cf. Eq. (110)], and
finally of (30�), to be multiplied by another Higgs flavor
triplet ϕIII0 [cf. Eq. (110)]. The relevant Lagrangian is

L ∋ λ1ðD̄L1lR1 þ D̄L2lR2 þ D̄L3lR3ÞϕI

þ λ2

�
D̄L1lR1ϕII1 −

1

2
ðD̄L2lR2 þ D̄L3lR3ÞϕII1 −

ffiffiffi
3

p

2
ðD̄L2lR3 þ D̄L3lR2ÞϕII2

�
þ λ3½ð−D̄L3lR2 þ D̄L2lR3ÞϕIII1 þ ðD̄L1lR2 − D̄L3lR1ÞϕIII2 þ ð−D̄L1lR3 þ D̄L2lR1ÞϕIII3 �
þ λ03½ðD̄L3lR3 − D̄L2lR2ÞϕIII0

1
þ ðD̄L1lR3 þ D̄L2lR1ÞϕIII0

2
− ðD̄L1lR2 þ D̄L3lR1ÞϕIII0

3
�; ð118Þ

TABLE VII. Matter content and symmetry transformations,
leading to texture with two antiequalities. i ¼ 1;…; 3 is a family
index.

Fields DLi
Δi Δ4 lRi

ϕI ϕII ϕIII ϕ0
III

SUð2ÞL 2 3 3 1 2 2 2 2
S4 3 3 1 3 1 2 3 30
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which leads, whenϕi; i ∈ fI; II; III; III0g acquire aVEV, to
a charged lepton mass:

Ml ¼ λ1

0
BB@

hϕIi0 0 0

0 hϕIi0 0

0 0 hϕIi0

1
CCA

þ λ2

0
BB@

hϕII1i0 0 0

0 − 1
2
hϕII1i0 −

ffiffi
3

p
2
hϕII2i0

0 −
ffiffi
3

p
2
hϕII2i0 − 1

2
hϕII1i0

1
CCA

þ λ3

0
BB@

0 hϕIII2i0 −hϕIII3i0
hϕIII3i0 0 hϕIII1i0
−hϕIII2i0 −hϕIII1i0 0

1
CCA

þ λ03

0
BB@

0 −hϕIII0
3
i0 hϕIII0

2
i0

hϕIII0
2
i0 −hϕIII0

1
i0 0

−hϕIII0
3
i0 0 hϕIII0

1
i0

1
CCA: ð119Þ

We state now two ways to get a generic Ml.
(i) We assume a VEV hierarchy such that the first

components are dominant and comparable (hϕIi0 ≈
hϕII1i0≈hϕIII1i0≈hϕIII0

1
i0≈v, whereas other VEVs

can be neglected). We do not study the Higgs scalar
potential, but assume that its various free parameters
can be adjusted to lead naturally to this assumption.
This leads to a diagonal Ml:

Ml ≈ vdiag

�
λ1 þ λ2; λ1 −

1

2
λ2 − λ03; λ1 −

1

2
λ2 þ λ03

�
:

ð120Þ

The mass matrix is approximately diagonal with
enough parameters to produce the observed charged
lepton mass hierarchies by taking

me ≈ ðλ1 þ λ2Þv; mμ ≈
�
λ1 −

1

2
λ2 − λ03

�
v;

mτ ≈
�
λ1 −

1

2
λ2 þ λ03

�
v: ð121Þ

Thus, we are, up to a good approximation which can
be adjusted to be of the order of the mass ratio
≤10−2, in the flavor basis. The effect of the “small”
neglected nondiagonal terms is to require rotating
infinitesimally the left-handed charged lepton fields,
leading thus to corrections on the observed VPMNS of
the same small order 10−2.

(ii) Looking at Eq. (119), we see that we have nine free
VEVs and four free perturbative coupling constants,
appearing in nine linear combinations, a priori

enough to construct the generic 3 × 3 complex
matrix. Thus, Ml can be cast in the form

Ml ¼

0
B@

aT

bT

cT

1
CA⇒ MlM

†
l ¼

0
B@

a:a a:b a:c

b:a b:b b:c

c:a c:b c:c

1
CA;

ð122Þ

where a, b and c are three linearly independent
vectors, so taking only the following natural
assumption on the norms of the vectors,

kak=kck ¼ me=mτ ∼ 3 × 10−4;

kbk=kck ¼ mμ=mτ ∼ 6 × 10−2; ð123Þ

one can diagonalize MlM
†
l by an infinitesimal

rotation as was done in [8], which proves that we
are to a good approximation in the flavor basis.

VII. SUMMARY AND CONCLUSION

In this study, we carry out a systematic study of the
Majorana neutrino mass matrix characterized by two 2 × 2
vanishing subtraces. In light of the recent experimental data
for oscillation and nonoscillation parameters, we update the
results of the past study [17]. We introduce the analytical
expressions for A and B coefficients as given by Eq. (15),
and the leading order term in sz for the neutrino physical
parameter Rν. Moreover, all full correlations, resulting from
the full numerical analysis taking all experimental con-
straints into consideration, are very well approximated by
exact correlations assuming “zero” solar-to-atmospheric
ratio Rν, and in many cases they even do not deviate much
from correlations resulting from roots of the leading order
of Rν. This helps in studying analytically the 15 textures
and justifies their viability to accommodate data. Actually,
the two vanishing trace conditions put four real constraints
on Mν, thus we have only five free parameters correspond-
ing to the three mixing angles (θx ≡ θ12; θy ≡ θ23;
θz ≡ θ13), Dirac phase δ and the solar neutrino mass
difference δm2. In contrast to [17], we vary the five
parameters in their allowed experimental range and check
whether or not the texture satisfies the bounds of jΔm2j
besides those in Eq. (9). We find that only seven textures
out of the 15 can accommodate the experimental data with
only one case viable at both hierarchy types. We notice that
neitherm1 for normal ordering norm3 for inverted ordering
does reach a vanishing value. Therefore, there are no
signatures for the singular textures for all cases at all σ
levels with either hierarchy type. We find the phases δ, ρ
and σ are strongly restricted at all σ levels with either
hierarchy types. We present 15 correlation plots for each
viable texture for both hierarchy types (red and blue plots
correspond to normal and inverted orderings respectively)
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generated from the accepted points of the neutrino physical
parameters at the 3-σ level. Moreover, we introduceMν for
each viable texture for both orderings at one representative
point at the 3-σ level. The point is chosen to be as close as
possible to the best fit values of the mixing and Dirac phase
angles.
Finally, we present the symmetry realization for the two-

vanishing traces texture, irrespective of whether or not it
was accommodating data. We present two examples based
on non-Abelian groups. The first one uses the alternating
group A4 within the type-II seesaw scenario to realize a
texture where the defining elements lie on the diagonal. The
second example uses the symmetry group S4 to find a
realization, within type-II seesaw scenario, of a two-
vanishing-subtraces texture where the elements defining
the texture do not lie all on the diagonal.
We have not discussed the question of the scalar

potential and finding its general form under the imposed
symmetry. Nor did we deal with the radiative corrections
effect on the phenomenology and whether or not it can
spoil the form of the texture while running from the
ultraviolet scale where the seesaw scale imposes the texture
form to the low scale where phenomenology was analyzed.
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APPENDIX A: FAILING TEXTURES

We list now all the unviable eight textures, where, for
each texture, studying the roots of (m2

23 −m2
13) gives a

justification for the failure to accommodate data.

1. Texture ðC33;C23Þ≡ ðMee +Mμμ = 0;Mee +Mτμ = 0Þ
A and B are given by

A1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞ2;
A2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞ2; A3 ¼ s2z þ s2yc2z ;

B1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;
B2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;
B3 ¼ s2z þ sycyc2z : ðA1Þ

We find

m2
23 −m2

13 ¼
s4yð1 − 2=tyÞ
c2yð1þ s2yÞ

þOðszÞ:

We find that 2
ty
> 1; ∀ θy ∈ ½41o; 51; 3o� implying

m2 < m1, and this result will not be changed by including
higher order terms, or by taking the exact result. Actually
the exact result gives always ðm2

23 −m2
13Þ as negative and

of order unity. Thus, we deduce that this texture is excluded
experimentally.

2. Texture ðC11;C23Þ ≡ ðMμμ +Mττ = 0;Mee +Mτμ = 0Þ
A and B are given by

A1 ¼ c2xs2z þ s2xe−2iδ; A2 ¼ s2xs2z þ c2xe−2iδ; A3 ¼ c2z ;

B1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;
B2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;
B3 ¼ s2z þ sycyc2z : ðA2Þ

We find

m2
23−m2

13¼
c22y
c2x

þ s2xs2yc2ycδð−1þ s2yÞsz
c22x

þOðs2zÞ: ðA3Þ

We find that at order OðszÞ, we have ðm2
23 −m2

13 ≥ 0Þ.
However, we checked that by including the orderOðs2zÞ, the
sign would be inverted (m2

23 −m2
13 ≤ 0), such that higher

orders, indeed the exact result, will no longer change this
sign. So, the texture is excluded experimentally.

3. Texture ðC22;C23Þ≡ ðMee +Mττ = 0;Mee +Mτμ = 0Þ
A and B are given by

A1 ¼ c2xc2z þ ð−cxcysz þ sxsye−iδÞ2;
A2 ¼ s2xc2z þ ð−sxcysz − cxsye−iδÞ2; A3 ¼ s2z þ c2yc2z ;

B1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;
B2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;
B3 ¼ s2z þ sycyc2z : ðA4Þ

We find

m2
23 −m2

13 ¼
c4yð1 − 2tyÞ

s2yc2xð1þ s2xÞ
þOðszÞ: ðA5Þ

We find that 2ty > 1; ∀ θy ∈ ½41o; 51; 3o� implying
m2 < m1, and this result will not be changed by including
higher order terms, or by taking the exact result which
shows that δm2 is negative and of order unity. No zeros
were found for the (m2

23 −m2
13) expression. Thus, we

deduce that this texture is excluded experimentally.
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4. Texture ðC33;C11Þ≡ ðMee +Mμμ = 0;Mμμ +Mττ = 0Þ
A and B are given by

A1¼c2xc2zþð−cxsysz−sxcye−iδÞ2;
A2¼s2xc2zþð−sxsyszþcxcye−iδÞ2; A3¼s2zþs2yc2z ;

B1¼c2xs2zþs2xe−2iδ; B2¼s2xs2zþc2xe−2iδ; B3¼c2z : ðA6Þ

We find

m2
23 −m2

13 ¼
c42y
c2x

þOðszÞ: ðA7Þ

We find that the (m2
23 −m2

13)-leading term is positive but
of order unity, for all the allowed values of (θx, θy). This
fact remains intact in the case of the exact result for the
(m2

23 −m2
13) expression, such that there are no zeros for this

expression for all allowed (θx; θy; θz; δ); whence, the
texture is excluded.

5. Texture ðC22;C11Þ≡ ðMee +Mττ = 0;Mμμ +Mττ = 0Þ
A and B are given by

A1¼c2xc2zþð−cxcyszþsxsye−iδÞ2;
A2¼s2xc2zþð−sxcysz−cxsye−iδÞ2; A3¼s2zþc2yc2z ;

B1¼c2xs2zþs2xe−2iδ; B2¼s2xs2zþc2xe−2iδ; B3¼c2z : ðA8Þ

We find

m2
23 −m2

13 ¼
s22y
c2x

þOðszÞ: ðA9Þ

We find that the m2
23 −m2

13-leading term is positive but
of order unity, for all the allowed values of (θx; θy; θz; δ).
This fact remains intact in the case of the exact result for the
(m2

23 −m2
13) expression, such that there are no zeros for this

expression. Actually, for the exact result we have

m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ −4c2zcyðc2yc2z − c2zÞ
× ð−cyc2x þ s2xszsycδÞ: ðA10Þ

The zeros of (Numðm2
23 −m2

13Þ) give cδ ¼ 1
tyt2xsz

> 1 for all

acceptable values of (θx, θy, θz). Thus, the texture is
excluded phenomenologically.

6. Texture ðC13;C12Þ≡ ðMμe +Mτμ = 0;Mμe +Mττ = 0Þ
A and B are given by

A1 ¼ cxczð−cxsysz − sxcye−iδÞ
þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;

A2 ¼ sxczð−sxsysz þ cxcye−iδÞ
þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;

A3 ¼ szsycz þ syc2zcy;

B1 ¼ cxczð−cxsysz − sxcye−iδÞ þ ð−cxcysz þ sxsye−iδÞ2;
B2 ¼ sxczð−sxsysz þ cxcye−iδÞ þ ð−sxcysz − cxsye−iδÞ2;
B3 ¼ syczsz þ c2yc2z : ðA11Þ

We find

m2
23 −m2

13 ¼
c4ys2xsyð1 − tyÞcδ − c2ys2yc2x

s2xc2xs2yc2yð1þ s2yÞ
þOðszÞ: ðA12Þ

We find that the zeros of the m2
23 −m2

13-leading term

should satisfy (cδ ¼ t2y
t2xsyð1−tyÞ ∉ ½−1;þ1�) for acceptable

(θx, θy), and so there are no zeros at OðszÞ. Actually, we
could find by scanning over allowed values of (θx; θy; θz; δ)
that (m2

23 −m2
13 < 0). Thus texture is rejected.

7. Texture ðC13;C22Þ≡ ðMμe +Mτμ = 0;Mee +Mττ = 0Þ
A and B are given by

A1 ¼ cxczð−cxsysz − sxcye−iδÞ
þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;

A2 ¼ sxczð−sxsysz þ cxcye−iδÞ
þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;

A3 ¼ szsycz þ syc2zcy;

B1 ¼ c2xc2z þ ð−cxcysz þ sxsye−iδÞ2;
B2 ¼ s2xc2z þ ð−sxcysz − cxsye−iδÞ2;
B3 ¼ s2z þ c2yc2z : ðA13Þ

We find

m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ −2czðc2yc2z − s2zÞ½s2xsyðc2zs2y þ c2yÞcδ
þ szsys2yc2x�: ðA14Þ

The zeros of (Numðm2
23 −m2

13Þ) give, when plugged in
m13, m23, the approximation (m13 ¼ m23 ¼ 1). As men-
tioned before, this leads to rejection of the texture. This
comes because we have at these zeros a degenerate

A. ISMAEL, E. I. LASHIN, and N. CHAMOUN PHYS. REV. D 107, 035017 (2023)

035017-32



spectrum (m1 ≈m2 ≈m3), and so m2
3 −m2

1 ≈m2
2 −m2

1,

thus forming (Rν ≈
m2

2
−m2

1

m2
3
−m2

1

≈ 1), which is rejected.

8. Texture ðC23;C12Þ≡ ðMee +Mμτ = 0;Mμe +Mττ = 0Þ
A and B are given by

A1 ¼ c2xc2z þ ð−cxsysz − sxcye−iδÞð−cxcysz þ sxsye−iδÞ;
A2 ¼ s2xc2z þ ð−sxsysz þ cxcye−iδÞð−sxcysz − cxsye−iδÞ;
A3 ¼ s2z þ sycyc2z ;

B1 ¼ cxczð−cxsysz − sxcye−iδÞ þ ð−cxcysz þ sxsye−iδÞ2;
B2 ¼ sxczð−sxsysz þ cxcye−iδÞ þ ð−sxcysz − cxsye−iδÞ2;
B3 ¼ syczsz þ c2yc2z : ðA15Þ

We find

m2
23 −m2

13 ¼
Numðm2

23 −m2
13Þ

Denðm2
23 −m2

13Þ
∶

Numðm2
23 −m2

13Þ ¼ ðs2z − c2zc2yÞfs2x½c3zðc3y − s3yÞ
− szc2zð1 − 3sycyÞ − c2yðcy þ syÞcz
− szs2y�cδ − c2x½c2zð4c2y − 2Þ
þ szs2yðsy þ cyÞcz − c2y�g: ðA16Þ

The zeros of (Numðm2
23 −m2

13Þ) give, when plugged in
m13, m23, the approximation (m1 ≈m2 ≈m3), which—like
the previous pattern—is rejected phenomenologically, as it
cannot accommodate a “small” value for Rν.

APPENDIX B: MAJORANA PHASES

We state here for each of the viable patterns the leading
orders, in powers of sz, of the Majorana phases, up to
multiples of π=2. Any constraint on (θx, θy and δ) stemming
from meeting the acceptable value of (Rν ∼ 10−2) would be
reflected as a constraint on ρ and σ.

(i) Texture ðC22;C33Þ

ρ ¼ 1

2
tan−1

�
s2δs2x

1 − 2s2xs2δ

�
þOðszÞ;

σ ¼ 1

2
tan−1

�
s2δc2x

1 − 2c2xs2δ

�
þOðszÞ: ðB1Þ

(ii) Texture ðC22;C12Þ

ρ ¼ 1

2
tan−1

�
ρN3

ρD3

�
þOðszÞ;

σ ¼ 1

2
tan−1

�
σN3

σD3

�
þOðszÞ; ðB2Þ

where

ρN3 ¼ 4sxsδ

���
cδ þ

1

4

�
c2y − c2δ −

1

2

�
cyc3x

−
1

2
sxs2yðc2y − 2Þcδc2x þ

�
cys2yc2δ þ

1

4
cy

�
cx

−
1

2
sxs2ycδ

�
;

σN3 ¼ 2sδ

�
ðc4y − 3c2y þ 2Þcδc3x

−
��

2c2δ þ
1

2

�
c2y − 2c2δ − 1

�
sxcyc2x

− s4ycδcx −
1

2
sxcys2y

�
;

ρD3 ¼ ½c2δc4y þ 2ð1 − 3c2δÞc2y þ 2c2δ�c4x
− 4sxcycδ

��
c2δ −

1

4

�
c2y − c2δ

�
c3x

− ½c2δc4y þ ð3 − 8c2δÞc2y þ 3c2δ�c2x
þ 2sxcycδ

�
c2δc2y − 2c2δ þ

1

2

�
cx þ c2δs2y;

σD3 ¼ ½c2δc4y þ 2ð1 − 3c2δÞc2y þ 2c2δ�c3x
− 4sxcycδ

��
c2δ −

1

4

�
c2y − c2δ

�
c2x

− ½c2δc4y þ ð1 − 4c2δÞc2y þ c2δ�cx
− sxs2ycycδ: ðB3Þ

(iii) Texture (C11, C12)

ρ ¼ 1

2
tan−1

�ðcxc2y − 2sxcycδÞsδ
cxc2ycδ − sxcyc2δ

�
þOðszÞ;

σ ¼ 1

2
tan−1

�ðsxc2y þ 2cxcycδÞsδ
sxc2ycδ þ cxcyc2δ

�
þOðszÞ: ðB4Þ

(iv) Texture (C33, C12)

ρ ¼ 1

2
tan−1

�
ρN2

ρD2

�
þOðszÞ;

σ ¼ 1

2
tan−1

�
σN2

σD2

�
þOðszÞ; ðB5Þ
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where

ρN2¼−sxcycδ½2sxc2xc5ycδþðc3xþ4cxs2xc2δÞc4y
−2sxðc2xþc2xÞc3ycδþcxðs2x−c2yÞþ2sxc2xcycδ�;

σN2¼2cxcysδ

�
ðc5y−3c3yþ2cyÞc3xcδ

þ2sx

�
c4yc2δ−

1

4
c4yþ

1

4

�
c2x−cys4ycδcx−

1

8
sxs22y

�
;

ρD2¼−
1

4
s22xc2δc

6
yþs2xcδ

��
2c2δ−

3

2

�
c2x−c2δ

�
c5y

þ½ð−6c2δþ8Þc4xþð8c2δ−7Þc2x−c2δ�c4y
þ1

2
s2xcδð1−4c2xÞc3y½ð4c2δ−9Þc4x

þð−6c2δþ7Þc2xþc2δ�c2yþ
1

2
s2xðc2xþc2xÞcδcy

þc2xc2x;

σD2¼½ð2c6y−6c4yþ4c2yÞc2δ−c6yþ8c4y−9c2yþ2�c4x
þ4sxcycδ

�
c4yc2δ−

3

4
c4y−c2yþ

3

4

�
c3x

þ½ð−2c6yþ4c4y−2c2yÞc2δþc6y−9c4y

þ11c2y−3�c2xþcysxcδðc4yþ3c2y−2Þcx
þ2c4y−3c2yþ1: ðB6Þ

(v) Texture (C33, C13)

ρ ¼ 1

2
tan−1

�
ρN1

ρD1

�
þOðszÞ;

σ ¼ 1

2
tan−1

�
σN1

σD1

�
þOðszÞ; ðB7Þ

where

ρN1 ¼ sys2xs2δ½syð−1þ c2xðc2y þ 2ÞÞ − s2xc2ycδ�;
ρD1 ¼ ðc2δc4y − 2c2ys2δ − 4c2δ þ 3Þc4x

− s2xc2xsycδð1 − c2yc2δÞ
þ c2xs2yðc2y þ 3Þc2δ − c2δsyðsy þ s2xc2ycδÞ;

σN1 ¼ s2δc2x½c2xc2yð1 − t2xc2yÞ − c2x þ s2xsyc2ycδ�;
σD1 ¼ ðc2δc4y − 2c2ys2δ − 4c2δ þ 3Þc4x

− s2xc2xsycδð1 − c2yc2δÞ
− ðc2δc4y − 2c2y − 2c2δ þ 3Þc2x
þ syðsy þ s2xcδÞ: ðB8Þ

(vi) Texture (C11, C13)

ρ ¼ 1

2
tan−1

�
s2xsδðsy − txcδÞ
s2xsycδ − s2xc2δ

�
þOðszÞ;

σ ¼ 1

2
tan−1

�
2cxsδðcδ þ txsyÞ
2sxsycδ þ cxc2δ

�
þOðszÞ: ðB9Þ

(vii) Texture (C13, C23)

ρ ¼ 1

2
tan−1

�
ρN4

ρD4

�
þOðszÞ;

σ ¼ 1

2
tan−1

�
σN4

σD4

�
þOðszÞ; ðB10Þ

where

ρN4 ¼ 4sxsysδ

�
−sycxcys2xc2δ þ

1

2
sxsyðc2xc2y − c2xÞcδ

þ 1

4
cxðsyc2xcy þ s2xÞ

�
;

σN4 ¼ 2sysδ

��
c3xðc2y − 2Þcδ − 2sxc2xcy

�
c2δ þ

1

4

�

þ cxs2ycδ þ
1

2
sxcy

�
sy þ

1

2
sxc2x

�
;

ρD4 ¼ −4sxcxcys2ys2xc3δ þ 2s2ys2xðc2xc2y − c2xÞc2δ
þ sxcx½s2xsy − cys2yðc2x − 2Þ�cδ
þ s2x½c2xc4y þ ð1 − 3c2xÞc2y − syc2xcy þ c2x�;

σD4 ¼ ½sycy þ ðc4y − 3c2y þ 2Þc2δ�c3x
− sxcδ½sy − cys2yð4c2δ − 1Þ�c2x
− ½sycy þ ðc4y − 2c2y þ 2Þc2δ�cx
− sxcys2ycδ: ðB11Þ

APPENDIX C: A4-IRREPS

A4 is the group of even permutations of four objects. It is
defined in terms of two generators ðS; TÞ such that

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1; ðC1Þ

leading also to ðTSÞ3 ¼ 1. It has four irreps (1, 10, 100, 3)
(i) 1: S ¼ 1, T ¼ 1
(ii) 10: S ¼ 1, T ¼ ω∶ω3 ¼ 1
(iii) 100: S ¼ 1, T ¼ ω2

(iv) 3: S¼
�1 0 0

0 −1 0

0 0 −1

�
, T ¼

� 0 1 0

0 0 1

1 0 0

�
≡ ð123Þ.

We have

10 ⊗ 10 ¼ 100;100 ⊗ 10 ¼ 1; 100 ⊗ 100 ¼ 10;1⊗ 1¼ 1; ðC2Þ
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3 ⊗ 3 ¼ 1 ⊕ 10 ⊕ 100 ⊕ 3s ⊕ 3a∶ ðC3Þ

ðx1; x2; x3 ÞT ⊗ ðy1; y2; y3 ÞT
¼ ðx1y1 þ x2y2 þ x3y3 Þ1
⊕ ðx1y1 þω2x2y2 þωx3y3 Þ10
⊕ ðx1y1 þωx2y2 þω2x3y3 Þ100
⊕ ðx2y3 þ x3y2; x3y1 þ x1y3; x1y2 þ x2y1 ÞT3s
⊕ ðx2y3 − x3y2; x3y1 − x1y3; x1y2 − x2y1 ÞT3a : ðC4Þ

APPENDIX D: Sn-IRREPS

The symmetric group of order n, Sn is the group of
permutations of Nn ¼ f1;…ng. It is of order n!, and for
n ≥ 3, it is non-Abelian. Any permutation can be decom-
posed as a product of cycles with disjoint supports, which
in turn can be decomposed as a product of transpositions.
S1 is the trivial group consisting of just one element. Any
group G is divided into conjugacy classes according to the
equivalence relation ða ∼ b ⇔ ∃ c ∈ G∶b ¼ c−1acÞ. The
number of equivalence classes is equal to the number of
inequivalent unitary irreps, which is depicted by the
corresponding character table showing, for each irrep D,
listed in upper line of the table, and each equivalence class
C, listed in the leftmost column of the table, the trace
ðχDðgÞÞ of the irrep D evaluated at one representative
member g of the class C.
In order to construct, for a group G of order nG, the

character table, for nc classes (the class sCh ¼ ½g� includes
s elements g all of order h4) and nr inequivalent unitary
irreps (the number of inequivalent unitary n-dimenional
irrep Dn is mn), one usually uses the following rules:

nc ¼ nr;
X
n∈N

mnn2 ¼ nG; ðD1Þ

X
a∈G

χαðaÞχ�βðaÞ ¼ nGδαβ; ðD2Þ

X
α∈irreps

χαðaÞχ�αðbÞ ¼
nG

card½a� δ½a�½b�; ðD3Þ

χα⊗βðgÞ ¼ χαðgÞχβðgÞ; ∀ g ∈ G; ðD4Þ

D ¼ ⨁
α∈irreps

mαα ⇒ mα ¼
1

nG

X
g∈G

χ�αðgÞχDðgÞ; ðD5Þ

Pαϕ ¼
X
g∈G

χ�αðgÞg:ϕ: ðD6Þ

The “orthogonality” relations [Eq. (D2)] means that the
columns of the character table are orthogonal and that the
inner product of each column with itself is the cardinality of
the group. Since the product of the character table matrix
with its conjugate is a scalar matrix, then the rows of the
character table are as well orthogonal with squared-norm
equal to nG [Eq. (D3)]. The “direct product” rule [Eq. (D4)]
gives the character for a direct product of irreps, whereas
Eq. (D5) gives the number mα the irrep α appears in the
decomposition of the reducible representation D. In order
to find the linear combination corresponding to a given
symmetry characterized by an irrep, or what the chemists
call the symmetry adapted linear combination (SALC), one
uses Eq. (D6) which gives the projection of the “basis
function” ϕ onto the subspace transforming under the
irrep α.

1. S2
It has two elements: the identity E, and the transposition

A ¼ ð12Þ, with A2 ¼ 1. We have two classes: (1C1 ¼ fEg;
1C2 ¼ fAg). There are two singlet irreps (1; 10), with
character Table VIII.
Taking ðx1; x2ÞT as the defining (fundamental)

representation transforming under (E ¼ diagð1; 1Þ;
A≡ ð12Þ ¼ ð0

1
1
0
Þ), then applying Eq. (D6), we find

x1 þ x2 ∼ 1

x1 − x2 ∼ 10: ðD7Þ

2. S3
In terms of cycles’ notation, we have the six-elements

symmetry group of order 3: S3 ¼ fE;A ¼ ð23Þ; B ¼
ð13Þ; C ¼ ð12Þ; D ¼ ð132Þ; F ¼ ð123Þg which can be di-
vided into three classes ð1C1 ¼ fEg; 3C2 ¼ fA;B; Cg;
2C3 ¼ fD;FgÞ, so we have three unitary inequivalent
irreps, and by applying Eq. (D1),X
n∈N

mn ¼ 3;
X
n∈N

mnn2 ¼ 6⇒m1¼ 2; m2¼ 1: ðD8Þ

Applying Eqs. (D2) and (D3), we have the character table
of S3 (Table IX).

TABLE VIII. Character table of S2.

Classes=irreps χ1 χ10

1C1 1 1
1C2 1 −1

4The order of an element g is the order of the subgroup generated
by this element and is equal to (minfn ∈ Nnf0g∶gn ¼ 1g). For a
permutation written as a product of disjoint cycles, the order is the
least common multiplier of the cardinalities of these cycles’
supports.
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One can apply Eq. (D6) in order to find the SALC, but,
sometimes, it turns out to be more illuminating to inves-
tigate directly the irreps. Concretely, if one takes the
defining 3-dim representation of the permutations acting
on (x1, x2, x3), then one can check that its character values
for the three classes (1C1; 2C3; 3C2) are respectively
(3,0,1) which, by applying Eq. (D5), gives (3 ¼ 1 ⊕ 2).
Now, one can see directly that the combination W≡
ðx1 þ x2 þ x3Þ=

ffiffiffi
3

p
is invariant under all permutations

expressing, thus, the irrep 1. The corresponding orthogo-
nal subspace, spanned by, say, (V ≡ ðx3 − x2Þ=

ffiffiffi
2

p
, and

W ≡ ðx2 þ x3 − 2x1Þ=
ffiffiffi
3

p
) is also invariant under the

action of the permutations representation, which gives
the SALC for the irrep 2. The symmetry group S3 is
generated by two elements, like ðA;CÞ or ðB; FÞ. In the
space hV;Wi spanned by the basis (V, W), we have

A ¼
 
−1 0

0 1

!
; C ¼ 1

2

 
1

ffiffiffi
3

p
ffiffiffi
3

p
−1

!
: ðD9Þ

We see here the advantage of taking (A, C) as generators
since both belong to the same conjugacy class, having
thus common character, and that A is diagonal in the basis
(V, W), which makes its action evident. For example,
if we take two defining irreps on hV;Wi with four linear
combinations,

ðx1; x2ÞT ∼ 2; ðy1; y2ÞT ∼ 2∶

L1 ¼ ðx1y1þ x2y2Þ; L2 ¼ ðx1y1 − x2y2Þ;
L3 ¼ ðx1y2þ x2y1Þ; L4 ¼ ðx1y2 − x2y1Þ; ðD10Þ

then we have

ðL1 !A;C L1Þ ⇒ L1 ∼ 1;

ðL4 !A;C − L4Þ ⇒ L4 ∼ 10;

ðL3; L2ÞT !AðCÞAðCÞðL3; L2ÞT ⇒ ðL3; L2ÞT ∼ 2: ðD11Þ

Moreover, if we assume y0 ∼ 10 then it is immediate to
check that ðy0x2;−y0x1ÞT ∼ 2 so we get ð10 ⊗ 2 ¼ 2Þ.
Similarly, one checks that ð1 ⊗ 1 ∼ 1; 10 ⊗ 10 ∼ 1;
10 ⊗ 1 ∼ 10; 1 ⊗ 2 ∼ 2Þ.
One could look at the basis ðX; Y; ZÞ as resulting from

applying onto the canonical basis a similarity transforma-
tion defined by the unitary matrix U:

U ¼

0
BB@

1ffiffi
3

p 0
ffiffi
2

pffiffi
3

p

1ffiffi
3

p 1ffiffi
2

p −1ffiffi
6

p

1ffiffi
3

p −1ffiffi
2

p −1ffiffi
6

p

1
CCA;

Acan ¼ ð23Þ ¼

0
BB@

1 0 0

0 0 1

0 1 0

1
CCA

⇒ A ¼ U† × Acan ×U ¼

0
BB@

1 0 0

0 −1 0

0 0 1

1
CCA;

Ccan ¼ ð12Þ ¼

0
BB@

0 1 0

1 0 0

0 0 1

1
CCA

⇒ C ¼ U† × Ccan ×U ¼

0
BB@

1 0 0

0 1
2

ffiffi
3

p
2

0
ffiffi
3

p
2

−1
2

1
CCA; ðD12Þ

which shows explicitly that 3 ¼ 1 ⊕ 2. Actually, one can
look at ðU†gUÞij as the inner product of the ith and jth
columns of the matrix U using g as metric. Another
common similarity transformation, when the generators
are taken as (B, F), is given by Uω:

Uω ¼ 1ffiffiffi
3

p

0
BB@

1 1 1

1 ω ω2

1 ω2 ω

1
CCA∶ω ¼ e2iπ=3;

Bcan ¼ ð13Þ ¼

0
BB@

0 0 1

0 1 0

1 0 0

1
CCA

⇒ B ¼ U†
ω × Bcan × Uω ¼

0
BB@

1 0 0

0 0 ω

0 ω2 0

1
CCA;

Fcan ¼ ð123Þ ¼

0
BB@

0 1 0

0 0 1

1 0 0

1
CCA

⇒ F ¼ U†
ω × Fcan ×Uω ¼

0
BB@

1 0 0

0 ω 0

0 0 ω2

1
CCA: ðD13Þ

One notes again that, in this basis, the decomposition 3 ¼
1 ⊕ 2 is explicit. Moreover, since F is diagonal then its

TABLE IX. Character table of S3.

Classes=irreps χ1 χ10 χ2

1C1 1 1 2
2C3 1 1 −1
3C2 1 −1 0
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action on any defining representation is easy to compute.
Concretely, we have

ðt1; t2ÞT ∼ 2; t ¼ x; y ⇒

ðx1y2 þ x2y1!B;Fx1y2 þ x2y1Þ ⇒ x1y2 þ x2y1 ∼ 1;

ðx1y2 − x2y1 !
BðFÞ

− ðþÞðx1y2 − x2y1ÞÞ ⇒ x1y2 − x2y1 ∼ 10;

ðx2y2; x1y1ÞT !BðFÞBðFÞðx2y2; x1y1ÞT ⇒ ðx2y2; x1y1ÞT ∼ 2;

ðD14Þ

showing 2 ⊗ 2 ¼ 1 ⊕ 10 ⊕ 2.
It is easier in this “complex” basis to find rules involving

conjugate irreps. For example,

ðx�1; x�2ÞT ∼ 2�; ðy1; y2ÞT ∼ 2 ⇒

ðx�1y1 þ x�2y2→
B;F

x�1y1 þ x�2y2Þ ⇒ x�1y1 þ x�2y2 ∼ 1;

ðx�1y1 − x�2y2 →
BðFÞ

− ðþÞðx�1y1 − x�2y2ÞÞ ⇒ x�1y1 − x�2y2 ∼ 10;

ðx�1y2; x�2y1ÞT ⇒
BðFÞ

BðFÞðx�1y2; x�2y1ÞT ⇒ ðx�1y2; x�2y1ÞT ∼ 2;

ðD15Þ

showing 2� ⊗ 2 ¼ 1 ⊕ 10 ⊕ 2.

3. S4
In terms of cycles’ notation, we have the 24-elements

symmetry group of order 4: S4 ¼ fa1 ¼ e, a2 ¼ ð12Þð34Þ,
a3 ¼ ð13Þð24Þ, a4 ¼ ð14Þð23Þ, b1 ¼ ð243Þ, b2 ¼ ð142Þ,
b3 ¼ ð123Þ, b4 ¼ ð134Þ, c1 ¼ ð234Þ, c2 ¼ ð132Þ,
c3 ¼ ð143Þ, c4 ¼ ð124Þ, d1 ¼ ð34Þ, d2 ¼ ð12Þ,
d3 ¼ ð1423Þ, d4 ¼ ð1324Þ, e1 ¼ ð23Þ, e2 ¼ ð1342Þ,
e3 ¼ ð1243Þ, e4 ¼ ð14Þ, f1 ¼ ð24Þ, f2 ¼ ð1432Þ,
f3 ¼ ð13Þ, f4 ¼ ð1234Þg which can be divided into five
classes5

1C1 ¼ feg;
3C2 ¼ fa2; a3; a4g;
6C2 ¼ fd1; d2; e1; e4; f1; f3g;
8C3 ¼ fb1; b2; b3; b4; c1; c2; c3; c4g;
6C4 ¼ fd3; d4; e2; e3; f2; f4g; ðD16Þ

so we have five unitary inequivalent irreps, and by applying
Eq. (D1),

X
n∈N

mn ¼ 5;
X
n∈N

mnn2 ¼ 24 ⇒ m1 ¼ 2;

m2 ¼ 1; m3 ¼ 2: ðD17Þ

Applying Eqs. (D2) and (D3), we have the character table
of S4 (Table X). It has two generators, and actually it can be
defined as

S4 ¼ hD;B∶D4 ¼ B3 ¼ 1; DB2D ¼ Bi;
¼ hT; S∶T4 ¼ S2 ¼ ðSTÞ3 ¼ 1i; ðD18Þ

with the first (second) definition leading to DBD ¼ BD2B
(ðTSÞ3 ¼ 1). One can take (D ¼ d4; B ¼ b1) for the first
set of generators, or (T ¼ D; S ¼ BD−1) for the second set.
In the canonical basis (x1, x2, x3, x4), the linear combina-
tion (x1 þ x2 þ x3 þ x4) is invariant under the action of the
permutations representation. Thus, the orthogonal subspace
spanned by

0
BB@

Ax

Ay

Az

1
CCA ¼

0
BB@

x1 þ x2 − x3 − x4
x1 − x2 þ x3 − x4
x1 − x2 − x3 þ x4

1
CCA ðD19Þ

is also invariant. The restriction of the permutations
representation onto the 3-dim A-space is the 3 irrep given,
in this A-basis, by

bcan1 ¼

0
BB@

1 0 0 0

0 0 0 1

0 1 0 1

0 0 1 0

1
CCA⇒ bA

1 ¼

0
BB@

0 0 1

1 0 0

0 1 0

1
CCA ðD20Þ

dcan4 ¼

0
BB@

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

1
CCA⇒ dA

4 ¼

0
BB@

−1 0 0

0 0 −1
0 1 0

1
CCA; ðD21Þ

whereas the 30 irrep is given, in an A-like basis, by

TABLE X. Character table of S4.

Classes=irreps χ1 χ10 χ2 χ3 χ30

1C1 1 1 2 3 3
3C2 1 1 2 −1 −1
6C2 1 −1 0 1 −1
6C4 1 −1 0 −1 1
8C3 1 1 −1 0 0

5One can find the order of a product of disjoint cycles as being
equal to the least common multiplier of the cardinalities of cycles’
supports.
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b0A1 ¼

0
BB@

0 0 1

1 0 0

0 1 0

1
CCA; d0A4 ¼

0
BB@

1 0 0

0 0 1

0 −1 0

1
CCA; ðD22Þ

and the 2 irrep is

b00A1 ¼
�
ω 0

0 ω2

�
; d00A4 ¼

�
0 1

1 0

�
; ðD23Þ

where ω ¼ ei2π=3, and one can compute the corresponding

Tð’;”ÞA¼dð’;”ÞA4 ;Sð’;”ÞA∶Sð’;”ÞATð’;”ÞA¼bð’;”ÞA1 in these irreps.
Another common basis is the B̃-basis given by the

unitary similarity matrices Udoublet; Utriplet:

Udoublet ¼
1ffiffiffi
2

p
�
1 i

1 −i

�
;

Utriplet ¼
1ffiffiffi
2

p

0
B@

ffiffiffi
2

p
0 0

0 1 1

0 i −i

1
CA; ðD24Þ

so we have

b̃1 ¼ U†
tripletb

A
1Utriplet ¼

0
BB@

0 iffiffi
2

p −iffiffi
2

p

1ffiffi
2

p −i
2

−i
2

1ffiffi
2

p i
2

i
2

1
CCA;

d̃4 ¼ U†
tripletd

A
4Utriplet ¼ diagð−1;−i; iÞ;

b̃01 ¼ U†
tripletb

0A
1Utriplet ¼

0
BB@

0 iffiffi
2

p −iffiffi
2

p

1ffiffi
2

p −i
2

−i
2

1ffiffi
2

p i
2

i
2

1
CCA;

d̃04 ¼ U†
tripletd

0A
4Utriplet ¼ diagð1; i;−iÞ;

b̃001 ¼ U†
doubletb

00A
1Udoublet ¼

1

2

0
BB@ −1 −

ffiffiffi
3

p
ffiffiffi
3

p
−1

1
CCA;

d̃004 ¼ U†
doubletd

00A
4Udoublet ¼ diagð1;−1Þ; ðD25Þ

and one can compute T̃; T̃ 0; T̃ 00; S̃; S̃0; S̃00.
One can find the multiplication rules, as was done in the

previous subsection in any basis. However, we refer the
reader to [20] for the B̃-basis rules, whereas we state
explicitly in Sec. VI B 1 the corresponding rules in the
B-basis adopted to define the texture and the matter field
symmetry assignments.
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