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We investigate the possibility to interpret the muon g − 2 anomaly in terms of a massive spin-2 particle,
G, which can be identified as the first Kaluza-Klein graviton in the generalized Randall-Sundrum model. In
particular, we obtain the leading-order contributions to the muon g − 2 by calculating the relevant one-loop
Feynman diagrams induced by G. The analytic expression is shown to keep the gauge invariance of the
quantum electrodynamics and to be consistent with the expected UV divergence structure. Moreover,
we impose the theoretical bounds from the perturbativity and the experimental constraints from LHC and
LEP-II on our model. Especially, we derive novel perturbativity constraints on nonrenormalizable operators
related to G, which are the natural generalization of the counterpart for the renormalizable operators. As a
result, we show that there exists a substantial parameter space, which can accommodate the muon g − 2

anomaly allowed by all constraints. Finally, we also make comments on the possible explanation of the
electron g − 2 anomalies with the massive spin-2 particle.
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I. INTRODUCTION

The long-standing discrepancy between the measure-
ment of the muon magnetic dipole moment ðg − 2Þμ and the
Standard Model (SM) prediction is one of the greatest
puzzles in particle physics [1], which might be the hint to
new physics beyond the SM. This problem becomes more
severe recently since the Muon g − 2 Collaboration at
Fermilab has reported a new measurement of the muon
magnetic moment aμ ≡ ðg − 2Þμ=2 with the result given
by [2]

aFNALμ ¼ ð116592040� 54Þ × 10−11: ð1Þ

When combining the earlier data from the experiment at
Brookhaven [3], the anomalous contribution to ðg − 2Þμ is
given by

Δaμ ¼ aExpμ − aSMμ ¼ ð251� 59Þ × 10−11; ð2Þ

in which the latest SM prediction obtained by combining
various contributions [4–23] isaSMμ ¼ ð116591810� 43Þ ×
10−11 (see, e.g., Ref. [24] for a recent review).More recently,
there are several lattice QCD results [25–28] on the hadronic
vacuum polarization contribution to the muon g − 2, which
indicate that the discrepancy might be weakened to below
4σ. Nevertheless, it is still of great importance to take the
muon g − 2 anomaly seriously.
Apart from the strong evidence to muon g − 2 anomaly,

the latest measurement of the fine-structure constant α
would also imply a discrepancy between the SM calcu-
lation and the experimental measurement of the electron
g − 2. In the literature, there have been two recent mea-
surements of α from Laboratoire Kastler Brossel (LKB)
with 87Rb atoms [29] and at Berkeley with 137Cs atoms [30],
which lead to the following SM predictions [5,31] for the
anomalous electron ðg − 2Þe,

ΔaLKBe ¼ aexpe − aLKBe ¼ ð4.8� 3.0Þ × 10−13;

ΔaBe ¼ aexpe − aBe ¼ ð−8.8� 3.6Þ × 10−13; ð3Þ

and their deviations of theoretical values from the exper-
imental result aexpe [32] are at 1.6σ and −2.4σ, respectively.
It is interesting to have a common explanation to both
electron and muon g − 2 data in one single framework.
In the literature, there have already been many attempts

to interpret the muon g − 2 anomaly in terms of various
models beyond the SM (for a recent review see, e.g., [33]
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and references therein). In the present paper, we explore an
alternative explanation to the ðg − 2Þμ;e anomalies, which
are induced by a new massive spin-2 particle G [34–36].
Note that G can naturally arise as the Kaluza-Klein (KK)
graviton in the five-dimensional Randall-Sundrum (RS)
model [37], which is motivated to solve the gauge hierarchy
problem in the SM. It is remarkable to note that the massive
spin-2 particle can couple to the SM particles nonuniver-
sally in the generalized RS models [38–53] due to the
different localization of SM fields in the extra-dimensional
bulk. Especially, we here focus on the spin-2 particle
coupling to the SM leptons and photons, which may give
rise to novel one-loop contributions to the lepton g − 2.
The paper is organized as follows. In Sec. II, we present

the effective interactions between the massive spin-2
particle G and the SM photon and leptons. Then the
one-loop Feynman diagrams and the final analytic expres-
sions for the lepton anomalous magnetic moment ðg − 2Þl
induced by G are presented in Sec. III. Section IV is
devoted to the investigation of the theoretical bounds from
the perturbativity in our model of the massive spin-2
particle. In Sec. V, we explore numerically the parameter
space that can explain the lepton g − 2 anomalies while
satisfying the above theoretical constraints. Section VI is
devoted to the studies of existing collider constraints from
LHC and LEP-II. Finally, we conclude in Sec. VII in which
a short discussion is given for the lepton-flavor-violating
(LFV) and CP-violating (CPV) effects. In the Appendix,
we present details for calculating various one-loop
Feynman diagrams contributing to the lepton g − 2 in
our massive graviton model. Especially, we have checked
the gauge invariance of the quantum electrodynamics in the
Barr-Zee-type diagrams [54,55].

II. LAGRANGIAN FOR THE MASSIVE GRAVITON

We are working in the framework of the effective field
theory of the spin-2 particle G, with the relevant
Lagrangian given by [56]

LG ¼ −
1

Λ
Gμν

�
cγT

μν
γ þ

X
l¼e;μ;τ

clT
μν
l

�
; ð4Þ

where Tμν
γ and Tμν

l represent the energy-momentum tensors
of photons and charged leptons l defined as follows,

Tμν
l ¼ i

4
l̄ðγμ∂νþγν∂μÞl− i

4
ð∂μl̄γνþ∂

νl̄γμÞl

−iημν
�
l̄γρ∂ρlþimll̄l−

1

2
∂
ρðl̄γρlÞ

�
;

Tμν
γ ¼1

4
ημνFρσFρσ−FμρFν

ρ−
1

ξ

�
ημν

�
∂
ρ
∂
σAσAρþ

1

2
ð∂ρAρÞ2

�

−ð∂μ∂ρAρAνþ∂
ν
∂
ρAρAμÞ

�
; ð5Þ

with ξ the gauge parameter for the photon field. This
Lagrangian can be easily derived from the generalized RS
model with the massive spin-2 particle identified as the first
KK excitation of the graviton [37–41,48]. Traditionally, in
order to solve the hierarchy problem, this massive graviton
should be strongly coupled to the third-generation quarks
and SM gauge bosons. However, we do not show them here
and only list terms relevant to our discussion of charged
lepton g − 2 anomalies.
Moreover, there should be the lepton flavor off-diagonal

interactions with the massive spin-2 particle such as

−
Gμν

Λ
½cl0lTμν

l0l þ H:c:�; ð6Þ

with

Tμν
l0l ≡

i
4
l̄0ðγμ∂ν þ γν∂μÞl −

i
4
ð∂μl̄0γν þ ∂

νl̄0γμÞl

− iημν
�
l̄0γρ∂ρlþ iml0ll̄0l −

1

2
∂
ρðl̄0γρlÞ

�
; ð7Þ

where l0 and l denote different charged lepton flavors and
ml0l is a parameter with unit mass dimension, which is
determined by the extra-dimensional wavefunctions of the
massive graviton and various lepton fields. These inter-
actions would lead to the charged lepton LFVobservables,
such as μ → eγ [57], μþ → eþeþe− [58], μ− − e− con-
versions in nuclei [59] and so on, which has been
stringently constrained experimentally. On the other hand,
due to the non-Hermitian nature of stress-energy tensors
Tl0l, the coupling coefficients cl0l should be complex in
general so that they can induce the CPV effects like the
electric dipole moments (EDMs) of the electron [60] and
muon [61], which should also be strongly suppressed as
required by experiments. Hence, given the impressive LFV
and CPV constraints on these flavor off-diagonal inter-
actions, it is expected that their contributions to the lepton
magnetic dipole moments should be subdominant to those
induced by the flavor diagonal interactions presented in
Eqs. (4) and (5). We will come back to this issue later.

III. MASSIVE SPIN-2 PARTICLE
CONTRIBUTIONS TO CHARGED LEPTON ðg− 2Þl
In this section, we study the massive spin-2 particle

interpretation of the possible lepton ðg − 2Þμ;e anomalies.
Given the Lagrangian in Eq. (4), we can draw one-loop
Feynman diagrams shown in Fig. 1, which give the leading-
order contributions to the anomalous lepton magnetic
moments. Since the calculation of these Feynman diagrams
is tedious, here, we only present the final results but leaving
the details in the Appendix. First of all, with the simple
power counting rules, it is easy to see that all loop integrals
are highly power-law divergent, with the largest divergence
of order of sixth power. However, it can be shown that for
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the contributions to the lepton g − 2, the leading divergence
can be merely of quartic, i.e., ofOðΛ4Þ with Λ identified as
the UV cutoff scale appearing in the effective action in
Eq. (4). Furthermore, explicit calculations show that the
diagram (c) cannot contribute to lepton magnetic moments,
while, up to OðΛ4Þ, the result of Δal from the diagram (a)
vanishes identically. On the other hand, Feynman diagrams
ðb1;2Þ and ðd1;2Þ do give rise to the leading-order nonzero
contributions to the charged lepton (g − 2) with their total
results given by

ΔaGl ¼
�
ml

Λ

�
2
�

Λ
mG

�
4
�

c2l
48π2

−
clcγ
24π2

�
: ð8Þ

Note that, when computing these one-loop Feynman
diagrams, one encounters loop integrals with quartic
divergence. Also, since the photon is a gauge boson of
quantum electrodynamics, it is required that the final result
of ðg − 2Þl should be gauge invariant. Here, we have
applied the loop regularization [62,63] method to preserve
both the correct divergence power and the gauge structure
at the same time, which is impossible for the traditional
dimensional regularization [64].
Note that the single massive spin-2 particle contributions

to the muon g − 2 from the same set of Feynman diagrams
in Fig. 1 were calculated in Ref. [34], where the author
found that all of these Feynman diagrams could give rise to
the logarithmically divergent expressions. In particular,
when the photon and leptons share a universal coupling
to the spin-2 field G, i.e., cl ¼ cγ , the total contribution
became remarkably finite. It was argued in Ref. [34] that
the decrease of the degree of UV divergence was caused by
the gravitational Ward identity so that terms containing two
or more kα’s in the numerator of the massive spin-2 field
propagator in Eq. (A3) vanished in these loop calculations.
However, our complete and explicit computations of

Feynman diagrams in Fig. 1 have invalided the above
argument. It is those terms in the diagrams ðb1;2Þ and ðd1;2Þ
proportional to inverse powers of mG in the numerator of
the massive graviton propagator that generate the dominant
power-law divergent contribution to the lepton g − 2, which
was simply ignored in Ref. [34]. Indeed, the gravitational
Ward identity, which was closely related to the diffeo-
morphism invariance, i.e., the gauge symmetry of the
massless graviton, is not expected to be applied to the
massive spin-2 field, which does not possess any gauge
symmetry at all. Therefore, our result of the lepton g − 2
induced by the massive spin-2 field G obeys the conven-
tional power counting rule, which is in contrast with the
g − 2 contribution from an interesting model in Ref. [65]
with extra fermions. Moreover, in the previous studies
[34–36] of the massive graviton contribution to the lepton
g − 2, it was always assumed a universal coupling of G to
all fields in the SM. In contrast, here, we concentrate on the
nonuniversal couplings case in which G couplings to the
SM particles are independent of each other, along with
the dependence of the final results on different couplings.
Furthermore, Refs. [34,36] computed the total contribu-
tions to the muon g − 2 from the whole tower of KK
graviton states in the large extra dimensional model [66],
the RS model [37], and the clockwork gravity [67].
Especially, Ref. [36] found that the leading-order contri-
bution in the small extra-dimension curvature limit was
universal, while the subleading contributions could reflect
the geometry of extra dimensions. However, in the present
work, we only consider a single massive graviton contri-
bution to Δaμ in Eq. (8) by assuming that it dominates the
anomaly. If we change our viewpoint by assuming that
other higher KK excitations also give rise to similar effects,
then we also need to sum them together. Given that Eq. (8)
only provides the leading-order contribution in the expan-
sion in terms of Λ2, we expect that it can give us the precise

FIG. 1. One-loop Feynman diagrams (a-d) giving rise to the leading-order contributions to the muon g − 2.
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leading-order muon g − 2 in the small curvature limit.
As for the subleading-order contributions, they cannot be
accurately calculated since the single-massive-graviton
expression of Δaμ at least up to subleading order in Λ2

is required, which is very complicated and is out of the
scope of the present paper.

IV. THEORETICAL CONSTRAINTS FROM
PERTURBATIVITY

In the previous discussion, we have shown that the
introduction of a massive spin-2 field G to the SM can lead
to new contributions to the anomalous lepton magnetic
moment ΔaGl , which might potentially solve the long-
standing ðg − 2Þe;μ anomalies. However, the theory still
suffers from the theoretical constraints by requiring the
validity of the perturbation expansion. In this section, we
shall consider this perturbativity bound on our model.
Note that we have assumed implicitly that the leading-

order contribution to Δal comes from the one-loop
Feynman diagrams induced by the massive graviton.
Such a perturbativity requirement implies that the loop
expansion should be valid; i.e., the lower-loop contribu-
tions need to be larger than the higher-loop ones. For
example, let us consider one particular two-loop Feynman
diagram on the left panel of Fig. 2, in which we attach an
additional massive graviton line onto the internal lepton of
the diagram (b1). According to the general naïve power
counting rule, we can estimate the leading-order size of
Δaμ as follows:

Δð2Þ
l ∼

jc3lcγj
ð16π2Þ2

�
ml

Λ

�
2
�

Λ
mG

�
8

: ð9Þ

In contrast, the corresponding one-loop diagram (b1) can be
order-of-magnitude estimated as follows:

Δaðb1Þl ∼
jclcγj
16π2

�
ml

Λ

�
2
�

Λ
mG

�
4

: ð10Þ

Now the requirement of the perturbativity indicates that the
one-loop contribution dominates over the two-loop one,
which gives the following constraint:

jclcγj
16π2

�
ml

Λ

�
2
�

Λ
mG

�
4

>
jc3lcγj
ð16π2Þ2

�
ml

Λ

�
2
�

Λ
mG

�
8

; ð11Þ

which leads to

jclj < 4π

�
mG

Λ

�
2

: ð12Þ

Moreover, if we apply almost the same argument to the
right two-loop Feynman diagram in Fig. 2, the following
similar constraint to the photon-massive-gravity coupling
cγ can be obtained,

jcγj < 4π

�
mG

Λ

�
2

: ð13Þ

Note that the perturbativity constraints in Eqs. (12) and (13)
are natural generalizations of that for a dimensionless
coupling constant g with its bound as jgj < 4π [68].

V. NUMERICAL STUDIES

Given the one-loop analytic expression of the spin-2
particle contribution to the lepton (g − 2) in Eq. (8) and the
constraints from perturbativity presented in Sec. IV, we
now explore the viable parameter space to explain the
ðg − 2Þe;μ anomalies. In our study, the latest measurement
of Δaμ by the Muon Collaboration at Fermilab in Eq. (2) is
taken in its 2σ allowed region. On the other hand, there
are currently two incompatible theoretical predictions of
the electron anomalous magnetic moment ΔaLKBe at the

FIG. 2. Two-loop Feynman diagrams that would contribute to the lepton g − 2.
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Laboratoire Kastler Brossel (LKB) [29] and ΔaBe at
Berkeley [30], both of which deviate the SM value
substantially. Note that the differences are caused by their
respective measurements of the fine structure constant α.

Thus, in what follows, we shall consider the experimental
results of ΔaLKBe and ΔaBe separately.
Figures 3 and 4 show the parameter space in the cl-cγ

plane for the massive graviton mass mG ¼ 200 and

FIG. 3. The parameter space in the cl-cγ plane for the massive graviton mass fixed at mG ¼ 200 GeV and the cutoff scale at
Λ ¼ 800 GeV (left panel) and 1 TeV (right panel). The blue and yellow shaded regions show the parameter space that can explain the
Δaμ and ΔaLKBe anomalies in 2σ range, while the areas colored in red are excluded by the theoretical perturbativity constraints,
respectively.

FIG. 4. The parameter space in the cl-cγ plane for the massive graviton mass fixed at mG ¼ 500 GeV and the cutoff scale at
Λ ¼ 1 TeV (left panel) and 2 TeV (right panel). The color coding is the same as that in Fig. 3.
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500 GeV, where the cutoff scales are taken to be Λ ¼
800 GeV and 1 TeV in the former case, while Λ ¼ 1 and
2 TeV in the latter. In all the plots, the blue and yellow
shaded regions represent those parameter spaces allowed
by the muon ðg − 2Þμ and LKB ðg − 2Þe data at 2σ CL,
while the red shaded regions are excluded by the pertur-
bativity bounds, respectively. Note that here, cl ¼ cμ and
ce when explaining the muon and electron anomalous
magnetic moments, respectively. It is seen from these plots
that, although the perturbativity strongly constrains cγ;l,

there is still an ample viable parameter space in which the
massive graviton induced contributions can explain both
Δaμ and ΔaLKBe discrepancies. By comparing the two plots
in Figs. 3 and 4, we see that the increase of the cutoff scale
Λ for a fixed mG would make the parameter space allowed
by perturbativity shrink greatly. Also, as the spin-2 particle
becomes heavier with Λ fixed, the Wilson coefficients cl
and cγ would be pushed into larger values in order to
compensate for the mG suppression, as is evident from the
ΔaGl formula in Eq. (8).

FIG. 5. The parameter space in the mG-cl plane with Λ ¼ 1 TeV and cγ ¼ 1 (top-left panel), 0.5 (top-right panel), 0 (bottom-left
panel), and −1 (bottom-right panel). The color coding is the same as that in Fig. 3.
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In Fig. 5, the relevant parameter space is also shown in the
mG-cl plane by fixing Λ ¼ 1 TeV as well as cγ ¼ 1, 0.5, 0,
and−1, respectively.When cγ ¼ 1, the blue bands that could
explain themuon g − 2 anomalywithmG < 500 GeV are all
excluded by the perturbativity constraints on cl. As cγ
decreases, more andmoremuon g − 2 signal region becomes
allowed by perturbativity. In particular, for the case with
cγ ¼ 0, the Barr-Zee contributions [54,55] displayed as
ðb1;2Þ in Fig. 1 are effectively turned off, while the term
induced solely by the lepton-G couplings cl in Eq. (8) can
interpret the anomalies inΔaμ andΔaLBKe without disturbing
any theoretical validity. Moreover, as shown in Figs. 3–5, the
current measurements by the Muon g − 2 and LKB experi-
ments still allow us to take a lepton universal coupling cl ¼
ce ¼ cμ in our spin-2 particle model. However, as illustrated
in the next section, when considering the collider constraints,
such a lepton flavor universal case has already been dis-
favored by the existing data.
Finally, we turn to the spin-2 particle interpretation of

the Δaμ anomaly and the Berkeley measurement on the
electron anomalous magnetic moment ΔaBe , with the
numerical results given in Fig. 6. Note that the Berkeley
measurement of the fine structure constant prefers a
negative ΔaBe , which is in stark contrast with its positive
muon counterpart Δaμ. Thus, it is rather difficult in
explaining the ΔaBe and Δaμ anomalies simultaneously.
In the present spin-2 particle model, the Feynman diagrams
ðd1;2Þ always give positive contributions to the lepton
anomalous magnetic moments, while the sign of Δal from

the Barr-Zee diagrams ðb1;2Þ depends on that of the
combination clcγ . Hence, if the Barr-Zee diagrams domi-
nate the contribution to Δae and cecγ > 0, then it provides
us a nice explanation on the opposite sign betweenΔaμ and
ΔaBe . In this case, it usually requires a large value of jcγj,
which has, unfortunately, been strongly disfavored by the
perturbativity constraints as evident from Fig. 6. Therefore,
it seems that the current simple spin-2 particle explanation
of the muon g − 2 result cannot offer a viable simultaneous
solution to the Berkeley anomaly on ðg − 2Þe.

VI. COLLIDER CONSTRAINTS

Note that the explanation of the ðg − 2Þe;μ anomalies
requires a relatively light spin-2 particle with its mass
around several hundred GeV and substantially large cou-
plings to charged leptons and photons, which indicates that
this massive graviton would have considerable decay rates
to the dilepton and diphoton final states. Thus, the present
massive graviton scenario is well suitable to be tested by
collider experiments, such as LHC and LEP-II. In fact,
there have already been many searches at the LHC for the
spin-2 resonance in the dilepton and diphoton channels at
both ATLAS [69,70] and CMS [71–73]. For the original RS
model with a universal coupling to all SM particles, the
lower bounds on the cutoff scale from the ll and γγ
channels have been Λ=cSM ∼Oð100 TeVÞ [51] for the
massive graviton mass below 1 TeV, which has excluded
the possibility to explain the lepton g − 2 anomalies in

FIG. 6. The parameter space in the cl-cγ plane for the cutoff scale fixed at Λ ¼ 1 TeV and the massive graviton mass at mG ¼
200 GeV (left panel) and 500 GeV (right panel). The color coding is the same as that in Fig. 3, except that the yellow region now
represents the parameter space predicted by the Berkeley data of ΔaBe .
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terms of G. However, in the generalized RS models with
nonuniversal SM particle couplings, the above conclusion
does not apply any more. Note that the current experimental
limits from LHC are only placed on σðpp → GÞ × BðG →
ll or γγÞ with σðpp → GÞ and B denoting the production
cross section and decay branching fractions of the spin-2
particle. If the G production rate or its decay branching
fractions to ll and γγ are suppressed, then the above
constraints on G can be relaxed. For example, in the model
of Refs. [47,52], the unconventional power counting rule
predicts the dominant massive graviton decay channel is tt̄,
and the branching fraction of G decaying to γγ is given by
BðG → γγÞ ∼ 10−4, which leads to a much lower available
cutoff scale Λ=cγ > Oð200 GeVÞ from the extension of the
diphoton upper bound in Fig. 6 of Ref. [52] to the low mG
region. Such a small cutoff scale is exactly what is needed
to explain the ðg − 2Þμ;e anomalies. More recently, both
ATLAS and CMS have updated their resonance searches in
the channels such as tt̄ [74,75], dijet [76,77], diboson
[78,79], diphoton [70,72], and dilepton [69,71], which have
made the lower bounds on the cutoff scale in Ref. [52]
somewhat outdated. Nevertheless, we still expect that
there is still much room for the cutoff Λ ≲ 1 TeV available
to accommodate the spin-2 particle explanation of the
muon g − 2.
The present spin-2 particle model can also be tested by

LEP-II [80–82], which was an electron-positron collider
with its center-of-mass energy running from the Z pole up
to 209 GeV. In particular, the LEP-II experiments have

investigated the quantum gravity model by measuring the
total and differential cross sections in the γγ, eþe− and
μþμ− channels [82], which are the most relevant to our
present study. Following the conventions in Ref. [82], the
constraint for each channel is placed on the parameter
ϵ≡ λ=M4

s , where λ is a dimensionless coefficient of Oð1Þ,
and Ms is the gravitational mass scale. For references, we
list the corresponding constraints for different channels as
follows. For the diphoton final state, the limit is Mγ

s >
868ð1108Þ GeV for λ ¼ �1 [82], where λ ¼ �1 corre-
spond to the cases of positive and negative interferences
with the SM amplitudes, respectively, and the superscript
on Ms denotes the channel. For the eþe− channel, Me

s >
1.09ð1.25Þ TeV when λ ¼ �1 [82], while for μþμ−, Mμ

s >
0.695ð0.793Þ TeV for λ ¼ �1 [80]. All the upper limits are
given at the 95% confidence level. In the present model, we
can approximately express ϵ in terms of model parameters
as follows:

ϵγ;e;μ ≡ λ

ðMγ;e;μ
s Þ4 ≈

cecγ;e;μ
Λ2m2

G
; ð14Þ

where the massive graviton mass mG is assumed to be
larger than ∼200 GeV so that the internalG propagator can
be contracted into a pointlike contact interaction. Then we
can map the LEP-II experimental constraints of the extra-
dimensional models onto our parameter space of interest,
which are shown in Fig. 7. Note that here, we have only
used the lower bounds on Ms from the γγ and eþe−
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FIG. 7. The parameter space in the cl-cγ plane for the graviton mass fixed at mG ¼ 500 GeV and the cutoff scale at Λ ¼ 2 TeV (left
panel) and 1 TeV (right panel) when considering the LEP-II constraints. The gray and cyan areas are excluded by the LEP-II lower
bounds on the gravitational mass scale Ms from the eþe− and γγ final states with gray dashed and cyan dotted curves denoting their
respective boundaries. Other color codings are the same as those in Fig. 3.
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channels since they are more restrictive than the one from
μþμ−. Even though we can still find very limited parameter
regions as in the left panel of Fig. 7 such that the muon
g − 2 anomaly and the LKB ðg − 2Þe data can be explained
with a universal coupling cl ¼ ce ¼ cμ, most parameter
space for this kind of models has been excluded by the
LEP-II data, especially for the cutoff scale Λ≲ 1 TeV as
illustrated on the right panel. Therefore, the massive
graviton explanation of the muon g − 2 anomaly with a
lepton flavor-blind coupling cl is now disfavored in view
of the LEP-II constraints. Here, we should emphasize that
the LEP-II measurements can only restrict models with cμ
of similar size as ce, especially for the lepton-universal
coupling case. When jcej ≲Oð0.1Þ, the LEP constraints
can be easily evaded, while the model is not in conflict with
the LKB ðg − 2Þe data. The couplings cμ and cγ chosen as
in the blue bands in Figs. 3–5 can still provide us a viable
explanation on the muon g − 2 anomaly.

VII. CONCLUSIONS AND DISCUSSIONS

Motivated by the latest measurement on the muon
anomalous magnetic moments ðg − 2Þμ by the Muon
g − 2 Collaboration at Fermilab [2] and those of electrons
ðg − 2Þe at LKB [29] and Berkeley [30], we have explored
the possibility to explain these anomalies in terms of the
presence of a massive spin-2 particle G, which can be
identified as the first KK excitation of the ordinary graviton
in the generalized RS scenario. By calculating the asso-
ciated one-loop Feynman diagrams, we have given the
analytic expression of the leading-order contributions to the
lepton anomalous magnetic moments induced by G. Note
that the integrals over the loop momentum in the Feynman
diagrams are all of highly power-law divergence, i.e., of
OðΛ4Þ, with Λ representing the UV cutoff scale. Moreover,
in the Barr-Zee type diagrams [54,55], the gauge invariance
involving the internal photon line should be preserved,
which is another difficulty in our computation. In order to
keep the gauge invariance and the power-law divergence
structure, the loop regularization method [62,63] has been
applied. In particular, we have explicitly checked the
photon gauge invariance by performing our calculation
of Barr-Zee diagrams in both the Feynman-’t Hooft gauge
and the general gauge with the parameter ξ free. Based on
our general formulas for the spin-2 particle contribution to
the lepton g − 2, we have performed phenomenological
studies on the present model. We have considered the
theoretical bounds from the perturbativity and the exper-
imental constraints from LHC and LEP-II. Interestingly, we
have given a new cutoff-dependent perturbativity constraint
on the associated Wilson coefficients of the nonrenormaliz-
able operators, which is a natural but nontrivial generaliza-
tion of the counterpart for dimensionless renormalizable
operators. As a result, we have shown that there exists a
substantial amount of parameter space to accommodate the

muon g − 2 anomaly without disturbing the perturbativity
and collider constraints. Note that the ðg − 2Þμ anomaly and
theLKB ðg − 2Þe data still allow the spin-2 particle couplings
to leptons to be universal, i.e., cl ¼ ce ¼ cμ, which is,
however, disfavored by the existing LEP-II data. Moreover,
the present simple massive graviton framework seems
impossible to take into account the Berkeley’s result of
the electron’s anomalousmagneticmoment, due to the strong
theoretical bounds from the perturbativity.
Besides the constraints from the perturbativity, another

criterion to determine if our perturbative calculations
remain under control is the tree-level unitarity bounds
[83–86], which give extra constraints to our spin-2 particle
model [48]. However, the examination of unitarity bounds
requires the careful calculation of 2-to-2 scattering ampli-
tudes of l−lþ → l−lþ and γγ → γγ for various helicity
assignments of external particles. However, since the
detailed calculation of unitarity bounds is rather involved,
we would like to discuss it in a separate work, which is still
under progress [87].
Finally, we would like to mention several salient features

in the flavor physics for the massive graviton model with a
lepton-universal coupling, though it is not favored by the
LEP-II data. As shown in Sec. II, the general theory of the
massive graviton admits the flavor off-diagonal terms
between G and charged leptons in Eqs. (6) and (7), which
would give rise to the LFV processes, such as μ → eγ [57],
μþ → eþeþe− [58], and μ − e conversions in nuclei [59].
Moreover, the Wilson coefficients of these effective inter-
actions cl0l are generically complex so that they would also
lead to CPVobservables like the electron and muon EDMs
[60,61]. Therefore, it is generally expected that such lepton
flavor off-diagonal terms are stringently constrained.
However, when theG-lepton couplings are flavor universal,
i.e., ce ¼ cμ ¼ cτ, the total energy-momentum tensor Tμν

l
of the charged lepton sector coupled toG is the same as that
defined in the SM. If the charged lepton mass matrix is
diagonalized in one basis, this property would be inherited
by the G-charged-lepton couplings with the associated
energy-momentum tensor. Then the LFV processes can
only be induced by the interactions with active neutrinos so
that they are well known to be highly suppressed by the tiny
neutrino masses, remaining to be unobservable under the
present experimental status. Furthermore, due to the self-
Hermitian nature of the total charged lepton energy-
momentum tensor Tμν

l , its universal coupling to G can
only be real, which automatically avoids the appearance of
CPV vertices. Unfortunately, such an interesting case is
now well restricted by the LEP-II data. As far as we know,
there are not any other natural mechanisms to forbid the
complex flavor off-diagonal couplings as well as the
associated LFV and CPV effects. The detailed discussion
of these flavor issues is out of the scope of the present work,
and we would like to leave it for future researches.
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APPENDIX: CALCULATION DETAILS OF
LEPTON (g − 2) FROM THE SPIN-2 PARTICLE

LOOP DIAGRAMS WITH LOOP
REGULARIZATION

In this appendix, we present the calculation details for
one-loop spin-2 particle induced contributions to the lepton
g − 2 shown in Fig. 1. Note that the relevant amplitude can
be parameterized as follows:

iMðγl → lÞ ¼ ūðk2Þð−iQlÞ
�
eγμF1ðq2Þ þ

ieσμνqν

2ml
F2ðq2Þ

�
uðk1Þ; ðA1Þ

where Ql ¼ −1 and ml stand for the electric charge and mass of the charged lepton l, and its magnetic moment can be
obtained by taking al ¼ F2ð0Þ. Our task now is to compute the massive spin-2 particle induced contribution to this
amplitude and the associated ðg − 2Þl.

1. Diagram (a)

Now, we compute the Feynman diagram (a) in which the loop is obtained by inserting two G − l interaction vertices,
with the corresponding amplitude given by

iMa ¼ ūðk2Þ
�
−
icl
4Λ

�
½γρð2kσ2 þ lσÞ þ γσð2kρ2 þ lρÞ − 2ηρσð2=k2 þ =l − 2mlÞ�

×
i

=lþ =k2 −ml
ð−ieQlγ

μÞ i
=lþ =k1 −ml

�
−
icl
4Λ

�

× ½γλð2kν1 þ lνÞ þ γνð2kλ1 þ lλÞ − 2ηλνð2=k1 þ =l − 2mlÞ�uðk1Þ
i
2

Bρσ;λνðlÞ
l2 −m2

G
; ðA2Þ

where the massive spin-2 particle propagator is defined with the following factor:

Bμν ρσðkÞ ¼
�
ημρ −

kμkρ
m2

G

��
ηνσ −

kνkσ
m2

G

�
þ
�
ημσ −

kμkσ
m2

G

��
ηνρ −

kνkρ
m2

G

�
−
2

3

�
ημν −

kμkν
m2

G

��
ηρσ −

kρkσ
m2

G

�
: ðA3Þ

For the denominator, we can complete the square of the loop momentum l as follows:

1

ðl2 −m2
GÞ½ðlþ k2Þ2 −m2

l�½ðlþ k1Þ2 −m2
l�
¼ Γð3Þ

Z
dxdy

1

½ðlþ xk1 þ yk2Þ2 − Δa�3
; ðA4Þ

where

Δa ¼ ðxþ yÞ2m2
l − xyq2 þ ð1 − x − yÞm2

G: ðA5Þ

Therefore, we can shift the loop momentum as l → l − xk1 − yk2, which gives the following numerator of the loop integral:

ūðk2Þfγρ½l − xk1 þ ð2 − yÞk2�σ þ γσ½l − xk1 þ ð2 − yÞk2�ρ − 2ηρσ½=l − x=k1 þ ð2 − yÞ=k2 − 2ml�g
× ½=l − x=k1 þ ð1 − yÞ=k2 þml�γμ½=lþ ð1 − xÞ=k1 − y=k2 þml�
× fγλ½lþ ð2 − xÞk1 − yk2�ν þ γν½lþ ð2 − xÞk1 − yk2�λ − 2ηλν½=lþ ð2 − xÞ=k1 − y=k2 − 2ml�guðk1Þ
× Bρσ;λνðl − xk1 − yk2Þ; ðA6Þ
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where we have omitted the factors proportional to the
coupling constants and the electric charge. In our work, we
only focus on the leading-order contribution to the muon
anomalous magnetic moment ðg − 2Þμ. Note that the above
loop integral is highly divergent so that it should be
dominated by terms of the largest divergence degree.
Note also that the terms of interest should be proportional
to ūðk2ÞðiσμνqνÞuðk1Þ, which flips the lepton chirality in

the amplitude. However, the only operator that can achieve
this in the present model is the lepton mass term so that the
final expression should be proportional to mμ. Therefore,
we need to pick terms that are divergent with two powers
less than the top divergence of OðΛ8Þ, i.e., the terms with
Oðl6Þ in the numerator. With FeynCalc, we can obtain the
following relevant terms:

64l4

2m4
G
ūðk2Þf−ðk1 · lÞ=k2=lγμ − ðk2 · lÞγμ=l=k1 þmμðk1 · lÞ=lγμ þmlðk2 · lÞγμ=lguðk1Þ ¼ 0; ðA7Þ

where we have used the equations of motion of leptons
ūðk2Þ=k2 ¼ mlūðk2Þ and =k1uðk1Þ ¼ mluðk1Þ. Note that
here we have not listed all terms at this order but
only those which might potentially generate the desired
dipole operator. Therefore, at the order of quartic diver-
gence, the diagram (a) does not give any contribution
to Δal.

2. Diagram (b1) in the Feynman-’t Hooft gauge

Let us turn to the contributions from the Barr-Zee
diagrams [54,55], (b1) and (b2). Since they are symmetric
under the swapping of two vertices along the fermion line,
their contributions are expected to be equal. This sub-
section is devoted to computing the diagram (b1). The
associated amplitude is given as follows:

iMðb1Þ ¼ ūðk2Þð−ieQlγ
νÞ i

=l −ml

�
−
icl
4Λ

�
½γρðlþ k1Þσ þ γσðlþ k1Þρ − 2ηρσð=lþ =k1 − 2mlÞ�uðk1Þ

×
−iAνκðl − k2Þ
ðl − k2Þ2

�
−
icγ
Λ

�
½q · ðl − k2ÞCαβ;μκ þDαβ;μκðq; l − k2Þ þ ξ−1Eαβ;μκðq; l − k2Þ�

i
2

Bαβ;ρσðl − k1Þ
ðl − k1Þ2 −m2

G

¼ −
clcγeQl

8Λ2

ūðk2Þ½γρðlþ k1Þσ þ γσðlþ k1Þρ − 2ηρσð=lþ =k1 − 2mlÞ�uðk1Þ
½l2 −m2

l�ðl − k2Þ2½ðl − k1Þ2 −m2
G�

× Aνκðl − k2Þ½q · ðl − k2ÞCαβ;μκ þDαβ;μκðq; l − k2Þ þ ξ−1Eαβ;μκðq; l − k2Þ�Bαβ;ρσðl − k1Þ; ðA8Þ

where

AμνðpÞ ¼ ημν − ð1 − ξÞpμpν

p2
; ðA9Þ

with ξ the gauge parameter. There are two possible
problems related to this Barr-Zee diagram. Firstly, the
amplitude is still highly divergent so that the leading-order
contribution to the lepton g − 2 is expected to come from
the largest divergence. Thus, it is important to keep the
divergence structure of the loop integral. Secondly, this
expression of Eq. (A8) explicitly depends on the gauge
parameter ξ. However, the gauge invariance of the quantum
electrodynamics requires the final result should not rely on
the choice of this parameter. It is well known that the
traditional dimensional regularization, even though pre-
serving the gauge invariance, cannot keep the divergences
of positive powers, all of which are distorted into the
logarithmic ones. Therefore, it cannot be applied here.
In the literature, one method that can retain both the gauge

invariance of a general gauge theory and the divergence
structure is the loop regularization [62,63]. In the follow-
ing, we shall make use of the loop regularization to perform
our calculations.
Note that the loop regularization guarantees the gauge

invariance by demanding the consistency relations [62,63]
among the tensor and scalar-type loop integrals defined
below, rather than at the Lagrangian level like in the case of
dimensional regularization. One can only check the gauge
invariance of the theory by explicit calculations in different
gauges. In this subsection, we shall take the Feynman-’t
Hooft gauge with ξ ¼ 1, so that Aμνðp2Þ ¼ ημν in order
to simplify our calculation. We leave the discussion of
computation details with the general gauge in the next
subsection. Moreover, when using the consistency con-
ditions in the loop regularization in Eqs. (A15), we may
encounter 0 in the denominator for quartically divergent
integrals. One way to avoid such a problem is to relax
the power index of the massive graviton’s propagator as
follows,
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i
2

Bμν;ρσðkÞ
k2 −m2

G
→

i
2

Bμν;ρσ

½k2 −m2
G�n

; ðA10Þ

and then to take the limit n → 1 in the end of the
calculation. The reason why the photon’s propagator
cannot be relaxed lies in the fact that the photon’s
propagator is closed related to the photon-photon-G vertex
so that for consistency, one cannot modify the propagator
solely without changing the vertex accordingly. As usual,
with Feynman parametrization, we can complete the square
in the denominator of the loop integral as follows,

1

½l2 −m2
l�ðl − k2Þ2½ðl − k1Þ2 −m2

G�n

¼ Γðnþ 2Þ
ΓðnÞ

Z
dxdy

1

½ðl − xk1 − yk2Þ2 − Δb1 �nþ2
;

ðA11Þ

with

Δb1 ≡ ð1 − x − yÞ2m2
l − xyq2 þ xm2

G: ðA12Þ

As a result, we can shift the loop momentum as l → lþ xk1 þ yk2 in the loop integral. Then we can expand it and obtain the
following relevant terms of interest:

−
16l2

3m4
G
f2ð2y − 1Þ=llμðk1 · lÞðk2 · lÞ þ 4x=llμðk1 · lÞ2 þ =ll2ðk1 · lÞ½ðx − 2Þkμ1 þ ð1þ yÞkμ2�

þ l2½−lμðk1 · lÞ=k2 þ 2lμ=k1ðk2 · lÞ − l2kμ2=k1 − ylμ=l=k2=k1 þ ylμðk1 · lÞ=k2 − 4ylμ=k1ðk2 · lÞ
− yl2kμ2=k1 þ lμ=k1ðk1 · lÞ þ 2l2kμ1=k1 − 2l2mlk

μ
1 −mllμðk1 · lÞ þmlxlμ=k1=lþ xmll2k

μ
1

þ 4xmllμðk1 · lÞ þ ξðl · qÞγμ=l=k1 − lμq=l=k1 þ lμðk1 · lÞq − 5xlμ=k1ðk1 · lÞ − xl2kμ1=k1 þmll2k
μ
2

−2mllμðk2 · lÞ þ ymllμ=l=k2 þ ymll2k
μ
2 þ 4ymllμðk2 · lÞ −mlðl · qÞγμ=lþmllμq=l�g: ðA13Þ

According to the rules of loop regularization, we can
transform the loop integral of (b1) into the sum of
irreducible loop integrals, which are define as follows:

I−2m ≡
Z
l

1

ðl2 −M2Þmþ2
;

Iμν−2m ≡
Z
l

lμlν

ðl2 −M2Þmþ3
;

Iμνρσ−2m ≡
Z
l

lμlνlρlσ

ðl2 −M2Þmþ4
; ðA14Þ

where the subscripts on the left-hand side refer to the mass
dimensions of loop integrals with m ∈ Z. In particular,
when these integrals are divergent, then the subscripts stand
for the degrees of UV divergences. With the prescription
of loop regularization, it is easy to prove the following
consistency conditions for the regularized integrals:

Iμν−2m ¼ gμν

2ð2þmÞ I−2m;

Iμνρσ−2m ¼ 1

4ð2þmÞð3þmÞ ðg
μνgρσ þ gμρgνσ þ gνρgμσÞI−2m:

ðA15Þ

For the quadratically and logarithmically divergent inte-
grals with m ¼ −1 and m ¼ 0, respectively, the above
relations are reduced as follows:

Iμν2 ¼ 1

2
gμνI2; Iμνρσ2 ¼ 1

8
ðgμνgρσþgμρgνσþgνρgμσÞI2;

Iμν0 ¼ 1

4
gμνI0; Iμνρσ0 ¼ 1

24
ðgμνgρσþgμρgνσþgνρgμσÞI0:

ðA16Þ

Note that it was proven that the conditions given in
Eq. (A16) are enough to guarantee the gauge invariance
in the renormalizable gauge theories. However, now we
need to extend these relations to the more general case in
Eq. (A15) for nonrenormalizable interactions. After tedious
calculations with repeated usages of the consistency con-
ditions, the terms relevant to the lepton g − 2 can be
reduced to

iMðb1Þ∼−
clcγeQl

8Λ2

�
−

16

3m4
G

�
ml½ūðk2Þð−iσμνqνÞuðk1Þ�

×
Γðnþ2Þ
ΓðnÞ

Z
dxdyð1−x−yÞn−1

×

�
4ðxþy−1=2Þ
4ðn−1Þn þxþy−1

2ðn−1Þ
�
I2ð3−nÞ;

ðA17Þ

where the symbol of “∼” refers to the equality up to the
leading-order divergence. In general, one cannot simply
integrate over the Feynman parameters, x and y, since the
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loop integral I2ð3−nÞ depends on them. However, here, we
only focus on the leading-order divergent term, which does
not have any reliance on Feynman parameters. Therefore,
we can put the divergent part D½I2ð3−nÞ� out of the

integration over x with the notation D½::� denoting the
leading-order divergence of the loop integral. As a
result, the amplitude contributing to the lepton g − 2 is
given by

iMðb1Þ ∼ Aðb1ÞD½I2ð3−nÞ�
Γðnþ 2Þ
ΓðnÞ

Z
1

0

dttð1 − tÞn−1
�

2t − 1

2nðn − 1Þ þ
t − 1

2ðn − 1Þ
�

¼ Aðb1ÞD½I2ð3−nÞ�
1

2nðn − 1Þ ð1 − nÞ ¼ Aðb1ÞD½I2ð3−nÞ�
�
−

1

2n

�

¼ −
1

2
Aðb1ÞD½I4�; ðA18Þ

where we have defined

Aðb1Þ ≡ −
clcγeQl

8Λ2

�
−

16

3m4
Gξ

�
ml½ūðk2Þð−iσμνqνÞuðk1Þ�:

ðA19Þ

Here, we have transformed the integration over x and y into
that over t ¼ xþ y in the first relation. Further, we have
taken the limit n → 1 in the last equality as demanded by
the true photon propagator. Finally, the quartically diver-
gent integral I4 can be regularized by the loop regulariza-
tion with the leading-order divergent part given by

D½I4� ¼
i

16π2
Λ4

2
: ðA20Þ

By comparing the definition of Δal in Eq. (A1), we can
extract the contribution to the muon anomalous magnetic
moment as follows:

Δaðb1Þl ≈ −
clcγ
48π2

�
ml

Λ

�
2
�

Λ
mG

�
4

: ðA21Þ

3. Diagram (b1) in the general gauge

As a proof of gauge invariance of quantum electrody-
namics, we perform the calculation in the general gauge
with ξ in Eq. (A8) taken as arbitrary values. Following
exactly the same procedure, we can firstly complete the
square in the denominator as follows:

1

½l2 −m2
l�ðl − k2Þ4½ðl − k1Þ2 −m2

G�n

¼ Γðnþ 3Þ
Γð2ÞΓðnÞ

Z
dxdyy

1

½ðl − xk1 − yk2Þ2 − Δb1 �ðnþ3Þ :

ðA22Þ

After the shift of loop momentum l, the terms in the
numerator relevant to the lepton g − 2 are given by

−
16l4

3m4
G
f2ð3y − 2Þ=llμðk1 · lÞðk2 · lÞ þ 6x=llμðk1 · lÞ2 þ =ll2ðk1 · lÞ½ðx − 2Þkμ1 þ ð1þ yÞkμ2�

þ l2½−lμðk1 · lÞ=k2 þ 4lμ=k1ðk2 · lÞ − l2kμ2=k1 − ylμ=l=k2=k1 þ ylμðk1 · lÞ=k2 − 6ylμ=k1ðk2 · lÞ
− yl2kμ2=k1 þ lμ=k1ðk1 · lÞ þ 2l2kμ1=k1 − 2l2mμk

μ
1 −mμlμðk1 · lÞ þmμxlμ=k1=lþ xmμl2k

μ
1

þ 6xmμlμðk1 · lÞ þ ðl · qÞγμ=l=k1 − lμq=l=k1 þ lμðk1 · lÞq − 7xlμ=k1ðk1 · lÞ − xl2kμ1=k1 þmμl2k
μ
2

−4mμlμðk2 · lÞ þ ymμlμ=l=k2 þ ymμl2k
μ
2 þ 6ymμlμðk2 · lÞ −mμðl · qÞγμ=lþmμlμq=l�g; ðA23Þ

where we have also suppressed the prefactors involving the coupling constants for simplicity. It is obvious that the gauge
parameter ξ has been canceled out completely, which means that our final result is gauge independent. With the general
consistency relations in Eqs. (A15), the corresponding amplitude is given by
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iMðb1Þ ∼ Aðb1Þ
Γðnþ 3Þ
ΓðnÞΓð2Þ

Z
dxdyyð1 − x − yÞn−1

�
2ð3xþ 3y − 2Þ

4ðn − 1Þn þ xþ y − 1

2ðn − 1Þ
�
I2ð3−nÞ

¼ Aðb1ÞD½I2ð3−nÞ�
1

4nðn − 1Þ ½6 − 2ðnþ 2Þ�

∼ −
1

2
Aðb1ÞD½I4� ∼

clcγeQl

96π2Λ2
mlðiσμνqνÞ

�
Λ
mG

�
4

; ðA24Þ

where, in the last line, we have taken the limit n → 1 to recover the original one-loop integral of (b1). The contribution to the
lepton g − 2 is given by

Δaðb1Þl ≈ −
clcγ
48π2

�
ml

Λ

�
2
�

Λ
mG

�
4

; ðA25Þ

which agrees with Eq. (A21) for the fixed Feynman-’t Hooft gauge. Therefore, we have explicitly shown that our result
respects the gauge invariance, which guarantees the consistency of our calculation.

4. Diagram (b2)

Similar to the diagram (b1), the amplitude of the Feynman diagram (b2) is given by

iMðb2Þ ¼ −
clcγeQl

8Λ2

ūðk2Þfγρðlþ k2Þσ þ γσðlþ k2Þρ − 2ηρσð=k2 þ =l − 2mlÞgð=lþmlÞγνuðk1Þ
ðl2 −m2

lÞ½ðl − k2Þ2 −m2
G�ðl − k1Þ2

× Bαβ;ρσðl − k2Þ½q · ðl − k1ÞCαβ;μκ þDαβ;μκðq; l − k1Þ þ ξ−1Eαβ;μκðq; l − k1Þ�Aνκðl − k1Þ: ðA26Þ

Following the same treatment as for the diagram (b1), the contribution from (b2) to the lepton g − 2 is given by

Δaðb2Þl ≈ −
clcγ
48π2

�
ml

Λ

�
2
�

Λ
mG

�
4

: ðA27Þ

5. Diagram (c)

According to the Feynman rules, the amplitude of the diagram (c) is given by

iMðcÞ ¼
icleQl

2Λ

Z
d4l
ð2πÞ4 ūðk2ÞðC

ρσ;ντ − ηρσηντÞγτuðk1Þ
ð−iÞAκνðlþ qÞ

ðlþ qÞ2
�
−
icγ
Λ

�

× ½−q · ðlþ qÞCαβ;μκ þDαβ;μκðq;−ðlþ qÞÞ þ ξ−1Eαβ;μκðq;−ðlþ qÞÞ� iBαβ;ρσðlÞ=2
l2 −m2

G
; ðA28Þ

where the tonsorial factors AμνðpÞ and BμνρσðkÞ are defined in Eqs. (A9) and (A3). Explicit calculations show that, by
contracting all Lorentz indices and using the on-shell condition for the external photon in Eq. (A28), the remaining terms are
all proportional to γμ so that this diagram cannot contribute to the magnetic dipole of leptons.

6. Diagrams (d1) and (d2)

In this subsection, we present the computational details of Feynman diagrams of (d1) and (d2). Since they are symmetric,
it is expected that both of them give the same result. Straightforward computations confirm this conclusion. Therefore, here,
we only show the necessary steps for the calculation of diagram (d1) in the following.
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The amplitude of (d1) is given by

iMðd1Þ ¼
Z

d4l
ð2πÞ4 ūðk2Þ

�
−i

cl
4Λ

�
½γρðlþ 2k2Þσ þ γσðlþ 2k2Þρ − 2ηρσð=lþ 2=k2 − 2mlÞ�

×
i

=lþ =k2 −ml

�
ieQlcl
2Λ

ðCαβ;μν − ηαβημνÞγν
�
uðk1Þ

�
iBαβ;ρσðlÞ=2
l2 −m2

G

�

¼ −
eQlc2l
16Λ2

Z
d4l
ð2πÞ4 ðC

αβ;μν − ηαβημνÞBαβ;ρσðlÞ

×
ūðk2Þ½γρðlþ 2k2Þσ þ γσðlþ 2k2Þρ − ηρσð=lþ 2=k2 − 2mlÞ�½=lþ =k2 þml�γνuðk1Þ

½ðlþ k2Þ2 −m2
l�ðl2 −m2

GÞ
: ðA29Þ

Like the situation when computing the diagram (b1), the application of the consistency conditions in Eq. (A15) would cause
the denominator to become 0. In order to cure this unphysical pathology, we shall follow Eq. (A10) to relax the power index
of the spin-2 particle’s propagator from 1 to n and take the limit n → 1 in the final expression. With this prescription, we
complete the square in the denominator as follows:

1

½ðlþ k2Þ2 −m2
l�ðl2 −m2

GÞn
¼ Γðnþ 1Þ

ΓðnÞ
Z

1

0

dx
1

½ðlþ xk22Þ − Δd�nþ1
; ðA30Þ

where

Δd ¼ xm2
l þ ð1 − xÞm2

G − xð1 − xÞk22: ðA31Þ

Now we shift the loop momentum l → l − xk2 so that the numerator in the loop integral can be transformed into

N ¼ ūðk2Þfγρ½lσ þ ð2 − xÞkσ2� þ γσ½lρ þ ð2 − xÞkρ2� − 2ηρσ½=lþ ð2 − xÞ=k2 − 2ml�g
× ½=lþ ð1 − xÞ=k2 þml�γνuðk1ÞðCαβ;μν − ηαβημνÞBαβ;ρσðl − xk2Þ; ðA32Þ

where we have omitted the prefactors for simplicity. By contracting the Lorentz indices and simplifying the expression with
the on-shell conditions of external particles, we find that the terms that potentially contribute at leading order to the lepton
magnetic dipole operator are given by

N0 ¼ −
32

3m4
G
fl2½xmllμ=l=k2 − xmllμðk2 · lÞ þ xkμ2=lðk2 · lÞ� þ 2ðx − 1Þlμðk2 · lÞ2=lg: ðA33Þ

Hence, when written in terms of the irreducible loop integrals, the above amplitude can be expressed as follows:

iMðd1Þ ∼ −
eQlc2l
16Λ2

�
−

32

3m4
G

�
Γðnþ 1Þ
ΓðnÞ

Z
1

0

dx½xmlI
μν
2ð3−nÞγν=k2 þ 2ðx − 1ÞIμνρσ

2ð3−nÞγνk2ρk2σ�

∼
eQlc2l
16Λ2

�
32ml

3m4
G

�
Γðnþ 1Þ
ΓðnÞ

Z
1

0

dx

�
x

2ðn − 1Þ γ
μ=k2 −

ð1 − xÞ
nðn − 1Þ k

μ

�
I2ð3−nÞ

∼
eQlc2l
16Λ2

�
32ml

3m4
G

�
ð−iσμνqνÞ

Γðnþ 1Þ
ΓðnÞ

Z
1

0

dx

�
x

2ðn − 1Þ −
ð1 − xÞ

2nðn − 1Þ
�
I2ð3−nÞ; ðA34Þ

where we have applied the consistency conditions in Eq. (A15) and have only kept terms that give rise to the lepton g − 2.
Note that the leading-order divergence denoted asD½I2ð3−nÞ� is independent of the Feynman parameter x so that we can take
it our of the integration over x. As a result, the dominant amplitude proportional to ðiσμνqνÞ is given by

MUON g − 2 ANOMALY FROM A MASSIVE SPIN-2 PARTICLE PHYS. REV. D 107, 035008 (2023)

035008-15



iMðd1Þ ∼
eQlc2l
16Λ2

�
32ml

3m4
G

�
ð−iσμνqνÞ

Γðnþ 1Þ
ΓðnÞ D½I2ð3−nÞ�

�
1

4ðn − 1Þ −
1

4nðn − 1Þ
�

¼ eQlc2l
16Λ2

�
32ml

3m4
G

�
ð−iσμνqνÞ

Γðnþ 1Þ
ΓðnÞ D½I2ð3−nÞ�

1

4n

∼
eQlc2l
16Λ2

�
8ml

3m4
G

�
ð−iσμνqνÞD½I4�; ðA35Þ

where in the last line, we have taken the limit n → 1.
By comparing with the definition of Δal in Eq. (A1), the
contribution from diagram (d1) to the lepton g − 2 is
given by

Δaðd1Þl ¼ c2l
96π2

�
ml

Λ

�
2
�

Λ
mG

�
4

; ðA36Þ

where we have used the expression of the top divergence in
Eq. (A20) obtained by the loop regularization.
By explicit calculation of the diagram (d2), we can prove

that it gives exactly the same leading-order contribution to

the lepton g − 2 as (d1): Δa
ðd2Þ
l ¼ Δaðd1Þl .

7. Total contribution to Δaμ
By summing up all of the contributions above to the

lepton g − 2, we can obtain the total one-loop contribution
induced by the massive spin-2 field G as follows:

ΔaGl ¼
�
ml

Λ

�
2
�

Λ
m4

G

��
c2l

48π2
−
clcγ
24π2

�
: ðA37Þ

We shall apply this analytic expression in our numerical
investigation over the parameter space in the main text.
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