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We study probes of neutral triple gauge couplings (nTGCs) at the LHC and the proposed 100 TeV pp
colliders, and compare their sensitivity reaches with those of proposed eþe− colliders. The nTGCs provide
a unique window to the new physics beyond the Standard Model (SM) because they can arise from SM
effective field theory operators that respect the full electroweak gauge group SUð2ÞL ⊗ Uð1ÞY of the SM
only at the level of dimension-8 or higher. We derive the neutral triple gauge vertices (nTGVs) generated by
these dimension-8 operators in the broken phase and map them onto a newly generalized form factor
formulation, which takes into account only the residual Uð1Þem gauge symmetry. Using this mapping, we
derive new nontrivial relations between the form factors that guarantee a truly consistent form factor
formulation of the nTGVs and remove large unphysical energy-dependent terms. We then analyze the
sensitivity reaches of the LHC and future 100 TeV hadron colliders for probing the nTGCs via both the
dimension-8 nTGC operators and the corresponding nTGC form factors in the reaction ppðqq̄Þ → Zγ with
Z → lþl−, νν̄. We compare their sensitivities with the existing LHC measurements of nTGCs and with
those of the high-energy eþe− colliders. In general, we find that the prospective LHC sensitivities are
comparable to those of an eþe− collider with center-of-mass energy ≤ 1 TeV, whereas an eþe− collider
with center-of-mass energy (3–5) TeV would have greater sensitivities, and a 100 TeV pp collider could
provide the most sensitive probes of the nTGCs.
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I. INTRODUCTION

Neutral triple-gauge couplings (nTGCs) provide a
unique window for probing the new physics beyond the
Standard Model (SM). It is well known that they do not

appear among the dimension-4 terms of the SM
Lagrangian, nor are they generated by dimension-6 terms
in its extension to the Standard Model Effective Field
Theory (SMEFT) [1]. Instead, the nTGCs first appear
through the gauge-invariant dimension-8 operators [2–6]
in the SMEFT. Hence any indication of a nonvanishing
nTGC would be direct prima facie evidence for new physics
beyond the SM, which is different in nature from anything
that might be first revealed by dimension-6 operators of
the SMEFT [7–9]. Moreover, searching for the effects of
interference between the other dimension-8 interactions and
the SM contributions to amplitudes must contend with
possible contributions that are quadratic in dimension-6
interactions, which is not an issue for the nTGCs.
Relatively few experimental probes of dimension-8

SMEFT interactions have been proposed in the literature.
One of them is the nTGCs mentioned above [2–6], which
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first arise from the dimension-8 operators of the SMEFT
and have no counterpart in the SM Lagrangian of
dimension-4 or in the dimension-6 SMEFT interactions.
Recent works have studied how the nTGCs can be probed
by measuring Zγ production at high-energy eþe− colliders
[5,6,10] and pp colliders [11] under planning. Other
examples include light-by-light scattering [12], which
has been measured at the LHC and could also be interesting
for high-energy eþe− colliders [13], and the processes
gluonþ gluon → γ þ γ [14] and gluonþ gluon → Z þ γ
[15], which have been probed at the LHC. There are also
recent studies on the dimension-8 operators induced by
toplike heavy vector quarks and the their probes via tt̄h
production at hadron colliders [16], and on the dimension-8
operators induced by the heavy Higgs doublet of the two-
Higgs-doublet model [17].
In this work, we present a systematic study of the

sensitivity reaches of probing the dimension-8 nTGC
interactions by measuring Zγ production at the LHC
(13 TeV) and the ppð100 TeVÞ colliders. The nTGCs
are coupling coefficients of the neutral triple gauge vertices
(nTGVs), which are often parametrized in terms of effective
form factors that respect only the residual Uð1Þem gauge
symmetry of the electromagnetism. This is in contrast with
the dimension-8 nTGC operators of the SMEFT, which
respect the full electroweak gauge group SUð2ÞL ⊗ Uð1ÞY
of the SM. We derive the nTGVs from these dimension-8
operators in the broken phase and map them onto a newly
generalized form factor formulation of the nTGVs. Using
this mapping, we derive new nontrivial relations among the
form factor parameters that ensure a truly consistent form
factor formulation of the nTGVs and remove unphysically
large energy-dependent terms. Using these, we analyze
systematically the sensitivity reaches of the LHC and future
hadron colliders for nTGC couplings via both the dimen-
sion-8 nTGC operators and the corresponding nTGC form
factors. We also make a direct comparison of our LHC
analysis with the existing LHC measurements of nTGCs in
the reaction ppðqq̄Þ → Zγ with Z → νν̄ by the CMS [18]
and ATLAS [19] Collaborations based on the conventional
nTGC form factor formulation that takes into account only
the unbroken Uð1Þem gauge symmetry [3,4]. From this
comparison, we demonstrate the importance of using our
proposed SMEFT form factor approach to analyze nTGC
constraints at the LHC and future high-energy colliders.
The outline of this paper is as follows. In Sec. II we

review the parametrization of nTGCs and derive the cross
sections for the reaction qq̄ → Zγ (followed by Z → ff̄
decays) as induced by the nTGCs. We also analyze the
perturbative unitarity bounds on the nTGCs, showing that
they are much weaker than the collider limits we present in
Secs. IV–V. Then, in Sec. III we present a newly gener-
alized form factor formulation of the nTGCs and demon-
strate that the full spontaneously broken electroweak gauge
symmetry SUð2ÞL ⊗ Uð1ÞY of the SM leads to important
restrictions on the nTGC form factors. As noted above,
the full electroweak gauge symmetry is respected by the

construction of the SMEFT, where the nTGCs appear first
through dimension-8 operators. Using this formulation, we
study in Sec. IV the sensitivities of the LHC and future
ppð100 TeVÞ colliders for probes of the nTGCs in the
reaction ppðqq̄ → ZγÞ with Z → ll̄; νν̄. We make a direct
comparison of the sensitivity bounds using our SMEFT
formulation of nTGCs with the existing LHC measure-
ments on the nTGCs. In Sec. V, we further present a
systematic comparison with the sensitivity reaches of the
prospective high-energy eþe− colliders. Finally, we sum-
marize our findings and conclusions in Sec. VI.

II. SCATTERING AMPLITUDES AND CROSS
SECTIONS FOR nTGCs

In this section, we first set up the notations and present
the dimension-8 operators for the neutral triple gauge
couplings (nTGCs) and the corresponding neutral triple
gauge vertices (nTGVs). Then, we derive the nTGC
contributions to the Zγ amplitudes and cross sections.
Finally, we derive the perturbative unitarity constraints on
the nTGC couplings.

A. nTGCs from the dimension-8 operators

In previous works [5,6] we studied the dimension-8
operators that generate nTGCs and for their contributions
to helicity amplitudes and cross sections at eþe− colliders. In
particular, we identified a new set of CP-conserving pure
gauge operators of dimension-8 for the nTGCs, one ofwhich
(OGþ) can give leading contributions to the neutral triple
gauge boson vertices ZγZ� and Zγγ� with enhanced energy
dependences∝ E5. In this subsection, we recast them for our
applications to the LHC and future high-energypp colliders.
The general dimension-8 SMEFT Lagrangian takes the

following form:

ΔLðdim−8Þ ¼
X
j

c̃j
Λ̃4

Oj ¼
X
j

signðc̃jÞ
Λ4
j

Oj ¼
X
j

1

½Λ4
j �
Oj;

ð2:1Þ
where the dimensionless coefficients c̃j are expected to be
around Oð1Þ and may take either sign, signðc̃jÞ ¼ �.
For each dimension-8 operator Oj, we have defined in
Eq. (2.1) the corresponding effective cutoff scale for new
physics, Λj ≡ Λ̃=jc̃jj1=4. We also introduced a notation
½Λ4

j �≡ signðc̃jÞΛ4
j .

We have analyzed the following set of dimension-8
operators [5] that are relevant for our nTGC analysis:

gOGþ ¼ B̃μνWaμρðDρDλWaνλ þDνDλWa
λρÞ; ð2:2aÞ

gOG− ¼ B̃μνWaμρðDρDλWaνλ −DνDλWa
λρÞ; ð2:2bÞ

OB̃W ¼ iH†B̃μνWμρfDρ; DνgH þ H:c:; ð2:2cÞ
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OCþ ¼ B̃μνWaμρ½DρðψLTaγνψLÞ þDνðψLTaγρψLÞ�;
ð2:2dÞ

OC− ¼ B̃μνWaμρ½DρðψLTaγνψLÞ −DνðψLTaγρψLÞ�:
ð2:2eÞ

The fermionic operators OCþ and OC− do not contribute
directly to the nTGC couplings, but are connected to the
three bosonic nTGC operators ðOGþ;OG−;OB̃WÞ by the
equation of motion [5]:

OCþ ¼ OG− −OB̃W; ð2:3aÞ
OC− ¼ OGþ − fiH†B̃μνWμρ½Dρ; Dν�H

þ i2ðDρHÞ†B̃μνWμρDνH þ H:c:g: ð2:3bÞ
They both contribute to the quartic ff̄Zγ vertex and thus to
the on-shell amplitude T ½ff̄ → Zγ�. Hence they can be
probed by the reaction ff̄ → Zγ. However, we note that the
operators OGþ and OC− give exactly the same contribution
to the on-shell amplitude T ½ff̄ → Zγ� at tree level [5],
because Eq. (2.3b) shows that the difference ðOC− −OGþÞ
is given by the Higgs-doublet-related term on the right-hand
side which contains at least 4 gauge fields and is thus
irrelevant for the amplitude T ½ff̄ → Zγ� at the tree level.
We consider first the dimension-8 nTGC operatorsOGþ,

OB̃W and OG−. These operators contribute to the ZγZ� and
Zγγ� vertices as follows:

Γαβμ
ZγZ�ðGþÞðq1; q2; q3Þ ¼ −

vðq23 −M2
ZÞ

MZ½Λ4
Gþ�

× ðq23q2νϵαβμν þ 2qα2q3νq2σϵ
βμνσÞ;
ð2:4aÞ

Γαβμ
Zγγ�ðGþÞðq1; q2; q3Þ ¼ −

sWvq23
cWMZ½Λ4

Gþ�
× ðq23q2νϵαβμν þ 2qα2q3νq2σϵ

βμνσÞ;
ð2:4bÞ

Γαβμ
ZγZ�ðB̃WÞðq1; q2; q3Þ ¼

vMZðq23 −M2
ZÞ

½Λ4
B̃W

� ϵαβμνq2ν; ð2:4cÞ

Γαβμ
Zγγ�ðG−Þðq1; q2; q3Þ ¼ −

sWvMZ

cW ½Λ4
G−�

ϵαβμνq2νq23: ð2:4dÞ

We consider next the fermion-bilinear operator OCþ,
which contributes to the effective contact vertex qq̄Zγ as
follows:

Γαβ
qq̄ZγðCþÞðq1; q2Þ ¼ −signðc̃CþÞ

2M2
ZT3

Λ4
ϵαβμνq2νγμPL;

ð2:5Þ

where the four external fields are on shell. In the above
formula, we have introduced the third component of the
weak isospin T3 ¼ � 1

2
and the chirality projections PLðRÞ ¼

1
2
ð1 ∓ γ5Þ.

B. nTGC contributions to Zγ amplitude
and cross section

Next, we study the helicity amplitude for the quark and
antiquark annihilation process qq̄ → Zγ, where the quark
has weak isospin T3 and electric chargeQ. We can compute
the SM contributions to the helicity amplitude of qq̄ →
ZðλÞγðλ0Þ as follows:

T ss0;T
sm

�−− −þ
þ− þþ

�
¼ −2e2Q

sWcWðs −M2
ZÞ
� ðc0L cot θ2 − c0R tan

θ
2
ÞM2

Z ð−c0L cot θ2 þ c0R tan
θ
2
Þs

ðc0L tan θ
2
− c0R cot

θ
2
Þs ð−cL tan θ

2
þ cR cot θ2ÞM2

Z

�
; ð2:6aÞ

T ss0;L
sm ð0−; 0þÞ ¼ −2

ffiffiffi
2

p
e2Qðc0L þ c0RÞMZ

ffiffiffi
s

p
sWcWðs −M2

ZÞ
ð1;−1Þ; ð2:6bÞ

for the helicity combinations λλ0 ¼ ð−−;−þ;þ−;þþÞ and λλ0 ¼ ð0−; 0þÞ. In the above, we have defined the coupling
coefficients ðc0L; c0RÞ ¼ ððT3 −Qs2WÞδs;−1

2
;−Qs2Wδs;12Þ with the notations ðsW; cWÞ ¼ ðsin θW; cos θWÞ and the subscript

index s ¼ ∓ 1
2
denoting the initial-state fermion helicities. If the initial-state quark and antiquark masses are negligible, the

relation s ¼ −s0 holds.
We find the following contributions to the corresponding helicity amplitudes from the dimension-8 operatorOGþðOC−Þ:

T ss0;T
ð8Þ;Gþ

�−− −þ
þ− þþ

�
¼ ðc0L þ c0RÞðs −M2

ZÞs sin θ
½Λ4

Gþ�
�
1 1

0 −1
�
; ð2:7aÞ

T ss0;L
ð8Þ;Gþð0−; 0þÞ ¼

ffiffiffi
2

p
MZðs −M2

ZÞ
ffiffiffi
s

p
½Λ4

Gþ�
�
c0Lsin

2
θ

2
− c0Rcos

2
θ

2
; c0Rsin

2
θ

2
− c0Lcos

2
θ

2

�
; ð2:7bÞ
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where the coupling coefficients are given by ðc0L; c0RÞ ¼
−T3ðδs;−1

2
; 0Þ, and we have used the notations ½Λ4

Gþ�≡
signðc̃GþÞΛ4

Gþ for OGþ. We note that in Eq. (2.7a) the off-
diagonal amplitudes vanish exactly. This is because the
final state ZðλÞγðλ0Þ with helicities λλ0 ¼ þ−;−þ should
have their spin angular momenta pointing to the same
direction in their center-of-mass frame and thus the sum of
their spin momenta would have magnitude equal 2. But this
is disallowed by the s-channel spin-1 gauge boson Z� or γ�.
For the same reason, the off-diagonal amplitudes contrib-
uted by the other dimension-8 operators in the following
Eq. (2.8a) have to vanish as well.
As for the other three dimension-8 operators

ðOG−;OB̃W;OCþÞ, we derive their contributions to the
helicity amplitudes of the reaction qq̄ → Zγ as follows:

T ss0;T
ð8Þ;j

�−− −þ
þ− þþ

�
¼ ðc0L þ c0RÞ sin θM2

Zðs −M2
ZÞ

½Λ4
j �

×

�
1 0

0 −1
�
; ð2:8aÞ

T ss0;L
ð8Þ;jð0−; 0þÞ

¼
ffiffiffi
2

p
MZðs −M2

ZÞ
ffiffiffi
s

p
½Λ4

j �

×

�
c0Lsin

2
θ

2
− c0Rcos

2
θ

2
; c0Rsin

2
θ

2
− c0Lcos

2
θ

2

�
; ð2:8bÞ

where ½Λ4
j � ¼ signðc̃jÞΛ4

j and j ∈ ðG−; B̃W; CþÞ. In
Eq. (2.8), the coupling factors ðc0L; c0RÞ are given by

ðc0L; c0RÞ ¼ −Qs2Wðδs;−1
2
; δs;1

2
Þ; ðfor OG−Þ; ð2:9aÞ

ðc0L; c0RÞ ¼ ðqLδs;−1
2
; qRδs;1

2
Þ; ðfor OB̃WÞ; ð2:9bÞ

ðc0L; c0RÞ ¼ −T3ðδs;−1
2
; 0Þ; ðfor OCþÞ; ð2:9cÞ

and the coefficients ðqL; qRÞ ¼ ðT3 −Qs2W;−Qs2WÞ arise
from Z gauge boson couplings with the (left, right)-handed
the quarks.
The kinematics for the complete annihilation process

qq̄ → Zγ → ff̄γ are defined by the three angles ðθ; θ�;ϕ�Þ,
where θ is the polar scattering angle between the direction
of the outgoing Z and the initial state quark q, θ� denotes
the angle between the direction opposite to the final-state γ
and the final-state fermion f direction in the Z rest frame,
and ϕ� is the angle between the scattering plane and
the decay plane of Z in the qq̄ center-of-mass frame
[cf. Eq. (4.8)]. We note that, at a pp collider, we cannot
determine which is the initial state quark (antiquark) in each
collision, so we could only determine the scattering angle
up to an ambiguity θ ↔ π − θ. It follows that the deter-
mination of the angle between the scattering plane and
Z-decay plane also has an ambiguity ϕ� ↔ π − ϕ�.

Taking these remarks into account, we can express the
full amplitude of the reaction process qq̄ → Zγ → ff̄γ in
the following form:

T ss0
σσ0λðff̄γÞ

¼ eMZDZ

sWcW

� ffiffiffi
2

p
eiϕ�

�
fσRcos

2
θ�
2
− fσLsin

2
θ�
2

�
T T

ss0 ðþλÞ

þ
ffiffiffi
2

p
e−iϕ�

�
fσRsin

2
θ�
2
− fσLcos

2
θ�
2

�
T T

ss0 ð−λÞ

þ ðfσR þ fσLÞ sin θ�T L
ss0 ð0λÞ

�
; ð2:10Þ

where DZ ¼ 1=ðq21 −M2
Z þ iMZΓZÞ comes from the Z

propagator. In Eq. (2.10), the final-state fermions have
the electroweak gauge couplings given by ðfσL; fσRÞ ¼
ððT3 −Qs2WÞδσ;−1

2
;−Qs2Wδσ;12Þ, and the scattering ampli-

tudes T T
ss0 ð�λÞ and T L

ss0 ð0λÞ represent the on-shell helicity
amplitudes for the reaction qq̄ → Zγ:

T T
ss0 ð�λÞ ¼ T ss0;T

sm ð�λÞ þ T ss0;T
ð8Þ ð�λÞ;

T L
ss0 ð0λÞ ¼ T ss0;L

sm ð0λÞ þ T ss0;L
ð8Þ ð0λÞ; ð2:11Þ

which receive contributions from both the SM and the
dimension-8 operator.
Applying a lower angular cut sin θ > sin δ for some

δ ≪ 1, we derive the following total cross section for the
partonic process qq̄ → Zγ, including both the linear and
quadratic contributions of OGþ and summing over the
final-state Z and γ polarizations:

σðZγÞ ¼ e4ðq2L þ q2RÞQ2½−ðs−M2
ZÞ2 − 2ðs2 þM4

ZÞ ln sin δ
2
�

8πs2Wc
2
Wðs−M2

ZÞs2

þ e2qLQT3M2
Zðs−M2

ZÞ
4πsWcWs

1

½Λ4
Gþ�

þ T2
3ðsþM2

ZÞðs−M2
ZÞ3

48πs
1

Λ8
Gþ

þOðδÞ; ð2:12Þ

where the weak isospin T3 ¼ � 1
2
is associated with the

W3 gauge coupling, and the coefficients ðqL; qRÞ ¼
ðT3 −Qs2W;−Qs2WÞ are the (left, right)-handed gauge
couplings of the quarks to the Z boson. In Eq. (2.12),ffiffiffi
s

p
denotes the center-of-mass energy of the partonic

process qq̄ → Zγ, but for the pp collider analyses in
Sec. IV we will rename the above partonic center-of-mass
energy as

ffiffiffî
s

p
for clarity.

We define the normalized angular distribution functions
as follows:

fjξ ¼
1

σj

dσj
dξ

; ð2:13Þ
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where the angles ξ ∈ ðθ; θ�;ϕ�Þ, and the cross sections σj (j ¼ 0, 1, 2) represent the SM contribution (σ0), the OðΛ−4Þ
contribution (σ1), and the OðΛ−8Þ contribution (σ2), respectively. In the following, we derive the explicit formulas for the
normalized azimuthal angular distribution functions fjϕ� :

f0ϕ� ¼
1

2π
þ 3π2ðq2L − q2RÞðf2L − f2RÞMZ

ffiffiffi
s

p ðsþM2
ZÞ cosϕ� − 8ðq2L þ q2RÞðf2L þ f2RÞM2

Zs cos 2ϕ�
16πðq2L þ q2RÞðf2L þ f2RÞ½ðs −M2

ZÞ2 þ 2ðs2 þM4
ZÞ ln sin δ

2
� þOðδÞ; ð2:14aÞ

f1ϕ� ¼
1

2π
−
3πðf2L − f2RÞðM2

Z þ 5sÞ cosϕ�
256ðf2L þ f2RÞMZ

ffiffiffi
s

p þ s cos 2ϕ�
8πM2

Z
; ð2:14bÞ

f2ϕ� ¼
1

2π
−
9πðf2L − f2RÞMZ

ffiffiffi
s

p
cosϕ�

128ðf2L þ f2RÞðsþM2
ZÞ

; ð2:14cÞ

wherewe denote the Z couplings with the initial state quarks
as ðqL; qRÞ ¼ ðT3 −Qs2W;−Qs2WÞ, and theZ couplings with
the final-state fermions as ðfL; fRÞ ¼ ððT3 −Qs2WÞ;−Qs2WÞ.
In the cases of the other nTGC operators Oj, we further

derive their contributions to the total cross sections of the
reaction qq̄ → Zγ as follows:

σðZγÞ ¼ e4ðq2L þ q2RÞQ2½−ðs−M2
ZÞ2 − 2ðs2 þM4

ZÞ ln sin δ
2
�

8πs2Wc
2
Wðs−M2

ZÞs2

−
e2QðqLxL − qRxRÞM2

Zðs−M2
ZÞðsþM2

ZÞ
8πsWcWs2

1

½Λ4
j �

þ ðx2L þ x2RÞM2
ZðsþM2

ZÞðs−M2
ZÞ3

48πs2
1

Λ8
j
þOðδÞ;

ð2:15Þ

wherewe define the relevant coupling coefficients ðxL; xRÞ as

ðxL; xRÞ ¼ −Qs2Wð1; 1Þ; ðfor Oj ¼ OG−Þ; ð2:16aÞ

ðxL; xRÞ ¼ ðT3 −Qs2W;−Qs2WÞ; ðfor Oj ¼ OB̃WÞ;
ð2:16bÞ

ðxL; xRÞ ¼ −ðT3; 0Þ; ðfor Oj ¼ OCþÞ: ð2:16cÞ
We see that in the high energy limit, the contributions of the
SM, the interference term, and the squared term behave as
ðs−1; s0; s2Þ respectively. We can compare the above cross
section with that of Eq. (2.12) for the nTGC operator OGþ
where theSMterm, the interference term, and the squared term
scale as ðs−1; s0; s3Þ, respectively. This shows that the con-
tribution ofOGþ to the squared term has higher energy power
enhancement of s3 than the factor s2 of the other operators.
Then, for the full process qq̄ → Zγ → ff̄γ, we further

derive the following normalized angular distribution func-
tions fjϕ� for the operators ðOG−;OB̃W;OCþÞ:

f0ϕ� ¼
1

2π
þ 3π2f2−q2−MZ

ffiffiffi
s

p ðsþM2
ZÞ cosϕ� − 8f2þq2þM2

Zs cos 2ϕ�
16πf2þq2þ½ðs −M2

ZÞ2 þ 2ðs2 þM4
ZÞ ln sin δ

2
� þOðδÞ; ð2:17aÞ

f1ϕ� ¼
1

2π
−
9πðqLxL þ qRxRÞðf2L − f2RÞ

ffiffiffi
s

p
cosϕ�

128ðqLxL − qRxRÞðf2L þ f2RÞMZ
þ s cos 2ϕ�
4πðsþM2

ZÞ
; ð2:17bÞ

f2ϕ� ¼
1

2π
−
9πðx2L − x2RÞðf2L − f2RÞMZ

ffiffiffi
s

p
cosϕ�

128ðx2L þ x2RÞðf2L þ f2RÞðsþM2
ZÞ

; ð2:17cÞ

where we have defined the coefficients ðf2�;q2�Þ≡
ðf2L�f2R;q

2
L�q2RÞ, and the electroweak gauge couplings

of the final state fermions are given by ðfL;fRÞ¼
ððT3−Qs2WÞ;−Qs2WÞ.

C. Analysis of unitarity constraints on nTGCs

In this subsection, we analyze the perturbative unitarity
constraints on the nTGCs, showing that these constraints

are much weaker than the sensitivity reaches of the collider
probes presented in the following Secs. III–V.
We first make the following partial-wave expansion [20]

of the nTGC contributions to the scattering amplitude for
the reaction ff̄ → Zγ:

aJ ¼
1

32π
eiðν0−νÞϕ

Z
1

−1
dðcos θÞdJν0νðcos θÞT

sfsf̄ ;λZλγ
nTGC ; ð2:18Þ
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where the differences of initial/final state helicities are
given by ν ¼ sf − sf̄ ¼ �1 and ν0 ¼ λZ − λγ ¼ 0;�1,
respectively. We note that for the present collider analysis
it is sufficient to treat the initial-state fermions ðf; f̄Þ (light
quarks or leptons) as massless. Thus we have sf ¼ −sf̄,
which leads to ν ¼ �1. Hence the J ¼ 1 partial wave
makes the leading contribution. The relevant Wigner d
functions are given by

d11;0 ¼ −
1ffiffiffi
2

p sin θ; d11;�1 ¼
1

2
ð1� cos θÞ; ð2:19Þ

and we have a general relation dJm;m0 ¼ dJ−m;−m0 .
In the case of the dimension-8 operatorOGþ (orOC−), its

leading contribution to the amplitude T
sfsf̄ ;λZλγ
nTGC is given by

Eq. (2.7), as follows:

T
sfsf̄ ;T
ð8ÞGþð∓∓Þ ¼ � ðc0L þ c0RÞs2 sin θ

½Λ4
Gþ�

; ð2:20Þ

where
ffiffiffi
s

p ¼ Ec:m: stands for the c.m. energy offf̄. As for the
other three dimension-8 operators Oj ∈ ðOG−;OB̃W;OCþÞ,
their leading contributions to the amplitude T

sfsf̄;λZλγ
nTGC are

given by Eq. (2.8b), as follows:

T
sfsf̄ ;L
ð8Þj ð0−; 0þÞ ¼

ffiffiffi
2

p
MZs3=2

½Λ4
j �

�
c0Lsin

2
θ

2
− c0Rcos

2
θ

2
;

c0Rsin
2
θ

2
− c0Lcos

2
θ

2

�
; ð2:21Þ

where the coupling factors ðc0L; c0RÞ are defined in Eq. (2.9).
Then, we derive the leading p-wave amplitude a1 for the

nTGC operator OGþ:

jℜeðaGþ1 Þj ¼ s2

48
ffiffiffi
2

p
πΛ4

Gþ
: ð2:22Þ

For the other nTGC operators Oj ∈ ðOG−;OB̃W;OCþÞ, we
derive their leading p-wave amplitudes as follows:

jℜeðaj1Þj ¼
c0L;RMZs3=2

24
ffiffiffi
2

p
πΛ4

j

: ð2:23Þ

Next, we impose the partial-wave unitarity condition
jℜeðaJÞj < 1

2
for J ¼ 1, and derive the following unitarity

bounds on the new physics cutoff scales ðΛGþ;ΛjÞ of the
nTGC operatorsOGþ andOj ∈ ðOG−;OB̃W;OCþÞ, respec-
tively,

ΛGþ >
ffiffiffi
s

p

ð24 ffiffiffi
2

p
πÞ1=4 ≃ 0.311

ffiffiffi
s

p
; ð2:24aÞ

Λj >

�
C0
L;RMZ

12
ffiffiffi
2

p
π

�1
4ð ffiffiffi

s
p Þ34 ≃ 0.203ðC0

L;RÞ14
�
TeV

ffiffiffiffiffi
s3

p �1
4

;

ð2:24bÞ

where
ffiffiffi
s

p ¼ Ec:m: denotes the center-of-mass energy of ff̄.
In the cases of the nTGC form factors ðh4; hZ3 ; hγ3Þ

defined in Eq. (3.5) of Sec. III, they are connected to the
cutoff scales of ðOGþ;OB̃W;OG−Þ via ðjh4j; jhZ3 ; jhγ3jÞ ¼
ðr4=Λ4

Gþ; r
Z
3=Λ4

B̃W
; rγ3=Λ4

G−Þ, as given by Eq. (3.6).
Thus, using Eq. (2.24) we further derive the following

unitarity bounds on the nTGC form factors:

jh4j <
24

ffiffiffi
2

p
πv2M2

Z

sWcWs2
≃
�
0.597 TeVffiffiffi

s
p

�
4

; ð2:25aÞ

FIG. 1. Unitarity bounds on new physics cutoff scales for the nTGC operators ðOGþ;OB̃W;OG−;OCþÞ in plot (a) and for the nTGC
form factors ðjh4j; jhZ3 j; jhγ3jÞ in plot (b). These bounds are derived from the p-wave amplitudes of the reaction ff̄ → Zγ, where
ff̄ ¼ qq̄; eþe− with q being the light quarks.
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jhV3 j <
6
ffiffiffi
2

p
πr̄V3

sWcWC0
L;R

v2MZffiffiffiffiffi
s3

p ≃
0.350r̄V3
C0
L;R

�
TeVffiffiffi

s
p
�

3

; ð2:25bÞ

where we have used the expressions in Eq. (3.7b) for
the coefficients ðr4; rV3 Þ and have defined r̄V3 ∈ ðr̄Z3 ; r̄γ3Þ ¼
ð1; sW=cWÞ.
Using formulas (2.24) and (2.25) for the unitarity

bounds, we present their values in Table I for various
sample values of the c.m. energies Ec:m: ¼ ð0.25; 0.5; 1;
3; 5; 25Þ TeV, of the reactions qq̄ → Zγ and e−eþ → Zγ
that are relevant to the present collider study. Then, in Fig. 1
we present the unitarity bounds on the nTGC operators and
nTGC form factors as functions of the center-of-mass
energy Ec:m: ¼ ð0.25–30Þ TeV for the reaction ff̄ → Zγ,
where ff̄ ¼ qq̄; eþe− and q denotes the light quarks. We
plot the unitarity bounds on the new physics cutoff scales of
the nTGC operators ðOGþ;OB̃W;OG−;OCþÞ in plot (a),
whereas in plot (b) we impose the unitarity bounds on the
nTGC form factors ðjh4j; jhZ3 j; jhγ3jÞ, as derived from the p-
wave amplitudes. Finally, by comparing the unitarity
bounds of Table I and Fig. 1 with our collider bounds
summarized in Tables IX–X and in Figs. 10–11 of Sec. V,
we find that these perturbative unitarity bounds are much
weaker than our collider bounds. Hence, they do not affect
our collider analyses in the following Secs. IV–V.

III. FORM FACTOR FORMULATION FOR nTGCs

We study in this section the form factor formulation of
the neutral triple gauge vertices (nTGVs) ZγV�. After
imposing Lorentz invariance, the residual electromagnetic
Uð1Þem gauge symmetry and CP conservation, they are
conventionally expressed in the following form [3,4]:

Γαβμ
ZγV� ðq1; q2; q3Þ ¼

eðq23 −M2
VÞ

M2
Z

�
hV3 q2νϵ

αβμν

þ hV4
M2

Z
qα2q3νq2σϵ

βμνσ

�
; ð3:1Þ

where the gauge bosons are denoted by V ≡ Z, γ and the
form factor parameters ðhV3 ; hV4 Þ are treated as constant
coefficients for the purposes of experimental tests [18].1

We stress that the spontaneous breaking of the SM
electroweak gauge symmetry requires the nTGCs to be
generated only by the gauge-invariant effective operators of
dimension-8 or higher. This implies that the consistent form
factor formulation of the neutral triple gauge vertices must
map precisely the expressions for these gauge-invariant
nTGC operators in the broken phase. This precise mapping
between the nTGVs in the broken phase of these dimen-
sion-8 nTGC operators (2.2) imposes nontrivial relations
between the parameters of the nTGVs in the form factor
formulation and removes possible unphysical energy-
dependent terms in them.2

By direct power counting, we find that the dimension-8
operator OGþ contributes to the nTGVs with a leading E5

energy dependence. Based on this and the above observa-
tions, we find that the conventional form factor formula (3.1)
is not compatible with the gauge-invariant SMEFT formu-
lation, and a new term must be added, labeled by hV5 in the
following. With these remarks in mind, we express the
neutral triple gauge vertices ZγV� as follows:

Γαβμð8Þ
ZγV� ðq1; q2; q3Þ ¼

eðq23 −M2
VÞ

M2
Z

��
hV3 þ hV5

q23
M2

Z

�
q2νϵαβμν

þ hV4
M2

Z
qα2q3νq2σϵ

βμνσ

�
; ð3:2Þ

TABLE I. Unitarity bounds on the new physics scale Λj of the dimension-8 nTGC operators and on the nTGC
form factors hVj , as derived for various sample values of the center-of-mass energy Ec:m: of the reaction qq̄ → Zγ or
e−eþ → Zγ that are relevant to the present collider study.

Ec:m: (TeV) 0.25 0.5 1 3 5 25 40

ΛGþ (TeV) 0.078 0.16 0.31 0.93 1.6 7.8 12
ΛB̃W (TeV) 0.058 0.098 0.16 0.37 0.55 1.8 2.6
ΛG− (TeV) 0.050 0.084 0.14 0.32 0.47 1.6 2.2
ΛCþ (TeV) 0.060 0.10 0.17 0.39 0.57 1.9 2.7

jh4j 33 2.0 0.13 0.0016 2.0 × 10−4 3.3 × 10−7 5.0 × 10−8

jhZ3 j 53 6.6 0.83 0.031 6.6 × 10−3 5.3 × 10−5 1.3 × 10−5

jhγ3j 53 6.6 0.83 0.031 6.6 × 10−3 5.3 × 10−5 1.3 × 10−5

1qα2q3νq2σϵ
βμνσ is equivalent to qα3q3νq2σϵ

μβνσ under the on-
shell condition ðqα2 þ qα3Þϵ�α ¼ −qα1ϵ�α ¼ 0.

2The spontaneous breaking of the SM electroweak gauge
symmetry has many important physical consequences that, most
notably, guarantee the renormalizability [21] of the SM electro-
weak gauge theory. Here our new observation is that the
spontaneous breaking of the electroweak gauge symmetry re-
quires nontrivial extension of the conventional form factor
parametrization and imposes new restrictions on these form
factors that go beyond the residual Uð1Þem gauge symmetry
alone. These considerations were not incorporated in the conven-
tional form factor formulation of the nTGVs [3,4].
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where the form factors hVi are taken as constants in the
present study. The parametrization of the nTGVs in Eq. (3.2)
corresponds to the following effective Lagrangian:

L¼ e
M2

Z

�
−
�
hγ3ð∂σFσρÞ þ hZ3 ð∂σZσρÞ

þ hγ5
M2

Z
ð∂2∂σFρσÞ þ hZ5

M2
Z
ð∂2∂σZρσÞ

�
ZαF̃ρα

þ
�

hγ4
2M2

Z
½□∂

σFρα� þ hZ4
2M2

Z
½ð□þM2

ZÞ∂σZρα�
�
ZσF̃ρα

�
;

ð3:3Þ
which differs from the conventional nTGV form factor
Lagrangian [2] by the new hV5 terms.
We now compare our modified nTGV formula (3.2) with

the nTGVs in Eqs. (2.4a)–(2.4d) as predicted by the gauge-
invariant dimension-8 nTGC operators ðOGþ;OG−;OB̃WÞ
in Eqs. (2.2a)–(2.4d), which should match exactly case by
case. In the case of the operatorOGþ, this matching leads to
the following two restrictions on the form factors in
Eq. (3.2):

hV4 ¼ 2hV5 ; ð3:4aÞ

hZ4 ¼ cW
sW

hγ4; ð3:4bÞ

where henceforth we denote h4 ≡ hZ4 for convenience.
These conditions demonstrate that there are only three
independent form-factor parameters ðhZ3 ; hγ3; h4Þ. Applying
the condition (3.4a), we can express the ZγV� vertex (3.2)
as follows:

Γαβμð8Þ
ZγV� ðq1; q2; q3Þ ¼

eðq23 −M2
VÞ

M2
Z

��
hV3 þ hV4

2M2
Z
q23

�
q2νϵαβμν

þ hV4
M2

Z
qα2q3νq2σϵ

βμνσ

�
: ð3:5Þ

Comparing the nTGVs (2.4) predicted by the dimension-8
operators (2.2a)–(2.2c) with the form factor formulation
(3.5) of the nTGVs, we can connect the three independent
form-factor parameters ðhZ3 ; hγ3; h4Þ to the cutoff scales
ðΛGþ;ΛG−;ΛB̃WÞ of the corresponding dimension-8 oper-
ators ðOGþ;OG−;OB̃WÞ, as follows:

h4 ¼ −
signðc̃GþÞ

Λ4
Gþ

v2M2
Z

sWcW
≡ r4

½Λ4
Gþ�

; hV3 ¼ 0; for OGþ;

ð3:6aÞ

hZ3 ¼ signðc̃B̃WÞ
Λ4
B̃W

v2M2
Z

2sWcW
≡ rZ3

½Λ4
B̃W

� ; hγ3; h
V
4 ¼ 0; for OB̃W;

ð3:6bÞ

hγ3 ¼ −
signðc̃G−Þ

Λ4
G−

v2M2
Z

2c2W
≡ rγ3

½Λ4
G−�

: hZ3 ; h
V
4 ¼ 0; for OG−;

ð3:6cÞ

where the form factor h4 is defined below Eq. (3.4) and we
have used the notations

½Λ4
Gþ� ¼ signðc̃GþÞΛ4

Gþ; ½Λ4
B̃W

� ¼ signðc̃B̃WÞΛ4
B̃W

;

½Λ4
G−� ¼ signðc̃G−ÞΛ4

G−; ð3:7aÞ

r4 ¼ −
v2M2

Z

sWcW
; rZ3 ¼ v2M2

Z

2sWcW
; rγ3 ¼ −

v2M2
Z

2c2W
: ð3:7bÞ

From the above, we see that only the operator OGþ can
directly contribute to the form factor hV4 , as in Eq. (3.6a),
which can be understood from the explicit formulas (2.4a).
We note that the operator OB̃W contains Higgs-doublet
fields and thus cannot contribute to the hV4 term in Eq. (3.5),
but OB̃W can contribute to the hZ3 term through the ZγZ�

vertex and leaves hγ3 ¼ 0, as shown in Eq. (3.6b). The
operator OG− also cannot contribute to hV4 due to the
equation of motion (2.3a), OG− ¼ OB̃W þOCþ, where
OCþ contains a bilinear fermion factor and cannot con-
tribute directly to the nTGC. The fact thatOG− is irrelevant
to hV4 is also shown explicitly in Eq. (2.4d). The explicit
formula (2.4d) further shows that OG− makes a nonzero
contribution to hγ3, but leaves hZ3 ¼ 0, as we find in
Eq. (3.6c) above.
Using Eqs. (3.2) or (3.5) and by direct power counting,

we infer the following leading energy dependences of the
hVi contributions to the helicity amplitudes T ½ff̄ → Zγ�:

T ss0;T
ð8Þ ¼ hV3OðE2Þ þ hV5OðE4Þ; ð3:8aÞ

T ss0;L
ð8Þ ¼ hV3OðE3Þ þ hV4OðE5Þ þ hV5OðE5Þ: ð3:8bÞ

We note in Eq. (3.8a) that the form factor hV4 does not
contribute to the production of a transversely polarized Z
boson in the final state, because the s-channel momentum
qα3 has no spatial component and the Z boson’s transverse
polarization vector ϵTα has no time component, and thus
qα3ϵ

�
Tα ¼ 0.
Inspecting Eq. (3.8), it would appear that the leading

energy-dependence of T ss0;L
ð8Þ should be OðE5Þ. However,

we observe that the helicity amplitudes including a
final-state longitudinal Z boson as contributed by the
gauge-invariant dimension-8 nTGC operators must obey
the equivalence theorem (ET) [22]. At high energies
E ≫ MZ, the ET takes the following form:

T ð8Þ½ZL; γT � ¼ T ð8Þ½−iπ0; γT � þ B; ð3:9Þ
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where the longitudinal gauge boson ZL absorbs the would-
be Goldstone boson π0 through the Higgs mechanism, and
the residual term B ¼ T ð8Þ½vμZμ; γT � is suppressed by the
relation vμ ≡ ϵμL − qμZ=MZ ¼ OðMZ=EZÞ [22]. However,
we cannot apply the ET (3.9) directly to the form factor
formulation (3.2), because it does not respect the full
electroweak gauge symmetry of the SM and contains no
would-be Goldstone boson. We stress again that the
electroweak gauge-invariant formulation of the nTGCs
can be derived only from the dimension-8 operators as
in Eq. (2.2). Hence, we study the allowed leading energy-
dependences of the helicity amplitudes (3.8) by applying
the ET to the contributions of the dimension-8 nTGC
operators (2.2). Then we find that only the operator OB̃W
could give a nonzero contribution to the Goldstone ampli-
tude T ð8Þ½−iπ0; γT �, with a leading energy dependence
OðE3Þ that corresponds to the form factor hZ3 . The operator
OGþ does not contribute to the Goldstone amplitude
T ð8Þ½−iπ0; γT �, but can contribute the largest residual term
B ¼ OðE3Þ. From these facts, we deduce that in Eq. (3.8b)
the OðE5Þ terms due to the form factors hV4 and hV5 must
exactly cancel each other, from which we derive the
following condition,

hV4 =h
V
5 ¼ 2; ð3:10Þ

which agrees with Eq. (3.4a). Then, using our improved
form factor formulation (3.5) of the nTGCs, we can
compute the corresponding helicity amplitudes of ff̄ →
Zγ from the nTGC contributions:

T ss0;T
ð8Þ;F

� −− −þ
þ− þþ

�

¼ ðcVL þ cVRÞe2ð2hV3M2
Z þ hV4 sÞðs −M2

ZÞ sin θ
4M4

ZcWsW

�
1 0

0 −1

�
;

ð3:11aÞ

T ss0;L
ð8Þ;Fð0−;0þÞ

¼
ffiffiffi
2

p
e2ðs−M2

ZÞ
ffiffiffi
s

p
4M3

ZcWsW
ð2hV3 þ hV4 Þ

×

�
cVLsin

2
θ

2
− cVRcos

2
θ

2
; cVRsin

2
θ

2
− cVLcos

2
θ

2

�
; ð3:11bÞ

where the coupling coefficients are defined as ðcZL; cZRÞ ¼
ðT3 −Qs2W;−Qs2WÞ for V ¼ Z and cAL ¼ cAR ¼ QcWsW for
V ¼ γ. On the right-hand side of the above formulas, the
subscript “F” indicates contributions given by the form
factors. From the above, we see that the helicity amplitude
T ss0;T

ð8Þ for the transverse ZT final state contains the OðE2Þ
contribution from the form factor hV3 and the leading
contribution of OðE4Þ from the form factor hV4 , while

the helicity amplitude T ss0;L
ð8Þ for the longitudinal ZL final

state has a leading contribution of OðE3Þ from the form
factor combination ð2hV3 þ hV4 Þ.
We note that the operators OCþ and OC− both contain

only left-handed fermions, and recall that the operators
OGþ and OC− give the same contributions to the amplitude
T ½ff̄ → Zγ�, due to the equation of motion (2.3b). Thus,
we find that the ratio hZ4=h

γ
4 must be fixed to cancel

their contributions to the amplitude T ½ff̄ → Z� → Zγ� þ
T ½ff̄ → γ� → Zγ� via right-handed fermions [5]. This
imposes the following condition on the two form factors
ðhZ4 ; hγ4Þ:

h4 ≡ hZ4 ¼ cW
sW

hγ4; ð3:12Þ

for theOGþ operator. This condition agrees with Eq. (3.4b),
which we derived earlier by matching the prediction of
the operatorOGþ with the nTGV formulation (3.2). Hence,
using the gauge-invariant dimension-8 nTGC operators to
derive the form factor formulation (3.2), we deduce that
there are only three independent form-factor parameters
ðhZ3 ; hγ3; h4Þ, where h4 ≡ hZ4 and hγ4 are connected by the
condition (3.12).
The fermionic dimension-8 operators OCþ and OC−

contribute to the quartic vertex ff̄Zγ, but do not contribute
directly to the nTGC vertex ZγV� in Eq. (3.5). We can
factorize their contribution to the on-shell quartic vertex
ff̄Zγ as follows:

Γαβ
ff̄Zγ

ðq1; q2Þ ¼
X
V

Γμðff̄V�ÞPL × ðq23 −M2
VÞ−1

× Γαβμ
ZγV�ðq1; q2; q3Þ; ð3:13Þ

which includes effectively an nTGC vertex Γαβμ
ZγV� . This

effective nTGC vertex function Γαβμ
ZγV� contains the form

factor parameters ðhZ3 ; hγ3Þ for the operatorOCþ. SinceOCþ
involves purely left-handed fermions, we find that the ratio
hZ3=h

γ
3 must be fixed, so as to cancel its contributions to

the amplitude T ½ff̄ → Z� → Zγ� þ T ½ff̄ → γ� → Zγ� via
right-handed fermions. This imposes the following con-
dition between form factors ðhZ3 ; hγ3Þ:

h3 ≡ hZ3 ¼ cW
sW

hγ3; for OCþ: ð3:14Þ

We note that the above relation holds only for the fermionic
operator OCþ. For the other fermionic operator OC−, its
contribution to the effective nTGC vertex function Γαβμ

ZγV� in
Eq. (3.13) contains the same form factors ðhZ4 ; hγ4Þ as that of
the operator OGþ, because the equation of motion guar-
antees [5] that both of the operators OGþ and OC− give the
same contributions to the on-shell quartic vertex ff̄Zγ.
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Thus, the form factors ðhZ4 ; hγ4Þ of the effective nTGC vertex
function Γαβμ

ZγV� of the left-handed fermionic operator OC−
obey the same cancellation condition Eq. (3.4b).

IV. PROBING nTGCs AT THE LHC
AND FUTURE pp COLLIDERS

In this section we will analyze the sensitivity reaches on
probing the nTGCs at the LHC and future pp colliders via
the reactions ppðqq̄Þ → Zγ with Z → lþl−; νν̄. In Sec. IV
A, we give the setup for the analyses. In Secs. IV B–IV C,
we present the analyses of nTGCs at OðΛ−4Þ and OðΛ−8Þ,
respectively. In the analysis of Sec. IVD, we further include
the decay channel of Z → νν̄. Then, we study the probes of
the nTGV form factor in Sec. IV E, and the correlations
between the nTGC sensitivities in Sec. IV F. Finally, we
compare in Sec. IVG our predicted LHC sensitivity reaches
on the nTGCs with the published LHC experimental limits
by both the ATLAS and CMS Collaborations.

A. Setup for the analyses at hadron colliders

The distributions of quark and antiquark momenta in
protons are given by parton distribution functions (PDFs).
At leading order, the total cross section of pp → Zγ at the
LHC is calculated by integrating the convolved product of
the quark and antiquark PDFs and the parton-level cross
section of the qq̄ → Zγ subprocess:

σ ¼
X
q;q̄

Z
dx1dx2½F q=pðx1; μÞF q̄=pðx2; μÞσqq̄ðŝÞ

þ ðq ↔ q̄Þ�; ð4:1Þ

where the functions F q=p and F q̄=p are the PDFs of the
quark and antiquark in the proton beams, and ŝ ¼ x1x2s
with the collider energy

ffiffiffi
s

p ¼ 13 TeV. The PDFs depend
on the factorization scale μ, which is set to be μ ¼ ffiffiffî

s
p

=2 in
our leading-order analysis. We use the PDFs of the quarks
q ¼ u, d, s, c, b and their antiquarks determined by the
CTEQ Collaboration [23].
During LHC Run-2 the ATLAS measurements of the

lþl−γ and ν̄νγ final states reached a maximum value of
Mllγ ∼ 3 TeV.3 Accordingly, we set ŝ≲ 3 TeV for our
LHC analysis and use an upper limit ŝ≲ 23 TeV for the
100 TeV pp collider.
We compute the production cross section of qq̄ → Zγ at

leading order (LO) in QCD and Oðα2Þ for the SM, and
Oðα1.5c̃jÞ or Oðαc̃2jÞ for the nTGCs, where α ¼ αem or αw,
as the possible high-order contributions are not important
for our study. There are next-to-leading-order (NLO)
QCD corrections from the gluon-induced loop diagrams

for qq̄ → Zγ and the real emission of a gluon: qq̄ →
Zγ þ g, and there are also NLO QCD contributions from
gq → Zγ þ q ðgq̄ → Zγ þ q̄Þ. In these cases the NLO/LO
ratio is OðαsÞ, and it was found numerically that the effect
of adding the full NNLO corrections is less than 10%
[24–26]. We define a QCD K factor for the nTGC signal by
KS ≡ S=SLO ¼ 1þ ΔKS and for the SM background by
KB ≡ B=BLO ¼ 1þ ΔKB. We have checked the K factors
for pp → Zγ by using Madgraph5@NLO [27], and find
that they depend on the kinematic cuts. The corrections ΔK
can be larger than one if only basic cuts are made, but we
find that adding a cut to remove the small PTðγÞ region and
vetoing extra jets in the final state reducesΔK to only a few
percent, which may be neglected.
We note in addition that Zγ production by the gluon

fusion process is formally a next-to-next-to-leading-order
(NNLO) contribution, and is found to be generally less than
1% [28]. The nTGC contributions via gluon fusion is also
found to be negligible [28].
Next, we discuss the statistical significance and its

optimization for our present analysis of sensitivity reaches
on the nTGCs. Since the SM contribution σ0 could be
small, the ratio S=

ffiffiffiffi
B

p
is not an optimal measure of the

statistical significance. We use instead the following for-
mula for the background-with-signal hypothesis [29]:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
B ln

B
Bþ S

þ S

�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
σ0 ln

σ0
σ0 þ Δσ

þ Δσ
�s
×

ffiffiffiffiffiffiffiffiffiffiffi
L × ϵ

p
; ð4:2Þ

where Δσ ¼ σ − σ0 denotes the part of the cross section
beyond the SM contribution, L is the integrated luminosity,
and ϵ is the detection efficiency. When B ≫ S, we can
expand (4.12) in terms of S=B and find that it reduces to
the form Z ≃ S=

ffiffiffiffi
B

p
, whereas for S ≫ B it reduces to

Z ≃
ffiffiffiffiffiffi
2S

p
. If the signal S is dominated by the interference

contribution of OðΛ−4Þ, we can deduce that the sensitivity
reach on the new physics scale,

Λ ∝ ðL × ϵÞ1=8; ðfor B ≫ SÞ; ð4:3aÞ

Λ ∝ ðL × ϵÞ1=4; ðfor S ≫ BÞ: ð4:3bÞ

If the signal S is dominated by the squared contribution
of OðΛ−8Þ, we can deduce that the sensitivity reach on the
new physics scale,

Λ ∝ ðL × ϵÞ1=16; ðfor B ≫ SÞ; ð4:4aÞ

Λ ∝ ðL × ϵÞ1=8; ðfor S ≫ BÞ: ð4:4bÞ

In either case, we see that the bound on the new physics
scale Λ is not very sensitive to the integrated luminosity L

3We thank our ATLAS colleague Shu Li for discussions of the
ATLAS measurements during LHC Run-2.
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and the detection efficiency ϵ. For instance, in the case of
B ≫ S, if the integrated luminosity L increases by a factor
of 10, we find that the sensitivity reach of Λ is enhanced by
about 33% when the interference contribution dominates
the signal and 15% when the squared contribution domi-
nates the signal. If the detection efficiency ϵ is reduced from
the ideal value of ϵ ¼ 1 to ϵ ¼ 0.5, we find that the
sensitivity reach of Λ is weakened by only about 8% when
the interference contribution dominates the signal and 4%
when the squared contribution dominates the signal.
In order to achieve higher sensitivity, we can discrimi-

nate between the signal and background by using the
photon PT distribution, employing the following measure
of significance:

Ztotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Z2
bin

q
: ð4:5Þ

In the above, we impose the optimal cut on the photon PT
for each bin and compute the corresponding significance
Zbin of each bin. By doing so, we maximize the signifi-
cance Ztotal given in Eq. (4.5).

B. Analysis of nTGCs at OðΛ − 4Þ
We compute analytically the parton-level cross section

of the annihilation process qq̄ → Zγ, and then perform
the convolved integration over the product of the quark
and antiquark PDFs to obtain the cross section for
ppðqq̄Þ → Zγ.
Inspecting the azimuthal angular distributions in

Eq. (2.14), we note that the SM ϕ� distribution f0ϕ� is
nearly flat, whereas the maximum of the nTGC contribu-
tion f1ϕ� is at ϕ� ¼ 0. We consider the double differential
cross section with respect to the photon transverse momen-
tum PT and ϕ� at ϕ� ¼ 0,4

fjPT
¼ 2πd2σj

dPTdϕ�

				
ϕ�¼0

: ð4:6Þ

Equation (2.14a) gives dσ0=dϕ� ≃ σ0=ð2πÞ for the SM
contribution, so we can deduce

f0PT
≃

dσ0
dPT

: ð4:7Þ

We present in Fig. 2 the photon PT distribution (4.6) at the
LHC (upper panel) and a 100 TeV pp collider (lower
panel), where in each plot the SM contribution is shown as
a black curve and the OGþ new physics contributions for
different values of Λ are shown as the colored curves. We
find that the SM contribution to the photon PT distribution

f0PT
decreases more rapidly with the increase of PT ,

whereas the nTGC contribution to f1PT
reduces much more

slowly with PT .
According to our definition of the azimuthal angle ϕ� in

Sec. II, we have

cosϕ� ¼
ðpq × pZÞ · ðpf × pf̄Þ
jpq × pZjjpf × pf̄j

: ð4:8Þ

We note that the quark q can be emitted from either proton
beam, so the direction of pq is subject to a 180° ambiguity.
This means that the normal direction of the scattering plane
of qq̄ → Zγ is also subject to a 180° ambiguity, so that
cosϕ� can take either sign in each event and the cosϕ�
terms in fjϕ� cancel out when the statistical average is taken.
However, the angular terms ∝ cosð2ϕ�Þ ¼ 2 cos2 ϕ� − 1
are not affected by this ambiguity and survive statistical
average. Thus, for the nTGC operator OGþ and also the
related contact operator OC−, we derive the following
effective distributions of ϕ� after averaging:

FIG. 2. Photon transverse momentum PT distributions at the
azimuthal angle ϕ� ¼ 0 for the reaction ppðqq̄Þ → Zγ followed
by Z → ll̄ decays, as contributed by the SM (black curve) and
by the nTGC operator OGþ at OðΛ−4Þ (colored curves for the
indicated values of Λ) at the LHC (13 TeV) in the upper panel and
at the 100 TeV pp collider in the lower panel.

4In our study we define the angles θ and ϕ� and the momenta
in the center-of-mass frame of the ll̄γ system, rather than in the
laboratory frame.
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f̄0ϕ� ¼
1

2π
−

ŝM2
Z cos 2ϕ�

2π½ðŝ −M2
ZÞ2 þ 2ðŝ2 þM4

ZÞ ln sin δ
2
� þOðδÞ;

ð4:9aÞ

f̄1ϕ� ¼
1

2π
þ ŝ cos 2ϕ�

8πM2
Z

; ð4:9bÞ

f̄2ϕ� ¼
1

2π
: ð4:9cÞ

We see that the interference term f̄1ϕ� has a nontrivial angular
dependence∝ cosð2ϕ�Þ that is enhancedby the energy factor
s=M2

Z relative to the nearly flat SM distribution f̄0ϕ� ≃ 1=2π.
We present the angular distributions ofϕ� in Fig. 3, where the
angular distribution f̄1ϕ� (red curve) from the interference
contribution of OðΛ−4Þ dominates over the nearly flat SM
distribution f̄0ϕ� (black curve) and the distribution f̄2ϕ� (blue
curve) of the squared contribution of OðΛ−8Þ, which is flat
and behaves like the SM distribution. In this figure, for
illustration we have imposed a selection cut on the parton-
parton collision energy,

ffiffiffî
s

p
> 2 TeV.

For the other operators ðOG−;OB̃W;OCþÞ, inspecting
their angular distributions in Eq. (2.17) we find that
ðf0ϕ� ; f

1
ϕ� Þ have the leading energy contributions given

by the cosϕ� terms and the cosð2ϕ�Þ terms only have
subleading energy dependence. In addition, their contribu-
tions to f2ϕ� contain no cosð2ϕ�Þ term. After statistically
averaging over the two possible directions of the scattering
plane at pp colliders, we derive the following effective
distributions:

f̄0ϕ� ¼
1

2π
−

ŝM2
Z cos 2ϕ�

2π½ðŝ −M2
ZÞ2 þ 2ðŝ2 þM4

ZÞ ln sin δ
2
� þOðδÞ;

ð4:10aÞ

f̄1ϕ� ¼
1

2π
þ ŝ cos 2ϕ�
4πðŝþM2

ZÞ
; ð4:10bÞ

f̄2ϕ� ¼
1

2π
; ð4:10cÞ

where the SM contribution f̄0ϕ� is the same as that of
Eq. (4.9a). For operators ðOG−;OB̃W;OCþÞ, under the
statistical average, their angular distribution f1ϕ� has a
high-energy dependence of ŝ0, while the angular distribu-
tion f2ϕ� becomes a constant and is independent of both
the energy and ϕ�. These should be compared to the
statistically averaged angular distributions (4.9b)–(4.9c) for
the nTGC operator OGþ, where its angular distribution f1ϕ�
has higher-energy dependence of ŝ1 for the cosð2ϕ�Þ term,
while the angular distribution f2ϕ� also becomes constant.
Based on the effective angular distributions (4.9) and

Fig. 3, we construct the following observable O1:

O1 ¼
				σ1
Z

dϕ�f1ϕ� × signðcos 2ϕ�Þ
				; ð4:11Þ

where σ1 is the total cross section from the interference
contribution of OðΛ−4Þ. Then, we use the formula (4.2) to
derive the significance:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
B ln

B
Bþ S

þ S

�s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
σ0 ln

σ0
σ0 þO1

þO1

�s

×
ffiffiffiffiffiffiffiffiffiffiffi
L × ϵ

p
; ð4:12Þ

where L is the integrated luminosity and ϵ denotes the
detection efficiency.
To achieve the optimal sensitivity, we apply the for-

mula (4.5) to compute the total significance Ztotal from the
contributions of the significances fZbing of all the indi-
vidual bins. In our analysis, we choose the bin size to be
ΔPT ¼ 100 GeV for the LHC (13 TeV) and ΔPT ¼
500 GeV for the pp (100 TeV) collider. But we find that
Ztotal is not very sensitive to such choice. For instance, if we
choose ΔPT ¼ 50 or ΔPT ¼ 200 GeV at the LHC, we find
that the significance Ztotal only varies by about 1%.
We present prospective sensitivity reaches for probing

the new physics scale Λ of the nTGC operator OGþ in
Table II. For instance, given an integrated luminosity L ¼
300 fb−1 (3 ab−1) at the LHC and choosing the ideal
detection efficiency ϵ ¼ 1, we find the 2σ sensitivity reach
Λ2σ
Gþ ≃ 2.6 TeV (Λ2σ

Gþ ≃ 3.6 TeV). At the 100 TeV pp

FIG. 3. Normalized distributions in the azimuthal angle ϕ� for
the reaction ppðqq̄Þ → Zγ followed by Z → ll̄ decays, as
generated by the dimension-8 nTGC operator OGþ at the LHC
(13 TeV). The angular distribution f1ϕ� of the interference
contribution of OðΛ−4Þ is shown as a red curve; the angular
distribution f2ϕ� of the squared contribution of OðΛ−8Þ is shown
as the blue curve that is flat like the SM distribution f0ϕ�
(black curve).
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collider with L ¼ 3 ab−1 (30 ab−1), we derive the 2σ
sensitivity reach Λ2σ

Gþ ≃ 15 TeV (Λ2σ
Gþ ≃ 21 TeV).

C. nTGC analysis including OðΛ − 8Þ contributions
In this subsection, we further analyze the squared

contributions of OðΛ−8Þ and study their impact on the
sensitivity reaches at the LHC and the ppð100 TeVÞ
collider. Inspecting the effective angular distributions
(4.9), we find that requiring the differential cross section
of the interference contribution ofOðΛ−4Þ to be larger than
that of the squared contribution of OðΛ−8Þ would impose
the following condition:

jσ1f1ϕ� j > σ2f2ϕ� ¼
σ2
2π

; ð4:13Þ

which gives a lower bound of Λ > 1.3
ffiffiffî
s

p
for the reaction

channel uū → Zγ and Λ > 1.5
ffiffiffî
s

p
for the dd̄ → Zγ chan-

nel. These bounds are comparable or somewhat stronger
than the LHC sensitivity limits of the new physics scale Λ
given in Table II, whereas they are satisfied by the
sensitivity limits of the 100 TeV pp collider. Thus, to
improve the sensitivities for the LHC probe of the nTGCs,
we consider the full contributions of the nTGC operators
including their squared terms of OðΛ−8Þ. We note that
including the full contributions of the nTGC operators also
allows a consistent mapping of the current analysis to the
form factor approach given in the following Sec. IV E
which always includes the full contributions of the form
factors to the cross sections.
We present in Fig. 4 the photon PT distribution including

the contribution of OðΛ−8Þ. Since the OðΛ−8Þ contribution
can be larger than OðΛ−4Þ for large ŝ, we choose here a set
of larger values Λ ¼ ð2; 4; 6Þ TeV for the LHC distribu-
tions and Λ ¼ ð20; 25; 30Þ TeV for the distributions at the
ppð100 TeVÞ collider, instead of the previous values of
Λ ¼ ð1; 2; 3Þ TeV for the LHC and Λ ¼ ð15; 20; 25Þ TeV
for the ppð100 TeVÞ collider chosen for Fig. 2. Also,
Fig. 4 extends to a larger range of the photon PT .
For the high-energy hadron colliders such as the LHC

and ppð100 TeVÞ, we have jσ1j ≪ 2πjσ1f1ϕ� j < σ2, and
thus σ1 may be neglected. Following the procedure in
Sec. IV B, we use the same method and cuts on PT to divide

events into a set of bins. Because the ϕ� distribution is
rather flat for both the SM andOðΛ−8Þ contributions, we do
not need to impose an angular cut on ϕ�. We analyze the
sensitivity reaches of Λ by using Eq. (4.5), and present the
results for probing the nTGC operatorOGþ up toOðΛ−8Þ in
Table III. The sensitivity reaches at OðΛ−8Þ appear sig-
nificantly better than those at OðΛ−4Þ shown in Table II.
For instance, given an integrated luminosity L ¼

300 fb−1 (3 ab−1) at the LHC and choosing the ideal
detection efficiency ϵ ¼ 1, we find from Table III that

TABLE II. Sensitivities to the new physics scaleΛ atOðΛ−4Þ of
the nTGC operator OGþ at the 2σ and 5σ levels, as obtained by
analyzing the reaction ppðqq̄Þ → Zγ → ll̄γ at the LHC
(13 TeV) and the pp (100 TeV) collider, respectively, with the
indicated integrated luminosities.ffiffiffi
s

p
LHC (13 TeV) pp (100 TeV)

L (ab−1) 0.14 0.3 3 3 10 30
Λ2σ
Gþ (TeV) 2.1 2.4 3.3 14 17 19

Λ5σ
Gþ (TeV) 1.6 1.8 2.6 10 12 15

FIG. 4. Photon transverse momentum PT distributions at the
azimuthal angle ϕ� ¼ 0 for the reaction ppðqq̄Þ → Zγ followed
by Z → ll̄ decays, as contributed by the SM (black curve) and
by the nTGC operator OGþ up to OðΛ−4Þ and OðΛ−8Þ (colored
curves) at the LHC (13 TeV) and the pp (100 TeV) collider in the
lower panel.

TABLE III. Sensitivities to the new physics scale Λ at OðΛ−8Þ
of the nTGC operatorOGþ at the 2σ and 5σ levels, as obtained by
analyzing the reaction ppðqq̄Þ → Zγ → ll̄γ at the LHC
(13 TeV) and the pp ð100 TeVÞ collider respectively, with the
indicated integrated luminosities.ffiffiffi
s

p
LHC (13 TeV) pp (100 TeV)

L (ab−1) 0.14 0.3 3 3 10 30
Λ2σ
Gþ (TeV) 3.0 3.2 3.9 21 24 26

Λ5σ
Gþ (TeV) 2.6 2.8 3.4 17 20 22
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the 2σ sensitivity reach is given by Λ2σ
Gþ ≃ 3.4 TeV

(Λ2σ
Gþ ≃ 4.1 TeV). At the 100 TeV pp collider with L ¼

3 ab−1 (30 ab−1), we obtain the 2σ sensitivity reach Λ2σ
Gþ ≃

22 TeV (Λ2σ
Gþ ≃ 27 TeV).

D. nTGC analysis including the invisible
decays Z → νν̄

In this subsection, we study the probe of nTGCs via the
Zγ production with invisible decays Z → νν̄. In this case,
the final-state photon is the only signature of Zγ production
that can be detected, and we will use the jet vetoing to
effectively remove all the reducible SM backgrounds
having the final state jetþ γ. Then, we can use the same
strategy as that for probing the OðΛ−8Þ contribution via the
leptonic Z-decay channels, where the kinetic cut on the
photon PT distribution will play the major role to enhance
the sensitivity to the nTGC contributions.
Following this strategy, we perform combined analyses

for both the Z → ll̄ final state and the Z → νν̄ final state.
We present in Table IV a summary of the prospective
sensitivity reaches on the new physics scale Λ of the nTGC
operator OGþ, where we have combined the limits from
both the charged-lepton final state and the neutrino final
state. We find that the combination of both leptonic and
invisible Z-decay channels can enhance the sensitivity to
the new physics scale Λ by about 10% over that using the
leptonic channels alone.
Using the sensitivity bounds of Table IV and comparing

them with our study for eþe− colliders [5] (which will be
summarized later in Table IX of Sec. V), we find that for
probing the nTGC operatorOGþ the sensitivity reaches with
the current LHC luminosity (L ¼ 140 fb−1) are already
better than those at future 250 and 500 GeV eþe− colliders
[5], and that the HL-LHC (with L ¼ 3 ab−1) should have
comparable sensitivities to a 1 TeV eþe− collider [5]. The
future pp (100 TeV) collider can have much stronger
sensitivities than an (3–5) TeV eþe− collider. A systematic
comparison with the high-energy eþe− colliders will be
presented in the following Sec. V.
Next, we extend the above analysis to the three other

nTGC operators ðOG−;OB̃W;OCþÞ. We present the 2σ
sensitivities to their associated new physics scales in

Table V. The third and fifth columns of this table, marked
with (ll̄; νν̄), present the combined limits including both
the charged-lepton and neutrino final states. We see that
these sensitivities are significantly weaker than those of the
operators OGþ and OC−. At the LHC, they are generally
below 2 TeV, but the proposed 100 TeV pp collider could
improve the sensitivities substantially, reaching new phys-
ics scales Λ over the (5–7) TeV range. Finally, we compare
the collider sensitivity limits presented in Tables III–V with
the perturbative unitarity limits given in Table I and Fig. 1.
We find that our collider limits are much stronger than the
unitarity limits of Table I and Fig. 1. Hence, our current
collider analyses of probing the nTGCs via the SMEFT
formulation hold well the perturbation expansion.
As a final remark, we emphasize that the reaction qq̄ →

Zγ is a unique process for probing the nTGCs via s-channel
at the LHC and future pp colliders. We note, however, that
certain dimension-6 operators can contribute to the process
qq̄ → Zγ via t-channel diagrams by modifying the q-q̄-Z
vertex. Such contributions are constrained separately by
existing electroweak precision data via other reactions, and
future eþe− colliders will place more severe constraints on
the q-q̄-Z coupling via Z-pole measurements. These
measurements are independent of the reaction qq̄ → Zγ,
and may be obtained from global fits to ðα; GF;MZ;MWÞ
and other Z-pole observables [30–32]. We take values of
these observables from the current electroweak precision
data [32] and from the projected CEPC sensitivities [31].
For contributions to the q-q̄-Z coupling, we consider the
following dimension-6 Higgs-related operators:

Oð3Þ
L ¼ ðiH†σaD

↔

μHÞðΨ̄Lγ
μσaΨLÞ;

OL ¼ ðiH†D
↔

μHÞðΨ̄Lγ
μΨLÞ;

OR ¼ ðiH†D
↔

μHÞðψ̄Rγ
μψRÞ: ð4:14Þ

Then, using the method of [31] we make a global fit and
obtain the electroweak precision constraints on the cutoff

TABLE IV. Sensitivity reaches on the new physics scale Λ at
OðΛ−8Þ of the nTGC operator OGþ at the 2σ and 5σ levels, as
obtained from the reactions ppðqq̄Þ → Zγ → ll̄γ and
ppðqq̄Þ → Zγ → νν̄γ at the LHC (13 TeV) and the pp
(100 TeV) collider, with the indicated integrated luminosities.ffiffiffi
s

p
LHC (13 TeV) pp (100 TeV)

L (ab−1) 0.14 0.3 3 3 10 30
Λ2σ
Gþ (TeV) 3.3 3.6 4.2 23 26 28

Λ5σ
Gþ (TeV) 2.9 3.1 3.7 20 22 24

TABLE V. Sensitivity reaches on the new physics scales of the
nTGC operators ðOB̃W;OG−;OCþÞ at the 2σ level, as obtained
from analyzing the reactions ppðqq̄Þ → Zγ → ll̄γ and
ppðqq̄Þ → Zγ → νν̄γ at the LHC (13 TeV) and the pp
(100 TeV) collider, with the indicated integrated luminosities.
The third and fifth columns indicated by (ll̄; νν̄) present the
combined limits including both the charged-lepton and neutrino
final states.

ffiffiffi
s

p 13 TeV
(ll̄)

13 TeV
(ll̄; νν̄)

100 TeV
(ll̄)

100 TeV
(ll̄; νν̄)

Lðab−1Þ 0.14 0.3 3 0.14 0.3 3 3 10 30 3 10 30
ΛB̃W (TeV) 1.2 1.3 1.5 1.3 1.4 1.7 5.1 5.6 6.1 5.6 6.1 6.7
ΛG− (TeV) 1.0 1.1 1.3 1.1 1.2 1.4 4.2 4.7 5.1 4.6 5.1 5.5
ΛCþ (TeV) 1.3 1.4 1.6 1.4 1.5 1.7 5.4 5.9 6.5 5.9 6.5 7.1
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scale Λ of these operators, which we summarize in
Table VI, assuming for simplicity that the dimension-6
operators are universal for the three families of fermions.
Table VI shows that the dimension-6 operators (4.14) can
be constrained independently through different processes
and observables. The existing bounds Λ [PDG] derived in
Table VI are already strong and the projected sensitivities
on the cutoff scale Λ [CEPC] for the future eþe− collider
CEPC (250 GeV) are much stronger than the corresponding
bounds on the cutoff scale of the dimension-8 nTGC
operators at the same eþe− collider (as we show below
in Table IX of Sec. V).

E. Probing the form factors of nTGVs

In this section we analyze the sensitivity reaches of the
LHC and the pp (100 TeV) collider for probing the nTGCs
by using the form factor formulation given in Sec. III. We
will also clarify the nontrivial difference between our
consistent form factor formulation (3.5) (based upon the
fully gauge-invariant SMEFT approach) and the conven-
tional form factor formulation (3.1) [retaining only the
residual gauge symmetry Uð1Þem], where the latter leads to
erroneously strong sensitivity limits.
From Eqs. (2.12), (2.15), (2.16), and (3.6), we can

further derive the partonic cross section of the reaction
qq̄ → Zγ in terms of the form factors. As before, we
decompose the partonic cross section into the sum of three
parts, σðZγÞ ¼ σ0 þ σ1 þ σ2, where ðσ0; σ1; σ2Þ corre-
spond to the SM contribution, the interference contribution,
and the squared contribution, respectively. The cross
section terms ðσ1; σ2Þ are contributed by the form factors
and take the following expressions:

σ1 ¼ −
e2QqLT3ðŝ −M2

ZÞ
4πv2ŝ

h4

−
e2QðqLxZL − qRxZRÞðŝ2 −M4

ZÞ
4πv2ŝ2

hZ3

þ e2cWQðqLxAL − qRxARÞðŝ2 −M4
ZÞ

4πsWv2ŝ2
hγ3; ð4:15Þ

and

σ2 ¼ σ442 þ σ332Z þ σ332A þ σ432Z þ σ432A þ σ332ZA; ð4:16aÞ

σ442 ¼ e4T2
3ðŝþM2

ZÞðŝ −M2
ZÞ3

768πs2Wc
2
WM

8
Zŝ

ðh4Þ2; ð4:16bÞ

σ332Z ¼
e4½Q2s4WþðT3−Qs2WÞ2�ðŝþM2

ZÞðŝ−M2
ZÞ3

192πs2Wc
2
WM

6
Zŝ

2
ðhZ3 Þ2;

ð4:16cÞ

σ332A ¼ e4Q2ðŝþM2
ZÞðŝ −M2

ZÞ3
96πM6

Zŝ
2

ðhγ3Þ2; ð4:16dÞ

σ432Z ¼ e4T3ðT3 −Qs2WÞðŝ −M2
ZÞ3

96πs2Wc
2
WM

6
Zŝ

h4hZ3 ; ð4:16eÞ

σ432A ¼ e4QT3ðŝ −M2
ZÞ3

96πsWcWM6
Zŝ

h4h
γ
3; ð4:16fÞ

σ332ZA ¼ e4QðT3 − 2Qs2WÞðŝþM2
ZÞðŝ −M2

ZÞ3
96πsWcWM6

Zŝ
2

hZ3h
γ
3;

ð4:16gÞ

where the coefficients ðqL; qRÞ ¼ ðT3 −Qs2W;−Qs2WÞ
denote the (left, right)-handed gauge couplings between
the quarks andZ boson. The form factor hZ3 is contributed by
the operatorOB̃W as in Eq. (3.6) and the coupling coefficients
ðxZL; xZRÞ ¼ ðT3 −Qs2W;−Qs2WÞ are given by Eq. (2.16b),
whereas the form factorhγ3 is contributed by the operatorOG−
as in Eq. (3.6c) and the coupling coefficients ðxAL; xARÞ ¼
−Qs2Wð1; 1Þ aregivenbyEq. (2.16a). InspectingEqs. (4.15)–
(4.16), we find that the cross section terms ðσ1; σ2Þ have the
following scaling behaviors in the high energy limit:

σ1 ¼ Oðŝ0Þh4 þOðŝ0ÞhZ3 þOðŝ0Þhγ3; ð4:17aÞ

σ2 ¼ Oðŝ3Þðh4Þ2 þOðŝ2ÞðhV3 Þ2 þOðŝ2Þðh4hV3 Þ
þOðŝ2ÞðhZ3hγ3Þ; ð4:17bÞ

where we have used the notation V ¼ Z, γ.
If we consider instead the conventional parametrization

(3.1) with the nTGC form factors ðhV3 ; hV4 Þ only, we would
obtain their contributions to the total cross section
σ̃ðZγÞ ¼ σ0 þ σ̃1 þ σ̃2. The form factors hV3 are not subject
to the constraints (3.4) imposed by the dimension-8 nTGC
operators of the SMEFT, so they contribute to ðσ̃1; σ̃2Þ in
the same way as in our Eqs. (4.15)–(4.16). However, the hV4
contributions to the interference and squared cross sections
ðσ̃1; σ̃2Þ have vital differences from Eqs. (4.15)–(4.17). For
simplicity of illustration, we set hV3 ¼ 0 and express the hV4
contributions to ðσ̃1; σ̃2Þ as follows:

TABLE VI. Precision constraints at the 2σ level on the
indicated dimension-6 operators that contribute to the q-q̄-Z
coupling. The bounds Λ½PDG� are derived from the existing
electroweak data [32], whereas the bounds Λ½CEPC� are the
projected sensitivities of the future eþe− collider CEPC
(250 GeV) [31].

Operators Oð3Þ
L ðqLÞ OLðqLÞ ORðuRÞ ORðdRÞ

Λ½PDG� (TeV) 4.7 4.7 2.9 2.4
Λ½CEPC� (TeV) 9.1 9.1 5.5 5.1
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σ̃1ðhV4 Þ ¼
e4Qðŝ −M2

ZÞ2
32πs2Wc

2
WM

4
Zŝ

�
ðqLxZL − qRxZRÞhZ4

− ðqLxAL − qRxARÞ
cW
sW

hγ4

�
; ð4:18aÞ

σ̃2ðhV4 Þ ¼
e4ðŝ −M2

ZÞ5
768πs2Wc

2
WM

10
Z ŝ

�
XZZ
LRðhZ4 Þ2

þ XAA
LR

c2W
s2W

ðhγ4Þ2 − 2XZA
LR

cW
sW

ðhZ4hγ4Þ
�
; ð4:18bÞ

where we have defined the notations

XZZ
LR ≡ ðxZLÞ2 þ ðxZRÞ2; XAA

LR ≡ ðxALÞ2 þ ðxARÞ2;
XZA
LR ≡ xZLx

A
L þ xZRx

A
R: ð4:19Þ

Taking the high-energy limit, we find that the cross sections
ðσ̃1; σ̃2Þ scale as follows:

σ̃1ðhV4 Þ ¼ OðŝÞhZ4 þOðŝÞhγ4; ð4:20aÞ

σ̃2ðhV4 Þ ¼ Oðŝ4ÞðhZ4 Þ2 þOðŝ4Þðhγ4Þ2 þOðŝ4ÞðhZ4hγ4Þ:
ð4:20bÞ

Comparing Eq. (4.20) with Eq. (4.17), we see that the hV4
contributions to the cross sections ðσ̃1; σ̃2Þ in the conven-
tional form factor parametrization (3.1) have an additional
high-energy factor of s1 beyond the h4 contributions to
ðσ1; σ2Þ in our improved parametrization (3.5).
We present in Table VII the sensitivities of probes of the

form factor parameters hVi at the LHC (13 TeV) and a
100 TeV pp collider (marked in blue), with the indicated

integrated luminosities. We recall that the form factors and
dimension-8 operators are connected via Eq. (3.6). We find
that the most sensitive probes are those of the form factor
h4, which is generated by the nTGC operator OGþ. The
sensitivities of probes of hZ3 (via the operator OB̃W) and hγ3
(via the operator OG−) are smaller. In the case of h4, we
present in the third row the sensitivities obtained from
the interference contributions using the observable O1 of
Eq. (4.11), and in the fourth row the sensitivities from the
squared contributions. The sensitivity limits in the third row
are not improved by including the invisible decays of
Z → νν̄ because the angular distribution of ϕ� cannot be
measured for the invisible channel. We see that the
sensitivity bounds on jh4j in the fourth row are significantly
stronger than those in the third row. This is because the
squared contributions have stronger energy dependence
and thus are enhanced. The sensitivities of probes to jhZ3 j
and jhγ3j are shown in the last two rows of Table VII, and are
found to be much weaker than the bounds on jh4j (third and
fourth rows). We also see from Table VII that the
sensitivities of probes of these nTGC form factors at
100 TeV pp colliders are generally much stronger than
those at the LHC by large factors of Oð102–103Þ. In
passing, we note that the current collider limits on the
nTGC form factors given in Table VII are much stronger
than the unitarity limits of Table I and Fig. 1.
Next, we present in Table VIII a comparison of the 2σ

sensitivities to the form factor h4 defined in Eq. (3.5) (based
on the SMEFT formulation and marked in red color, taken
from Table VII) and the conventional form factors hV4 in
Eq. (3.1) [respecting only Uð1Þem and marked in blue
color]. These limits were derived by analyzing the reactions
qq̄ → Zγ → ll̄γ and qq̄ → Zγ → νν̄γ at the LHC (13 TeV)

TABLE VII. Sensitivity reaches on the nTGC form factor parameters at the 2σ (outside the parentheses) and 5σ
(inside the parentheses) levels, as derived by analyzing the reactions ppðqq̄Þ → Zγ → ll̄γ and ppðqq̄Þ → Zγ →
νν̄γ at the LHC (13 TeV) and the pp (100 TeV) collider, with the indicated integrated luminosities. In the third and
ninth rows, the sensitivity limits for jh4ðO1Þj are derived by using the observable (4.11) from the interference
contributions, whereas the jh4j limits in the fourth and tenth rows are derived including the squared contributions.
The third and fifth columns marked (ll̄; νν̄) present the combined limits including both the charged-lepton and
neutrino final states.ffiffiffi
s

p
13 TeV (ll̄) 13 TeV (ll̄; νν̄)

Lðab−1Þ 0.14 0.3 3 0.14 0.3 3
jh4ðO1Þj × 105 5.8 (18) 3.7 (11) 1.0 (2.8) 5.8 (18) 3.7 (11) 1.0 (2.8)
jh4j × 106 14 (28) 11 (21) 5.2 (9.1) 9.6 (18) 7.5 (14) 3.8 (6.4)
jhZ3 j × 104 2.7 (5.0) 2.1 (3.8) 1.1 (1.8) 1.9 (3.4) 1.8 (2.7) 0.80 (1.3)
jhγ3j × 104 3.1 (5.8) 2.5 (4.5) 1.3 (2.1) 2.2 (4.0) 1.8 (3.1) 0.97 (1.6)

ffiffiffi
s

p
100 TeV (ll̄) 100 TeV (ll̄; νν̄)

Lðab−1Þ 3 10 30 3 10 30
jh4ðO1Þj × 108 3.4 (11) 1.6 (5.0) 0.85 (2.6) 3.4 (11) 1.6 (5.0) 0.85 (2.6)
jh4j × 109 6.1 (13) 3.9 (7.8) 2.6 (5.1) 4.0 (8.1) 2.6 (5.1) 1.9 (3.4)
jhZ3 j × 107 8.9 (17) 6.0 (11) 4.2 (7.5) 6.1 (11) 4.2 (7.5) 3.0 (5.2)
jhγ3j × 107 10 (20) 6.8 (13) 4.9 (8.7) 7.2 (13) 4.9 (8.7) 3.5 (6.1)
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and a 100 TeV pp collider, with the indicated integrated
luminosities. We see that the sensitivities to the conven-
tional form factor hV4 (marked in blue color) are generally
stronger than those of the SMEFT form factor h4 (marked
in red color) by large factors, ranging from Oð20Þ at the
LHC to Oð102Þ at a 100 TeV pp collider. However, they
are incorrect for the reasons discussed earlier. By com-
paring the energy dependences of the hV4 -induced cross
sections between Eqs. (4.17) and (4.20), we have explicitly
clarified why the sensitivity limits based on the conven-
tional form factor parametrization (3.1) are spuriously
much stronger than those given by our improved form
factor approach (3.5). The comparison of Table VIII
demonstrates the importance of using our consistent form
factor approach (3.5) based on the fully gauge-invariant
SMEFT formulation.

F. Correlations between the nTGC sensitivities
at hadron colliders

In this section, we analyze the correlations between the
sensitivities of probes of the nTGCs at hadron colliders
using both the dimension-8 SMEFT operator approach and
the improved formulation of the form factors presented
earlier.
We first analyze the correlations of sensitivity reaches

between each pair of the nTGC form factors ðh4; hZ3 Þ,
ðh4; hγ3Þ, and ðhZ3 ; hγ3Þ at the LHC(13 TeV) and the 100 TeV
pp collider. We compute the contributions of a given pair
of form factors to the following global χ2 function:

χ2 ¼
X
bin

S2bin
Bbin

¼
X
bin

ðσbin − σbin0 Þ2
σbin0

× ðL × ϵÞ

¼
X
bin

ðσbin1 þ σbin2 Þ2
σbin0

× ðL × ϵÞ; ð4:21Þ

where σbin0 is the SM contribution, and ðσbin1 ; σbin2 Þ are the
(interference, squared) terms of the form factor contribu-
tions. These cross sections are computed for each bin and
then summed up. We minimize the χ2 function (4.21) for
each pair of form factors at each hadron collider with a

given integrated luminosity L, assuming an ideal detection
efficiency ϵ ¼ 1.
We present our findings in Fig. 5. Panels (a) and (b) show

the correlation contours of the form factors ðh4; hZ3 Þ (solid
curve) and ðh4; hγ3Þ (dashed curve) at the 95% C.L., and
panels (c) and (d) depict the correlation contours of the form
factors ðhZ3 ; hγ3Þ at the 95% C.L. Panels (a) and (c) show the
correlation contours for the LHC with different integrated
luminositiesL ¼ ð140; 300; 3000Þ fb−1 (markedby theblue,
green, and red colors, respectively), and panels (b) and
(d) depict the correlation contours for the 100 TeVpp collider
with different integrated luminosities L ¼ ð3; 10; 30Þ ab−1
(marked by the blue, green, and red colors, respectively).
Inspecting Figs. 5(a) and 5(b), we see that each elliptical

contour has its axes nearly aligned with the frame axes,
which shows that the form factors ðh4; hV3 Þ have rather
weak correlation. This feature can be understood by
examining the structure of the χ2 function (4.21). For a
qualitative understanding of such correlation features,
here we simplify Eq. (4.21) by considering a single bin
analysis. Since the squared term σ2 in Eq. (4.17b) domi-
nates over the interference term σ1, from Eq. (4.21) we have
χ2 ∼ ½ðσ2Þ2=σ0�ðL × ϵÞ ∝ ðσ2Þ2, where the SM cross sec-
tion σ0 does not contain any new physics parameter and is
thus irrelevant to the correlation issue. Since each elliptical
contour has a fixed value of χ2, the cross section σ2 is given
by σ2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2σ0=ðL × ϵÞ

p
. We note that σ2 is a quadratic

function of the form factors, so we can use the usual
statistical method [32,33] to analyze the quadratic function
of σ2, which suffices for examining the correlation property
of each elliptical contour.
Using Eqs. (4.16) and (4.17b), we express the quadratic

form of σ2 as follows, exhibiting explicitly the energy-
scaling behavior of each term:

σ2 ¼ s̄3σ̄442 ðh4Þ2 þ s̄2σ̄332VðhV3 Þ2 þ s̄2σ̄432Vðh4hV3 Þ
þ s̄2σ̄332ZAðhZ3hγ3Þ; ð4:22Þ

where s̄ ¼ ŝ=M2
Z is a scaled dimensionless energy factor

and σ̄ij2 denotes the coefficient of each leading cross-section
term in Eq. (4.16) in the high-energy expansion.

TABLE VIII. Comparisons of the 2σ sensitivities to the form factor h4 formulated in the SMEFT (in the 3rd row) and the conventional
form factors hV4 respecting only Uð1Þem (in the 4th and 5th rows), derived from analyses of the reactions ppðqq̄Þ → Zγ → ll̄γ and
ppðqq̄Þ → Zγ → νν̄γ at the LHC (13 TeV) and the 100 TeV pp collider, with the indicated integrated luminosities. As discussed in the
text, the form-factor limits (in blue color) are included for illustration only, as they do not respect the full SM gauge symmetry, and hence
are invalid.ffiffiffi
s

p
13 TeV (ll̄) 13 TeV (ll̄; νν̄)

ffiffiffi
s

p
100 TeV (ll̄) 100 TeV (ll̄; νν̄)

Lðab−1Þ 0.14 0.3 3 0.14 0.3 3 Lðab−1Þ 3 10 30 3 10 30
jh4j × 106 14 11 5.2 9.6 7.5 3.8 jh4j × 109 6.1 3.9 2.6 4.0 2.6 1.9
jhZ4 j × 107 7.5 5.7 2.8 5.2 4.0 2.0 jhZ4 j × 1011 4.3 2.7 1.9 2.8 1.9 1.3
jhγ4j × 107 8.7 6.7 3.2 5.9 4.7 2.4 jhγ4j × 1011 4.9 3.2 2.1 3.3 2.1 1.5
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To examine the correlations between hV3 and h4, only the
first three terms of Eq. (4.22) are relevant. Denoting the form
factors ðhV3 ; h4Þ ¼ ðx; yÞ≡X, we can express the relevant
terms of Eq. (4.22) in the following quadratic form:

σ2ðx; yÞ ¼ Ax2 þ By2 þ 2Cxy ¼ XV−1XT; ð4:23aÞ

V−1 ¼
�
A C

C B

�
; ð4:23bÞ

where the coefficients ðA;B;CÞ≡ ðs̄2σ̄332V; s̄3σ̄442 ; 1
2
s̄2σ̄432VÞ.

The correlation contour of ðx; yÞ is clearly an elliptical curve.
For the above quadratic form σ2ðx; yÞ ¼ XV−1XT with two

parameters X ¼ ðx; yÞ, we express the covariance matrix as
follows [33]:

V ¼
 

σ̂2x ρσ̂xσ̂y

ρσ̂xσ̂y σ̂2y

!
; ð4:24Þ

where ðσ̂x; σ̂yÞ are related to the errors in the parameters
ðx; yÞ. The inverse of the covariance matrix V is derived as

V−1 ¼
 1

ð1−ρ2Þσ̂2x − ρ
ð1−ρ2Þσ̂xσ̂y

− ρ
ð1−ρ2Þσ̂xσ̂y

1
ð1−ρ2Þσ̂2y

!
¼
�
A C

C B

�
; ð4:25Þ

FIG. 5. Correlation contours of the sensitivity reaches (95% C.L.) for the indicated pairs of nTGC form factors at the LHC (13 TeV)
[ panels (a) and (c)] and a 100 TeV pp collider [panels (b) and (d)]. Panels (a) and (b) show the correlation contours of ðh4; hZ3 Þ (solid
curves) and ðh4; hγ3Þ (dashed curves), and panels (c) and (d) depict the correlation contours of ðhZ3 ; hγ3Þ.
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with the correlation parameter ρ given by

ρ ¼ −C=
ffiffiffiffiffiffiffi
AB

p
; ð4:26Þ

where ðσ̂x; σ̂yÞ are connected to ðA; B;CÞ through the

relations, σ̂x ¼ ½ð1 − ρ2ÞA�−1
2 and σ̂y ¼ ½ð1 − ρ2ÞB�−1

2.
Thus, using Eq. (4.23) we compute the correlation parameter
(4.26) for the ðhV3 ; h4Þ contour as follows:

ρðhV3 ; h4Þ ¼ −
σ̄432V

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄332V σ̄

44
2

q s̄−
1
2: ð4:27Þ

In the above, ðσ̄442 ; σ̄332V; σ̄
43
2VÞ correspond to the leading-

energy terms of the cross sections (4.16b)–(4.16f). We see
from Eqs. (4.16b)–(4.16d) and (4.16e)–(4.16f) that the cross
section coefficients ðσ̄442 ; σ̄332VÞ of the leading energy terms are
always positive and the cross section coefficients σ̄432V of the
leading energy terms are positive for any quark flavor.Hence,
we deduce that the correlation parameter ρðhV3 ; h4Þ < 0 in
Eq. (4.27), but it is suppressed by a large energy factor 1=

ffiffiffī
s

p
.

This means that the apex of the contour (where the slope
y0 ¼ 0)must lie on the left-hand side (lhs) of the y axis. These
features explain why the orientations of the contours in
Figs. 5(a) and 5(b) are not only nearly vertical, but also are
aligned slightly towards the upper-left direction. Moreover,
the deviation of the orientation of each contour from the
vertical axis of Fig. 5(b) is almost invisible because of
themore severe suppression by the energy factor 1=

ffiffiffī
s

p
at the

100 TeV pp collider than at the LHC.
Then, we use Eq. (4.21) to perform the exact χ2 analysis

for the form factors ðhZ3 ; hγ3Þ. The ðhZ3 ; hγ3Þ contours are
plotted in Figs. 5(c) and 5(d) for theLHCand the 100TeVpp
collider, respectively, which show strong correlations and are
oriented towards the upper-left quadrant, very different from
the contours in Figs. 5(a) and 5(b). To understand the
correlation features of Figs. 5(c) and 5(d), we examine the
relevant leading energy terms in the cross section (4.22) that
include the form factors ðhZ3 ; hγ3Þ and their products. From
Eq. (4.22), we find that the cross section σ2 contains the
following leading energy-dependent contributions:

σ2ðhZ3 ; hγ3Þ ¼ s̄2σ̄332ZðhZ3 Þ2 þ s̄2σ̄332Aðhγ3Þ2 þ s̄2σ̄332ZAðhZ3hγ3Þ
¼ Ax2 þ By2 þ 2Cxy ¼ XV−1XT; ð4:28aÞ

ðA; B;CÞ≡
�
s̄2σ̄332Z; s̄

2σ̄332A;
1

2
s̄2σ̄332ZA

�
; ð4:28bÞ

wherewe denote the form factors ðhZ3 ; hγ3Þ≡ ðx; yÞ≡X and
the matrix V−1 takes the form of Eq. (4.23b). Thus, using σ2
formula in Eq. (4.28), we compute the correlation parameter
(4.26) for the ðhZ3 ; hγ3Þ contour as follows:

ρðhZ3 ; hγ3Þ ¼ −
σ̄332ZA

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄332Zσ̄

33
2A

p s̄0: ð4:29Þ

This shows that the correlation parameter ρ is of Oðs̄0Þ
and not suppressed by any energy factor, unlike the
case of Eq. (4.27) which is suppressed by 1=

ffiffiffī
s

p
.

From Eqs. (4.16c)–(4.16d) and (4.16g), we deduce that
σ̄332Zσ̄

33
2A > 0 and σ̄332ZA > 0 always holds, which lead to

ρðhZ3 ; hγ3Þ < 0. These facts explain why the correlation
between ðhZ3 ; hγ3Þ is large and all the contours of Figs. 5(c)
and 5(d) are oriented towards the upper-left quadrant.
We then consider the nTGC formulation using the

dimension-8 SMEFT operators as given in Sec. II and
study correlations of the sensitivity reaches between each
pair of the nTGC operators. We first study the correlations
between the pairs of nTGC operators ðOGþ;OB̃WÞ and
ðOGþ;OG−Þ. We perform the χ2 analysis using Eq. (4.21)
and present the findings in Fig. 6 for the LHC (13 TeV)
[panel (a)] and the 100 TeV pp collider [panel (b)] for a set
of sample integrated luminosities, respectively. In each
panel, the ðOGþ;OB̃WÞ correlations are shown by the
contours in solid curves, whereas the ðOGþ;OG−Þ corre-
lations are depicted by the contours in dashed curves. We
see that the correlations of the operators ðOGþ;OB̃WÞ and
ðOGþ;OG−Þ are rather weak, similar to the case of the
ðh4; hV3 Þ contours in Figs. 5(a) and 5(b).
The correlation features of the contours in Fig. 6 can be

understood in the following way. Using the relations in
Eq. (3.6), we here denote ðx; yÞ ¼ ðh4; hV3 Þ ¼ ðr4x̄; rV3 ȳÞ
and ðx̄; ȳÞ ¼ ð½Λ−4

V �; ½Λ−4
Gþ�Þ, where V ¼ Z, A and

ðΛ−4
Z ;Λ−4

A Þ≡ ðΛ−4
B̃W

;Λ−4
G−Þ. With these, we express the

leading cross section σ2 in Eqs. (4.22) and (4.23a) as
follows:

σ2ðx̄; ȳÞ ¼ Ax̄2 þ Bȳ2 þ 2Cx̄ȳ ¼ X̄V−1X̄T; ð4:30aÞ

ðA;B; CÞ≡
�
s̄2ðrV3 Þ2σ̄332V; s̄3r24σ̄442 ;

1

2
s̄2rV3 r4σ̄

43
2V

�
; ð4:30bÞ

where X̄≡ ðx̄; ȳÞ and the matrix V−1 takes the form in
Eq. (4.23b). Thus, using Eq. (4.30), we compute the
correlation parameter (4.26) for ðx̄; ȳÞ ¼ ð½Λ−4

V �; ½Λ−4
Gþ�Þ

as follows:

ρð½Λ−4
V �; ½Λ−4

Gþ�Þ ¼ −signðrV3 r4Þ
σ̄432Vs̄

−1
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄332V σ̄

44
2

q
¼ signðrV3 r4ÞρðhV3 ; h4Þ; ð4:31Þ

where the correlation parameter ρðhV3 ; h4Þ < 0 is derived in
Eq. (4.27). According to Eq. (3.7b), we have signðrZ3 r4Þ <
0 and signðrγ3r4Þ > 0. Thus, we can infer the signs of the
corresponding correlation parameters:

ρð½Λ−4
B̃W

�; ½Λ−4
Gþ�Þ > 0; ρð½Λ−4

G−�; ½Λ−4
Gþ�Þ < 0: ð4:32Þ

These nicely explain why in Fig. 6 the orientations of
the correlation contours (solid curves) of the operators
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ðOGþ;OB̃WÞ are slightly aligned towards to the rhs of the
vertical axis, whereas the orientations of the correlation
contours (dashed curves) of the operators ðOGþ;OG−Þ are
slightly aligned towards to the lhs of the vertical axis. Their
deviations from the vertical axis are rather small because of
the energy suppression factor 1=

ffiffiffī
s

p
in Eq. (4.31), and they

become even smaller for the contours of Fig. 6(b) at a
100 TeV pp collider, as expected.
Next, we study the correlations between the nTGC

operators ðOB̃W;OG−Þ and ðOCþ;OG−Þ. We perform a χ2

analysis using Eq. (4.21) and present the findings in Fig. 7.
Using the relations (3.6b)–(3.6c) we find ½Λ−4

B̃W
� ∝ hZ3 and

½Λ−4
G−� ∝ hγ3. So we expect that the ðOB̃W;OG−Þ contour

should be related to the ðhZ3 ; hγ3Þ contour. Inspecting the
contours in Figs. 5(c)–5(d) and 7(a)–7(b), we see that they all
exhibit significant correlations, but in Figs. 7(a)–7(b) the
contours are aligned along different directions from those of
Figs. 5(c)–5(d). We can understand this difference in the
following way. For convenience, we define ðx; yÞ ¼
ðrZ3 x̃; rγ3ỹÞ with X̃ ≡ ðx̃; ỹÞ ¼ ð½Λ−4

B̃W
�; ½Λ−4

G−�Þ. With these
and using Eq. (4.28), we express the leading terms of the
cross section σ2 as follows:

σ2ðx̃; ỹÞ ¼ Ax̃2 þ Bỹ2 þ 2Cx̃ ỹ ¼ X̃V−1X̃T; ð4:33aÞ

ðA;B; CÞ ¼
�
s̄2ðrZ3 Þ2σ̄332Z; s̄2ðrγ3Þ2σ̄332A;

1

2
s̄2rZ3 r

γ
3σ̄

33
2ZA

�
;

ð4:33bÞ

where thematrixV−1 takes the form of Eq. (4.23b). From the
above, we compute the correlation parameter (4.26) for the
operators ðOB̃W;OG−Þ as follows:

ρð½Λ−4
B̃W

�; ½Λ−4
G−�Þ ¼ −signðrZ3 rγ3Þ

σ̄332ZAs̄
0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̄332Zσ̄

33
2A

p
¼ signðrZ3 rγ3ÞρðhZ3 ; hγ3Þ: ð4:34Þ

Because Eq. (3.7) gives signðrZ3 rγ3Þ < 0, we deduce
ρð½Λ−4

B̃W
�; ½Λ−4

G−�Þ ¼ −ρðhZ3 ; hγ3Þ ¼ Oðs̄0Þ > 0. This explains
why the contours of ðOB̃W;OG−Þ in Figs. 7(a) and 7(b)
exhibit strong correlations [similar to those in Figs. 5(c)
and 5(d)], but have their orientations aligned towards the
upper-right quadrant [unlike Figs. 5(c) and 5(d), in which all
the contours are oriented towards the upper-left quadrant].
Finally, we examine the correlations of the fermionic

contact operator OCþ with the nTGC operators OB̃W and
OG−. Since OCþ is a combination of two other operators
OCþ ¼ OG− −OB̃W via the equation of motions (2.3a), it is
connected to both of the form factors ðhZ3 ; hγ3Þ, which would
complicate the correlation analysis in the form factor
formulation (4.16). Instead, we analyze directly the con-
tributions of the operators ðOCþ;OG−;OB̃WÞ to the helicity
amplitudes (2.8)–(2.9). As shown by Eq. (2.9), the operator
OCþ has a nonzero left-handed coupling c0LðCþÞ ¼ −T3

only. So for examining its correlations with OG− and OB̃W ,
the contributions of OG− and OB̃W from the left-handed-
quark couplings c0LðG−Þ and c

0
LðB̃WÞ play key roles. Thus, we

can express as follows the relevant helicity amplitudes
(2.8)–(2.9) containing left-handed (right-handed) initial-
state quarks:

T 8L ¼ T̄ 8L × fc0LðCþÞ½Λ−4
Cþ� þ c0

LðB̃WÞ½Λ−4
B̃W

� þ c0LðG−Þ½Λ−4
G−�g

¼ T̄ 8LðfL0xþ fL1y1 þ fL2y2Þ; ð4:35aÞ

FIG. 6. Correlation contours of the sensitivity reaches (95% C.L.) for the indicated pairs of nTGC operators at the LHC (13 TeV)
[panel (a)] and a 100 TeV pp collider [panel (b)]. Panels (a) and (b) show the correlation contours of ðOGþ;OB̃WÞ (solid curves) and
ðOGþ;OG−Þ (dashed curves).
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T 8R ¼ T̄ 8R × fc0
RðB̃WÞ½Λ−4

B̃W
� þ c0RðG−Þ½Λ−4

G−�g
≡ T̄ 8RðfR1y1 þ fR2y2Þ; ð4:35bÞ

where T̄ 8L (or T̄ 8R) is the remaining common part of
the helicity amplitudes (2.8)–(2.9) after separating out the
coupling c0Lj (or c0Rj) and the cutoff factor ½Λ−4

j �. In the
above, we have defined ðx; y1; y2Þ≡ ð½Λ−4

Cþ�; ½Λ−4
B̃W

�; ½Λ−4
G−�Þ

and

fL0 ¼ c0LðCþÞ ¼ −T3; fL1 ¼ c0
LðB̃WÞ ¼ T3 −Qs2W;

fL2 ¼ c0LðG−Þ ¼ −Qs2W; ð4:36aÞ

fR1 ¼ c0
RðB̃WÞ ¼ −Qs2W;

fR2 ¼ c0RðG−Þ ¼ c0LðG−Þ ¼ fL2 ≡ f2: ð4:36bÞ

With the above, we perform a χ2 analysis based upon
Eq. (4.21). We present the correlation contours of ðOCþ;
OB̃WÞ and ðOCþ;OG−Þ in Figs. 7(c) and 7(d) for the LHC and
the 100 TeV pp collider, respectively. We find that all these
contours exhibit strong correlations. In particular, the
ðOCþ;OB̃WÞ contours (solid curves) are oriented towards
the upper-right quadrant, whereas the ðOCþ;OG−Þ contours
(dashed curves) are oriented towards the upper-left quadrant.
To understand the qualitative features of the cor-

relation contours in Figs. 7(c) and 7(d), we examine the
cross section σ2, which contains the squared part of the

FIG. 7. Correlation contours of sensitivity reaches (95% C.L.) for the indicated pairs of nTGC operators at the LHC (13 TeV) [panels
(a) and (c)] and the 100 TeV pp collider [panels (b) and (d)]. Panels (a) and (b) show the correlation contours of ðOB̃W;OG−Þ, whereas
panels (c) and (d) depict the correlation contours of ðOCþ;OB̃WÞ (solid curves) and ðOCþ;OG−Þ (dashed curves).
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dimension-8 contributions and dominates the χ2 function.
From Eq. (4.35), we derive the cross section σ2 as follows:

σ2ðx; y1; y2Þ ¼ ðfL0xþ fL1y1 þ f2y2Þ2hjT̄ 8Lj2i
þ ðfR1y1 þ f2y2Þ2hjT̄ 8Rj2i

¼ ½ðfL0xþ fL1y1 þ f2y2Þ2
þ ðfR1y1 þ f2y2Þ2�hjT̄ 8j2i; ð4:37Þ

where we have defined the notations hjT̄ 8Lj2i ¼
R
PS jT̄ 8Lj2

and hjT̄ 8Rj2i ¼
R
PS jT̄ 8Rj2 with

R
PS denoting the phase

space integration for the final state. From the squared term
of the cross section (2.15), we can further deduce the
equality hjT̄ 8Lj2i ¼ hjT̄ 8Rj2i≡ hjT̄ 8j2i, which is used in
the last step of Eq. (4.37).
For analyzing the correlations, the overall factor hjT̄ 8j2i

is irrelevant. So we define the following rescaled cross
sections for the convenience of analyzing the two-
parameter correlations:

σ̄2ðx; y1Þ≡ σ2ðx; y1; 0Þ=hjT̄ 8j2i;
σ̄2ðx; y2Þ≡ σ2ðx; 0; y2Þ=hjT̄ 8j2i: ð4:38Þ

Thus, σ̄2ðx; y1Þ and σ̄2ðx; y2Þ are expressed in the following
quadratic form:

σ̄2ðx; y1Þ ¼ Ax2 þ B1y21 þ 2C1xy1 ≡X1V−1
1 XT

1 ; ð4:39aÞ

σ̄2ðx; y2Þ ¼ Ax2 þ B2y22 þ 2C2xy2 ≡X2V−1
2 XT

2 ; ð4:39bÞ

where we have defined X1 ≡ ðx; y1Þ and X2 ≡ ðx; y2Þ as
well as the following notations,

ðA;B1; C1Þ≡ ðf2L0; f2L1 þ f2R1; fL0fL1Þ; ð4:40aÞ

ðA;B2; C2Þ≡ ðf2L0; 2f22; fL0f2Þ; ð4:40bÞ

V−1
1 ¼

�
A C1

C1 B1

�
; V−1

2 ¼
�

A C2

C2 B2

�
: ð4:40cÞ

Thus, we can deduce the following correlation parameter
for the two cases:

ρ1ðx; y1Þ ¼
−C1ffiffiffiffiffiffiffiffiffi
AB1

p ¼ −signðfL0fL1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2R1=f

2
L1

p > 0; ð4:41aÞ

ρ2ðx; y2Þ ¼
−C2ffiffiffiffiffiffiffiffiffi
AB2

p ¼ −
1ffiffiffi
2

p signðfL0f2Þ < 0; ð4:41bÞ

where ðx;y1Þ≡ð½Λ−4
Cþ�;½Λ−4

B̃W
�Þ and ðx;y2Þ≡ð½Λ−4

Cþ�; ½Λ−4
G−�Þ.

Using the coupling formula (4.36), we derive fL0fL1 ¼
−T3ðT3 −Qs2WÞ < 0 and fL0f2 ¼ T3Qs2W > 0, where
each inequality holds for both up-type and down-type
quarks. From these, we deduce that the operators ðOCþ;
OB̃WÞ are correlated positively, whereas the operators

ðOCþ;OG−Þ are correlated negatively. Moreover, Eq. (4.41)
shows that both correlation parameters are ofOðs̄0Þ and not
suppressed by any energy factor. This predicts strong cor-
relations for the operators ðOCþ;OB̃WÞ and ðOCþ;OG−Þ,
respectively. These features are indeed reflected in Figs. 7(c)
and 7(d).We see that the correlation contours of ðOCþ;OB̃WÞ
(solid curves) are oriented towards the upper-right quadrant
due to the positive correlation parameter ρ1ðx; y1Þ > 0 given
by Eq. (4.41a), whereas the correlation contours of ðOCþ;
OG−Þ (dashed curves) are aligned towards the upper-
left quadrant due to the negative correlation parameter
ρ2ðx; y2Þ < 0 given by Eq. (4.41b).

G. Comparison with the existing LHC
bounds on nTGCs

In this subsection, we make direct comparison with the
published LHC measurements of nTGCs through the reac-
tion ppðqq̄Þ → Zγ with Z → νν̄ by the ATLAS [19] and
CMS [18] Collaborations using the conventional nTGC form
factor formula (3.1). The CMS Collaboration analyzed
19.6 fb−1 of Run-1 data at

ffiffiffi
s

p ¼ 8 TeV [18], whereas the
ATLAS Collaboration analyzed 36.1 fb−1 of Run-2 data atffiffiffi
s

p ¼ 13 TeV [19]. They obtained the following sensitivity
bounds (95% C.L.) on the form factors:

CMS∶hZ3 ∈ ð−1.5; 1.6Þ× 10−3; hγ3 ∈ ð−1.1;0.9Þ× 10−3;

hZ4 ∈ ð−3.9; 4.5Þ× 10−6; hγ4 ∈ ð−3.8;4.3Þ× 10−6;

ð4:42aÞ
ATLAS∶hZ3 ∈ ð−3.2;3.3Þ×10−4; hγ3 ∈ ð−3.7;3.7Þ×10−4;

hZ4 ∈ ð−4.5;4.4Þ×10−7; hγ4 ∈ ð−4.4;4.3Þ×10−7:

ð4:42bÞ
We see that the CMS and ATLAS analyses both obtained
much stronger bounds on ðhZ4 ; hγ4Þ than on ðhZ3 ; hγ3Þ, i.e., by
factors ∼ð210–380Þ at CMS (Run-1) and ∼ð710–860Þ at
ATLAS (Run-2). In comparison, we see in Table VII using
our SMEFT form factor formulation (3.5) that the LHC
sensitivity bounds on hV4 are stronger than those on hV3 only
by factors of about 20. Our Table VIII further demonstrates
that using the conventional form factor formulation (3.1)
would generate spuriously stronger hV4 bounds (marked in
blue) at the LHC (13 TeV) than the SMEFT bounds (marked
in red) by a factor of about 20, and thus much stronger than
the hV3 bounds by a large factor of ∼20 × 20 ¼ 400, which
agrees with the ATLAS results in Eq. (4.42b) within a factor
of 2.5 Unfortunately, this means that the strong experimental
bounds (4.42) on ðhZ4 ; hγ4Þ are unreliable because they were

5Since our analyses in Tables VII–VIII have used as input the
full Run-2 integrated luminosity of 140 fb−1 as well as different
kinematic cuts for each bin, unlike the experimental analyses of
ATLAS [19] and CMS [18], such a minor difference in the
bounds could be expected.
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obtained by using the conventional form factor formulation
(3.1), which does not respect the SMelectroweak gauge sym-
metry of SUð2ÞL ⊗ Uð1ÞY as incorporated in the SMEFT.
To study quantitatively the conventional parametrization

(3.1) including the nTGC form factors ðhV3 ; hV4 Þ only, we
denote their contributions to the total cross section by

σ̃ðZγÞ ¼ σ0 þ σ̃1 þ σ̃2, where σ̃1 is the interference term
and σ̃2 is the squared contribution. This is similar to what
we did around Eq. (4.18). We find that σ̃2 always dominates
over σ̃1 for both the LHC and the 100 TeV pp collider.
Using the conventional form factor formula (3.1), we derive
the squared contribution σ̃2 as follows:

σ̃2 ¼
e4ðXV

LRÞ2ðŝ −M2
ZÞ3½4ðhV3 Þ2ðM

2
Z
ŝ þ 1Þ þ 4hV3 h

V
4 ð1 − ŝ

M2
Z
Þ þ ðhV4 Þ2ð1 − ŝ

M2
Z
Þ2�

768πs2Wc
2
WM

6
Zŝ

; ð4:43Þ

where the coupling factor ðXV
LRÞ2 is defined as

ðXV
LRÞ2≡ ðXV

LÞ2þðXV
RÞ2; XZ

L;R≡xZL;R; Xγ
L;R≡−

cW
sW

xAL;R;

ð4:44aÞ

ðxZL; xZRÞ ¼ ðT3 −Qs2W;−Qs2WÞ; ðxAL; xARÞ ¼ −Qs2Wð1; 1Þ:
ð4:44bÞ

Defining a scaled dimensionless energy parameter s̄ ¼
ŝ=M2

Z and making the high-energy expansion for s̄ ≫ 1, we
can compare the leading energy dependence of each term of
σ̃2 with that of σ2, as follows:

σ̃2 ≈
e4ðXV

LRÞ2½ðhV4 Þ2s̄4 − 4hV4 h
V
3 s̄

3 þ 4ðhV3 Þ2s̄2�
768πs2Wc

2
WM

2
Z

; ð4:45aÞ

σ2 ≈
e4½T2

3ðhZ4 Þ2s̄3 þ 8T3XV
Lh

Z
4h

V
3 s̄

2 þ 4ðXV
LRÞ2ðhV3 Þ2s̄2�

768πs2Wc
2
WM

2
Z

;

ð4:45bÞ

where the cross section σ2 is given by our SMEFT form
factor formula (3.5). We note that the form factors ðhZ4 ; hγ4Þ
in the above cross section σ2 should obey the condition
(3.4b) due to the underlying electroweak gauge symmetry
of the SM that is respected by the corresponding dimen-
sion-8 nTGC operators. We have used the relation (3.4b) to
combine the hγ4 contribution with that of h

Z
4 . To examine the

correlation of ðhγ3; hγ4Þ from Eq. (4.45b), we can use
Eq. (3.4b) to replace hZ4 by hγ4. Inspecting Eq. (4.45), we
see that both the ðhV4 Þ2 and ðhV4 hV3 Þ terms in σ̃2 have higher
energy dependencies than those of σ2 by an extra factor s̄1,
which leads erroneously to much stronger bounds on hV4 .
We first make a one-parameter analysis and derive the

bound on each form factor coefficient hVj individually
(where j ¼ 3, 4 and V ¼ Z, γ) using the conventional form
factor parametrization (3.1). To make a more precise
comparison with the ATLAS bounds (4.42b), we adopt
the same kinematic cut on the transverse momentum of the
final-state photon, Pγ

T > 600 GeV, and the same integrated

luminosity L ¼ 36.1 fb−1 as in the ATLAS analysis [19].
For illustration, we ignore the other detector-level cuts and
the systematic errors, and choose a typical detection
efficiency ϵ ¼ 75%.6 With these, we derive the following
bounds on the nTGCs (95% C.L.) when using the conven-
tional form factor parametrization (3.1):

jhZ3 j < 3.0 × 10−4; jhγ3j < 3.4 × 10−4;

jhZ4 j < 4.4 × 10−7; jhγ4j < 4.9 × 10−7; ð4:46Þ

and note that the squared nTGC contributions dominate the
sensitivity. Comparing the above estimated bounds (4.46)
with the ATLAS experimental bounds (4.42b), we see that
they agree well with each other: the agreements for hZ4 are
within about 2% and the agreements for ðhγ4; hZ3 ; hγ3Þ are
within about (8–13)%. This means that by making plau-
sible simplifications we can reproduce quite accurately the
experimental bounds (4.42b) established by the ATLAS
Collaboration [19] using the conventional form factor
formulation in Eq. (3.1).
Next, we analyze the correlation contours for ðhγ3; hγ4Þ

and ðhZ3 ; hZ4 Þ, respectively, using the conventional form
factor parametrization (3.1), which can be compared to the
correlation contours obtained by using our SMEFT form
factor formulation (3.5). Figure 8 displays the correlation
contours at 95% C.L. for LHC Run-2. Panels (a) and
(b) show the correlation contours based on the SMEFT
form factor formula (3.5), where the blue (red) contours
correspond to inputting integrated LHC luminosities of
36.1 fb−1 (140 fb−1). Panels (c) and (d) present the
correlation contours based on the conventional form factor
parametrization (3.1), where the red and blue contours are
given by our theoretical analysis with the assumed detec-
tion efficiencies ϵ ¼ 100% and ϵ ¼ 75%, respectively. For
comparison, we show in panels (c) and (d) the experimental
contours as extracted from the ATLAS results [19] based on
the conventional form factor formula (3.1), where the black
solid curves depict the observed bounds and the black

6We thank our ATLAS colleague Shu Li for discussing the
typical detection efficiency of the ATLAS detector [19].
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dashed curves show the expected limits. It is impressive to
see in panels (c) and (d) that our theoretical contours agree
well with the experimental contours obtained by using the
conventional form factor parametrization (3.1).
We note that the correlation contours of panels (a) and

(b) in Fig. 8 have very different features from those of
panels (c) and (d), which can be understood as follows.
For convenience, we denote X ¼ ðx; yÞ≡ ðhV3 ; hZ4 Þ. Thus,

we can express the cross sections of Eqs. (4.45a) and
(4.45b) as follows:

σ̃2 ∝ Ãx2 þ B̃y2 þ 2C̃xy≡XṼ−1XT; ð4:47aÞ

σ2 ∝ Ax2 þ By2 þ 2Cxy≡XV−1XT; ð4:47bÞ

where we have defined the following notations,

FIG. 8. Correlation contours of the sensitivity reaches (95% C.L.) for the indicated pairs of nTGC form factors at the LHC (13 TeV).
Panels (a) and (b) present the correlation contours for ðhγ3; hγ4Þ and ðhZ3 ; hZ4 Þ, respectively, by using our SMEFT form factor formula (3.5),
where in each panel the red contour inputs the full integrated luminosity 140 fb−1 of Run-2 and the blue contour inputs a partial
integrated luminosity 36.1 fb−1 as in the ATLAS analysis [19]. Panels (c) and (d) compare the theoretical correlation contours (red and
blue colors) with the experimental contours (black color) from the ATLAS analysis [19], where we derived the red and blue contours by
using the conventional form factor formula (3.1) and by assuming an ideal detection efficiency ϵ ¼ 100% (for red contours) or a reduced
detection efficiency ϵ ¼ 75% (for blue contours). The ATLAS contours are shown by the black solid curves (observed) and the black
dashed curves (expected).
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ðÃ; B̃; C̃Þ ¼ ð4s̄2; s̄4;−2s̄3Þ; ð4:48aÞ

ðA;B; CÞ ¼ ð4s̄2ðXV
LRÞ2; s̄3T2

3; 4s̄
2XV

LT3Þ; ð4:48bÞ

Ṽ−1 ¼
�
Ã C̃

C̃ B̃

�
; V−1 ¼

�
A C

C B

�
: ð4:48cÞ

With these we can compute the correlation parameter of the
form factors in each case:

ρ̃ ¼ −C̃ffiffiffiffiffiffiffi
Ã B̃

p ¼ 1 > 0; ρ ¼ −Cffiffiffiffiffiffiffi
AB

p ¼ −
2signðT3ÞXV

L

jXV
LRj

s̄−
1
2 < 0:

ð4:49Þ

The fact of ρ̃ ¼ Oðs̄0Þ > 0 explains why the ðhV3 ; hV4 Þ
contours in Figs. 8(c) and 8(d) exhibit strong correlations
and have their orientations aligned towards the upper-right
quadrant. On the other hand, from Eq. (4.44) we find that
signðT3ÞXV

L > 0 holds for the initial-state quarks being
either up-type or down-type, and thus Eq. (4.49) gives
ρ < 0. This means that the ðhV3 ; hV4 Þ contours in Figs. 8(a)
and 8(b) should have their orientations towards the upper-left
quadrant, but this correlation is almost invisible because
ρ ¼ Oðs̄−1

2Þ receives a large energy-suppression factor at the
LHC. Thus, the correlation features of the ðhV3 ; hV4 Þ contours
are well understood both for Figs. 8(a)–8(b) [based on the
SMEFT form factor formula (3.5)] and for Figs. 8(c)–8(d)
[based on the conventional form factor formula (3.1)].
Our quantitative comparisons in Figs. 8 are instructive and

encouraging. We suggest that the ATLAS and CMS col-
leagues perform a systematic nTGC analysis based on the
new SMEFT form factor formula (3.5), using the full Run-2
dataset. Moreover, we note that in Refs. [18,19] the CMS

and ATLAS Collaborations analyzed the correlations
between the form factors ðhV3 ; hV4 Þ and found strong corre-
lations. We have reproduced this feature in Figs. 8(c)–8(d),
but we note that those correlation contours differ substan-
tially from our new correlation contours in Figs. 8(a)–8(b).
Based upon the above analysis, we suggest that the CMS and
ATLAS Collaborations should make updated analyses on the
ðhV3 ; hV4 Þ correlations using our new SMEFT form factor
formulation with their full Run-2 datasets. We anticipate that
such new analyses should yield results similar to the
theoretical predictions for LHC Run-2 given in Table VII
and Figs. 8(a)–8(b).

V. COMPARISON WITH PROBES OF nTGCs
AT LEPTON COLLIDERS

In this section we first summarize the sensitivity reaches
of nTGC new physics scales at high-energy eþe− colliders
found in our previous work [5]. Then we analyze the
sensitivity reaches of the nTGC form factors at these eþe−
colliders. Finally, we compare these sensitivity limits with
those obtained for the hadron colliders as given in Sec. IV
of the present study.
At high energy eþe− colliders, we found in Ref. [5] that

the reaction eþe− → Zγ with hadronic decays Z → qq̄
gives greater sensitivity reach than the leptonic and
invisible decays Z → ll̄; νν̄. Therefore we choose for
comparison the sensitivity reaches obtained using hadronic
Z decays, and consider the eþe− collision energies

ffiffiffi
s

p ¼
ð0.25; 0.5; 1; 3; 5Þ TeV with a benchmark integrated lumi-
nosities L ¼ 5 ab−1. These results are summarized in the
upper half of Table IX for the new physics scale Λ of each
dimension-8 nTGC operator or related contact operator
ðOGþ;OG−;OB̃W;OCþÞ at the 2σ level, where each entry

TABLE IX. Comparisons of 2σ sensitivities to the new physics scale Λ (in TeV) for each dimension-8
nTGC operator or related contact operator ðOGþ;OG−;OB̃W;OCþÞ, at eþe− colliders of different collision energies,
and at the LHC and the pp (100 TeV) collider. The reactions e−eþ → Zγ → qq̄γ and ppðqq̄Þ → Zγ → ll̄γ; νν̄γ
are analyzed for the lepton and hadron colliders, respectively. For the eþe− colliders, each entry corres-
ponds to (unpolarized, polarized) e∓ beams, where we choose the benchmark e∓ beam polarizations as
ðPe

L; P
ē
RÞ ¼ ð0.9; 0.65Þ.ffiffiffi

s
p

(TeV) L (ab−1) ΛGþ ΛG− ΛB̃W ΛCþ
eþe− ð0.25Þ 5 (1.3, 1.6) (0.90, 1.2) (1.2, 1.3) (1.2, 1.6)
eþe− ð0.5Þ 5 (2.3, 2.7) (1.4, 1.7) (1.8, 1.9) (1.8, 2.2)
eþe− ð1Þ 5 (3.9, 4.7) (1.9, 2.5) (2.5, 2.6) (2.6, 2.9)
eþe− ð3Þ 5 (9.2, 11.0) (3.4, 4.3) (4.3, 4.5) (4.4, 5.2)
eþe− ð5Þ 5 (13.4, 15.9) (4.4, 5.6) (5.7, 5.9) (5.7, 6.8)

LHC (13)
0.14 3.3 1.1 1.3 1.4
0.3 3.6 1.2 1.4 1.5
3 4.2 1.4 1.7 1.7

pp ð100Þ
3 23 4.6 5.6 5.9
10 26 5.1 6.1 6.5
30 28 5.5 6.7 7.1
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has two limits that correspond to the (unpolarized, polar-
ized) e∓ beams. For the polarized e∓ beams, we choose the
benchmark polarizations ðPe

L; P
ē
RÞ ¼ ð0.9; 0.65Þ. For com-

parison, we summarize in the lower half of Table IX the
sensitivity reaches of Λ via the reaction ppðqq̄Þ → Zγ with
Z → ll̄; νν̄ at the LHC (13 TeV) and the 100 TeV pp
collider, based on Tables IV and V of Sec. III.
From the comparison in Table IX, we see that the

sensitivity reaches for the nTGC operator OGþ (and also
the contact operator OC−) at the LHC (13 TeV) with
integrated luminosities L ¼ ð0.14; 0.3; 3Þ ab−1 are higher
than those of eþe− colliders with collision energiesffiffiffi
s

p ¼ ð250; 500Þ GeV, and are comparable to those of
an eþe− collider of energy

ffiffiffi
s

p ¼ 1 TeV, but much lower
than that of the CLIC with

ffiffiffi
s

p ¼ ð3 − 5Þ TeV. On the other
hand, the sensitivity reaches of the 100 TeV pp collider
with an integrated luminosityL ¼ 3 ab−1 can surpass those
of all the eþe− colliders with collision energies up to
(3–5) TeV.
We consider next the other three dimension-8 operators

ðOG−;OB̃W;OCþÞ. Table IX shows that the LHC has
sensitivities to Λ that are comparable to those of eþe−

colliders with
ffiffiffi
s

p ¼ ð250; 500Þ GeV, but are clearly lower
than those of eþe− colliders with collision energiesffiffiffi
s

p
≥ 1 TeV. On the other hand, we find that the sensi-

tivities of the 100 TeV pp collider with an integrated
luminosity L ¼ 3 ab−1 are significantly greater than those
of the eþe− colliders with energy

ffiffiffi
s

p
≤ 3 TeV. Moreover,

a 100 TeV pp collider with an integrated luminosity L ¼
ð10–30Þ ab−1 has sensitivities comparable to those of an
eþe− collider with

ffiffiffi
s

p ¼ 5 TeV, while a 100 TeV pp
collider with an integrated luminosity of 30 ab−1 would
have higher sensitivities than an eþe− collider withffiffiffi
s

p ¼ 5 TeV. In passing, we find that our collider limits

given in Table IX are much stronger than the unitarity limits
of Table I and Fig. 1. This shows that the perturbation
expansion in the SMEFT formulation is well justified for
the present collider analyses of probing the nTGCs.
Next, we analyze the probes of nTGCs at eþe− colliders

using the form factor formulation we described in Sec. III.
According to the relations we derived in Eq. (3.6), can
translate our sensitivity reaches on the new physics scaleΛj

of each dimension-8 operator Oj to that of the related form
factor hVj . The corresponding sensitivities on the form
factors ðh4; hZ3 ; hγ3Þ are presented in the upper half of
Table X. For comparison, we also show the sensitivities
of the LHC (13 TeV) and a 100 TeV pp collider in the
lower half of Table X.
We see from Table X that the LHC has sensitivities for

the form factor jh4j that are higher than those of the eþe−

colliders with
ffiffiffi
s

p ¼ ð250; 500Þ GeV by a factor of
Oð10–102Þ, but has comparable sensitivities to that of an
eþe− collider with

ffiffiffi
s

p ¼ 1 TeV, whereas the LHC sensi-
tivities are lower than those of the eþe− colliders withffiffiffi
s

p ¼ ð3–5Þ TeV by a factor of Oð10–102Þ. On the other
hand, a 100 TeV pp collider would have much higher
sensitivities than all the eþe− colliders with

ffiffiffi
s

p
≤ 5 TeV,

by factors ranging from Oð10–105Þ. We also see that a
100 TeV pp collider has a sensitivity for probing the form
factor h4 that is better than that of the LHC by a
factor Oð103Þ.
Similar features hold for the form factors ðhZ3 ; hγ3Þ, as can

be seen by inspecting Table X. We find that an eþe−

collider of any given collision energy
ffiffiffi
s

p
has comparable

sensitivities for probes of ðhZ3 ; hγ3Þ, with the differences
being less than a factor of 2. We see also that the
sensitivities improve from Oð10−4Þ to Oð10−7Þ when
the collider energy increases from

ffiffiffi
s

p ¼ 0.25 to 5 TeV.

TABLE X. Sensitivity reaches on the nTGC form factors at the 2σ level of eþe− colliders with different collision
energies, compared with those of the LHC and the pp (100 TeV) collider. The reactions e−eþ → Zγ → qq̄γ and
ppðqq̄Þ → Zγ → ll̄γ; νν̄γ are considered for the lepton and hadron colliders respectively. For the eþe− colliders,
each entry corresponds to (unpolarized, polarized) e∓ beams. As benchmarks for the e∓ beam polarizations we
choose ðPe

L; P
ē
RÞ ¼ ð0.9; 0.65Þ.ffiffiffi

s
p

(TeV) L (ab−1) jh4j jhZ3 j jhγ3j
eþe− ð0.25Þ 5 ð3.9; 2.0Þ × 10−4 ð2.7; 2.3Þ × 10−4 ð4.9; 1.6Þ × 10−4

eþe− ð0.5Þ 5 ð3.8; 1.9Þ × 10−5 ð6.2; 5.2Þ × 10−5 ð10; 3.7Þ × 10−5

eþe− ð1Þ 5 ð4.5; 2.3Þ × 10−6 ð1.5; 1.2Þ × 10−5 ð2.3; 1.0Þ × 10−5

eþe− ð3Þ 5 ð1.6; 0.84Þ × 10−7 ð1.7; 1.4Þ × 10−6 ð2.5; 1.0Þ × 10−6

eþe− ð5Þ 5 ð3.6; 1.8Þ × 10−8 ð5.8; 4.9Þ × 10−7 ð8.9; 3.4Þ × 10−7

LHC (13)
0.14 9.6 × 10−6 1.9 × 10−4 2.2 × 10−4

0.3 7.5 × 10−6 1.5 × 10−4 1.8 × 10−4

3 3.8 × 10−6 0.80 × 10−4 0.97 × 10−4

pp ð100Þ
3 4.0 × 10−9 6.1 × 10−7 7.2 × 10−7

10 2.6 × 10−9 4.2 × 10−7 4.9 × 10−7

30 1.9 × 10−9 3.0 × 10−7 3.5 × 10−7
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We further note that the LHC and 100 TeV pp colliders
have comparable sensitivities to ðhZ3 ; hγ3Þ for any given
integrated luminosity. When the integrated luminosity of
the LHC (or the 100 TeV pp collider) increases over the
range from L ¼ ð0.14–3Þ ab−1 [or L ¼ ð3–30Þ ab−1], we
see that the sensitivities to the form factors ðhZ3 ; hγ3Þ increase
by about a factor of 2. Comparing the sensitivity reaches of
the eþe− and hadron colliders in Table X, we find that the
sensitivities of the LHC are comparable to those of a
0.25 TeV eþe− collider, but lower than those of eþe−

colliders with
ffiffiffi
s

p ¼ ð0.5–1Þ TeV by a factor ofOð10Þ, and
lower than those of eþe− colliders with

ffiffiffi
s

p ¼ ð3–5Þ TeV
by factors of Oð102–103Þ. On the other hand, the sensi-
tivities of the ppð100 TeVÞ collider for probing ðhZ3 ; hγ3Þ
are generally higher than those of the 250 GeV eþe−

collider by a factor of Oð103Þ, higher than those of the 0.5
to 1 TeV eþe− colliders by a factor of Oð102Þ, and higher
than those of the 3 TeV eþe− collider by a factor of Oð10Þ,
while they are comparable to those of a 5 TeV eþe−
collider.
Finally, it is instructive to present the ϕ� angular

distributions for the form factor hV4 . In the gauge-invariant
form factor formulation given in Eq. (3.5), we have
imposed the constraints (3.4a)–(3.4b). Hence, the form
factor hV5 is not independent, and should be replaced by
hV5 ¼ −hV4 =2, according to Eq. (3.4a). Moreover, Eq. (3.4b)
shows that hγ4 is not independent, so the form factors
ðhV4 ; hV5 Þ reduce to a single parameter h4ð≡hZ4 Þ as shown
below Eq. (3.4). We can then derive the interference cross
section σ1 contributed by h4 and the normalized angular
distribution f1ϕ� as follows:

σ1 ¼
e2ð− 1

2
þ s2WÞðs −M2

ZÞ
8πsWcWv2s

h4; ð5:1aÞ

f1ϕ� ¼
1

2π
−
3πðf2L − f2RÞðM2

Z þ 5sÞ cosϕ�
256ðf2L þ f2RÞMZ

ffiffiffi
s

p þ s cos 2ϕ�
8πM2

Z
:

ð5:1bÞ
We see that the interference cross section scales as σ1 ∝ E0,
while the angular distribution f1ϕ� has the leading term
cos 2ϕ� enhanced by E2 and the subleading term cosϕ�
enhanced by E1 for large energy

ffiffiffi
s

p ¼ E. We plot the
angular distribution f1ϕ� in Figs. 9(a) and 9(b) for the eþe−

collider energies
ffiffiffi
s

p ¼ 250 GeV and 3 TeV, respectively.
In each panel, the h4 contribution is depicted by the red
solid curve, and the SM contribution is shown as the black
dashed curve which is almost flat. We also observe that
cosϕ� and cos 2ϕ� terms in the function f1ϕ� in Eq. (5.1b)
have opposite signs. They are comparable for lower
collision energy

ffiffiffi
s

p ¼ 250 GeV, but cosð2ϕ�Þ becomes
dominant for a large collision energy

ffiffiffi
s

p ¼ 3 TeV. We can
evaluate the numerical coefficients of f1ϕ� , as follows:

f1ϕ� ¼
1

2π
−0.485cosϕ�þ0.299cos2ϕ�; for

ffiffiffi
s

p ¼250GeV;

ð5:2aÞ

f1ϕ� ¼
1

2π
− 5.67 cosϕ� þ 43.1 cos2ϕ�; for

ffiffiffi
s

p ¼ 3 TeV:

ð5:2bÞ

This explains why panel (a) of Fig. 9 exhibits a significant
cancellation between the cosϕ� and cosð2ϕ�Þ terms,
whereas in panel (b) the cosð2ϕ�Þ term dominates and
thus the red curve exhibits interesting cosð2ϕ�Þ behavior.
For comparison, we consider the conventional form

factor formulation (3.1) with hV5 ¼ 0, where ðhZ4 ; hγ4Þ are
treated as two independent parameters. In this case we
derive the following interference cross sections ðσ̃Z1 ; σ̃A1 Þ
contributed by ðhZ4 ; hγ4Þ and their normalized angular
distributions ðf̃1Zϕ� ; f̃

1A
ϕ� Þ:

ðσ̃Z1 ; σ̃A1 Þ ¼
e4ðs −M2

ZÞ2
128πM4

Zs

�
1 − 4s2W
s2Wc

2
W

hZ4 ;
2

sWcW
hγ4

�
; ð5:3aÞ

f̃1Zϕ� ¼
1

2π
−
3πðf2L − f2RÞð3sþM2

ZÞ
128MZðf2L þ f2RÞ

ffiffiffi
s

p 1 − 4s2W þ 8s4W
1 − 4s2W

cosϕ�;

ð5:3bÞ

f̃1Aϕ� ¼
1

2π
−
3πðf2L − f2RÞð3sþM2

ZÞ
128MZðf2L þ f2RÞ

ffiffiffi
s

p ð1 − 4s2WÞ cosϕ�:

ð5:3cÞ

We see that the interference cross sections in (5.3) scale as
ðσ̃Z1 ; σ̃A1 Þ ∝ E2, while the angular distributions ðf1Zϕ� ; f

1A
ϕ� Þ

have leading terms ∝ cosϕ� enhanced by E1 for large
energy

ffiffiffi
s

p ¼ E1. We also note that the distribution f1Aϕ� is
much suppressed relative to f1Zϕ� due to the small factor
ð1 − 4s2WÞ ≪ 1. We plot the angular distributions ðf1Zϕ� ; f

1A
ϕ� Þ

of Eq. (5.3c) as the blue solid curves in Figs. 9(c)–9(d), while
the squared distributions ðf2Zϕ� ; f

2A
ϕ� Þ and the SM distribution

f0ϕ� are plotted as the green solid curves and black dashed
curves, respectively. As expected, the distributions
ðf2Zϕ� ; f

2A
ϕ� Þ and f0ϕ� are dominated by the constant term

and thus nearly flat.
We stress that Eq. (5.3) and the corresponding

Figs. 9(c)–9(d) are incorrect because the conventional
form factor formulation (3.1) with hV5 ¼ 0 does not obey
the consistency conditions (3.4) imposed by the sponta-
neous breaking of the electroweak gauge symmetry
SUð2ÞL ⊗ Uð1ÞY of the SMEFT. In the following we
further show that the conventional form factor formulation
also leads to erroneously strong sensitivity limits on the
form factors ðhZ4 ; hγ4Þ.
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Following the steps leading to Eq. (4.11), we construct
the following observables ðO1; Õ1Þ for probing the form
factors:

O1 ¼
				σ1
Z

dϕ�f1ϕ� × signðcos 2ϕ�Þ
				; ð5:4aÞ

Õ1 ¼
				σ̃1
Z

dϕ�f̃1ϕ� × signðcosϕ�Þ
				: ð5:4bÞ

From the above formulas (5.1a) and (5.3), we deduce that
energy-dependences of the observables areO1ðh4Þ ∝ E2 and
Õ1ðhV4 Þ ∝ E3. This shows that in the conventional form
factor formulation Õc

1 has an erroneously large energy
dependence (E3 instead of E2), leading to incorrectly strong
sensitivities to the form factors ðhZ4 ; hγ4Þ. We present these
incorrect sensitivities in blue color in Table XI. For com-
parison, we also show in this table the correct sensitivities
(red color) to the form factors h4, as derived within our
consistent form factor formulation (3.5) with the constraints

TABLE XI. Comparisons of the 2σ sensitivities to probing the form factor h4 of our SMEFT formulation (3.5) (in
the 2nd row) and the conventional form factors ðhZ4 ; hγ4Þ that take into account only Uð1Þem gauge invariance (in the
3rd and 4th rows), as derived by analyzing the reaction eþe− → Zγ → qq̄γ at various eþe− colliders with L ¼
5 ab−1 and unpolarized e∓ beams. As discussed in the text, the conventional form-factor limits (in the 3rd and 4th
rows) are included for illustration only, as they do not respect the full SM gauge symmetry, and hence are invalid.ffiffiffi
s

p
(TeV) 0.25 0.5 1 3 5

jh4j 3.9 × 10−4 3.8 × 10−5 4.5 × 10−6 1.6 × 10−7 3.6 × 10−8

jhZ4 j 8.9 × 10−5 4.2 × 10−6 2.5 × 10−7 3.0 × 10−9 3.9 × 10−10

jhγ4j 6.7 × 10−4 3.2 × 10−5 1.9 × 10−6 2.3 × 10−8 2.9 × 10−9

FIG. 9. Normalized angular distributions in ϕ� for eþe− → Zγ with Z → dd̄, as generated by h4 in our form factor formulation (3.5) in
panels (a) and (b), and as generated by ðhZ4 ; hγ4Þ in the conventional form factor formulation (3.1) with hV5 ¼ 0 in panels (c) and (d). The
panels (a) and (c) correspond to the eþe− colliders with

ffiffiffi
s

p ¼ 250 GeV and the panels (b) and (d) correspond to
ffiffiffi
s

p ¼ 3 TeV.
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(3.4a) and (3.4b). From this comparison, we see that for the
form factor hZ4 the conventional sensitivities (blue color) are
erroneously stronger than our new sensitivities (red color)
by a factor of 5 for the collider energy

ffiffiffi
s

p ¼ 250 GeV,
by a factor of Oð10–20Þ for the collider energies

ffiffiffi
s

p ¼
ð0.5–1Þ TeV, and by a factor of Oð102Þ for the collider
energies

ffiffiffi
s

p ¼ ð3–5Þ TeV.
Finally, for an intuitive comparison and overview, we

summarize in Fig. 10 the sensitivity reaches for the new
physics scales of the dimension-8 nTGC operators at the
hadron colliders [panel (a)] and the eþe− colliders [panel
(b)] from Tables IV–V and IX. We present these limits at
both the ð2σ; 5σÞ levels, which are indicated by the (light,
heavy) colors respectively. In Fig. 10(b) we only plot the
sensitivity reaches for e−eþ collisions with unpolarized
electron/positron beams. We note that according to
Table IX, adding the e−=eþ beam polarizations can
increase the sensitivity reaches on the new physics scale
by about 20% for OGþ and OCþ, and by about 5% for
OB̃W . Also, we summarize in Fig. 11 the sensitivity
reaches for probing the nTGC form factors ðh4; hZ3 ; hγ3Þ
at the hadron colliders [panel (a)] and the eþe− colliders
[panel (b)] from Tables VII and X, where the ð2σ; 5σÞ

limits are marked by the (light, heavy) colors, respec-
tively. In Fig. 10(b) we present only the sensitivity
reaches for e−eþ collisions with unpolarized electron/
positron beams. We note that according to Table X,
adding the e−=eþ beam polarizations can increase the
sensitivity reaches for the nTGC form factors by about
100% for h4, by about 20% for hZ3 , and by about 160%
for hγ3.
The reason that the effects of beam polarization for

probing the nTGC form factors in e−eþ collisions appear
much stronger than those for probing the new physics cutoff
scales of the dimension-8 nTGCoperators can be understood
as follows. We note that the relation between the polarized
and unpolarized cross sections of the SM backgrounds is
given by [5]:

σ0ðPe
L;P

ē
RÞ ¼ 4

Pe
LP

ē
Rc

2
Lþð1−Pe

LÞð1−Pē
RÞc2R

c2Lþ c2R
σ0ð0.5;0.5Þ;

ð5:5Þ
where Pe

L ðPē
RÞ denotes the fraction of left-handed

(right-handed) electrons (positrons) in the e−ðeþÞ

FIG. 10. Sensitivity reaches for the new physics scale Λ of
the nTGC operators at the hadron colliders LHC (13 TeV) and
pp (100 TeV) in plot (a) and eþe−colliders with collision
energies

ffiffiffi
s

p ¼ ð0.25; 0.5; 1; 3; 5Þ TeV in plot (b). In each plot,
the (2σ; 5σ) sensitivities are shown in (light, heavy) colors,
respectively.

FIG. 11. Sensitivity reaches for the nTGC form factors
ðh4; hZ3 ; hγ3Þ at the hadron colliders LHC (13 TeV) and pp
(100 TeV) in plot (a) and at eþe−colliders with collision
energies

ffiffiffi
s

p ¼ ð0.25, 0.5, 1,3,5) TeV in plot (b). In each plot,
the (2σ; 5σ) sensitivities are shown in (heavy, light) colors,
respectively.
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beam and PL þ PR ¼ 1 holds for both e− and eþ
beams.7

According to Ref. [5], we construct the following three
kinds of O1 observables and extract the different signal
terms of OðΛ−4Þ in the differential cross section:

OA ¼
Z

dθdθ�dϕ�
d3σ1

dθdθ�dϕ�
signðcosϕ�Þ; ð5:6aÞ

OB ¼
Z

dθdθ�dϕ�
d3σ1

dθdθ�dϕ�
× signðcosϕ�Þsignðcos θÞsignðcos θ�Þ; ð5:6bÞ

OC ¼
Z

dθdθ�dϕ�
d3σ1

dθdθ�dϕ�
signðcos 2ϕ�Þ: ð5:6cÞ

For these observables, we can deduce the following:

OAðGþÞ ¼ A ×
1

2
cLPe

LP
ē
Rð5sþM2

ZÞΛ−4
Gþ; ð5:7aÞ

OAðjÞ ¼ A × 3½cLxLPe
LP

ē
R þ cRxRð1 − Pe

LÞð1 − Pē
RÞ�

× ðsþM2
ZÞΛ−4

j ; ð5:7bÞ

OBðGþÞ ¼ B ×
1

2
cLPe

LP
ē
Rð5sþM2

ZÞΛ−4
Gþ; ð5:7cÞ

OBðjÞ ¼ B × 3½cLxLPe
LP

ē
R − cRxRð1 − Pe

LÞð1 − Pē
RÞ�

× ðsþM2
ZÞΛ−4

j ; ð5:7dÞ

OCðGþÞ ¼ C ×
1

2
cLPe

LP
ē
RsΛ−4

Gþ; ð5:7eÞ

OCðjÞ ¼ C × ½cLxLPe
LP

ē
R − cRxRð1 − Pe

LÞð1 − Pē
RÞ�

×M2
ZΛ−4

j ; ð5:7fÞ

where the index j denotes the operators ðOG−;OB̃W;OCþÞ,
respectively. The values of the coefficients ðA;B;CÞ in
these formulas are given by the numerical results for the
observables in Eq. (5.6). The dependence of each sensi-
tivity limit on the polarization choice is determined by the
relation between the left- and right-handed couplings. The
most sensitive observable for probing OGþðh4Þ is OC,
while the most sensitive observable for probing OB̃WðhZ3 Þ
and OCþ is OA. For probing OG−ðhγ3Þ, the most sensitive

observable is OB in the case of unpolarized beams, and is
OA in the case of polarized beams [for the choice
ðPe

L; P
ē
RÞ ¼ ð0.9; 0.65Þ]. We note that the sensitivity limits

for the nTGC form factors scale as ðhV3 ; hV4 Þ ∝ OX (where
X ¼ A, B,C), and that the new physics cutoff reaches of the
dimension-8 nTGC operators behave like Λ ∝ O1=4

X .
Hence, the improvements from the beam polarizations
can be significant for the form factors, but become rather
mild for the cutoff scales of the dimension-8 operators.
For convenience, we express a given observable OX ≡

ŌX=Λ4
j for the dimension-8 operator formulation andOX ≡

ŌXhVi for the form factor formulation. We may estimate the
significance by Z ≃ S=

ffiffiffiffi
B

p
. If we require the significances

of the polarized and unpolarized cases to be equal,
Zpol ¼ Zunpol, we can derive the following ratio of the
polarized/unpolarized limits on the dimension-8 cutoff
scales and on the form factors, respectively:

RΛj
¼ ΛjðpolÞ

ΛjðunpolÞ
¼ ½R̄XðPe

L; P
ē
RÞ�1=4;

RhVi
¼ hVi ðunpolÞ

hVi ðpolÞ
¼ R̄XðPe

L; P
ē
RÞ; ð5:8Þ

where the ratio R̄XðPe
L; P

ē
RÞ is defined as

R̄XðPe
L; P

ē
RÞ≡ ŌXðPe

L; P
ē
RÞ

ŌXð0.5; 0.5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0ð0.5; 0.5Þ
σ0ðPe

L; P
ē
RÞ

s
: ð5:9Þ

From the above, we derive the following estimate of the
ratio R̄X for each observable OX:

R̄A ¼ 2jcLxLPe
LP

ē
R þ cRxRð1 − Pe

LÞð1 − Pē
RÞj

jcLxL þ cRxRj

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2L þ c2R

Pe
LP

ē
Rc

2
L þ ð1 − Pe

LÞð1 − Pē
RÞc2R

s
; ð5:10aÞ

R̄B;C ¼ 2jcLxLPe
LP

ē
R − cRxRð1 − Pe

LÞð1 − Pē
RÞj

jcLxL − cRxRj

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2L þ c2R

Pe
LP

ē
Rc

2
L þ ð1 − Pe

LÞð1 − Pē
RÞc2R

s
; ð5:10bÞ

where ðcL; cRÞ ¼ ðT3 −Qs2W;−Qs2WÞ denote the Z cou-
pling factors with the (left, right)-handed electrons, and the
coupling coefficients ðxL; xRÞ are given by

ðxL; xRÞ ¼ −Qs2Wð1; 1Þ; ðfor OG−Þ; ð5:11aÞ

ðxL; xRÞ ¼ ðT3 −Qs2W;−Qs2WÞ; ðfor OB̃WÞ; ð5:11bÞ

ðxL; xRÞ ¼ −T3ð1; 0Þ; ðfor OGþ;OCþÞ: ð5:11cÞ

7Note that the degree of longitudinal beam polarization for e−

or eþ is defined as P̂ ¼ PR − PL [5]. Thus, the left-handed and
right-handed fractions of e− and eþ in the beam can be expressed
as Pe

L;R ¼ 1
2
ð1 ∓ P̂eÞ and Pē

L;R ¼ 1
2
ð1 ∓ P̂ēÞ, respectively. For

instance, unpolarized e− and eþ beams have vanishing degrees of
polarization ðP̂e; P̂ēÞ ¼ 0, whereas a polarized e− beam with
fraction Pe

L ¼ 90% has P̂e ¼ −0.8 and a polarized eþ beam with
fraction Pē

R ¼ 65% has P̂ē ¼ 0.3.
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Because the coupling coefficient xR ¼ 0 for OGþðh4Þ and
OCþ, we can reduce the significance ratio (5.10) to the
following form and compute its value for ðPe

L; P
ē
RÞ ¼

ð0.9; 0.65Þ:

R̄XðPe
L; P

ē
RÞ ¼ 2Pe

LP
ē
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2L þ c2R

Pe
LP

ē
Rc

2
L þ ð1 − Pe

LÞð1 − Pē
RÞc2R

s
;

ð5:12aÞ
R̄Xð0.9; 0.65Þ ≃ 2.0; ð5:12bÞ
where X ¼ A, B, C. Thus, we deduce the following ratios
for the operators ðOGþ;OCþÞ and the form factor h4:

R̄ΛGþ ¼ R̄ΛCþ ¼ ½R̄Xð0.9; 0.65Þ�1=4 ≃ 1.2; ð5:13aÞ
R̄h4 ¼ R̄Xð0.9; 0.65Þ ≃ 2.0: ð5:13bÞ

This means that the e−=eþ beam polarizations can
enhance the sensitivity reach for the cutoff scale ΛGþ by
about 20%, and enhance the sensitivity reach for the form
factor h4 much more significantly, namely, by about 100%,
which explains the features shown in Tables IX–X and
Figs. 10–11.
We further note that the coupling coefficients xL;R ¼

cL;R for the nTGC operator OB̃W and form factor hZ3 . We
find that to enhance the polarization effects for probing
OB̃W and hZ3 , the most sensitive observable is OA. Thus, we
simplify the significance ratio (5.10) to the following form
and compute its value for ðPe

L; P
ē
RÞ ¼ ð0.9; 0.65Þ:

R̄AðPe
L;P

ē
RÞ¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe
LP

ē
Rc

2
Lþð1−Pe

LÞð1−Pē
RÞc2R

c2Lþc2R

s
; ð5:14aÞ

R̄Að0.9; 0.65Þ ≃ 1.2: ð5:14bÞ
With these, we deduce the following ratios for the operator
OB̃W and the form factor hZ3 :

R̄ΛB̃W
¼ ½R̄Að0.9; 0.65Þ�1=4 ≃ 1.05; ð5:15aÞ

R̄hZ
3
¼ R̄Xð0.9; 0.65Þ ≃ 1.2: ð5:15bÞ

This shows that the beam polarizations can increase mildly
the sensitivity reach for the cutoff scale ΛB̃W by about 5%,
and increase the sensitivity reach for the form factor hZ3 by a
larger amount of 20%, which agree with the features shown
in Tables IX–X and Figs. 10–11. Finally, we note that the
enhancement ratio (5.9) does not apply to the cases of OG−
and hγ3 because thereOB is the most sensitive observable for
the unpolarized case and OA is the most sensitive observ-
able for the polarized case. Thus, we define the corre-
sponding ratio RABðPe

L; P
ē
RÞ of significances between the

polarized and unpolarized cases and compute its value
RABð0.9; 0.65Þ:

R̄ABðPe
L; P

ē
RÞ ≃

ŌAðPe
L; P

ē
RÞ

ŌBð0.5; 0.5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ0ð0.5; 0.5Þ
σ0ðPe

L; P
ē
RÞ

s
; ð5:16aÞ

R̄ABð0.9; 0.65Þ ≃ 2.6: ð5:16bÞ

From these we derive the significance ratios for the operator
OG− and the form factor hγ3:

RΛG−
¼ ½R̄ABð0.9; 0.65Þ�1=4 ≃ 1.27; ð5:17aÞ

Rhγ
3
¼ R̄Xð0.9; 0.65Þ ≃ 2.6: ð5:17bÞ

We see that the beam polarization effects can raise the
sensitivity reach for the cutoff scale ΛG− by about 27%,
and raise the sensitivity reach for the form factor hγ3 by
about 160%, which agree with the results presented in
Tables IX–X and Figs. 10–11.

VI. CONCLUSIONS

Neutral triple-gauge couplings (nTGCs) provide an
important window for probing new physics beyond
the SM. In this work, we have studied systematically the
prospective experimental sensitivities to nTGCs at the
13 TeV LHC and a future 100 TeV pp collider, using
the SMEFT approach to classify and characterize the
nTGCs that can arise from gauge-invariant dimension-8
operators.
In Sec. II A we first considered a set of CP-conserving

dimension-8 nTGC operators and the related contact
operators in Eq. (2.2). Then, in Sec. II B we derived their
contributions to the scattering amplitudes of the partonic
process q̄q → Zγ in Eqs. (2.7) and (2.8). With these, we
computed the corresponding total cross sections including
the SM contribution, the interference term ofOð1=Λ4Þ, and
the squared term of Oð1=Λ8Þ, as in Eqs. (2.12) and (2.15),
whereΛ is the new physics cutoff scale defined in Eq. (2.1).
We further presented in Eqs. (2.14), (2.17), and Fig. 3 their
contributions to the differential angular distributions, in
comparison with that of the SM. In Sec. II C we analyzed
the perturbative unitarity bounds on the nTGCs, as shown
in Table I and Fig. 1, which are much weaker than the
collider limits presented in Secs. IV–V. Hence, the pertur-
bation expansion is well justified for the current collider
analyses.
In Sec. III we presented a new form factor formulation of

the neutral triple gauge vertices (nTGVs) ZγV� (with
V ¼ Z, γ), by mapping them to the dimension-8 nTGC
operators of the SMEFT that incorporate the spontaneously
broken electroweak gauge symmetry SUð2ÞL ⊗ Uð1ÞY of
the SM. This differs from the conventional form factor
parametrization of nTGCs that takes into account only the
unbroken Uð1Þem gauge symmetry [3,4]. Using the SMEFT
approach, we have found that a new momentum-dependent
nTGC term with form factor hV5 has to be added and the
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mapping with the dimension-8 SMEFT interactions enfor-
ces new nontrivial relations (3.4a)–(3.4b) between the form
factors ðhV4 ; hV5 Þ and between the form factors ðhZ4 ; hγ4Þ. The
new form factor hV5 was not included in all the previous
form factor analyses of nTGVs. We have demonstrated that
including the new form factor hV5 is crucial for a fully
consistent form factor formulation of nTGVs and ensures
the exact cancellation of the spuriously large unphysical
terms ofOðE5Þ in the scattering amplitudes of qq̄ → Zγ, as
shown in Eqs. (3.8b) and (3.10). In consequence, among
the six general nTGC form factors ðhV3 ; hV4 ; hV5 Þ in Eq. (3.2),
we have proven that only three of them, ðhZ3 ; hγ3; h4Þ with
h4 ≡ hZ4 , are independent, and the correct nTGC form
factor formula is given by Eq. (3.5). We have further
presented the explicit correspondence between the nTGC
form factors and the cutoff scales of the dimension-8 nTGC
operators in Eqs. (3.6)–(3.7).
In Sec. IV, we have systematically studied the sensitivity

reaches for probing the new physics scales of the nTGC
operators and for probing the nTGC form factors in the
reactions ppðqq̄Þ → Zγ → ll̄γ; νν̄γ at the LHC and the
future pp (100 TeV) collider. We have presented analyses
of sensitivity reaches using the interference contributions of
OðΛ−4Þ in Sec. IV B and including the squared contribu-
tions up to OðΛ−8Þ in Sec. IV C. We have evaluated the
prospective 2σ and 5σ sensitivities of the LHC and the
future 100 TeV pp collider to the different nTGCs, and
have combined the sensitivity reaches of the leptonic decay
channel Z → lþl− (Secs. IV B–IV C) and the invisible
decay channel Z → νν̄ (Sec. IV D). We have presented our
findings in Tables II–IV for the dimension-8 operator OGþ
and the equivalent operator OC−, and in Table V for the
other dimension-8 operators ðOB̃W;OG−;OCþÞ. These
sensitivity reaches are further summarized in our
Fig. 10(a). From Table IV, we see that the 2σ (5σ)
sensitivity to the scale of the operator OGþ could reach
4.4 TeV (3.9 TeV) at the 13 TeV LHC with 3 ab−1

integrated luminosity, and reach 30 TeV (26 TeV) at the
100 TeV pp collider with 30 ab−1, whereas the estimated
sensitivity reaches on the scales of the dimension-8
operators ðOB̃W;OG−;OCþÞ shown in Table V are some-
what smaller. Then, in Sec. IV E we have presented the
LHC sensitivity reaches on the three independent form
factors ðh4; hZ3 ; hγ3Þ in Table VII, with a summary of these
sensitivities given in Fig. 11(a). We see that the sensitivities
for probing the form factor h4 are generally higher than
those of the other two form factors ðhZ3 ; hγ3Þ by about a
factor of 5 × 10−2 at the LHC and by about a factor of 10−2

at the 100 TeV pp collider. We emphasize that if the
dimension-8 SMEFT relations between the different form
factors are not taken into account, one would find unre-
alistically strong sensitivities due to the uncanceled large
unphysical energy-dependent terms associated with the
form factor h4, as seen by comparing Eq. (4.20) with

Eq. (4.17). Then, we explicitly demonstrated in Table VIII
that the sensitivities to hZ4 and hγ4 in the conventional form
factor approach (marked in blue color) are (erroneously)
higher than the correct sensitivities (marked in red color
and extracted from Table VII) by about a factor of 5 × 10−2

at the LHC and by about a factor of 10−2 at the
ppð100 TeVÞ collider. Hence, it is important to use the
consistent form factor approach for the nTGC analysis as
we advocated in Sec. III. After these comparisons, in
Sec. IV F we analyzed the 2-parameter correlations for
both the nTGC form factors and for the nTGC dimension-8
operators. We presented in Fig. 5 the correlations of each
pair of the form factors ðh4; hV3 Þ and ðhZ3 ; hγ3Þ at hadron
colliders, where the ðh4; hV3 Þ contours in the plots (a) and
(b) have rather weak correlations due to the extra energy-
suppression factor of Eq. (4.27), and the plots (c) and
(d) demonstrate large correlations between the form factors
ðhZ3 ; hγ3Þ. Then, we presented the correlations of each pair
of the nTGC operators ðOGþ;OB̃WÞ and ðOGþ;OG−Þ in
Figs. 6(a)–6(b) which are suppressed by large energy factor
1=

ffiffiffī
s

p
as shown in Eq. (4.31). The correlations of each pair

of the nTGC operators ðOB̃W;OG−Þ, ðOCþ;OB̃WÞ, and
ðOCþ;OG−Þ are presented in Figs. 7(a)–7(d). These corre-
lations are not suppressed by any energy factor and are thus
significant at both the LHC and the 100 TeV pp collider.
We demonstrated in Figs. 7(c)–7(d) that the correlations of
the operators ðOCþ;OB̃WÞ and ðOCþ;OG−Þ are particularly
strong. Finally, in Sec. IVG we have made direct com-
parison with the published LHC measurements on nTGCs
in the reaction ppðqq̄Þ → Zγ (with Z → νν̄) by the CMS
[18] and ATLAS [19] Collaborations. Using the same
kinematic cuts and integrated luminosity together with
an estimated detection efficiency as in the ATLAS analysis
[19], we have applied the conventional form factor for-
mula (3.1) to reproduce the nTGC bounds in Eq. (4.46) and
the strong correlations of ðhV3 ; hV4 Þ in Figs. 8(c)–8(d), which
agree well with the ATLAS results [19]. However, the
ðhV3 ; hV4 Þ contours of Figs. 8(c)–8(d) differ substantially
from those contours of Figs. 8(a)–8(b), which exhibit rather
weak correlations as predicted using our new SMEFT form
factor formula (3.5). Hence, it is important to use the
SMEFT form factor formulation described in Sec. III to
analyze the LHC bounds on nTGCs.
We presented in Sec. V systematic comparisons of the

sensitivity reaches for the nTGCs between the hadron
colliders (the LHC and the 100 TeV pp collider) and
eþe− colliders with different energies. Table IX summa-
rizes the comparisons for probing the nTGCs of dimension-
8 operators ðOGþ;OB̃W;OG−;OCþÞ, whereas Table X
summarizes the comparisons for probing the nTGC form
factors ðh4; hZ3 ; hγ3Þ. We have summarized the above com-
parisons of sensitivity reaches between the hadron colliders
and lepton colliders in Figs. 6 and 10. Then, in Table XI, we
have further demonstrated that using naively the conven-
tional form factor formula without including the nontrivial
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constraints of the dimension-8 SMEFT approach would
cause erroneous sensitivities to ðhZ4 ; hγ4Þ (marked in blue
color) that are stronger than the correct sensitivities (marked
in red color and extracted fromTableX) at the eþe− colliders
by a factor ofOð10Þ for the collision energy ffiffiffi

s
p

≤ 1 TeVand
by a factor of Oð102Þ for

ffiffiffi
s

p ¼ ð3–5Þ TeV. Hence, it is
important to use the consistent form factor approach of
Sec. III for nTGCanalyses at eþe− colliders. In general, from
the comparisons of Tables IX–X and Figs. 10–11, we find
that the LHC sensitivity reaches on the nTGCs are similar to
those at the eþe− colliders with collision energy

ffiffiffi
s

p
≤

1 TeV [5]. On the other hand, a higher-energy eþe− collider
with

ffiffiffi
s

p ¼ ð3–5Þ TeV would have greater sensitivities than
the LHC to probing the new physics scales of the nTGC
operators and the corresponding nTGC form factors.
However, we have shown that the sensitivity reaches of
the 100 TeV pp collider would be even higher.
Overall, we have found that nTGCs provide a powerful

means for probing any possible new physics beyond the
SM that could generate the dimension-8 nTGC operators
in the SMEFT. We have found that both pp and eþe−

colliders have significant roles to play. We advocate as a
first step that the ATLAS and CMS experiments at the
LHC apply the dimension-8 SMEFT approach proposed
here to analyze the nTGCs, in preference to the conven-
tional form factor approach that does not take into account
the full electroweak gauge symmetry SUð2ÞL ⊗ Uð1ÞY of
the SM.
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