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Constraining beyond the Standard Model theories usually involves scanning highly multidimensional
parameter spaces and checking observable predictions against experimental bounds and theoretical
constraints. Such a task is often timely and computationally expensive, especially when the model is
severely constrained and thus leading to very low random sampling efficiency. In this work we tackled this
challenge using artificial intelligence and machine learning search algorithms used for black-box
optimization problems. Using the constrained minimal supersymmetric standard model and the phenom-
enological minimal supersymmetric standard model parameter spaces, we consider both the Higgs mass
and the dark matter relic density constraints to study their sampling efficiency and parameter space
coverage. We find our methodology to produce orders of magnitude improvement of sampling efficiency
while reasonably covering the parameter space.
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I. INTRODUCTION

Although the Standard Model (SM) of particle physics is
a hallmark of scientific achievement, it does not provide the
complete picture of the fundamental degrees of freedom of
the universe, leaving some phenomena unexplained. To
tackle this, multiple beyond Standard Model (BSM) the-
ories have been proposed to address a number of questions,
which the Standard Model (SM) has failed to provide
meaningful answers to, while successfully replicating all
the features contained in the SM which have been verified
experimentally. On the other hand, experiments like those
at the Large Hadron Collider (LHC) at CERN are pushing
the boundaries of validity of many BSM theories, while not
providing so far unambiguous evidence for new phenom-
ena beyond the SM.

In order to study the phenomenology of these BSM
theories, vast parameter spaces need to be scanned to assess
the values of parameters which are still valid, i.e., not in
contradiction with experimental data. Such models can reach
Oð100Þ free parameters. However, in general, out of the
virtually infinite number of possible versions of the BSM
model which are represented by points scattered across the
parameter space of the theory, only a tiny fraction of these
points will yield predictions which are in agreement with
experimental data. For instance, the minimal supersymmet-
ric standard model (MSSM) contains 105 new free param-
eters, leaving a more classical examination of its parameter
space rather costly and extremely time-consuming. This type
of validation task can be strikingly difficult to execute,
depending on the physics of the model, the number of
parameters involved and the number of experimental con-
straints considered. This is the high-energy physics reali-
zation of a challenge known in data science as the curse of
dimensionality, which, in this context, means that the
efficiency of this exploratory analysis drops exponentially
with the number of the dimensions of the parameter space.
In this regard, data-driven approaches have offered new

opportunities for the investigation of high-dimensional
complex problems. In recent years, artificial intelligence
(AI) and machine learning (ML) have steadily become
part of the tool-set of HEP researchers [1], as their
algorithms provide paradigm shifting capabilities for data
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and computationally intensive tasks. One such task is the
validation of BSM theories through constraining the asso-
ciated parameter space. Such task has seen recent efforts and
developments of the employment of AI/ML algorithms to
mitigate the burden of such scans in an attempt to increase
sampling efficiency. Recent attempts at tackling this problem
have deployed techniques such as deep neural networks [2,3]
to try to guess if a new point is valid; Bayesian neural
networks [4] to try to predict the observable value for a given
parameter space point; active-learning methods [5,6] to find
boundaries of valid subspaces; and generative models [7]
used to resample from a collection of valid points. However,
these efforts often require a large amount of data to be
gathered previously for machine learning training—which
presumably are hard to come by—before they can be used to
suggest new points with high-efficiency, effectively not
solving the sampling bottleneck.
In this work, we offer a new perspective to the sampling

of new consistent model points by reframing the problem as
a black-box optimization problem and bypassing the need
for an initial set of sampled data. We show the efficiency of
a dynamic optimization approach to the survey of two
MSSM realizations, the constrained MSSM (cMSSM) and
the phenomenological MSSM (pMSSM), both displaying a
large reduction of the initial MSSM free parameters, by
constraining the respective parameter spaces as to provide a
realistic Higgs mass. For each case, we will further increase
the sampling difficulty by demanding a realistic dark matter
relic density.
This work is organized as follows. In Sec. II we reframed

the sampling problem as a black-box optimization problem,
by introducing the notion of a cost function of physical
observables (themselves dependent on the parameter) that
needs to be minimized. The physics cases are introduced in
Sec. III, where we define the models and the observables
which wewill use to constrain the parameter space. Next, in
Sec. IV we develop the methodology to be used for the
scans, namely we introduce three AI/ML based search
algorithms used for black-box optimization and how they
work, as well as discussing how the scan was designed. The
results of the scans and a comparison between different
samplers is then discussed in Sec. V. Finally, in Sec. VI we
draw the conclusions of our study and highlight the benefits
and the shortcomings of the presented methodology,
providing new directions of future work.

II. (RE)FRAMING THE PROBLEM

The customary approach to validate beyond the stan-
dard-model extensions against constraints and bounds on
observables is to randomly sample a point, θ, from the
parameter space, P, which is then passed onto a computa-
tional routine, R, that computes the relevant observables,
OðθÞ. The observables are then compared to experimental
data, namely to check if they are within bounds (for
example if the mass of an exotic new particle is above

collider limits) or within uncertainties (for example if the
mass of a standard model particle is within its uncertain-
ties). If the point agrees with experimental data it is kept as
a valid point, otherwise it is discarded. Depending on the
difficulty of the problem at hand, i.e., how likely or not is
for a random point to fit the constraints, this process can
take long periods of time to collect enough valid points. On
top of that, the random sampling is rather wasteful from the
point of view of resources as the information of invalid
points is simply discarded and not used to improve the
sampling efficiency.
Previous works [2,3,8] attempted to reduce the scanning

overhead by only passing to the computational routines
points with a higher chance of passing the constraints. In
order to achieve this, they trained machine learning
models to either predict the values of the observables,
O (using a regressor) or to predict if a point falls within
experimental bounds (using a classifier). Using this
methodology, they achieve a higher efficiency in the
computational routine step, as only promising sampled
points go through. In either case, this amounts to add a
novel step in the workflow, which is the machine learning
model between the sampling and the computational
routine steps. Therefore, a possible difficulty with this
approach is that the machine learning component might
not have learned the phase space well enough to properly
filter good points. Or, in other words, the efficiency of
this filtering step is bounded by the amount of points
sampled.
Another attempt [7], also using machine learning mod-

els, is to use generative deep learning to produce likely
valid points. The authors trained normalizing flow net-
works on a collection of valid points in order to learn their
distribution to sample more, novel points, from the same
distribution. Although this approach differs from the above,
as the machine learning component does not act as a filter,
it faces similar obstacles as these models need vast amounts
of data to be trained, for example the authors used Oð106Þ
valid points, which could be hard to collect in highly
constrained scans.
In this work we present a different approach by

(re)framing the problem as a black-box optimization
problem to change the sampler itself. In order to shape
the problem as an optimization problem, we first notice
that invalid points hold a wealth a information, namely the
value of the constrained observables tells us how far
the point is from being valid. This can be captured by the
constraint function, C:

CðOÞ ¼ maxð0;−OþOLB;O −OUBÞ; ð1Þ

where OLB (OUB) is the lower (upper) bound of the
observable O. For example, if O is a Standard Model
mass, say the Higgs mass, OLB=UB ¼ Oexp ∓ σO with
Oexp the observed central value of the mass and
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σO
1 the associated uncertainty. If, on the other hand, O is

the mass of an exotic particle with experimental lower
bound, Oexp

LB , then OLB ¼ Oexp
LB and OUB ¼ ∞. However,

we note that this function can be further expanded to
included multidimensional exclusion regions, either from
experiment or theory, with complicated shapes. To use
those, one need to identify the inside region where C ¼ 0
and the outside region, where C > 0measures how far the
point is from the interior region. In Fig. 1 we schemati-
cally show the shape of CðOÞ for an observable with upper
and lower bounds.
Considering now that the observables are functions

of the parameters, OðθÞ, and that the computational
routines are in general black-boxes,2 we have CðOÞ ¼
CðOðθÞÞ ¼ CðθÞ. Therefore, finding valid points, θ�, can
be defined in the usual way, as the valid points (i.e., that are
inside the bounds), V,

V ¼ fθ�∶ θ ∈ Ps:t:CðθÞ ¼ 0g; ð2Þ

which can be equivalently expressed as the minimization
statement

V ¼ fθ�∶θ ∈ Ps:t:θ� ¼ argminCðθÞg; ð3Þ

therefore, finding valid points for the constraints over θ
amounts to minimize the function C itself and so we can
treat the problem as black-box optimization problem.

Multiple constraints can be combined using multiple C,
one for each constraint. In principle, one could try to
optimize against all constraints jointly as a multiobjective
optimization problem, where one tries to find the so-called
Pareto optimal points.3 Here we will simplify this process
and take the total constraint function as the sum of all
individual constraints, as this new constraint function will
still respect Eq. (2) and Eq. (3), and allows us to use single-
objective optimization algorithms.4

In this work we will use the same constraints as in [7],
namely the mass of the Higgs boson, mh0 , and dark matter
relic density, ΩDMh2. The values of the upper and lower
bounds can be seen in Table I. Both observables are known
precisely from the experimental side [12]. However, their
uncertainty on the theory side is signifcantly larger
amounting to about Δmh ≃ 3 GeV [13]5 and ΔΩh2 ¼
0.2 [14–16]. We will aggregate both constraints by sum-
ming the individual constraint function for each constraint

Cðmh ∩ ΩDMh2Þ ¼ Cðmh0Þ þ CðΩDMh2Þ: ð4Þ

The resulting function will be the loss function,

LossðθÞ ¼ Cðmh0ðθÞÞ þ CðΩDMh2ðθÞÞ; ð5Þ

which we will minimize using black-box optimization
algorithms presented in the next section.

A. Difference with fits to likelihoods

It is important to clarify the distinction between
our approach and that of fitting the parameter space
with likelihoods, see for example [17]. When fitting the
parameter space with likelihoods, one starts with Bayes
theorem

pðθjdataÞ ∝ pðdatajθÞpðθÞ; ð6Þ

FIG. 1. Shape of the constraint function for a single observable.

TABLE I. Physical constraints on the Higgs boson mass and
dark matter relic density.

Constraint OLB OUB

mh0 122 GeV 128 GeV
ΩDMh2 0.08 0.14

1The notion of uncertainty depends greatly on the case study.
For example, one might want to include theoretical uncertainties,
which do not have a statistical interpretation, or be more lenient
and allow for up to 3σ deviations from each experimental bound.

2There is some effort in the HEP community to produce end-
to-end differentiable programming frameworks [9–11] which
would allow a purely differentiable treatment of the problem.
However, for BSM model building, most of the available
software exists either in nondifferentiable frameworks or make
use of nondifferentiable routines.

3In practice this means that agreement with an observable
cannot be improved without simultaneously worsening at least
the agreement with another one.

4We performed an exploratory study on different prescriptions
to join multiple constraints into a single function and could not
observe any difference in early results. Further exploration
of this choice might yield different results and is left as future
work.

5Strictly speaking, the theory uncertainty on mh is smaller
within the CMSSM put for the sake of comparison we assumed
that this uncertainty is model independent.
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where pðθjdataÞ is the posterior of the parameters (the
probability of a choice of parameters, θ, to be valid given
the data), pðdatajθÞ the likelihood (a function which tells
how likely it is the data given the choice of model and its
parameters), pðθÞ the parameter prior (which encodes prior
distribution functions of the parameters), and we ignore the
denominator which normalizes the numerator. The fit is
performed by making use of Monte Carlo Markov Chain
(MCMC) algorithms, which iteratively adapt the sampling
region, i.e., the prior, in order to find the posterior, i.e., to
tell us how likely a certain choice of parameters is given
the data.
In this approach, the likelihood functions can be con-

structed from some observational data, for example a
Gaussian where the mean and the standard deviations
are provided by an observation, or can be provided by
the experiments themselves (see the efforts of some
collaborations to provide likelihoods and other experimen-
tal data-derived statistical functions [18]), over which the
MCMC algorithm continuously samples and evaluates the
priors in order to find the posterior distribution in a slow
and computationally expensive process.6 At the end of this
process, a collection of points—each retained according to
its probability of being valid—is obtained and from which a
posterior distribution can be represented via histograms or
other density estimators, with longer Markovian chains
producing a better description of the posterior. MCMC fits
discard many points, as they are only kept up to a
probability of being valid, and can struggle to converge
in high-dimensional spaces.
In our approach we are not looking for the posterior of

the parameters given the data. This means that we are not
concerned about how likely a point is given the data, i.e.,
the resulting distributions we obtain should not be inter-
preted as posteriors. We are concerned about how quickly
and efficiently we can find regions and points of the
parameter space which are valid. This means that we have
to define what bounds on observables we are willing to
accept, cf. Table I, and we do not have to concern ourselves
with the explicit form of the likelihood. Indeed, the fact that
we do not need a likelihood has its advantages, as our
approach allows us to use bounds on masses or couplings
of exotic physics by adding the appropriate constraint
function, C, to better guide the sampler, whereas such
information cannot be used in fits with likelihood
functions.

III. THE PHYSICS MODELS CONSIDERED

We take here the MSSM as an underlying test model. On
the one hand, it remains an appealing SM extension, as it
provides solutions to themost prominent shortcomings of the
latter. In addition to solving the hierarchy problem related to
the mass of the Higgs boson [20,21], the model includes a
viable candidate for the observed cold dark matter (CDM) in
the Universe, namely the lightest of the four neutralinos. On
the other hand it can be formulated either as a high scale
model, where only a few parameters are given, for example at
the scale of grand unification. A prominent example is the
constrainedMSSM(cMSSM) [22], which is defined in terms
of four parameters and the choice of a particular sign (phase).
It can equally well be formulated as a low scale theory taking
the soft SUSY breaking parameters freely at the electroweak
scale. A popular variant is the so-called pMSSM [23] which
takes into account the most stringent constraints from low
energy data by setting flavor mixing entries to zero and
neglecting possible complex phases.
Supersymmetric models are characterized via the super-

potential and the soft SUSY breaking Lagrangian. The
superpotential of the MSSM is given as

WMSSM ¼ −εabμĤa
1Ĥ

b
2 þ εabðĤa

1L̂
bYeÊ

c þ Ĥa
1Q̂

bYdD̂
c

þ Ĥb
2Q̂

aYuÛ
cÞ ð7Þ

ε is the totally antisymmetric SU(2) tensor, Yi are the
Yukawa couplings and μ is the Higgs/Higgsino mass
parameter. The superfield F̂ (F¼Hd;Hu;Q;L;Dc;Uc;Ec)
contains the fermionic and bosonic degree of the field F.
Here we have only included terms conserving R-parity. The
soft Lagrangian is parametrized as

LMSSM
soft ¼−

1

2
ðM1B̃ B̃þM2W̃ W̃þM3g̃ g̃þH:c:Þ

−m2
QQ̃

†Q̃−m2
LL̃

†L̃−m2
uŨ�Ũ−m2

dD̃
�D̃−m2

eẼ�Ẽ

− ðTUŨ�HuQ̃þTDD̃�HdQ̃þTEẼ�HdL̃þH:c:Þ
−m2

Hu
H�

uHu−m2
Hd
H�

dHd− ðbHuHdþH:c:Þ: ð8Þ

where ϕ̃ denotes the superpartner of a generic SM particle ϕ.
We neglect in the following all phases and flavor mixing
entries. In this approximation one can write the trilinear
parameters Ti as Ti ¼ AiYi. One has in total even in this
simplified version 31 unknown parameters. Two of the four
parameters in theHiggs sector (μ, b,m2

Hu
,m2

Hd
) are traded for

M2
Z and tan β ¼ vu=vd where vu;d are the vacuum expect-

ation values of the Higgs bosons. In this way one ensures
automatically that one complies with the precise measure-
ment of the Z-bosonmass and that one is in aminimumof the
potential where SUð2ÞL × Uð1ÞY is correctly broken.7

6It is known that MCMC algorithms struggle with the so called
curse of dimensionality, i.e., with highly dimensional priors.
There has been a considerable effort to mitigate this by using
neural network approximators, which have been already used to
perform these fits [19]. The usage of neural networks has the
added advantage of that they are differentiable and therefore easy
to incorporate in MCMC algorithms that make use of derivatives,
such as the Hamiltonian variation.

7However, this does not necessarily imply that this is the global
minimum of the potential, see e.g., [24,25] and references therein.
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In the following we will focus on the Higgs mass and the
dark matter relic density as observables as already men-
tioned above. We summarize here a few key aspects of
these observables as this will be helpful to understand some
aspects of our findings. In contrast to the SM, the mass of
the Higgs boson is not an independent quantity in super-
symmetric models. Within the MSSM it is bounded from
above by MZ at tree level and large loop corrections are
needed to bring it to the observed value of about 125 GeV.
The required large coupling is given by the top Yukawa
coupling and consequently the largest contribution is given
by loops containing top quarks or stops, see [13] for a
recent review. The relative large value of the Higgs mass mh
implies that one needs either rather heavy stops and/or a
large left-right mixing in the stop sector. The mixing is
controlled by the parameter At. The observed relic density
can be explained by the lightest neutralino which is stable
if it is the lightest supersymmetric particle (LSP) and if
R-parity is conserved. Its dark matter properties depend
strongly on its nature, see, e.g., [26] for a recent review,
which in turn depends on the hierarchy of the parameters
M1, M2, and μ. Besides its nature, which determines the
annihilation rates into SM particles, the relic density will
also depend on the nature of the next to lightest super-
symmetric particle(s) as this might open coannihilation
channels if the mass difference is not too large [27].
Moreover, there is also the possibility of an s-channel
resonance via the pseudoscalar Higgs boson if the mass of
this Higgs boson is about twice the mass of the neutra-
lino [27].
We will use SPHENO [28,29] for the calculation of the

masses and mixing angles which serves as input for
MICROMEGAS [30,31] which calculates the relic dark matter
density. The data transfer between these programs is
handled using the SLHA format [32,33]. In SPHENO the
MSSM is matched onto the SM at the scale MSUSY ¼ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2
p [34] where mt̃i are the masses of the two stops. In
this way one ensures a proper decoupling of the SUSY
particles if their masses get very large compared to the
electroweak scale.

A. cMSSM

The cMSSM is defined in terms of four parameters: at
the scale of grand unification (GUT scale) one provides a
common scalar mass parameter m0 for the sfermions and
Higgs bosons, a common trilinear coupling A0 between

sfermions and Higgs bosons as well as a common gaugino
mass parameterm1=2. In addition one fixes tan β ¼ vu=vd at
the electroweak scale. The modulus of the superpotential
parameter μ is fixed by the requirement of getting the
correct value for MZ but its sign or more generally its phase
is still a free parameter. We assume for this part of the
investigation μ > 0. We give in Table II the ranges of the
parameters considered as well as the corresponding entry
within the SLHA format for the convenience of the reader.
The overall mass scale of the stops is roughly

given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ 4m2
1=2

q
and the left right mixing parameter

At ≃ −2m1=2 þ 0.2A0 in case of small tan β. Approximate
formulas for these parameters valid also for large tan β can
be found in [35]. Thus, one needs in general sizeable values
ofm0 andm1=2 to explain the observed Higgs mass [13,36].
The required value of the DM relic density can only be

achieved in particular slices of parameter space where one
has either coannihilation or a Higgs-funnel resonance if the
LSP is binolike [37,38]. The coannihilation usually
requires a light stau or a light stop within the cMSSM
[39,40]. A winolike LSP is not possible in this model but
there is a slice where the LSP is Higgsino-like [37,38].

B. pMSSM

In this model one defines the parameters at the scale
MSUSY neglecting all CP phases and flavor mixing param-
eters. In addition one assumes that themass parameters of the
first two generations sfermions are equal for particles with
the same quantum numbers. Moreover, the A-parameters of
the first two generations are set to zero. This amounts in 19
free parameters which are summarized in Table III wherewe
give again the corresponding entries for the SLHA con-
vention in the last column. The ranges for the parameters are
chosen such that existing LHC bounds on the various
supersymmetric particles are taken into account automati-
cally. For certain combinations those bounds could be
lowered but we do not expect that these additional points
give additional features for the observables considered.
This additional freedom decouples completely the

dependence of the two observables pMSSM on the param-
eters. The stop mass parameters are still the most important
ones for the Higgs mass. However, for the relic density
several additional possibilities open up. First, also the
neutral wino becomes an accessible dark matter candidate.
Second, in this class of models one can adjust the

TABLE II. Parameters and their bounds of the pMSSM model.

Parameter Values Description SPHENO input code

m0 [0, 10] TeV Soft scalar mass MINPAR: 1
m1=2 [0, 10] TeV Soft fermion mass MINPAR: 2
A0 ½−6m0; 6m0� Trilinear soft coupling MINPAR: 5
tan β [1.5, 50] Tan beta EXTPAR: 25
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parameters such, that all electroweakly interacting super-
symmetric partners can in principle be close in mass to
allow for coannihilation. This is even true for squarks
because the required small mass difference leads to
very soft jets at the LHC which drastically reduces the
bounds from direct searches [41–43]. In particular light
sleptons of the first generations can be light covering a
part of the parameter space where the observed deviation
of the anomalous magnetic moment of the muon can be
explained [44].

IV. SAMPLERS AND METHODOLOGY

Having reframed the parameter space scan as an opti-
mization problem, and the physics cases that we will use in
this work, we now present the samplers and the HEP
computational routines that we will use.
The three sampling algorithms presented here, in addi-

tion to the random sampler that we will use as a baseline to
compare their behavior, operate in different ways and are
representative of big classes of black-box optimizers. The
purpose of using these three is to evaluate and assess how
different approaches to black-box optimization can impact
the final result in terms of both sampling efficiency, i.e.,
how easily they produce valid points, and coverage of the
parameter space, i.e., how much of the parameter space was
explored and if the samplers are focusing on subsets of it.
Indeed, these two characteristics present two opposing

forces, which in machine learning and artificial intelligence
literature is commonly known as exploration-exploitation
trade-off, where the former accounts for the capacity to
explore the breadth of the parameter space, whereas the
latter accounts for the inclination of an algorithm to exploit
the information to get to a minimum (which could be local)
as fast as possible.
As the approach presented herein is agnostic of the

physics case being studied, and considers the HEP com-
putational routine to be a black-box function, it is also
important to point out that all algorithms used in this work
are gradient-free, i.e., they do not rely on any gradient
computation of the loss function. This is important as our
loss function is a black-box function produced by the HEP
routine which generally cannot be differentiated. In prin-
ciple, one could compute numerical derivatives by evalu-
ating in the infinitesimal neighborhood of a point, however
this would lead to too many black-box routine evaluations
and to slower sampling speeds. Alternatively, one could
produce a transparent box routine through which deriva-
tives could be computed. Such approach, usually referred
as differential programming, would allow for different
approaches making use of autodifferentiation such as those
usually used in neural networks training. Unfortunately,
this represents a change of paradigm in routine develop-
ment, which is not yet customary in HEP and therefore
outside the reach of this work.

TABLE III. Parameters and their bounds of the pMSSM.

Parameter Values Description SPheno input code

jM1j [0.05, 4] TeV Gaugino (Bino) mass EXTPAR: 1
jM2j [0.4, 4] TeV Gaugino (Wino) mass EXTPAR: 2
M3 [1, 4] TeV Gaugino (gluino) mass EXTPAR: 3
jμj [0.4, 4] TeV Bilinear Higgs mass EXTPAR: 23
jAtj [0, 6] TeV Top trilinear coupling EXTPAR: 11
jAbj [0, 4] TeV Bottom trilinear coupling EXTPAR: 12
jAτj [0, 4] TeV Tau trilinear coupling EXTPAR: 13
mA [0.1, 4] TeV Pseudoscalar Higgs mass EXTPAR: 26
tan β [1, 60] EXTPAR: 25
mL1

[0.1, 4] TeV 1st generation left-handed slepton mass EXTPAR: 31
me1 [0.1, 4] TeV 1st generation right-handed slepton mass EXTPAR: 34
mL2

mL1
2nd generation left-handed slepton mass EXTPAR: 32

me2 me1 2nd generation right-handed slepton mass EXTPAR: 35
mL3

[0.1, 4] TeV 3rd generation left-handed slepton mass EXTPAR: 33
me3 [0.1, 4] TeV 3rd generation right-handed slepton mass EXTPAR: 36
mQ1

[0.7, 4] TeV 1st generation left-handed squark mass EXTPAR: 41
mu1 [0.7, 4] TeV 1st generation right-handed u-type mass EXTPAR: 44
md1 [0.7, 4] TeV 1st generation right-handed d-type mass EXTPAR: 47
mQ2

mQ1
2nd generation left-handed squark mass EXTPAR: 42

mu2 mu1 2nd generation right-handed u-type mass EXTPAR: 45
md2 md1 2nd generation right-handed d-type mass EXTPAR: 48
mQ3

[0.7, 4] TeV 3rd generation left-handed squark mass EXTPAR: 43
mu3 [0.7, 4] TeV 3rd generation right-handed u-type mass EXTPAR: 46
md3 [0.7, 4] TeV 3rd generation right-handed d-type mass EXTPAR: 49
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A. Tree-structured Parzen estimator

The tree-structured Parzen estimator (TPE) [45–47] is a
Bayesian optimization algorithm. Such algorithms are
composed of primarily two components: a surrogate model
and an acquisition function. The surrogate model is a
probabilistic model which iteratively approximates, i.e.,
learns, the cost function produced by the black-box, i.e., it
approximates pðLossðθÞjθÞ. The acquisition function is a
prescription to choose which point, as sampled using the
information gathered by the surrogate model, is used to
evaluate the black-box in the subsequent iteration.
Due to the probabilistic nature of the surrogate model,

Bayesian optimization algorithms have a natural predis-
position to explore the parameter space early on, when few
points have been sampled and the uncertainty about the cost
function is high. As more points are used to learn the cost
function, the acquisition function tends to prefer better
points more confidently, moving the algorithm to an
exploitation phase.
Each Bayesian optimization algorithm has its own

design for the surrogate model and acquisition function.
The TPE uses Bayes theorem starting from the surrogate
model

pðLossðθÞjθÞ ¼ pðθjLossðθÞÞpðLossðθÞÞ
pðθÞ ð9Þ

which is simplified by separating the points into two
densities, one for good points, gðθÞ, and another for bad
points, lðθÞ,

pðθjLossðθÞÞ ¼
�
lðθÞ; if LossðθÞ ≥ Loss�

gðθÞ; if LossðθÞ < Loss�
; ð10Þ

where Loss� is a cutoff value which splits points into good
and bad.8 The distinction between good and bad is made
through a quantitative heuristics built-in routine, see [45]
for details,9 and the densities gðθÞ and lðθÞ are approxi-
mated using Gaussian mixture models. The crucial intuition
is that sampling is performed on the good point distribu-
tion, θ0 ∼ gðθÞ, and the quality of a new sampled point, θ0, is
a function of the likelihood ratio between both densities,
gðθ0Þ=lðθ0Þ. Points which have a high likelihood ratio
between both densities are kept, given to the black box,
and the process repeats until a limit of trials has been
performed. Early on, both distributions will be similar and
diffuse, leading to a high exploration of the space. As more

points allow for a better distinction between good and
bad points, TPE will start to favor exploitation of the good
points distribution. However, since each sampling step
is stochastic, and the decision to retain or not a point is
made by comparing likelihoods of two density approx-
imations, TPE will always retain a certain level of explo-
ration, which in principle might lead to a better coverage of
the parameter space.
It is important to note that the value of the loss, LossðθÞ,

is only used to separate points using a heuristic cutoff value,
i.e., TPE does not learn pðθjLossðθÞÞ as it happens with
other Bayesian optimization algorithms. In other words, the
value of the loss is only used to sort the points, an operation
which is independent of the nominal order of magnitude of
the value of the loss function.

B. Nondominated sorting genetic algorithm II

Nondominated sorting genetic algorithm II (NSGA-II)
[48] is a genetic evolutionary algorithm. Genetic algorithms
are characterized by a loop where a subset of points, a
population, is improved by selection. This loop is called a
generation and has four main steps
(1) Evaluation: Where we compute the fitness function,

in our case the loss function, for all members of the
population.

(2) Selection: Where the points are sorted and the best
ones are selected to breed and generate a new
generation.

(3) Recombination: Where pairs of parents are com-
bined for mating and an offspring is generated by
mixing the genes of the parents.

(4) Mutation: Where some elements of the offspring see
their genes randomly changes.

These steps are repeated until a stopping criteria is met, for
example a maximum number of generations. In our
implementation, the genes of each individual are the values
of the parameters. Evaluation is carried out by passing the
parameter space point through the black-box and testing
the produced observables with the loss function. In each
generation, the members are ranked by the value of the
respective loss. A new generation is produced by keeping
the best elements, the elite, and new elements are produced
through offspring, where genes are exchanged between two
parents via cross-over to produce a newmember, exploiting
the features of the elite parents. When new members are
generated, mutations can be applied to some genes (i.e.,
values of some of the parameters) randomly to increase
exploration by applying Gaussian noise to the values of the
parameters. As with any genetic algorithm, NSGA-II uses
LossðθÞ to sort the members of the population to select the
elite that will produce the offspring.
Genetic algorithms start off with a randomly initialized

population and begin exploiting the best elements of the
population after a single generation. As the number of
generations increase, the population becomes more and

8Notice that in our case the black-box is deterministic, i.e.,
pðLossðθÞÞ is 1 if the point has produced physical observables,
and 0 if it is not physical, i.e., if SPHENO does not produce a valid
spectrum. This also includes the cases where the LSP is charged.

9The prescription to define Loss� is akin to a rolling quantile
which becomes progressively smaller as the number of iterations
grows.
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more specialized and its members similar among them-
selves, hindering exploration. The mutation step can
produce some exploration later on, but too much mutation
will prevent convergence. Furthermore, because new points
are obtained by mixing the values of previous points,
genetic algorithms are especially suitable for combinatorial
and constraint satisfaction problems, this is because some
of such problems can be solved by finding good combi-
nations of parameters. This means that genetic algorithms
tend to produce characteristics that survive multiple gen-
erations, which are called schemas, producing clustered
values of the parameters.
In NSGA-II the members of the population are first

sorted into groups regarding their loss function perfor-
mance, and then further sorted by crowding distance to
mitigate the risk of getting the population stuck in a local
minima. NSGA-II is specially crafted for multiobjective
optimization problems. For single objective, as we perform
here, it resembles a traditional genetic algorithm. The study
of its performance and behavior for multiobjective prob-
lems is left for a future work.

C. The covariance matrix adaptation evolution strategy

The covariance matrix adaptation evolution strategy
(CMA-ES) [49] belongs to the class of evolutionary
strategy algorithms that do not implement genetic encoding
to produce offspring. In comparison to the genetic algo-
rithms presented in the previous section, evolutionary
strategy algorithms do not have parents producing offspring
by interchanging genes. Instead, they use the best members
of the population to approximate a localized density from
which they sample the new generation. In order words, a
new generation is produced from the statistics learned from
the previous generation.
The CMA-ES algorithm samples new candidate

points from a multivariate normal distribution, for which
the mean—that controls the direction of the evolution—and
the covariant matrix—which captures the relations between
parameters—are adapted, i.e., learned, from the previous
points. This is the sense where this is an evolutionary
algorithm, as new points are produced through the infor-
mation of the previous ones, but there is no direct parent to
offspring genetic crossover, instead the newmembers of the
population are derived from moving statistics.
The mean of the distribution is updated as to maximize

the likelihood under the multivariate normal distribution of
the best performing points. More specifically, the mean
vector of the multivariate normal is updated through a
rolling mean with the best points (usually half of the
population). CMA-ES is expected to converge rapidly, as
the (approximate) covariant matrix works as a proxy for the
second derivative of the loss function, i.e., the Hessian,
resembling a higher-order optimization process. In this
sense, CMA-ES is very similar to gradient descent algo-
rithms, where a point is iteratively moved along the

opposite direction of the gradient of the loss function.
However, gradient descent algorithms require not only
evaluating the value of the loss for a point, they also
require computing its derivative, which can be computa-
tionally heavy. Instead, CMA-ES use a population to
approximate this descent, leveraging information which
replaces the Hessian for a fast convergence. Intuitively,
CMA-ES can be thought as of a herd of animals descending
from the mountains, meeting in the valley, and moving
together to the plane. Therefore, one expects CMA-ES to
produce points very close to each other as it quickly
converges to a minimum of the loss function.
Although it uses a multivariate normal, CMA-ES is

fundamentally different to TPE. In TPE a Gaussian mixture
model is used to approximate point density, from which
new points are sampled. Gaussian mixture models can fit
multimodal distributions, and provide a rich description
of point density. On the other hand, a single multivariate
normal, as used in CMA-ES, can only describe a single
mode from which new points are then suggested. In
particular, CMA-ES will focus on valid points around the
current bestmean,whereas TPE canmaintain information of
all previously tried points. Therefore, we expect CMA-ES to
be themost eager algorithmof the three, although its reliance
of a single multivariate normal might prevent it from
achieving fast convergence in highly multidimensional
spaces due to the so-called curse of dimensionality.

D. Implementation details

We have introduced three different black-box optimiza-
tion algorithms that cover three distinct classes: a Bayesian
optimization algorithm, a genetic algorithm as well as an
evolutionary algorithm. This will allow us to explore the
differences and nuances of each algorithm when applied to
our problem. We now describe how our experiment was
conducted.
For the numerical routines to compute physical

observables, we have used SPHENO-4.0.5 [28] and
MICROMEGAS_5.2.13 [31], in order to calculate the Higgs
mass and dark matter relic density, respectively. We
compute the mass spectrum using SPHENO GUT scale input
parameters for cMSSM (cf. Table II), and SUSY scale for
the pMSSM(cf. Table III). SPHENO output spectrum files are
used as inputs of micrOMEGAs to calculate the dark matter
relic density. We performed two parallel studies, with and
without dark matter relic density constraint, while keeping
the Higgs mass constraint for both of the studies.10 We
discard and penalize unphysical points involving charge-
breaking vacua from charged scalars and charged LSP.

10The physics choice was made as to have a similar study
to [7]. However, their implementation relies on SOFTSUSY version
4.1.0, whose routines to compute the parameters relevant to the
Higgs mass differ, leading to lower sampling efficiencies. None-
theless, we decided to keep these physics cases.
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This is done by assigning to these points an infinite value to
their loss. Since all algorithms use the loss values to sort
candidate points, this guarantees that unphysical points will
become less and less likely to be suggested as good points.
The parameter spaces have been sampled and the loss

optimized using Optuna_2.8.0 [50], with the built-in
Random, TPE, NSGA-II, and CMA-ES samplers. We
changed the default settings for the TPE sampler to
multivariate=True, in order for the Gaussian mix-
tures to learn the correlations between the variables. The
heuristic to calculate Loss� was left as the default, which is
defined as a gamma function, γ, that cuts off the trials at
number

γðnÞ ¼ minðceilð0.1 × nÞ; 25Þ; ð11Þ

where n is the trial number, ceil the ceiling operation which
rounds up its argument. This function returns an integer,
which sets the number of best trials to be used to compute
the good point distribution, gðθÞ. In this default variation,
we see that gðθÞ will be at most approximated by the best
25 points. The NSGA-II parameters were set to default,
which means that the cross-over probability, i.e., the
probability of a pair of parents to produce offspring, was
set to 0.9, and the mutation probability for each gene is
1/number of parameters, meaning that each element of the
offspring has, on average, one parameter mutated. For the
CMA-ES sampler to restart_strategy=’ipop’,
which is a heuristic to restart the multivariate normal if
convergence is seemingly stuck in a local minimum, as to
force exploring new regions.
We did not sample directly from the parameter space

definitions in Tables II and III. Instead, we sampled from a
hyper-cube of size 1, which we call the box parameter
space, P̂, which has the same dimension as the physical
parameter space, P. A box parameter space point, θ̂ ∈ P̂, is
then reshaped to be in P before being fed to the computa-
tional routine.11 This allows us to treat all the parameters as
ranging the same nominal values, in this case between 0
and 1, to better derive comparing metrics, discussed bellow.
We notice that the map is isomorphic, so a point θ̂ in P̂
maps to only one point in P and vice-versa, so they can be
thought as the same.12

In early exploratory runs, we observed that the con-
vergence speed for the TPE became progressively slower as
the number of successive trials reached a few thousands.
This is understood as the surrogate model in TPE, a
Guassian mixture model, is known to have a high computa-
tional complexity, which makes it forbiddingly slow for
long runs. In order to mitigate this, each scan for each
sampler was limited to 2000 sequential steps, called trials,
and repeated 500 time, which we call episodes, totaling one
million points for each combination.

E. Evaluating the samplers

In order to compare the samplers, we developed three
different metrics. The first one, efficiency, is just the
percentage of valid points found by the sampler

Efficiency ¼ # valid trials
# total trials

: ð12Þ

This is the most intuitive metric to compare samplers, as we
want highly efficient samplers to tackle difficult constraints.
However,we need to have ameasurement onhow the sampler
is exploring the parameter space. We need a quantitative way
of measuring howmuch of the parameter space each sampler
has explored. To do this, we introduce two metrics.
The first metric to measure the width of the exploration is

the mean Euclidean distance between the sampled valid
points. A sampler that explores narrow regions of the
parameter space is expected to produce smaller mean
distances between sampled valid points, whereas an explo-
ration oriented sampler will produce high mean distances:

MeanEuclideanDistance ¼ Eθ̂i;θ̂j∈V

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθ̂i − θ̂jÞ2

q �
; ð13Þ

where θ̂i, θ̂j are any two points in the valid region of the
parameter space, V, as seen in the box parameter space, P̂.
The reason why this metric is obtained in the box parameter
space is that higher nominal values would dominate the
value of the distance, and dilute the impact of sparser
distributions in smaller valued parameters. For a hyper-
cube of dimension d and size 1, the maximal distance
between twopoints is given by the longest diagonal,

ffiffiffi
d

p
, and

it serves as gauge to the size of the box parameter space.
The second metric to measure the exploration is the

Wasserstein distance (WD). Given two univariate distribu-
tions, fðuÞ and gðuÞ over the same domain, u ∈ U, and
their cumulative distribution functions, FðuÞ and GðuÞ, the
Wasserstein distance between the two distributions is

WDðf; gÞ ¼
Z
U
jFðuÞ − GðuÞjdu; ð14Þ

and measures how different the two distributions are. We
will use this to measure how much of the parameter space is

11These transformations are mostly linear transformations to
recenter and resize the interval from [0, 1] to the intended range.
The exception being the parameters sampled from two disjoint
intervals. Take for example the μ in the cMSSM case has values
over ½−4;−0.4� ∪ ½0.4; 4� TeV. We first sample from μ̂ ∼ ½0.1�,
then reshape it to include negative numbers μ̂ ¼ 2 × ðμ̂ − 0.5Þ,
then we keep its sign aside, and rescale and recenter its value to
match the desired interval μ ¼ signðμ0Þðjμ0j × 3600þ 400Þ. This
way we avoid having to perform a separate sampling for the sign
and all parameters are sampled from [0, 1].

12In genetic algorithm terminology θ̂ ∈ P̂ is the genotype
representation of the point/individual and θ ∈ P is the phenotype
representation of the point/individual.
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being covered by different samplers. To this effect, we
computeWD for each parameter distribution of valid points
against the uniform distribution, which the cumulative
distribution function is just the straight line starting at
the origin and ending at ðmaxðuÞ; 1Þ.13 Since the uniform

distribution over a parameter is the maximal coverage
possible in that dimension of the parameter space, this
quantity measures how far off a distribution of valid points
is from covering all possible values.
We notice however, as it was highlighted in Sec. II A, our

goal is not to fit the posterior distribution of the points,
therefore this metric should not be taken as a dissimilarity
measurement between the obtained distributions here and
distributions obtained through a fit with likelihoods.

(a) Higgs Mass distribution for the

scan with the Higgs mass

constraint.

(b) Higgs Mass distribution for the

scan with the Higgs mass and dark

matter relic density constraints.

(c) Dark matter relic density

distribution for the scan with the

Higgs mass and dark matter relic

density constraints.

FIG. 2. Top panels: target observables distributions for the cMSSM scans. The resulting valid points histograms for each sampler are
produced from joining all the episodes. Bottom panels: the ratio between the histogram of the random sampler with the remaining
samplers. In all cases the histograms represent a density, which the area equals to one.

13In fact, we computed over the distributions of the parameter
values in the box space to simplify the process, where the
endpoint is (1,1).
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Instead, this metric is a proxy to how far a sampler is from
exploring the whole parameter space. We also note that the
distributions of the random sampler are not expected to
have vanishing WD with the uniform distribution, as the
random sampler parameter distributions of valid points are
distorted by the constraints and therefore will not be
uniform distributions themselves.
The pairwise Euclidean distances were computed using

numpy [51] pdist functions. The cumulative distribution
functions of the parameters were computed using stats-
models [52] ECDF class. The Wasserstein distance
was computed using the SciPy [53] wasserstein_
distance function. Data manipulation was done with
pandas [54], and for data visualization we used mat-
plotlib [55], seaborn [56], and mplhep [57].

V. RESULTS

We now present the results of the scans produced with
the different samplers for the different Physics cases. For
both the cMSSM and the pMSSM as introduced in Sec. III,
we performed two scans: one with the Higgs mass con-
straint only, and another with both the Higgs mass and the
dark matter relic density constraints, with bounds defined
in Sec. II.

A. Target observables and sampled parameters

In this section we present the distributions of the target
observables and scatter plots of some of the parameters.

1. cMSSM

In Fig. 2 we can see the distributions for the Higgs mass
and the dark matter relic density for the cMSSM for each
sampler, in the top panels. In the bottom panels we show
the ratio of the histogram of each sampler against the
random sampler to further illustrate how different samplers
produce different distributions.
We notice that TPE and NSGA-II both produce distri-

butions relatively close to the random sampler ones, while
CMA-ES exhibits more pronounced deformations. In more
detail, we see how CMA-ES seems to center the distribu-
tions far closer to the edges of the allowed values for the
case where we include the dark matter constraint. This
region is characterized by stau coannihilation (see also
discussion of Fig. 6) and in the corresponding region of
parameter space the two constraints compete against each
other as the Higgs mass tends to be on the lower side
whereas the relic density tends to be on the larger side. The
observed feature might be due to the way that CMA-ES
works, akin to a gradient descent, looking for a path to
minimize the loss which might force it to look for a path of
least resistance in the parameter space.
In Fig. 3 we present the average over episodes of the

Wasserstein distance for each distribution. This measures
how much the distributions of valid points differ to the

uniform distribution, as to quantify the parameter space
coverage of each sampler. Smaller (larger) values of the
Wasserstein distance mean that the distribution is more
similar (different) to a uniform distribution.
As expected, the random sampler is the one that is closest

to produce uniform distributions for the parameters, where
the deviations between the resulting parameter distributions
from the uniform distributions result from the constraint
functions. For the other samplers, the higher values of the
Wasserstein distance is a result of the sampling algorithm,
given the differences in the way each sampler dynamically
looks for valid points. We note that for the scan constrained
only by the Higgs mass, the CMA-ES sampler considerably
distorts, not only the distributions related to m0 and A0 in a
far more pronounced manner than the remainder, indicating
that it attempts to exploit the relations between these
parameters and the Higgs mass, but also the distributions
of the other parameters, m1=2 and tan β. This is in agree-
ment with how CMA-ES works, by exploiting the statistics
of the best points to sample new points close by. For the
case with dark matter relic density constraint, we notice that
all samplers noticeably distort the m0 and A0 distributions,
as well as the distribution of m1=2, a parameter that directly
affects the neutralino mass spectrum and therefore dark
matter relic density values. In this case, CMA-ES shows a
further distortion when compared to the other samplers,

FIG. 3. Episode average of the Wasserstein distance computed
on valid points for each (boxed) parameter for each sampler for
the cMSSM scans.
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mainly in tan β, which is associated to the excess of points
with lighter Higgs mass and higher dark matter relic density
observed above.
Another way to look into the differences in parameter

distributions across the samplers is to look into scatter plots
of relevant pairs of parameters. In Fig. 4 we show the ðm̃t ¼ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2
p ; AtÞ scatter plot for the cMSSM constrained only
by the Higgs mass, which is parametrically dependent on
these cMSSM parameters. We observe that the random
sampler has the widest area coverage, specially in com-
parison with CMA-ES, which presents a deficit of points
in the At < 0 region, while presenting various disjoint
regions of high density of points resulting from the way it
samples new points from a highly localized multivariate
normal distribution. We also notice how the TPE covers
the same region with fairly uniform density, whereas
NSGA-II was capable of identifying the m̃t ∝ −1=3At
region with higher density than the other two nonrandom
samplers. In this region we have rather large left-right
mixing in the stop sector which enhances the corrections
to the Higgs mass. Moreover, in this region there is a
partial cancellation between the electroweak 1-loop con-
tributions and the stop 2-loop contributions due to the
stops and gluinos. We note for completeness that the

reason of the preference of negative values for At is pure
RGE effect as At ≃ −2m1=2 − 0.2A0 for small tan β, see,
e.g., [35] and references therein.
In Fig. 5 we can observe how these scatter plots change

once we include the dark matter relic density constraint.
In this scan, which is far more difficult than the one
without this extra constraint, we can observe new features
which highlight the differences between the different
samplers. First, we see that the three nonrandom samplers
produced greater densities than the random sampler.
Second, we can observe artefacts in the NSGA-II scatter
where there is an emerging texture of vertical strips of
higher density. This is a known result of genetic algo-
rithms, where new suggested points inherit values from
their parents, which can lead to the same value to be
reused over many generations.14 This happens as genetic
algorithms effectively work by swapping and combining
values of parameters between points, which leads to some
combinations to be favored and survive multiple gen-
erations producing these strips. Finally, again in the

FIG. 4. ðm̃t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2
p ; AtÞ scatter plots of valid points for the cMSSM scan for each sampler constrained by the Higgs mass.

14In the genetic algorithms literature, recurrent combinations
that survive through generations are called schema.
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CMA-ES we observe many smaller regions of high
density, which are explained by the nature of the sampler
itself, since it eagerly samples from a multivariate
normal with rolling statistics of the best points, i.e., it
exploits the learned statistics of a local population,
producing many valid points in the vicinity of the rolling
mean of the best points. Due to the eager nature of the
CMA-ES, we can also observe how it fails to capture all
regions of valid points away from the easier region, while
producing highly condensed regions of points where
other samplers have only found a few, for example on
the lower left quadrant, which is associated with a lighter
stop, and therefore yields a lighter Higgs, as already
expanded above. This region corresponds to the region
where M1 ≲ 1 TeV μ > M1 in the corresponding plot
of Fig. 6.
With the dark matter relic constraint it is informative to

look at the ðμ;M1Þ15 scatter plots as these are the relevant
parameters for dark matter phenomenology. These are

presented in Fig. 6. In the region with M1 ∼ μ≲ 1 TeV
one finds a mixed bino-Higgsino dark matter whereas for
μ ∼ 1 one the dark matter is Higgsino-like. In the region
2 ≤ M1 ≲ 3 TeV one has a bino dark matter where the
main dark matter annihilation is via a pseudoscalar Higgs
funnel. The region with M1 ≲ 1 TeV ≪ μ features a light
stau allowing for coannihilation to obtain the correct relic
density. In this region the Higgs mass is close to the lower
bound which is the reason for the enhancement of the
low-mass bin in case of the CMA-ES, see Fig. 2. Again,
we see how the nonrandom samplers produce far denser
regions of valid points, while still struggling to cover the
parameter space the same way as the random sampler.
However, both the TPE and the NSGA-II reproduce the
overall features of the region obtained by the random
sampler, whereas CMA-ES exhibits again its eager
nature, e.g., we can see small patches of high density
arising in the M1 ≳ μ region. Interestingly enough,
whereas all samplers discovered multiple disconnected
regions, providing some evidence that these samplers can
find multimodal solutions, CMA-ES has explored a
particular region far more extensively than the others:
the region μ > M1.

FIG. 5. ðm̃t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2
p ; AtÞ scatter plots of valid points for the cMSSM scan for each sampler constrained by the Higgs mass and the

dark matter relic density.

15We omit the equivalent scatter with M2 as in the cMSSM
M1 ∼M2 and therefore this plot provides no new insight.

EXPLORING PARAMETER SPACES WITH ARTIFICIAL … PHYS. REV. D 107, 035004 (2023)

035004-13



2. pMSSM

We now turn to the pMSSM. Given that our pMSSM
scan covers 19 parameters, as opposed to the four
parameters of the cMSSM, this scan will allow us to
study the impact of increasing the dimensionality of the
parameter space in the performance and results of differ-
ent samplers.
In Fig. 7 we present the resulting distributions for the

Higgs mass and the dark matter relic density for both
pMSSM scans. Similarly to the cMSSM scans, most of
nonrandom samplers focus their valid points in the interior
region of the allowed interval for each observable, with
the TPE being the sampler that produces distributions
more similar to the random sampler. However, in contrast
with the cMSSM, CMA-ES no longer seems to produce
most of its valid points in close to the edges of the valid
region.
As with the cMSSM, we omit the distributions of the

parameters in this section for the sake of a light discussion
and instead we present the episode average Wasserstein
distance for the parameters of the pMSSM scans in Fig. 8.

The distributions for all pMSSM parameters can be found
in the git code repository.
Just like in the cMSSM case, the random sampler

produces the smallest deviations from the uniform distri-
butions, due to its unmodified sampling. Next, we see that
TPE produces almost no further distortions in the param-
eters, except for those directly related to the Higgs
mass—At, m̃Q3

, m̃u3—as well as, to a lesser extent,
m̃e1 , m̃e3 , m̃L3

, and mQ1
, for the scan without the dark

matter relic density constraint. When switching on the
dark matter relic density constraint, the TPE produces
further distortions in the parameters associated with
dark matter phenomenology, namely M1, M2, μ. In
addition the slepton mass parameters are distorted as
the coannihilation channels become important if the mass
difference between sleptons and neutralinos becomes
sufficiently small and if the lightest neutralino has a
sizeable bino-component. Similarly the enhanced dis-
tortion for the third generation squarks occurs due to the
part of parameter region where there is a stop-neutralino
coannihilation if the lightest neutralino has a sizeable

FIG. 6. ðμ;M1Þ scatter plots of valid points for the cMSSM scan for each sampler constrained by the Higgs mass and the dark matter
relic density.

FERNANDO ABREU DE SOUZA et al. PHYS. REV. D 107, 035004 (2023)

035004-14



Higgsino component. Unsurprisingly, the CMA-ES is the
sampler that produces the most different parameter
distributions due to its eager nature of suggesting new
points from a multivariate normal distribution around
the best points. The fact that the TPE does not distort
the distributions more is somehow surprising, as it makes
use of Gaussian mixture models, a density learning
algorithm that can be prone to the curse of dimension-
ality, whereas genetic algorithms such as NSGA-II are

robust against this problem as they are not reliant on a
learnable model.
We further investigate the impact that different sam-

plers can have on the parameter distributions by looking
at a selection of scatter plots. In Fig. 9 we present the
ðAt; m̃tÞ scatter plot for the pMSSM scan constrained by
the Higgs mass, where we can see that TPE is covering
the same region as the random sampler with fairly
constant point density. Furthermore, we can identify

(a) Higgs Mass distribution for the

scan with the Higgs mass

constraint.

(b) Higgs Mass distribution for the

scan with the Higgs mass and dark

matter relic density constraints.

(c) Dark matter relic density

distribution for the scan with the

Higgs mass and dark matter relic

density constraints.

FIG. 7. Top panels: target observables distributions for the pMSSM scans. The resulting valid points histograms for each sampler are
produced from joining all the episodes. Bottom panels: the ratio between the histogram of the random sampler with the remaining
samplers. In all cases the histograms represent a density, which the area equals to one.
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FIG. 8. Episode average of the Wasserstein distance computed on valid points for each (boxed) parameter for each sampler for the
pMSSM scans.

FIG. 9. ðAt; m̃tÞ scatter plot of valid points for the pMSSM scan for each sampling algorithm constrained by the Higgs mass.
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once again NSGA-II artefacts by noticing the emergence
of strips of higher density, associated with the nature
of how genetic algorithms produce new points via off-
spring. Finally, we see how CMA-ES focuses on easy
regions of the parameter space due to its eager
nature, more concretely we notice how it produces far
less points in regions of small m̃t in comparison to the
other samplers.
Looking at the equivalent scatter plots for the

scan with the dark matter relic density included in
Fig. 10, we observe similar features and behaviors.
With special highlights to how the CMA-ES presents
again smaller oval regions of higher density and the
clear strips of higher density in the NSGA-II scatter,
while the TPE produces a very similar result to the
random sampler.
Continuing the discussion of the pMSSM with dark

matter relic density constraints, we now focus on the
ðμ;M1Þ and ðμ;M2Þ scatter plots in Figs. 11, 12. Some
interesting features emerge in these scatter plots. We notice
how the TPE is very similar to the random sampler,
including the higher density regions of μ≳ 1 TeV. We

also observe the high density strips artefacts in the
NSGA-II scatters, originating from the schemas surviving
multiple generations producing clustered values for the
parameters. On the other hand, CMA-ES does not cover the
same space as the other samplers, and, outside of the of
μ≳ 1 TeV regions, once again produces patchy regions of
higher density.

B. Efficiency and sampling metrics

Having discussed the impact of each sampler in the final
parameter distributions in the previous section, in this
section we compare the different samplers with respect
to their efficiency and other sampling metrics.
In Fig. 13 we can see the scatter plots for the cMSSM

scans, with and without the dark matter relic density
constraint, for both efficiency vs episode mean Euclidean
distance and efficiency vs episode total—i.e., summed
over all the parameters—Wasserstein distance. These
highlight the exploration-exploitation trade-off, as the
most efficient sampler, CMA-ES, provides the worst
distance metrics in accordance to the discussion from

FIG. 10. ðAt; m̃tÞ scatter plot of valid points for the pMSSM scan for each sampling algorithm constrained by the Higgs mass and the
dark matter relic density.
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the previous section. In general, TPE provides the best
parameter space coverage with slight less efficiency than
the NSGA-II, which produces points which are more
clustered together, as we have seen before with the strips
of higher density. The NSGA-II episodes have a wider
spread of possible values for the Wasserstein distance,
providing a good trade-off between coverage and effi-
ciency. We also notice that for the dark matter relic density
scan, we gain at least a factor of 10 in parameter sampling
efficiency, with CMA-ES increasing efficiency even
further. It is also worth noticing that, in dark matter relic
density constraint, the random sampler presents a signifi-
cantly low efficiency of ∼10−3, which for our scan means
that only a few (≲10) valid points are being sampled in
each episode, causing the efficiency of each episode to be
a multiple of 5 × 10−4. That is the reason we observe the
horizontal stripes for the random sampler in Fig. 13.
Interestingly, we observe that for the cMSSM without
dark matter relic density constraint, TPE produces on
average episode mean Euclidean distances extremely
close to the ones from the random sampler. This might
indicate that TPE, which makes use of clustering points

via a Gaussian mixture model, is sampling from far
disjoint patches of the parameter space, increasing the
mean Euclidean distance within the episodes. This indi-
cates that episode mean Euclidean distance might not
always be the appropriate metric for parameter space
coverage.
In Fig. 14 we present the equivalent plots for the

pMSSM scans, where we can observe similar trends
and behaviors. Since the pMSSM enjoys greater para-
metric freedom than the cMSSM, the random sampler has
higher sampling efficiency in the case where we consider
the dark matter relic density constraint, and there is
therefore slightly less room for improvement when com-
paring to the cMSSM case. However, it is still noticeable
that the nonrandom samplers always improve parameter
efficiency, with NSGA-II and CMA-ES already close to
the unity efficiency.
InTables IV to VI we present the resulting statistics

across the different metrics over the episodes. In Table IV
we see that the random sampler has the worst efficiency
across all samplers and across all physics cases. For the
cases with dark matter relic density constraints, nonrandom

FIG. 11. ðμ;M1Þ scatter plot of valid points for the pMSSM scan for each sampler constrained by the Higgs mass and the dark matter
relic density.
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samplers can provide orders of magnitude better sampling
efficiency in the best cases, and in the worst case it still
more than doubles parameter space efficiency. In all cases
CMA-ES is the sampler that provides the greatest effi-
ciency, although NSGA-II comes extremely close to
surpassing it in the last case. This tight contest can be
explained by the large dimensionality of the pMSSM
parameter space combined with the additional constrain
of the dark matter relic density, where the CMA-ES
sampler struggles to learn the statistics of the valid points
due to the curse of dimensionality, which plagues shallow
machine learning components. On the other hand, the
NSGA-II sampler does not have any learnt component,
making it scale better with the dimension of the param-
eter space.
Although efficiency is important, we also want to

guarantee that the nonrandom samplers are properly
covering the whole parameter space. In Table V we can
see the average of the mean Euclidean distances. As
expected, the random sampler provides the greater mean
Euclidean distance, meaning that it produces valid points
which are quite far apart from each other as a result of the

breadth of its sampling. However, in the cMSSM without
dark matter relic density constraint case, TPE comes
extremely close to surpassing the random sampler in this
metric. This can be due to the Gaussian mixture model
sampling from two far away centers, even though the
result is similar to the random case within the statistical
uncertainties. In general we see that the CMA-ES produce
points which are very closely together, a result due to its
eager nature.
Regarding the Wasserstein distance statistics in Table VI,

we observe similar trends. I.e., with the exception of the
cMSSM with dark matter constraint scenario where TPE
has a slightly better outcome for this metric, the random
sampler is the sampler that provides the widest coverage
of the parameter space as it is the one producing parameter
distributions closer to a uniform distribution. This excep-
tion might be explained by the extremely low efficiency
of the random sampler in this scenario, where most
episodes fail to find even more than 10 valid points
during the scan, which is prone to increase the variance for
the Wasserstein distance metric due to low statistics. The
sampler that produces the most distorted distributions is

FIG. 12. ðμ;M2Þ scatter plot of valid points for the pMSSM scan for each sampler constrained by the Higgs mass and the dark matter
relic density.
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CMA-ES, a phenomenon linked to its cluster points
highlighted in the table above, with TPE providing on
average the best coverage out of the nonrandom samplers.
NSGA-II appears just behind TPE, namely it provides
similar results to TPE in the cases where the dark matter
relic density is switched on, although the presence of
schemas in the population prevents it from exploring the
parameter space as much.
Another important aspect to compare different samplers

is to see how fast they converge to valid regions, as the
nonrandom samplers work sequentially, improving the
quality of a suggested point with respect to the points it
has suggested before. In order to assess this, we present in
Fig. 15 the rolling average values for the loss, cf. Eq. (5),
and the efficiency as a function of the number of trials.

In Fig. 15(a) we see that the random sampler average loss
value is constant over time. This is expected, as each
sampled point of the random sampler is independent of any
other sampled point. The same is not the case for the
nonrandom samplers, as they attempt to produce ever better
points that minimize the loss. This is explicitly observable
in these plots, as we see the average loss decreasing
considerably after just a few trials. Indeed, for most cases
the average loss stabilizes just after a few trials, and always
below the average loss of the random sampler, showing
how these samplers keep producing points which are on
average better than those sampled by the random sampler.
The CMA-ES presents the most different behavior, with a
rapid dip followed by an increase of the average loss in all
cases except for the pMSSM with the dark matter relic

(a) Mean Euclidean distance vs

efficiency per episode, for the cMSSM

scan with Higgs mass constraint.

(b) Wasserstein distance vs efficiency

per episode, for the cMSSM scan with

Higgs mass constraint.

(c) Mean Euclidean distance vs

efficiency per episode, for the cMSSM

scan with Higgs mass and dark matter

relic density constraints.

(d) Wasserstein distance vs efficiency

per episode, for the cMSSM scan with

Higgs mass and dark matter relic

density constraints.

FIG. 13. Efficiency vs distance metrics, computed using valid points, scatter plots for each sampler for the cMSSM scans.
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density constraint. This behavior is understood as we
switch on the restart_strategy flag, which will
restart the population once it is seemingly in a local minima
in order to increase exploration. For the pMSSM with the
dark matter relic density constraint case, we observe that

the CMA-ES does not seem to converge within the 2000
trials allowance, and keeps suggesting better solutions. This
can be due to the fact that CMA-ES works with a
multivariate normal from which it samples points in this
highly dimensional space, and therefore is challenged by

(a) Mean Euclidean distance vs

efficiency per episode, for the pMSSM

scan with Higgs mass constraint.

(b) Wasserstein distance vs efficiency

per episode, for the pMSSM scan with

Higgs mass constraint.

(c) Mean Euclidean distance vs

efficiency per episode, for the pMSSM

scan with Higgs mass and dark matter

relic density constraints.

(d) Wasserstein distance vs efficiency

per episode, for the pMSSM scan with

Higgs mass and dark matter relic

density constraints.

FIG. 14. Efficiency vs distance metrics, computed using valid points, scatter plots for each sampler for the pMSSM scans.

TABLE IV. Efficiency statistics for each sampler. The central value and the standard deviation are computed across the episodes. In
bold we highlight the best nonrandom sampler for each physics case.

Sampler

Model Constraint Random TPE NSGA-II CMA-ES

cMSSM mh0 0.286� 0.01 0.591� 0.013 0.662� 0.015 0.909� 0.041
mh0 ∩ ΩDMh2 0.001� 0.001 0.027� 0.006 0.201� 0.049 0.435� 0.157

pMSSM mh0 0.105� 0.007 0.332� 0.03 0.786� 0.02 0.869� 0.041
mh0 ∩ ΩDMh2 0.006� 0.002 0.051� 0.009 0.593� 0.083 0.605� 0.063
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the curse of dimensionality as this might not be the most
appropriate learnable model for such a high dimen-
sional space.
In the plot for the rolling efficiency, Fig. 15(b),we observe

a complementary behavior. All nonrandom sampler quickly
saturate their sampling efficiency in almost all the cases. The
exceptions are once again related to CMA-ES. For all the

cases except for the pMSSM with the dark matter relic
density constraint, the CMA-ES restarts its sampling after
hitting an optimal sampling efficiency. For the other case, it
has yet to achieve that optimal sampling efficiency point
within the 2000 trials allowance within each episode.
It is interesting to point out how narrow the 95% con-

fidence intervals are. Meaning that for sampler, each

(a) Rolling average loss per trial. (b) Rolling average efficiency per trial.

FIG. 15. Rolling metrics history for each sampler. Each metric is computed in each episode as a function of the previous 50 trials, and
the shaded bands represent 95% confidence intervals computed over the 500 episodes.

TABLE V. Mean Euclidean distance of valid points statistics for each sampler. The central value and the standard deviation are
computed across the episodes. In bold we highlight the best nonrandom sampler per physics case.

Sampler

Model Constraint Random TPE NSGA-II CMA-ES

cMSSM mh0 0.634� 0.007 0.633� 0.009 0.554� 0.018 0.367� 0.067
mh0 ∩ ΩDMh2 0.402� 0.143 0.287� 0.042 0.208� 0.073 0.119� 0.151

pMSSM mh0 1.667� 0.012 1.544� 0.022 1.49� 0.055 0.673� 0.111
mh0 ∩ ΩDMh2 1.636� 0.056 1.359� 0.053 1.366� 0.102 0.411� 0.089

TABLE VI. Wasserstein distance computed on valid points statistics for each sampler. The central value and the standard deviation are
computed across the episodes. In bold we highlight the best nonrandom sampler per physics case.

Sampler

Model Constraint Random TPE NSGA-II CMA-ES

cMSSM mh0 0.304� 0.013 0.353� 0.019 0.448� 0.033 0.662� 0.108
mh0 ∩ ΩDMh2 1.034� 0.144 1.002� 0.088 1.088� 0.106 1.332� 0.218

pMSSM mh0 0.907� 0.056 1.849� 0.15 2.322� 0.209 4.093� 0.395
mh0 ∩ ΩDMh2 2.113� 0.305 2.882� 0.272 3.223� 0.424 4.888� 0.319
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episode has a similar evolution, allowing to draw the
conclusions above.
The above trial evolution plots show that the samplers

progressively improve the quality of the suggested points,
as measure by how likely they are to minimize the loss
function. This also suggests that points that have not
satisfied the conditions, but are otherwise physical (i.e.,
that they have successfully produced a spectrum and a dark
matter candidate), should have lower loss values than
points randomly sampled. In Fig. 16 we see the distribution
of the values of the loss function for nonvalid, albeit
physical, points. We see that for all the physics cases,
the values of the losses are always lower for nonrandom
samplers than for the random sampler. This is in agreement
with the expectation that nonvalid points suggested by the
nonrandom samplers are closer to be valid than those
sampled from a random sampler.

C. Sampling time

We have already shown that the nonrandom samplers
drastically improve sampling efficiency over the random
sampler. However, the methodology and algorithms pre-
sented in this work are only useful if the nonrandom

samplers do not impose a computational overhead that
would make these scans impractically slow. In Fig. 17 we
show the trial evolution time over the episodes. These plots
present an artificial deformation that does not originate
from our methodology: the reduction of trial time at the end
of the episodes. This is due to the fact that various episodes
were executed in parallel, leading to concurrency competi-
tion when reading and writing to the hard-drive, and as
episodes finished it became faster to complete those still
running.
In all physics cases, the random sampler is the fastest,

which is expected as it does not include any new sampling
algorithm. For all nonrandom sampler cases, we observe an
increase of per-trial evaluation time due to the added
computational overhead of the algorithm.
For all physics cases, we witness the linear growth in

time for the TPE, which is in line with our expectations as
the TPE fits a Gaussian mixture model that has a computa-
tional complexity that grows linearly with the number of
points. This also means that the total running time of an
episode, being the sum of all trials time in that episode,
grows quadratically with the maximum number of trials
in the episode. This is the reason why we restricted to a

FIG. 16. Distributions of loss values for nonvalid, but physical, points for each sampler and for the different physiscs cases.
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maximum of 2000 trials per episode, as this quadratic run-
time growth, which prevents very long episodes, was
identified early on in our study. This also means that for
a specific problem where TPE cannot find valid points
within the first few thousands trials, it will likely not be a
good sampler to perform a thorough scan as its run-time
will become prohibitively slow.
An interesting observation regards the spikes in time

of the NSGA-II every 50 trials, giving it a comblike shape.
This happens as the default population size is 50, for which
after 50 trials the algorithm has to perform the genetic
operations over such trials—sorting, selection, cross-over,
and mutation—in order to produce candidate points to be
evaluated in the following 50 trials. Despite these spikes, the
NSGA-II presents the overall lightest overhead, being the
fastest sampler after the random sampler in most situations.

VI. CONCLUSIONS

In this work we have reframed the parameter space
scanning task for validation of BSM models as a black-box
optimization problem. To accomplish this, we retain the
information of an invalid point and how far it is from being

valid using a loss function that can then be minimized using
black-box optimization algorithms from the artificial intel-
ligence and machine learning literature. We introduced
three of such algorithms: tree-Parzen estimator, a Bayesian
optimization algorithm; nondominated sorting genetic
algorithm II, a genetic algorithm; and the covariance matrix
adaptation evolution strategy, a nongenetic evolutionary
algorithm. These algorithms search for valid points by
interacting with the loss function, which in turn is com-
puted using the produced observables obtained from the
computational routines. In this work, we focused on the
physics cases of the cMSSM and the pMSSM, with and
without the further constraint of having a valid candidate
for dark matter.
The novel approach presented tackles the shortcomings

of current methodologies which rely on a vast collection
of valid points before they can be used to sample new
points, which can be a challenge for scanning tasks where
random sampling can be highly inefficient from the start.
Furthermore, by not being equivalent to a fit to likelihoods,
our approach can be used with bounds that are derived from
theory as well as experimental limits on new physics, which

FIG. 17. Trial evolution time over the episode for each sampling algorithm. The shaded region represents 95% confidence intervals.
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are two common constraints used in BSM constraining
scans that do not have a corresponding likelihood.
We showed that this approach, not requiring any a priori

knowledge of the parameter space, provides orders of
magnitude better sampling efficiencies in comparison with
the random sampling strategy usually employed for this task.
We showed that this benefit comes at a trade-off cost between
efficiency and coverageof the parameter space,with different
samplers providing distinct realizations of this trade-off: the
TPEprovides results similar to the random sampler,while the
CMA-ES can achieve near-unity sampling efficient, and
finally the NSGA-II finds its place somewhere in-between
these two in terms of exploration-exploitation trade-off.
We have also shown how different samplers can produce

different artefacts in the final distributions of the scans due
to the way that they operate and sample new candidate
points. Of special interest, we observed how NSGA-II and
CMA-ES produced very visible artefacts in the scatter plots.
In the NSGA-II case, the scatter plots presented clustered
values of parameters due to the presence of schemas, which
are favorable combination of parameters that can survive
multiple generations. For the CMA-ES case, its sampling
step based on a multivariate normal learned from the best
points lead to highly dense and compact new points, which
were noticeable in the scatter plots as disjoint brush strokes.
In both cases, each algorithm produced points which were
very similar to those explored thus far during the episode,
leading to highly distorted distributions of the parameters,
when compared to the random sampler, and larger values of
the Wasserstein distance.
Furthermore, we observed how for a highly constrained

scan, such as the cMSSM with dark matter relic density
constraint, the CMA-ES behavior as a statistical approxi-
mation to gradient descent has produced large concen-
tration of valid points close to the edges of the validity
region. This motivates the notion of a path of least
resistance in the space of the loss over the parameter
space, which the other samplers, which do not operate as
gradient descent, are blind to. This further suggests that
different samplers traverse the parameter space differently,
and how they do it will impact the resulting collection of
valid points and what regions have been explored or
overlooked. This motivates further dedicated work that
lies outside the scope of this paper.
Ultimately, the best sampler will greatly depend on the

task at hand and how difficult it is, as well as the goals of
the BSM model builder in a specific study. For example, if
the scan is performed on highly dimensional parameter
spaces the evolutionary algorithm, NSGA-II, is better
suited since it does not suffer from the curse of dimension-
ality while providing a middle ground between exploration
and exploitation; if the problem revolves around a highly
constrained model, where the random sampler has little
efficiency, in a small dimension parameter space, then the

CMA-ES would be a better choice, as it converges quickly
to valid regions of the parameter space do to its eager
nature; finally, the Bayesian algorithm, TPE, provides
results more similar to the random sampler, and should
therefore preferred when coverage is the main concern,
although it will struggle to find good points if it fails to
converge to a valid region within the first few thousand
points due to its run-time becoming prohibitively slow.
Although we have shown the great potential benefit of

using nonrandom samplers to perform parameter space
scanning of BSM models, our work also points at future
directions to improve upon the proposed methodologies.
First, despite choosing some options that differ from the
default parameters, we have not undertaken any optimization
of the samplers, which could further improve the presented
metrics. Second, we have to reiterate that the proposed
algorithms were not designed for the specific case of BSM
parameter space scan and constraining—which requires
extensive coverage over highly multidimensional spaces—
and therefore there is the potential to further improve them,
or design new ones, that can mitigate the exploration-
exploitation cost of choosing one side over the other, or
the sensitivity to the curse of dimensionality of same of the
samplers. Finally, we made an explicit choice of summing
together two constraint functions instead of optimising each
separately as a multiobjective optimization problem. This
choice was made so that we could use different optimizers
that cannot perform such task, such as the CMA-ES, but it is
likely that algorithms like NSGA-II, which were designed
especially for such problems, will provide even better
samplers for problems that involve multiple joint constraints.
Finally, we notice that the methodology herein is not

restricted to SUSY model building, and can be used with
any computational routine and set of constraints—regardless
of the BSM framework and computational language where
the routines are written—and therefore provides a general
new paradigm for parameter space scanning and BSM
model validation.

The code of this work is available in [58].
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