
Distinguishing nonstandard scalar and fermionic
charged particles at a future e+ e − collider

Anjan Kumar Barik ,* Rafiqul Rahaman ,† and Santosh Kumar Rai ‡

Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute,
A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj 211019, India

(Received 15 July 2022; accepted 11 January 2023; published 2 February 2023)

We investigate the possibility to identify the intrinsic spin of exotic charged particles at a future eþe−

collider in the l� þ 2jþ ET final state. We choose the inert doublet model (IDM) and minimal
supersymmetric standard model (MSSM) as examples for the new physics models with scalar and
fermionic exotic charged particles, respectively. The signal arises when these exotic charged particles are
pair produced and then decay to a W� boson and the lightest neutral stable particle in the new physics
model. We choose four benchmarks for the mass parameters which give significant deviation from the
dominant standard model (SM) WþW− background. We find that an asymmetry in the cosine of the
scattering angle (cos θ) of one of theW bosons reconstructed from jj pair as well as the charged lepton have
the potential to identify the MSSM and IDM signal over SM with longitudinally polarized initial beams. A
more robust distinction is seen in the shape of the azimuthal angle distribution of theW boson and charged
lepton, which can identify and distinguish the IDM signal from MSSM further if the initial beams are
transversely polarized.

DOI: 10.1103/PhysRevD.107.035002

I. INTRODUCTION

The standard model (SM) of particle physics has been a
great success in explaining most of the phenomena in
nature. Despite its huge success, phenomena such as the
existence of nonzero neutrino mass and their oscillation,
the presence of dark matter (DM) in the Universe, the
obvious matter-antimatter asymmetry vis-a-vis baryogen-
esis, stability of the electroweak scale, or the gauge
hierarchy problem, etc., require one to think of physics
beyond the SM (BSM). A plethora of candidate BSM
models exist in the literature to address such nonstandard
phenomena. These BSM models are being probed at the
current Large Hadron Collider (LHC), and strategies are
being set up to probe them with more precision at future
colliders such as High Luminosity LHC (HL-LHC) [1],
High Energy LHC (HE-LHC) [2], International Linear
Collider (ILC) [3–6], Large Hadron electron Collider
(LHeC) [7], Future Circular Collider (FCC) [8,9], etc. A
very obvious and well-known aspect of having so many

different BSM theories is the so-called inverse problem,
where different models lead to overlapping outputs in the
signal space, and it becomes challenging to map it to any
given BSM scenario. Therefore, the chances of observing
that rare event of new physics, which has proven to be so
elusive at LHC, may have too many BSM candidates to
claim as their own, since similar collider signatures can
arise from different BSM models. Not much attention has
been paid to identifying the type of BSM models by
looking at collider signatures [10–12]. We try to fill up
a gap in this direction by showing through this work how to
distinguish two types of BSM models by looking at similar
signatures at colliders based on the spins of exotic particles.
Typically, one expects to be able to identify spin [10,13–15]
of a mediator by looking at the angular distribution in a
2 → 2 scattering process where the final state particles are
SM fields. We consider a more common configuration
which appears in models that have a DM candidate that
would escape detection. The lightest neutral stable particles
(LNSP) in these models can play a good dark matter
candidate. These models also predict charged particles that
decay to LNSP. These BSM charged particles together with
the LNSP can have different spins (0, 1=2, and 1) in
different models. Understanding the spin nature of dark
matter (LNSP) experimentally is of particular importance
not only for particle physics, but also for astrophysics and
cosmology.
In this article, we investigate the possibility of identify-

ing the spin of BSM charged particles or the candidate dark
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matter through the collider signature of pair production of
BSM charged particles followed by their decay to LNSP
and W� boson. It is not easy to do such precision
measurements at the LHC, as it is overwhelmed by the
huge QCD background. A future eþe− collider or ILC, on
the other hand, offers a great possibility in this direction for
having a clean signature with a very low background and
extra handles such as beam polarization (longitudinal and
transverse) [16]. We choose two well-motivated models as
examples, the inert doublet model (IDM) [17,18] and the
minimal supersymmetric SM (MSSM) [19,20], having
potential dark matter candidates of type scalar (spin-0)
and fermion (spin-1=2), respectively to study the collider
signature of the process

eþe− → CþC− → C0C0WþW−: ð1Þ

In IDM, the Cþ and C0 are Z2-odd charged Higgs (H�) and
neutral Higgs (H0), while for MSSM, they are the chargino
(χ̃�) and neutralino (χ̃0), respectively. Note that the charged
and neutral scalars (fermions) can appear in several BSM
setups involving Z2-odd parity, and, therefore, this analysis
will be applicable in all such scenarios. We use the potential
of beam polarization (both longitudinal and transverse) of
an eþe− collider to discriminate between the two models by
looking at various angular distributions in the l�jjþ ET
final states.
The rest of the article is organized as follows. In the next

section (Sec. II), we briefly review IDM and MSSM, along
with benchmark points for the new physics parameters such
as masses and couplings. In Sec. III, we discuss the signal
and corresponding SM background, followed by the
analysis setup. In Sec. IVA, we study various kinematic
and angular distributions with longitudinal beam polariza-
tion and perform an analysis with a simple cut and count on
the variables. We then try to determine the spin of the exotic
charged particles and their partner with the help of trans-
verse beam polarization in Sec. IV B. Finally, we conclude
in Sec. V.

II. REPRESENTATIVE MODEL

We choose two well-motivated models, IDM and
MSSM, as examples of having exotic charged particles
and their neutral partner (potential dark matter) of scalar
type and fermionic type, respectively. These models are
briefly described below to self-contain this article.

A. The inert doublet model

In the IDM [21], the scalar sector of the SM is modified
with one additional scalar doublet Φ, which is odd
(Φ → −Φ) under a new discrete Z2 symmetry (parity).
The SM particles together with the SM Higgs doublet (H)
are even under this Z2 symmetry. The two scalar doublets
which transform under SUð2ÞL can be written as

H ¼
� Gþ

1ffiffi
2

p ðvþ hþ iG0Þ
�
; Φ ¼

� Hþ

1ffiffi
2

p ðH0 þ iA0Þ
�
;

ð2Þ

where v ¼ ffiffiffi
2

p h0jHj0i ≈ 246 GeV is the vacuum expect-
ation value of the neutral component of H. The h state
corresponds to the physical SM-like Higgs boson, whereas
G0 and G� are the Goldstone bosons. The “inert” sector
consists of a neutral CP-even scalar H0, a pseudoscalar A0,
and a pair of charged scalars H�. The neutral inert Higgs
(H0) and its charged partner (H�) play the role of dark
matter and the new exotic charged particle, respectively.
The scalar potential of the model is given by

V ¼ μ21jHj2 þ μ22jΦj2 þ λ1jHj4 þ λ2jΦj4 þ λ3jHj2jΦj2

þ λ4jH†Φj2 þ λ5
2
½ðH†ΦÞ2 þ H:c:�: ð3Þ

The masses and interactions of the scalar sector are
governed by the scalar-potential parameters

fλ1; λ2; λ3; λ4; λ5; μ2g; ð4Þ

where μ21 is eliminated by M2
h ¼ −2μ21 ¼ 2λ1v2 which is

obtained by minimizing the scalar potential after electro-
weak symmetry breaking. The IDM parameter space can be
expressed in terms of the physically more intuitive set

fMh;MH0 ;MA0 ;MH� ; λL; λ2g; ð5Þ

where the Higgs and inert scalar masses are given by

M2
h ¼ μ21 þ 3λ1v2; ð6Þ

M2
H0 ¼ μ22 þ λLv2; ð7Þ

M2
A0 ¼ μ22 þ λSv2; ð8Þ

M2
H� ¼ μ22 þ

1

2
λ3v2; ð9Þ

and the couplings λL and λS are defined, respectively, as

λL ¼ 1

2
ðλ3 þ λ4 þ λ5Þ

λS ¼
1

2
ðλ3 þ λ4 − λ5Þ: ð10Þ

The interaction Lagrangian in our signal comprising the
production and decay vertices of H� originating from
gauge interactions can be written as
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L ¼ i½gZð1=2 − s2WÞZμ þ eAμ�½ð∂μHþ
S ÞH−

S − ð∂μH−
S ÞHþ

S �
þ ðg=2Þ½−ð∂μHþ

S ÞH0
SW

−
μ þ ð∂μH0

SÞHþ
S W

−
μ þ H:c:�:

ð11Þ

Here, e ¼ ffiffiffiffiffiffiffiffi
4πα

p
withα being fine structure constant, g as the

SUð2ÞL gauge couplings, gz ¼ e=ðsWcWÞ, sW ¼ sin θW , and
cW ¼ cos θW with θW being the Weinberg angle.

B. Minimal supersymmetric SM

We briefly discuss the basic setup of the model and the
relevant spectrum used in our analysis. The MSSM [22] is
the supersymmetric extension of SM where for every SM
fermion (boson) there is a boson (fermion) superpartner.
The MSSM has two Higgs doublet superfields with

opposite hypercharge (needed to cancel the resulting gauge
anomaly). Supersymmetry (SUSY) cannot be an exact
symmetry, as it would lead to similar mass for the super-
partners of the SM particles. SUSY is softly broken and in
MSSM through explicit mass terms for the superpartners of
the SM particles. The Lagrangian in MSSM has a discrete
global symmetry called R parity (RP), defined as
ð−1Þ3B−Lþ2S, whereas all SM particles are even under
RP while their superpartners haveRP ¼ −1. This makes the
lightest SUSY particle (LSP) stable and is considered as a
DM candidate. For our analysis, we consider the LSP as a
composition of the Higgsino and gaugino states of MSSM.
The Lagrangian containing only Higgsinos and gauginos is
given by

L ⊃ iH̃1iσ
μΔμij

¯̃H1j þ iH̃2iσ
μΔμij

¯̃H2j þ μϵabH̃1aH̃2b þ iB̃σμ∂μ
¯̃Bþ iλiσμΔμijλ̄j

−
1

2
M1B̃B̃ −

1

2
M2λiλi −

ffiffiffi
2

p
g2H̃1iλa

σaij
2
H1j −

ffiffiffi
2

p
g2H̃2iλa

σaij
2
H2j

−
ffiffiffi
2

p
g1

Ŷi

2
B̃H̃1iH1i −

ffiffiffi
2

p
g1

Ŷi

2
B̃H̃2iH2i þ H:c:; ð12Þ

where

Δμ
ij ¼ δij∂

μ þ ig1
Ŷi

2
δijBμ þ ig2WμaTa

ij:

Here Ŷ and Ta, respectively, represent hypercharge and
SUð2Þ generators in the respective representation of the
field over which these operator act and

H̃1 ¼
 eh11eh21

!
; H̃2 ¼

 eh12eh22
!
; B̃; λs ¼ ðλ1;λ2;λ3Þ

are the fermionic superpartners of two Higgs fields H1 and
H2 and the superpartners of Uð1Þ and SUð2Þ gauge fields,
respectively. Here, the neutral sector of SUSY fermionic
partners of the SM bosons consist of neutral Weyl fermions

(B̃, λ3, h̃
1
1, h̃

2
2), and the charge sector comprises of ( eh12, fh2c1 ,

λþ ≡ λ1−iλ2ffiffi
2

p , λ−c ≡ λc
1
−iλc

2ffiffi
2

p , superscript c being the charge

conjugation operator) two-component Weyl fermions.
Spontaneous symmetry breaking is realized through the

vacuum expectation value (VEV) for the two Higgs fields
H1 and H2 with VEV h v1ffiffi

2
p i and h v2ffiffi

2
p i, respectively. Here, we

define electroweak VEV v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
with tan β ¼ v2

v1
.

After electroweak symmetry breaking, the mass term for
the Higgsino and electroweakino charged sector becomes

Lc
Mass ¼ −

g2ffiffiffi
2

p ðv1λþ eh21 þ v2λ−
eh12 þ H:c:Þ

− ðM2λ
þλ− þ μ eh21 eh12 þH:c:Þ: ð13Þ

In the basis

ψþ ¼
�
λþeh12
�

and

ψ− ¼
�
λ−eh21
�
;

the above Lagrangian can be written as

−Lc
Mass ¼ ðψ−ÞT

�
M2

ffiffiffi
2

p
MW sinβffiffiffi

2
p

MW cosβ μ

�
ψþ: ð14Þ

As the mass matrix is not symmetric, it has to be
diagonalized by a biunitary transformation:

MD
c ¼ U�

�
M2

ffiffiffi
2

p
MW sin βffiffiffi

2
p

MW cos β μ

�
V−1; ð15Þ

where MD
c is a diagonal matrix with real positive eigen-

values. Weyl fermion eigenstates will be χþk ¼ Vkmψ
þ
m and
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χ−k ¼ Ukmψ
−
m, which can be written as a four-component

chargino field. The mass for the charginos can be written as

−Lc
Mass ¼ M̃1χ̃

þ
1 χ̃

þ
1 þ M̃2χ̃

þ
2 χ̃

þ
2 ; ð16Þ

where

χ̃þ1 ≡
�

χ̃þ1
χ̃−1

T

�
and

χ̃þ2 ≡
�

χ̃þ2
χ̃−2

T

�
are chargino fields. The Lagrangian in the neutral electro-
weakino sector can be written as

Ln
Mass ¼ −

g2
2
λ3ðv1h̃11 − v2h̃

2
2Þ þ

g1
2
B̃ðv1h̃11 − v2h̃

2
2Þ

þ μh̃11h̃
2
2 −

1

2
M2λ3λ3 −

1

2
M1B̃ B̃þH:c: ð17Þ

The mass matrix, in the basis of ψ0 ¼ ðB̃; λ3; h̃11; h̃22Þ is
given by

Mn ¼

0BBB@
M1 0 −MzcβsW MzsβsW
0 M2 MzcβcW −MzsβcW

−MzcβsW MzcβcW 0 −μ
MzsβsW −MzsβcW −μ 0

1CCCA:

ð18Þ

This matrix can be diagonalized by a unitary matrix Z. The
physical mass eigenstates and the mass diagonalization
matrix are given by χ0l ¼ Zlnψ

0
n and Z�MZ−1 ¼ Mn

D,
respectively. In the four-component notation, the mass
term in the Lagrangian for neutralinos can be written as

Ln
Mass ¼ − 1

2

P
l M̃

n
l χ̃

0
l χ̃

0
l , where

χ̃0l ¼
�

χ01
χ̄0l

T

�
are the four Majorana neutralino fields. The lowest mass
eigenstate of four neutralinos will be the LSP and repre-
sents the DM candidate.
The masses and vertices relevant for our analysis except

the gauge couplings depend only on four parameters, which
are the soft breaking gaugino mass parameters (M1 and
M2), the Higgsino mass parameter (μ), and the ratio of the
VEV of the Higgs doublets (tan β). The lightest chargino
mass eigenstate coupling to the Z boson depends on the
chargino mixing matrix elements V11 and U11 [23]. For
simplicity, we keep these matrix elements fixed for all our

benchmark points which can be obtained by varying the
input parameters M2, μ, and tan β of the model.

C. Benchmark selection

We choose four benchmark points (BPs), in our analysis,
for the masses of exotic charged particles (C�) and their
neutral partner (C0) in both IDMandMSSM.Thebenchmark
points are listed in Table I. The BPs are chosen in such a way
that ΔM ¼ Mþ −M0 (Mþ ¼ MCþ , M0 ¼ MC0) remain
fixed for two BPs with different Mþ and M0 (BP1 and
BP3); two BPs have the same Mþ but with a different ΔM
(BP2 and BP3); three BPs satisfy these criteria. We choose
onemore BPwhich has a differentMþ andΔM compared to
the other three (BP4).
The mass parameters are kept the same in both models in

order to have similar kinematic behavior. Through all four
BPs, the mass difference between charged odd particle with
the respective DMparticle is kept higher than themass of the
W boson, so that both theW boson and DM particle can be
produced on shell from their parent charged dark sector
particle. In IDM, there are two coupling parameters, λL and
λS, which can affect the SM Higgs signal in our study. The
value of λL is kept very small so that the second neutral CP-
even Higgs mass (mH0

), which is the DM, is nearly equal to
μ2 [see Eq. (7)]. The value of λS is chosen such that
mA0

−mHþ ¼ 1 GeV. These two choices help us in evading
the bound on Higgs invisible decay as well as electroweak
precision observables. For all four BPs of MSSM, we have
kept the charginomixingmatrices to be the samewith V11 ≡
cos θR ¼ 0.9725 and U11 ≡ cos θL ¼ 0.9168. We do not
focus on whether the benchmarks satisfy the requirements of
dark matter relic density. However, we keep BP1 as a
reference point which does satisfy dark matter constraints
[12]. Apart from the dark matter constraint, there are other
constraints that are considered while choosing the BPs,
which we discuss below.

1. Constraints

a. Vacuum stability and unitarity
In IDM, the scalar potential must be bounded from

below. The conditions on various quartic couplings to
satisfy this constraint are given by [24]

TABLE I. Benchmark points for the MSSM and IDM.

Benchmark Masses

BP1 M� ¼ 160 GeV, M0 ¼ 60 GeV
BP2 M� ¼ 220 GeV, M0 ¼ 100 GeV
BP3 M� ¼ 220 GeV, M0 ¼ 120 GeV
BP4 M� ¼ 300 GeV, M0 ¼ 10 GeV
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λ1 > 0; λ2 > 0; 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
þ λ3 > 0;

2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
þ λ3 þ λ4 − jλ5j > 0: ð19Þ

We have checked that all our four BPs for IDM satisfy the
above conditions. In addition, we have also checked that
the BPs satisfy unitarity bounds [24].

b. Electroweak precision observables
The BSM particles affect the electroweak (EW) observ-

ables via oblique correction, and these corrections are
parametrized by three observables S, T, and U as electro-
weak precision observables (EWPOs). The contribution to
EWPOs (S and T) from IDM are given by [24]

S¼ 1

72πðx22−x21Þ3
× ½x62faðx2Þ−x61faðx1Þþ9x22x

2
1ðx22fbðx2Þ−x21fbðx1ÞÞ�;

ð20Þ

where x1 ¼ MH0

MH� , x2 ¼ MA
MH� , faðxÞ ¼ −5þ 12 logðxÞ,

fbðxÞ ¼ 3–4 logðxÞ, and

T ¼ 1

32π2αv2

× ½fcðM2
Hþ ;M2

AÞ − fcðM2
A;M

2
H0Þ þ fcðM2

Hþ ;M2
H0Þ�;
ð21Þ

where

fcðx; yÞ ¼
(

xþy
2

−
xy logðxyÞ
x−y ; x ≠ y

0; x ¼ y:

The experimental values of S and T with U ¼ 0 are given,
respectively, by [25]

S ¼ 0.04� 0.08 and T ¼ 0.08� 0.07: ð22Þ

In our case, BP4 with the largest ΔM ¼ MH� −MH0 in
IDM gives the maximum deviation in EWPO with ΔS ¼
−0.0218 and ΔT ¼ −0.0017. These values are well within
the 1σ limit of experimental uncertainty.

c. Higgs invisible decay
We note that only BP1 and BP4 have mh > 2mDM.

Hence, the SM Higgs can decay to two DM particles for
these benchmark points. The observed value of Higgs
invisible branching fraction is less than 0.18 at 95% C.L.
[26]. For MSSM, our branching fraction [BRðh → 2χ̄0Þ] is
around 2% and 4% for BP1 and BP4, respectively. In IDM,
the value of λL which enters into the interaction strength is
kept fixed at 10−4 for all BPs, which helps us keep the

invisible branching ratio (BR) of h → H0H0 below 1% for
both BP1 and BP4.

d. Higgs signal
The charged Higgs and chargino being at the electro-

weak scale can contribute to the loop-induced h → γγ
decay. This can affect the Higgs signal observations at the
LHC in this channel. The observed value of the signal
strength is constrained by ATLAS [27] as

μγγ ¼
BRBSMðh → γγÞ
BRSMðh → γγÞ ¼ 1.04þ0.10

−0.09 :

For IDM, the maximum contribution to BRðh → γγÞ comes
from BP1, which has the lightest Hþ, and the total Higgs
signal strength in this particular channel with respect to the
SM predictions, i.e., μIDMγγ ¼ 0.975. The deviation from the
SM prediction goes down as the charged Higgs mass
increases. Similarly for MSSM, BP1 gives the maximum
contribution to BRðh → γγÞ with μMSSM

γγ ¼ 1.21. We find
that the Higgs signal strength for both IDM and MSSM are
within 1σ and 2σ of the allowed signal strength, respectively.

III. SIGNAL AND BACKGROUND

The signal for our analysis comes from the pair pro-
duction of the exotic charged particles (C�) followed by
their decay to their neutral partner (C0) and charged gauge
boson W�. It is worth pointing out here that most models
which are proposed to give a DM candidate in the spectrum
exhibit a similar chain of production where the final state
involves a pair of DM particles. The visible particle
multiplicity associated with the two DM final states
depends on the particle being produced in the hard
scattering process. The challenging aspect of obtaining
good signal sensitivity then relies on the strength with
which the hard scattering process takes place. Producing
electroweak strength particles at LHC leads to very weak
sensitivities and, therefore, makes the spin determination
very difficult. We, therefore, consider their production at
ILC in the simplest and most obvious mode of production
process. We choose the channel where one of theW decays
leptonically while the other one decays hadronically, i.e.,

eþe− → CþC−; C� → C0W�; W� → l�νl=νl;

W∓ → jj; ð23Þ

forming a final state of l�2jþ ET . The Feynman diagram
up toW� production is shown in Fig. 1. The signal process
in IDM and MSSM, along with the SM background, is
described below.
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A. IDM signal

In IDM, HþH− is produced via two s-channel processes
with the Z boson and γ as mediators from initial e−eþ.
Then H� decay to W�H0, where H0 is stable, while the W
boson decays to lepton and hadrons producing one lepton,
two jets, and missing energy final states. We have kept the
pseudoscalar A0 mass higher than H�. Since there are no
other lighter particles which are Z2 odd, the BR of H� to
W�H0 channel will be 100%. The two DM particles H0

and neutrino act as the source of missing energy.

B. MSSM signal

In MSSM, similar s-channel diagrams can produce the
lightest chargino χ�1 at ILC. Although there is a possibility
of a t-channel diagram due to a sneutrino, we assume that
all scalar superpartner masses are very heavy including the
sneutrino, which is kept at a mass of 12 TeV. Hence, the
contribution from the sneutrino exchange will be much
suppressed due to the large mass of sneutrino. The
charginos then decay to W�χ0 and further decay of W�
as before, giving the desired final states with the neutralinos
now playing the role of DM. For our analysis, we have
taken all RP odd particles except the lightest neutralino
heavier than the mass of χ�1 which again gives its decay BR
to W�χ0 as 100%. Here, too, the missing energy gets a
contribution from the two DM states χ0 and a neutrino.

C. SM background

The dominant background for our signal is the WþW−

production in SM, where one W boson decays leptonically
while the other one decays hadronically. There are three
major subprocesses in SM contributing to W−Wþ produc-
tion, with two being s-channel processes having a photon
and Z boson propagator and the other and most dominant
t-channel process with the light neutrino running in the
propagator. The W−WþZ production with Z → νν also
produces the same final state, but this background is
negligibly small (roughly 100 times smaller in cross section
than WþW− production) due to an additional electroweak
coupling and phase-space suppression. Additionally, the
small branching for Z → νν̄ decay also makes the con-
tributions from this process weaker. We can, therefore,

safely ignore theW−WþZ contributions for the background
in our analysis.
We wish to study the polarization and spin of the

intermediate exchanged as well as produced particles. We
have generated the signal and background events in the
package WHIZARD [28] at ILC with

ffiffiffi
s

p ¼ 1 TeV center of
mass energy. We generate the events with the initial state
radiation (ISR) effect switched on. During the event gen-
eration, we have put a set of inclusive cuts with PTj1 ;j2 ;l

>
10 GeV and the invariant mass of jetsMjj to lie between 60
and 100 GeV. Then the simulated events are showered in
PYTHIA8 [29] for energy smearing effects. After the hadro-
nization of the final state jets, we perform the fast detector
simulation in DELPHES-3 [30] with the International Linear
Detector card. Events are selected at the detector level with
the following selection cuts:

pTj
> 30 GeV; pTl

> 30 GeV;

ET > 30 GeV; 60 GeV < Mjj < 100 GeV;

jηjj < 4.5; jηlj < 2.5; ΔRj;j > 0.5;

ΔRl;l > 0.5; ΔRl;j > 0.5: ð24Þ

We name these cuts as Sel_cut.

IV. SIGNAL ANALYSIS AT ILC
WITH BEAM POLARIZATION

We now present our signal analysis using polarized
beams in the initial states. Initial state polarization is a
useful diagnostic at the ILC, and, by adjusting initial state
polarizations, one can select specific states preferentially. In
this work, we present our analysis by using the option of
using both e− and eþ beams longitudinally polarized as
well as having them transversely polarized. Since we want
to show how the spin of the newly produced particles could
show up in some kinematic variables, it is useful to find out
which polarization option will be best suited to help
identify such states with better confidence.
Unlike the LHC, where the parton collisions are over a

range in center of mass energies, we know that ILCwill have
a more or less fixed center of mass energy for the e−eþ
collisions. A small spread in the collision energy, however,
arises from ISR at the ILC, which is themost important QED
correction to the Born cross section [31]. Bremsstrahlung
effects are an important source of ISR, and it is the radiation
caused by the interaction between the electron and positron
participating in the annihilation event at eþe− colliders.
Thus, its effectsmust be considered for realistic simulation to
study physics signals at future linear colliders such as the
ILC. The radiative corrections to processes with arbitrary
final states need evaluation to achieve precision measure-
ments. The ISR photons are generally soft with small
transverse momenta, so they eventually escape detection.
However, their effect is imprinted in the physics analysis

FIG. 1. Representative Feynman diagram for the signal process
eþe− → CþC− → WþW−2C0.

BARIK, RAHAMAN, and RAI PHYS. REV. D 107, 035002 (2023)

035002-6



through modification of the colliding beam energies and an
effective boost along the beam axis for the final states. For a
realistic analysis, we, therefore, include the ISR effects in our
study. A somewhat subdominant correction for the center of
mass energy also comes from another phenomenon called
beamstrahlung which we have neglected.

A. Analysis with longitudinal beam polarization

We perform our collider analysis in the chosen final state
with longitudinal beam polarization (Lpol) of initial e�
beams primarily because of the larger cross sections than
with the unpolarized (Unpol) beams; The degree of
polarization for (e−, eþ) beams are chosen to be (−80%,
þ60%). The SM WW background has a cross section of
about 680.954 fb in Unpol and 1957.84 fb in Lpol with
generation-level cuts given in Eq. (24). The larger cross
sections are effectively due to the choice of polarization that
enhances left-handed current contribution.
The cross sections of the signal are larger in Lpol too,

compared to Unpol in all four BPs, shown in Table II, by
roughly the same factor by which the background cross
section is larger in Lpol compared to Unpol. Thus, signal
significance improves in Lpol than in Unpol, even without
any kinematic cuts to reduce SM background. From
Table II, it follows that IDM has Oð1Þ less cross section
than MSSM. This can be understood in the following way.
In the massless limit (boost β → 1), for the photon-
mediated diagram, the total pair production cross section
of H� is 4 times smaller than the pair production cross
section of χ�1 at an electron-positron collider. The reason
for the enhanced cross section of χ�1 pair production is that
there are four ways of combining helicity states of χ�1 and
e�, while for the scalar there is only one degree of freedom
for H� each. The production cross section for a pair of
fermions again goes up when we consider them to be
massive. For the photon-mediated diagram, the cross
sections follow as

σðe−eþ → H−HþÞ ∝ 2

3
e4β3 and

σðe−eþ → χ−1 χ
þ
1 Þ ∝ −

4

3
e4βð−3þ β2Þ ð25Þ

for unpolarized initial beams [see Eqs. (B25), (B35), and
(B16)]. Similarly for the diagramwith aZ-boson propagator,
the factor associated with a Z-boson vertex ðT3 − sin2 θWQÞ
is larger for a chargino than the charged Higgs. In our case,
the lightest chargino is wino dominated. Following the
notation in Appendix B, the ratio between the production
cross section of the chargino pair and the charged Higgs
pair is 4ða2χ þ v2χÞ=ðg2 cos θW − g1 sin θWÞ2 ¼ 27.24 for an
unpolarized beam in the β → 1 limit. The individual cross
section from the photon and the Z diagrams are of the same
order, and they interfere destructively. Considering both the
photon and the Z-mediated diagram, we get chargino pair
production cross section nearly 8 times larger than the
charged Higgs pair production cross section for an unpolar-
ized beam in the β → 1 limit. This ratio increases further
when we consider the final state particles to be massive.
However, it should be noted that, in generic scenarios not
restricted to SUSY where interactions with such exotics
emerge from suppressed mixing angles, smaller branching
fractions in the decay modes or additional subprocesses
contributing destructively can lead to somewhat comparable
cross sections with the scalar production. Nevertheless, the
large cross section for the fermion production is always a
good discriminator when compared to scalar production in
simple setups.
(a) Kinematic variables.—The role of kinematic varia-

bles to analyze the signal against the SM background,
which naturally arises in the final state l�2jþ ET , are
missing transverse energy (ET), transverse momentum of
lepton and jets (pTl

, pTj1
, pTj2

), total visible mass (Mlj1j2),

and energy of the jj pair which reconstructs the W boson
energy (EW) and lepton (El). Normalized distribution of
these kinematic variables is shown in Fig. 2 for BP1 as
representative with longitudinally polarized beams at 1 TeV
ILC set up for both IDM (dashed blue line) and MSSM
(dotted red line) signal and SM background (solid
green line).
The ET distribution (left-top panel in Fig. 2) shows a

peak in the lower energy values for the SM background
compared to the signal. This is because the source of ET in
the SM is the neutrino coming from the W boson decay,
while for the signal, we have additional contributions
coming from the undetected stable exotics C0 along with

TABLE II. The cross sections of signal for the final state e−eþ → l� þ 2jþ ET after the basic generation
level cuts.

IDM cross section (fb) MSSM cross section (fb)

Benchmark MassðM�;M0Þ (GeV) Unpol Lpol Unpol Lpol

BP1 (160, 60) 5.911 14.331 55.163 158.900
BP2 (220, 100) 4.996 12.103 54.959 158.136
BP3 (220, 120) 5.006 12.146 54.799 157.702
BP4 (300, 10) 3.699 8.966 54.445 156.363
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a neutrino. Furthermore, in the case of signal, the peak of
ET shifts toward higher values as the splitting between the
mass of the charged exotic and the stable neutral particle
(ΔM) increases, which can be seen in Fig. 3, where the SM
background along with all four BPs of IDM and MSSM is
shown. The peak for BP1 and BP3 with ΔM ¼ 100 GeV
are at the same energy, while the peaks for BP2
(ΔM ¼ 120 GeV) and BP4 (ΔM ¼ 290 GeV) are at the
higher energy side in ET distribution due to more avail-
ability of energy for missing C0 in the rest frame of its
charged partner.
We note that the two jets in the signal as well as the SM

background come from the W boson decay. Therefore, it is

possible to reconstruct the energy of the W using the two
jets. Ideally, for the SM background, the W bosons should
be produced back to back with EW ¼ ffiffiffi

s
p

=2 ¼ 500 GeV.
However, the ISR effect gives an effective boost as well as
changes the hard scattering collision energy, which, along
with hadronization and detector effects, result in the
smearing of energies for the W boson (jj pair) and lepton
as well as a longish tail in the energy distribution of EW
extending to the kinematic threshold of

ffiffiffiffiffiffiffi
seff

p ≥ 2MW of the
process. On the other hand, in the case of signal, the W
boson is produced from the decay of C�, along with
missing C0. The available energy forW is much lower than
that of SM and is highlighted in the energy distribution for

FIG. 2. Normalized distributions of kinematic variables in e−eþ → l� þ 2jþ ET with
ffiffiffi
s

p ¼ 1 TeV and longitudinal polarized beams
for BP1.
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EW . The difference between the end point of EW in SM and
BSM models will be at least the C0 mass. Similarly, the
presence of missingC0 can be seen from its imprint in other
kinematic variables as well, given by El,Mlj1j2 , and PT’s of
jets and lepton, where the end point in these distributions
for the signal shifts toward the low-energy values as
compared to SM background. Hence, rejection cuts near
the end point of these variables help reduce the SM
background significantly while keeping enough statistics
for the signal.

We, thus, implement a set of cuts on these kinematic
variables as ET > 50 GeV, PTl;j1

< 400 GeV, Ml;j1;j2 <
700 GeV, El < 400 GeV, and EW < 400 GeV to reduce
the SM background while keeping enough statistics for the
signal. We name these sets of cuts as Kin_cut.
(b) Angular variables.—It is quite well known that

particle spin dictates the Lorentz structure of interaction
vertices, and an efficient way of identifying these properties
is through observing the kinematics in the angular variables
of final state particles. For a scattering process such as

FIG. 3. Normalized distribution of ET for all four BPs of the IDM and MSSM along with SM background in e−eþ → l� þ 2jþ ET

with
ffiffiffi
s

p ¼ 1 TeV and longitudinal polarized beams.

FIG. 4. Normalized distribution of angular variables in e−eþ → l� þ 2jþ ET with
ffiffiffi
s

p ¼ 1 TeV and longitudinal polarized beams
for BP1.
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eþe− → ff̄, where f is a stable SM fermion, it is clearly
highlighted in the polar distributions of the final state
fermion. However, it becomes more challenging if the final
state particles come from cascade decay of unstable
particles produced as primaries in the eþe− collisions, as
in our case. We, therefore, explore the properties by looking
at the normalized distributions of some angular variables
such as cos θ of W (jj pair) and lepton and the isolation

variable ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2 þ Δϕ2

p
between the lepton and W,

which are shown in Fig. 4 for the SM background and
signal (IDM and MSSM) for BP1 as representative. Owing
to a t-channel subprocess in the SM process, cos θW sharply
peaks at �1, i.e., along with the beam directions: The W−

tends to remain toward the e− direction, while theWþ tends
to remain toward the eþ direction; see left-top panel in
Fig. 4. On the other hand, there are only two s-channel
subprocesses in the IDM signal, which makes the cos θW
peak at 0, i.e., transverse to the beam directions. In the case
of the MSSM signal, there could be a t-channel subprocess
due to the sneutrino, which is kept heavy not to contribute
to our analysis. Thus, the cos θW distribution has a small
peak near �1 with an overall flat shape throughout. The
angular behavior of W transfers to its decay product, and,
thus, the lepton’s cos θ distribution is of similar nature to
that of W; see right-top panel. So an inclusion cut of
jcos θj < 0.9 for the lepton and the W will be effective to
suppress the background with less effect on signals. In SM,
the two intermediateW’s are boosted in opposite directions,

while in the case of signals, the W’s are less boosted and
also not in opposite directions, as they are decayed from C�

together with C0’s. Hence, the ΔRl;W attains higher values
as compared to that of signals; see the bottom panel in
Fig. 4. We, thus, put a rejection cut ofΔRlw > 5.0 to reduce
SM background with less effect on the signals. We name
the set of cuts on the angular variables as Ang_cut.
We estimate signal significance with an integrated

luminosity of L ¼ 100 fb−1 with the formula

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
ðSþ BÞ log

�
1þ S

B

�
− S

�s
ð26Þ

with S being the number of signal events and B being the
number of background events at a given luminosity. The
signal significances of the IDM signal and MSSM signal
are shown in Table III for the successive cuts on kinematic
variables and angular variables in all four BPs. The
significance values confirm that all four BPs are above
5σ discovery limits in our analysis.
Although there is a good distinction between the back-

ground and the signals, it is ambiguous about the spin
nature of particles contained in signals apart from the fact
that the MSSM signal has more significance than the IDM
signal with the same mass parameters. We try to estimate
how the IDM signal is different from the MSSM signal
based on the asymmetry of some angular variables in the
following subsection.

TABLE III. The cut-flow information on the e−eþ → l� þ 2jþ ET process for both the signals and background along with the
significances for all four BPs at the 1 TeV ILC for 100 fb−1 of integrated luminosity.

SM background IDM signal MSSM signal

Cuts WþW− BP1 BP2 BP3 BP4 BP1 BP2 BP3 BP4

Sel_cut 22709.6 558.29 462.28 456.62 321.47 5517.66 5337.85 4948.52 5743.17
Sel cutþ Kin cut 3256.22 491.49 420.57 400.05 295.14 4738.46 4789.66 4224.54 5153.8
Sel cutþ Kin cutþ Ang cut 1942.75 479.75 410.05 392.64 274.70 4318.11 4352.4 3924.35 4497.23

Significance (S) 10.47 9.00 8.63 6.09 77.56 78.08 71.55 80.25

TABLE IV. Asymmetries for both the signals and background and difference between the signals in the e−eþ → lþ 2jþ ET process
for longitudinally polarized beams for L ¼ 100 fb−1 of integrated luminosity.

ASM ASMþIDM ASMþMSSM

Variables WþW− BP1 BP2 BP3 BP4 BP1 BP2 BP3 BP4

cos θW 0.1682 0.0632619 0.0663791 0.0573263 0.118111 0.0260318 −0.030412 −0.0775697 −0.00320661
cos θl 0.291 0.169782 0.182949 0.180954 0.225528 0.0212554 −0.0130694 −0.0379408 0.0206557

δASM
j ΔA
δASM

j
WþW− BP1 BP2 BP3 BP4

cos θW 0.0223 1.66469 4.32789 6.0317 5.42458
cos θl 0.0217 6.84267 9.03066 10.0846 9.43857
χ2 49.5933 100.2823 138.0805 118.5126
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1. Identifying the nature of signal

We now try and identify the spin nature of the exotic
charged particle (Cþ) and its partner (C0) by taking account
of the observations made in the previous subsection. We try
to identify the type of signal based on asymmetries
constructed from the angular variables cos θW and cos θl
for the signal inclusive of the background after effectively
reducing the background contribution maximally as dis-
cussed earlier. Then we estimate the difference between the
signal from the two models based on χ2 using the
asymmetries. We have already discussed the difference
in the shapes of cos θW=l distribution, given in Fig. 4 for the
MSSM and IDM signal events. Based on the symmetric
shape in cos θ ¼ 0, we define an asymmetry for both the
variables as

Aðcos θW=lÞ ¼
σðjcos θW=lj > 0.5Þ − σðjcos θW=lj < 0.5Þ
σðjcos θW=lj > 0.5Þ þ σðjcos θW=lj < 0.5Þ :

ð27Þ

The difference is then estimated by a χ2, calculated as

χ2 ¼
X
i

����ΔAi ¼ Ai
IDMþSM −Ai

MSSMþSM

δAi
SM

����2; ð28Þ

i runs on the variables; δASM ¼
ffiffiffiffiffiffiffiffiffiffiffi
1−A2

SM
σSM×L

q
is the statistical

error on asymmetries due to SM background. The asymme-
tries in each signal are estimated including the background
after putting all the cuts (Sel_cut + Kin_cut + Ang_cut), i.e.,
reducing maximum background so as to highlight only the
signal. The asymmetry of a signal (S) including back-
ground (B) will be given as

ASþB ¼ ASσS þABσB
σS þ σB

; ð29Þ

i.e., weighted by their respective cross sections. The
estimated values of asymmetries of the variables in each
signal mixed with the background are shown in Table IV
(top two rows). Although the AS for cos θW=l seems to be
(−) for IDM signal and (þ) for MSSM signal by looking
Fig. 4, the ASþB are (þ) for IDM, while they are (−) for
MSSM in most of the BP. The reasons are the following.
The asymmetries in SM are large (þ), and the SM cross
section is larger by roughly a factor of 5 compared to the
cross sections in IDM after all cuts; see Table III. Hence,
the asymmetries in IDM signal reduce but remain positive
when combined with the SM background weighted by
cross sections in accordance with Eq. (29). For the case of
MSSM, individual asymmetries in signal become (−) after
the inclusion cut jcos θW=lj < 0.9. Moreover, the cross
sections are larger in MSSM compared to SM by roughly
a factor of 2; see Table III. This makes the ASþB to be (−)
for most of the BP. The changes in the asymmetries with
respect to background are above 1σ statistical errors shown
in the second column in Table IV. Differences between the
signals are calculated in terms of χ2 and shown in Table IV
in the last three rows for all BPs for an integrated

FIG. 5. Normalized distribution of the azimuthal angle ϕ of the
charged particle (Cþ) at production level for the background and
the signals in BP1 in e−eþ collider with transversely polarized
beams at

ffiffiffi
s

p ¼ 1 TeV.

FIG. 6. Normalized distribution of ϕW (left panel) and ϕl (right panel) for the background and the signals in BP1 in eþe− collider forffiffiffi
s

p ¼ 1 TeV with transversely polarized beams.
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luminosity of L ¼ 100 fb−1. The two signals have a
difference of ∼10σ in all the four BPs based on the total
χ2 shown in the last row.
These asymmetries can help to identify the nature of the

signal if observed above the background. The asymmetries
remain (þ) for IDM, while they become (−) and above
statistical errors for BP2 and BP3, due to having large M0,
and (þ) and within 1σ error for other BPs. Nevertheless, the
characteristics of the asymmetries which can be useful to
distinguish between the signals are benchmark dependent.
We require a variable that can distinguish between the
signals irrespective of the benchmark masses; we will
explore such a possibility in the following section by using
transverse beam polarizations.

B. Analysis with transverse beam polarization

We observed in the previous section that, though the
angular variables cos θW and cos θl are useful in identifying
the nature of the signal, they are limited to being dependent
on benchmark selections. The transversely polarized beams
have the potential of exploring new physics from the
azimuthal distributions of final state particles [32–38].
Here, we use the facility of transverse polarization of e�
beams to showcase the distribution of azimuthal angle ϕ,
which has a very distinctive nature for two signals
irrespective of the benchmark selections as well as the
background. Before looking at the distribution of ϕ for the
final states, we first observe the distribution at the pro-
duction level and make an ansatz at the final state particle.
We calculate the normalized ϕ distribution for the Cþ
analytically in e−eþ → CþC− process for SM as well as for
the signals with transverse beam polarization of (80%,
60%) for (e−, eþ) beams and show them in Fig. 5 for BP1
with dotted lines. The same distributions for ϕC are also
shown with solid lines computed from events generated in
WHIZARD.1 The differential cross section in ϕC has the form

dσ
dϕC

¼ σ

2π
þ ηTξTfðβCÞ cos ð2ϕC − ϕe− þ ϕeþÞ; ð30Þ

where fðβCÞ is a function of boost (β) for the particle C
with different forms for different physics model; see
Appendix B for details. We choose the spin direction for

both the initial beams along the (þ) x axis as an example;
making the spin directions opposite for the two beams
would result in an overall phase shift for all models, not
affecting our findings. The explicit form of fðβCÞ [shown in
Eqs. (B18), (B29), and (B39) for analytical expressions]
makes the amplitude large for the IDM signal while
negligibly small for the MSSM signal and the WþW−

background; see Fig. 5. If the ϕC distribution in MSSM
attains an amplitude comparative to IDM in some other
benchmark scenario, the nature will be different due to
having a relative π phase shift compared to IDM, as can be
seen in Fig. 5. This behavior of ϕ distribution for the
mother particle Cþ is transferred to its decay products,
which in this case are the lepton and WðjjÞ even after
including the detector level effects as well as with ISR
effect, as seen in Fig. 6. Here also, the amplitude in IDM is
large enough compared to MSSM and SM, making the
ϕW=l a good discriminator for identifying the nature of the
signal. To depict a quantitative measure of distinction
between the two signals, we again construct asymmetries
for the ϕW=l given by

AðϕW=lÞ ¼
σðcos ð2ϕW=lÞ > 0Þ − σðcos ð2ϕW=lÞ < 0Þ
σðcos ð2ϕW=lÞ > 0Þ þ σðcos ð2ϕW=lÞ < 0Þ :

ð31Þ

We have listed the asymmetry values in Table V for the SM
background as well as all four BPs combined with the
background after the cuts Sel cutþ Kin cutþ Ang cut, as
used in the previous section for our analysis with longi-
tudinally polarized beams. The asymmetries for both ϕW
and ϕl are nearly zero (much smaller than the 1σ statistical
error given in the first and second rows of the second
column) for the background (shown in the second column)
and the MSSM signal. The asymmetries for the IDM
combined with the background, however, remain large
enough even after mixing with the background with a larger
cross section compared to the signal. Although the asym-
metry in IDM reduces as the mH increases [see Eq. (B29)
for the phi analytic] mainly due to smaller cross sections,
asymmetry can still be significant enough with higher
integrated luminosity. Thus, these two distributions and
their asymmetries are able to identify the spin nature of
Cþ=C0 contained in the signal if a significant deviation is

TABLE V. Azimuthal asymmetries for both the signals and background in the e−eþ → lþ 2jþ ET process for transversely polarized
initial beams. The error in the SM is shown for L ¼ 100 fb−1 of integrated luminosity.

ASMþIDM ASMþMSSM

Variables ASM δASM BP1 BP2 BP3 BP4 BP1 BP2 BP3 BP4

ϕW −0.0029 0.0379 0.0471 0.0382 0.0387 0.0116 −0.0053 −0.0032 −0.0057 −0.0038
ϕl 0.0113 0.0379 0.0475 0.0378 0.0375 0.0222 −0.0018 0.0009 0.0001 0.0027

1ISR effect has been neglected here for simplicity.
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observed at a future ILC. The signal identification can be
quantified with higher significance for higher luminosity.

V. CONCLUSION

In this article, we make an effort to identify the spin
nature of exotic charged particles and their neutral partner,
possibly a dark matter candidate, in the l�2jþ ET final
state at the future eþe− collider. We chose two well-known
BSM models such as IDM and MSSM, containing exotic
charged particles and neutral partners of spin zero (scalar)
and half (fermion), respectively, for the demonstration.
First, we devised some rectangular cuts on some kinematic
as well as angular variables to reduce the SM background in
order to find a significant deviation from the SM back-
ground. We then use the shape of angular variables and
their asymmetries to identify the nature of the new physics
signals. The cos θW=l distribution and their asymmetries
help distinguish and identify the MSSM and the IDM
signals over the SM backgrounds with longitudinally
polarized beams depending on the benchmark points.
The transverse beam polarization helps to identify the
IDM signal robustly through the azimuthal (ϕW=l) distri-
bution of the final state particles. Thus, both longitudinal
polarization and transverse polarization prove useful in
their respective ways in identifying the spin nature of exotic
charged particles and their partner contained in a new
physics signal if observed at a future e−eþ collider in the

l�2jþ ET final state. We note that, while the identification
gets help from the enhanced cross section in the longi-
tudinal polarization due to the large cross section, a more
clear and more distinct identification is established with the
use of transversely polarized beam.
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APPENDIX A: FEYNMAN RULES

The Feynman rules for the vertices involved in the SM,
IDM, and MSSM processes are

(i) Hþðk1ÞH−ðk2ÞAμ: −ieðk2 − k1Þμ,
(ii) Hþðk1ÞH−ðk2ÞZμ: −ið−g1 sin θW þ g2 cos θWÞðk2 −

k1Þμ,
(iii) χþ1 χ

−
1Aμ: −ieγμ,

(iv) χþ1 χ
−
1Zμ: iγμðvχ − aχγ5Þ ¼ igZγμððgL þ gRÞ þ ðgR −

gLÞγ5Þ,
where gL ¼ðsin2 θW − 3

4
− 1

4
ð2cos2 θL−1ÞÞ;gR¼ðsin2 θW −

3
4
− 1

4
ð2cos2 θR−1ÞÞ, and cos θL ¼ U11 and cos θR ¼ V11

are the cosine of left and right chargino mixing angles,
respectively.

APPENDIX B: AZIMUTHAL ANGULAR DISTRIBUTION WITH TRANSVERSELY POLARIZED BEAMS

1. SM: e − ðp1; s1Þe + ðp2; s2Þ → W − ðk2; λ2ÞW + ðk1; λ1Þ
The amplitude for the diagram with the photon in the s channel is given by

Mγðs1; s2; λ1; λ2Þ ¼ −
ie2

s
v̄ðs2; p2Þγμuðs1; p1Þϵνðλ1; k1Þϵρ�ðλ2; k2ÞGμνρðk1; k2Þ; ðB1Þ

where

Gμνρðk1; k2Þ≡ ððk2 − k1Þμgνρ − ð2k2 þ k1Þνgρν þ ð2k1 þ k2ÞρgμνÞ: ðB2Þ

Following are the expressions for the amplitudes of the diagrams containinga Z boson and neutrino propagator,
respectively:

MZðs1; s2; λ1; λ2Þ ¼
ie2

2ðs −M2
ZÞ sin2 θW

v̄ðs2; p2Þγμðvf − afγ5Þuðs1; p1Þϵνðλ1; k1Þϵρ�ðλ2; k2ÞGμνρðk1; k2Þ; ðB3Þ

Mνðs1; s2; λ1; λ2Þ ¼ −
ig22

ðp1 − k1Þ2
v̄ðs2; p2ÞγνPLðp1 − =k1ÞγμPLuðs1; p1Þϵμðλ1; k1Þϵν�ðλ2; k2Þ: ðB4Þ

The square amplitude with polarized initial beams is given by

jMj2 ¼
X
si;λj

Mðs1; s2; λ1; λ2ÞPe−ðs1; s3ÞPeþðs2; s4ÞM†ðs3; s4; λ1; λ2Þ; ðB5Þ
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where

M ¼ Mγ þMZ þMν: ðB6Þ

The spin density matrix for the electron and positron (Pe− and Peþ , respectively) is written as

Pe− ¼
 

1
2

1
2
e−iϕe− ηT

1
2
eiϕe− ηT

1
2

!
; ðB7Þ

Peþ ¼
 

1
2

1
2
e−iϕeþ ξT

1
2
eiϕeþ ξT

1
2

!
ðB8Þ

with their degree of polarization along transverse direction (θ ¼ π
2
, ϕe−=eþ) as (ηT , ξT), respectively,

Throughout the calculation, we use cθ and sθ as shorthand notations for cos θ and sin θ, respectively. The total square
amplitude can be written as

jMj2 ¼ jMγj2 þ jMZj2 þ jMνj2 þ 2ReðMγM
†
ZÞ þ 2ReðMγM

†
νÞ þ 2ReðMνM

†
ZÞ: ðB9Þ

The expressions for the square amplitude of various diagrams and their interference are given by

jMγj2 ¼
1

2ðβ2 − 1Þ2 ½β
2e4ð3β4 − 18β2 − ð3β4 − 2β2 þ 3Þcθ2 þ 19Þ

− β2ð3β4 − 2β2 þ 3Þðcθ2 − 1Þe4ηTξT cosð2ϕÞ cos ðϕe− − ϕeþÞ
− β2ð3β4 − 2β2 þ 3Þðcθ2 − 1Þe4ηTξT sinð2ϕÞ sin ðϕe− − ϕeþÞ�; ðB10Þ

jMZj2 ¼
2β2E4

ee4

sin4 θWðβ2 − 1Þ2ðs −M2
ZÞ2

½ða2f þ v2fÞð3β4 − 18β2 − ð3β4 − 2β2 þ 3Þcθ2 þ 19Þ

þ ð3β4 − 2β2 þ 3Þðcθ2 − 1ÞηTξTða2f − v2fÞ cosð2ϕÞ cos ðϕe− − ϕeþÞ
− ð3β4 − 2β2 þ 3Þðcθ2 − 1ÞηTξTða2f − v2fÞ sinð2ϕÞ sin ðϕe− − ϕeþÞ�; ðB11Þ

jMνj2 ¼
e4

4 sin4 θWðβ4 − 2β3cθ þ 2βcθ − 1Þ2 ½ðβ
6 − 10β4 þ 9β2 − 4β4cθ4 þ 4ðβ5 þ β3Þcθ3Þ

− ðð5β6 þ 6β4 − 11β2Þcθ2 þ 4ð3β4 − β2 − 4Þβcθ þ 4Þ�; ðB12Þ

ReðMγM
†
ZÞ ¼

2β2E2
ee4

2 sin2 θWðβ2 − 1Þ2ðs −M2
ZÞ

½vfð18β2 − 3β4 þ ð3β4 − 2β2 þ 3Þcθ2 − 19Þ

þ ð3β4 − 2β2 þ 3Þðcθ2 − 1ÞηTξTvf cosð2ϕÞ cos ðϕe− − ϕeþÞ
þ ð3β4 − 2β2 þ 3Þðcθ2 − 1ÞηTξTvf sinð2ϕÞ sin ðϕe− − ϕeþÞ�; ðB13Þ

ReðMγM
†
νÞ ¼ β2e4

4 sin2 θWðβ2 − 1Þ2ð2βcθ − β2 − 1Þ ½ð2β
2 − 3β4 − 3Þcθ2 þ ð3β4 − 18β2 þ 19Þ þ 2ðβ3 þ β1Þcθ3

þ β2e4ηTξTð2ðβ3 þ βÞcθ3 þ ð3β4 − 2β2 þ 3Þsθ2Þ cosð2ϕÞ cos ðϕe− − ϕeþÞ
þ ηTξTð2ðβ3 þ βÞcθ3 þ ð3β4 − 2β2 þ 3Þsθ2Þ sinð2ϕÞ sin ðϕe− − ϕeþÞ
− ηTξTð2ðβ3 þ βÞcθÞ cosð2ϕÞ cos ðϕe− − ϕeþÞ þ ð6β4 − 2β2 − 8Þcθ
− ηTξTð2ðβ3 þ βÞcθÞ sinð2ϕÞ sin ðϕe− − ϕeþÞ�; ðB14Þ
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ReðMνM
†
ZÞ ¼

βE2
ee4

2 sin4 θWðβ2 − 1Þ2ð2βcθ − β2 − 1Þðs −M2
ZÞ

½βðaf þ vfÞð2ðβ3 þ βÞcθ3Þ

þ βðaf þ vfÞ3β4sθ2 − ð18β2 − 19Þ
þ ηTξTðaf − vfÞðð3β4 − 2β2 þ 3Þsθ2Þ cosð2ϕÞ cos ðϕe− − ϕeþÞ
þ βηTξTðaf − vfÞðð3β4 − 2β2 þ 3Þsθ2Þ sinð2ϕÞ sin ðϕe− − ϕeþÞ
þ ðaf þ vfÞðð2β3 − 3βÞcθ2 þ ð6β4 − 2β2 − 8ÞcθÞ
− βηTξTð2ðβ3 þ βÞcθsθ2Þ sinð2ϕÞ sin ðϕe− − ϕeþÞ
− βηTξTð2ðβ3 þ βÞcθsθ2Þ cosð2ϕÞ cos ðϕe− − ϕeþÞ�: ðB15Þ

Here, β is the boost of theW bosons and
ffiffiffi
s

p ¼ 2Ee is the center of mass energy. Integrating over the polar angle θ, we get
the differential cross section with respect to the azimuthal angle (ϕ) as

dσ
dϕ

¼ β

64π2s

Z
d cos θjMj2 × ð3.894 × 1011Þ fb: ðB16Þ

In this case,

dσ
dϕ

¼ β × 3.894 × 1011

64π2s

�
E2
ee4ðaf þ vfÞð4βð3β6 − 23β4 þ β2 þ 27ÞÞ

12βM4
Wðs −M2

ZÞ

þ
E2
eηTe4ξTðaf − vfÞð3ðβ2 − 1Þ4 log ð1þβ

1−βÞ2Þ cosð2ϕ − ϕe− þ ϕeþÞ
12βM4

Wðs −M2
ZÞ sin4 θW

þ 16β3e4ð3β4 − 26β2 þ ð3β4 − 2β2 þ 3ÞηTξT cosð2ϕ − ϕe þ ϕpÞ þ 27Þ
24βM4

W
þ 8β2E4

ee4ðð3β4 − 26β2 þ 27Þða2f þ v2fÞÞ
3M4

Wðs −M2
ZÞ2 sin4 θW

−
8β2E2

ee4vfð3β4 − 26β2 þ ð3β4 − 2β2 þ 3ÞηTξT cosð2ϕ − ϕe þ ϕpÞ þ 27Þ
3M4

Wðs −M2
ZÞ sin2 θW

þ
e4ηTξTð3ðβ2 − 1Þ4 log ð1þβ

1−βÞ2 − 4βð3β6 þ β4 þ β2 þ 3ÞÞ cosð2ϕ − ϕe þ ϕpÞ
24βM4

W sin2 θW

−
e4ð3β5 − β3 þ 3ðβ2 − 1Þ2ðβ2 þ 1Þ tanh−1ðβÞ − 3βÞ

3βM4
W sin4 θW

−
e4ð4βð3β6 − 23β4 þ β2 þ 27ÞÞ

24βM4
W

−
e4ð3ðβ2 − 9Þðβ2 − 1Þ3 log ððβ − 1Þ2Þ − 6ðβ2 − 9Þðβ2 − 1Þ3 logðβ þ 1ÞÞ

24βM4
W

−
E2
ee4ðaf þ vfÞð3ðβ2 − 9Þðβ2 − 1Þ3 log ð1þβ

1−βÞ2Þ
12βM4

Wðs −M2
ZÞ

−
E2
eηTe4ξTðaf − vfÞð4ð3β6 þ β4 þ β2 þ 3ÞÞ cosð2ϕ − ϕe− þ ϕeþÞ

12M4
Wðs −M2

ZÞ sin4 θW

−
8β2E4

ee4ðð3β4 − 2β2 þ 3ÞηTξTða2f − v2fÞ cosð2ϕ − ϕe− þ ϕeþÞÞ
3M4

Wðs −M2
ZÞ2 sin4 θW

�
: ðB17Þ

After putting the values of masses, couplings, and energy of the beam in the nonoscillatory part of the above equation, while
keeping the coefficient of the oscillatory part as a function of ηT , ξT , and fðβWÞ, we find the following expression for the
differential cross section:

dσ
dϕ

¼ 427.968þ ηTξTfðβÞ cosð2ϕ − ϕe− þ ϕeþÞ; ðB18Þ

where
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fðβÞ ¼ ð0.0261478β8 − 0.104591β6 þ 0.156887β4 − 0.104591β2 þ 0.0261478Þ log ðð1 − βÞ2Þ
M4

W

−
ð0.0522956β8 − 0.209182β6 þ 0.313774β4 − 0.209182β2 þ 0.0522956Þ logð1þ βÞ

M4
W

−
0.105566β7 − 0.174968β5 þ 0.175293β3 − 0.104591β

M4
W

: ðB19Þ

2. IDM: e− ðp1; s1Þe + ðp2; s2Þ → H − ðk2ÞH + ðk1Þ
The amplitudes, in this case, for the s-channel diagrams containing a photon and Z boson, are given below as

Mγðs1; s2Þ ¼ −
ie2

s
ūðs2; p2Þγμuðs1; p1Þðk1 − k2Þμ; ðB20Þ

MZðs1; s2Þ ¼
igZðg2 cos θW − g1 sin θWÞ

4ðs −M2
ZÞ

ūðs2; p2Þγμðvf − afγ5Þuðs1; p1Þðk1 − k2Þμ: ðB21Þ

The square amplitude for the process is given by

jMj2 ¼
X
si

Mðs1; s2ÞPe−ðs1; s3ÞPeþðs2; s4ÞM†ðs3; s4Þ; ðB22Þ

where

M ¼ Mγ þMZ: ðB23Þ

The expressions for square amplitudes of the two diagrams along with their interference are written as

jMj2 ¼ jMγj2 þ jMZj2 þ 2ReðMγM
†
ZÞ: ðB24Þ

Here,

jMγj2 ¼
1

4
β2sθ2e4e−iðϕe−þϕeþÞð2eiðϕe−þϕeþÞ − iηTξT sinð2ϕÞðe2iϕe− − e2iϕeþ Þ þ ηTξT cosð2ϕÞðe2iϕe− þ e2iϕeþ ÞÞ; ðB25Þ

jMZj2 ¼
1

ðs −M2
ZÞ2 tan2 2θW

½β2sθ2E4
eg2Ze

−iðϕe−þϕeþÞe2ð2ða2f þ v2fÞeiðϕe−þϕeþÞÞ

− β2ðsθ2ÞE4
eg2Ze

−iðϕe−þϕeþÞe2ðηTξTða2f − v2fÞ cosð2ϕÞðe2iϕe− þ e2iϕeþ ÞÞ
þ iβ2sθ2E4

eg2Ze
−iðϕe−þϕeþÞe2ðηTξTða2f − v2fÞ sinð2ϕÞðe2iϕe− − e2iϕeþ ÞÞ�; ðB26Þ

ReðMγM
†
ZÞ ¼

1

2ðs −M2
ZÞ tan 2θW

½β2ðcθ2 − 1ÞE2
ee3gZvfe−iðϕe−þϕeþÞð2eiðϕe−þϕeþÞÞ

þ β2ðsθ2ÞE2
ee3gZvfe−iðϕe−þϕeþÞðiηTξT sinð2ϕÞðe2iϕe− − e2iϕeþ ÞÞ

þ β2ðsθ2ÞE2
ee3gZvfe−iðϕe−þϕeþÞðηTξT cosð2ϕÞðe2iϕe− þ e2iϕeþ ÞÞ�: ðB27Þ

In this case, the β is the boost for the H�. From the above square amplitude, we obtain the differential cross section, after
integrating over the variable θ, as
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dσ
dϕ

¼ 3.894 × 1011

64π2s

�
8β3E4

eg2Ze
2ða2f − ηTξTðaf − vfÞðaf þ vfÞ cosð2ϕ − ϕe− þ ϕeþÞ þ v2fÞ

3ðs −M2
ZÞ2 tan2 2θW

þ 2

3
β3e4ðηTξT cosð2ϕ − ϕe− þ ϕeþÞ þ 1Þ − 8β3E2

ee3gZvfðηTξT cosð2ϕ − ϕe− þ ϕeþÞ þ 1Þ
3ðs −M2

ZÞ tan 2θW

�
: ðB28Þ

With the values of masses, couplings, and energy of the beam, we find the differential cross section to be a function of ηT ,
ξT , and fðβÞ as follows:

dσ
dϕ

¼ 4.64277β3 þ 3.42967ηTξTβ3 cosð2ϕ − ϕe− þ ϕeþÞ: ðB29Þ

3. MSSM: e − ðp1; s1Þe + ðp2; s2Þ → χ − ðk1; s3Þχ + ðk2; s4Þ
The amplitudes of two s-channel processes have the following expressions:

Mγðs1; s2; λ3; λ4Þ ¼
ie2

s
v̄ðs2; p2Þγμuðs1; p1Þūχðλ3; k1Þγμvχðλ4; k2Þ; ðB30Þ

MZðs1; s2; λ3; λ4Þ ¼
ig2Z

4ðs −M2
ZÞ

v̄ðs2; p2Þγμðvf − afγ5Þuðs1; p1Þūχðλ3; k1Þγμðvχ − aχγ5Þvχðλ4; k2Þ: ðB31Þ

The square of the amplitude is written as

jMj2 ¼
X
si;λi

Mðs1; s2; λ3; λ4ÞPe−ðs1; s3ÞPeþðs2; s4ÞM†ðs3; s4; λ3; λ4Þ; ðB32Þ

where

M ¼ Mγ þMZ: ðB33Þ

The expressions for the square amplitude of two s-channel diagrams and their cross term are given as

jMj2 ¼ jMγj2 þ jMZj2 þ 2ReðMγM
†
ZÞ: ðB34Þ

Here,

jMγj2 ¼
e4

2
ðe−ið2ϕþϕe−þϕeþÞβ2ðcθ2 − 1ÞηTξTðe2ið2ϕþϕeþÞ þ e2iϕe− Þ − ð2ðβ2sθ2 − 2ÞÞÞ; ðB35Þ

jMZj2 ¼
1

ðs −M2
ZÞ2

½E4
eg2zv2fða2χβ2ðcθ2 þ 1Þ þ v2χðβ2ðcθ2 − 1Þ þ 2ÞÞ

þ E4
eg2zð2a2fða2χβ2ðcθ2 þ 1Þ þ v2χðβ2ðcθ2 − 1Þ þ 2ÞÞ þ 16afaχβcθvfvχÞ

þ ða2f − v2fÞE4
eg2ze−ið2ϕþϕe−þϕeþÞβ2ðsθ2ÞηTξTða2χ þ v2χÞðe2ið2ϕþϕeþÞ þ e2iϕe− Þ�; ðB36Þ

ReðMγM
†
ZÞ ¼

1

2ðs −M2
ZÞ

½2E2
ee2gzβ2ðcθ2 − 1ÞηTξTvfvχe2iϕe− þ 2E2

ee2gzð2afaχβcθ þ vfvχðβ2ðcθ2 − 1Þ þ 2ÞÞ

þ E2
ee2gze−ið2ϕþϕe−þϕeþÞðβ2ðcθ2 − 1ÞηTξTvfvχe2ið2ϕþϕeþÞÞ�: ðB37Þ

Here, the β stands for the boost of χ�. Using the above matrix amplitude square, the differential cross section is found to be
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dσ
dϕ

¼ 3.894 × 1011β

64π2s

�
8E2

ee2gzvfvχðβ2ηTξT cosð2ϕ − ϕe− þ ϕeþÞ þ β2 − 3Þ
3ðs −M2

ZÞ

þ 4E4
eg2zðβ2ηTξTða2f − v2fÞðaf þ vfÞða2χ þ v2χÞ cosð2ϕ − ϕe− þ ϕeþÞÞ

3ðs −M2
ZÞ2

−
4

3
e4ðβ2ηTξT cosð2ϕ − ϕe− þ ϕeþÞ þ β2 − 3Þ þ 4E4

eg2zðða2f þ v2fÞðð3 − β2Þv2χ þ 2a2χβ2ÞÞ
3ðs −M2

ZÞ2
�
: ðB38Þ

Substituting the values of all the couplings, masses, and beam energy except the mχ , we obtain the expression for the
differential cross section as

dσ
dϕ

¼ 52.4371β − 17.457β3 − 0.966784β3ηTξT cos ð2ϕþ ϕeþ − ϕe−Þ: ðB39Þ
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