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The interaction of defects can lead to a phenomenon of erasure. During this process, a lower-dimensional
object gets absorbed and dissolved by a higher-dimensional one. The phenomenon is very general and has a
wide range of implications, both cosmological and fundamental. In particular, all types of strings, such as
cosmic strings, QCD flux tubes, or fundamental strings, get erased when encountering a defect, either
solitonic or a D-brane that deconfines their fluxes. This leads to a novel mechanism of cosmic string
breakup, accompanied by gravitational and electromagnetic radiations. The arguments based on loss of
coherence and the entropy count suggest that the erasure probability is very close to one, and strings never
make it through the deconfining layer. We confirm this by a numerical simulation of the system, which
effectively captures the essence of the phenomenon: a 2þ 1-dimensional problem of interaction between a
Nielsen-Olesen vortex of aUð1Þ Higgs model and a domain wall, inside which theUð1Þ gauge group is un-
Higgsed and the magnetic flux is deconfined. In accordance with the entropy argument, in our simulation,
the vortex never makes it across the wall.
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I. OUTLINE

Topological defects, such as domain walls, cosmic
strings, and magnetic monopoles, appear in various quan-
tum field theories. Their classification is determined by the
topology of the vacuum manifold, M. Due to their
important role in cosmology, the topological defects have
been objects of extensive studies; for a review, see [1].
Another important aspect of topological defects is that

they can serve as dual laboratories for studying the
fundamental “electric”-type extended objects, for which
the description in terms of nonsingular classical solutions is
not known. The examples of such objects are provided by
QCD strings of a confining gauge theory, as well as by the
fundamental strings (F strings) and D-branes of string
theory.
In some cases, one and the same theory contains objects

of different dimensionality that share the relevant vacuum
manifold. For example, a confining gauge theory contains
QCD strings. Strings can be arbitrarily long, provided no
light quarks are included in the theory. However, the
same theory can also contain domain walls that support

a deconfined phase in their world volume. This setup was
proposed in Dvali-Shifman (DS) model [2] and has several
implications.
First, such domain walls localize a massless gauge field.

Correspondingly, the QCD strings that carry the chromo-
electric flux can end on them. The flux is spread inside the
wall in the form of a Coulomb electric flux of the 2þ 1-
dimensional world-volume theory.
Notice that, due to gauge invariance, this general feature

of the DS mechanism persists for the localization of
massless gauge fields on the branes of higher dimension-
ality and therefore, has important implications for “brane-
world” scenarios [2,3]. In all these setups, the Standard
Model gauge fields, such as the Uð1Þ photon, are localized
on a 3-brane embedded in a higher-dimensional space. This
implies the existence of bulk strings in the form of flux
tubes of the Uð1Þ electric field.
In this sense, the theory [2] realizes a setup very similar

to D-branes of string theory. Some aspects of this con-
nection that will be extended in our analysis were studied
in [4,5].
The connection with D-branes is also evident in the

second realization of the deconfining domain wall dis-
cussed in [2]. This wall is formed by the gaugino
condensate of a supersymmetric SUðNÞ gauge theory. It
was shown there that, due to a central extension of the
supersymmetric algebra, the tension of the wall could be
computed exactly in terms of the gaugino condensate,
which in large N scales as N. The following observation by
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Witten also supports the connection to D-branes [6]. The N
scaling of the wall tension matches the expectations for a
D-brane of the string theory with string coupling 1=N
realized by large N QCD [7]. As studied in many
subsequent papers, this matches the idea of a partial
deconfinement of SUðNÞ theory within the domain wall
formed by the gaugino condensate.
Correspondingly, the study of interactions between

strings and deconfining domain walls of [2] and of their
magnetic dual [4] can give glimpses of new dynamics of
QCD strings in confining theories and also create some
useful parallels with their string-theoretic “cousins.”
Another framework of our interest is given by the

domain walls and monopoles formed by the same order
parameter. This was shown to be the case in the minimal
grand unified theory [8]. In this case, the grand unified
symmetry, which is spontaneously broken in the vacuum, is
restored in the core of the domain wall. In all the above
cases, the interaction among the objects of different
dimensionality can result in the “erasure” of the lower-
dimensional objects. This term was coined in [8], where it
was shown that when a monopole encounters a wall, it
unwinds, and the magnetic charge spreads over the wall.
The original motivation of this proposal was to show

that, even if the grand unified phase transition occurs after
inflation, the cosmological monopole problem [9,10] can
nevertheless be absent. This is due to the fact that besides
monopoles, the same phase transition forms unstable
domain walls. The interaction between the monopoles
and domain walls leads to monopole erasure and the
subsequent decay of the domain walls. This mechanism
has been further investigated and largely confirmed in the
series of papers [11–13]. It was found that the monopole
unwinds on the wall, while the winding number spreads out
on the surface.
We also remark that an analogous erasure effect in the

interaction of skyrmions with walls was detected in [14].
An important question concerns the probability of the

erasure. An intuitive argument in [8] indicated that the
probability of a monopole passage through the wall is
highly suppressed. The reason is the loss of coherence.
When the monopole hits the wall, it sets traveling waves
that take away part of the coherence required for recreating
a monopole on the other side.
The coherence argument supporting the high probability

of erasure was made more explicit in the recent work [15].
There, the annihilation of a pair of ‘t Hooft-Polyakov
monopoles connected by a string was studied. This work
extended the analysis beyond the approximation of zero
widths of string and monopoles previously performed by
Martin and Vilenkin [16]. It was observed that in a head-on
collision, the monopoles are never re-created. The loss of
coherence and entropy suppression explained this. Once
the monopoles and antimonopoles come on top of each
other, the system loses coherence due to induced waves.

From here, the system evolves toward the most entropic
state. The highly coherent configuration of a monopole-
antimonopole pair connected by a string has very little
entropy compared to the entropy of waves of gauge and
Higgs particles.
Putting it differently, the state of the monopole-

antimonopole has much lower entropy than what is required
for saturating the unitarity bound [17]. Correspondingly,
the system chooses to decay into the waves rather than to
re-create monopoles. It was further argued in [15] that
the same counting must hold in the case of annihilation of
heavy quarks connected by a QCD string.
The entropy argument explaining the suppression of

monopole re-creation in [15] must also apply to the case of
the monopole collision with the wall. Mentally, we can
think of a wall as a layer filled with a densely packed “sea”
of monopoles and antimonopoles with a zero net magnetic
charge. When a monopole hits the wall, it annihilates with
an antimonopole. This process endows the wall with a
magnetic charge that spreads over it. A further re-creation
of the monopole on the other side of the wall is subjected to
a similar entropy suppression as in the case of an annihilat-
ing monopole pair studied in [15].
In the present paper, we wish to enhance the domain of

study of the phenomenon of erasure by including the
interaction between a domain wall and a vortex or string.
Apart from the immediate goal of extending the erasure
mechanism to the vortex-wall system, several motivations
exist. This model represents a dual prototype of the
interaction between the QCD string and a domain wall
of the deconfined phase of the DS model [2].
As said, the universal feature of the DS gauge field

localization mechanism is confining bulk and deconfining
brane. Due to this, the same applies to generic brane-world
models in which a massless photon is localized on a brane
embedded in a higher-dimensional bulk [3]. Therefore, all
such models must possess cosmic strings in the form of
bulk Uð1Þ flux tubes of confined photons. Strings are
erased upon colliding with “our” brane. This erasure
provides a novel mechanism of string decay, with poten-
tially observable signatures of gravitational and electro-
magnetic radiation.
Likewise, a simple vortex and wall system also repre-

sents a prototype describing the erasure of a fundamental
string by a D-brane [4].
Besides the benefit of understanding the D-brane and

string dynamics from the effective field theoretic perspective,
this study has cosmological implications for the evolution of
networks ofD-strings andF strings [18,19]. Such defects are
produced after brane inflation [20,21] and thus can play an
essential role in postinflationary cosmology [22–24].
Annihilating strings can be an important source of gravity
waves and primordial black holes [25]. The same applies to
erasing strings, which give different mechanisms of gravi-
tational radiation.
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Evidence of the erasure phenomenon has also been
recognized experimentally. The interactions of topological
defects have been studied in 3He [26,27]. A-phase vortices
and domain walls separating the A andB phases of 3He have
been investigated and observed experimentally. It has been
found that singular vortices do not penetrate from one phase
into the other. The measurements show that the vortices
experience a force from the advancing interface and are
pushed as a vortex layer in front of it. The authors identified
critical velocity, at which a vortex will leave the layer and
penetrate through the interface, transforming thereby into a
new structure [28]. This behavior indicates that A-phase
vorticity cannot cross the AB interface. Instead, it is
accumulated on the A-phase side of the interface such that
it coats the interface with a dense vortex layer [29].
In the present paper, we shall study the unwinding

process of a Nielsen-Olesen vortex and string [30] during
its collision with a domain wall containing a core with a
Coulomb-like phase, inside which the Uð1Þ symmetry is
un-Higgsed. We consider the previous dynamics in a
minimal model that simultaneously allows the existence
of vortices and domain walls. Since, in the case of a planar
string parallel to a domain wall, the problem is effectively
2þ 1-dimensional, we shall study the dimensionally
reduced model with domain walls and vortexes. This
reduction has a double advantage. On one hand, this model
represents a simplified version of a wall-monopole system
of 3þ 1-dimensional theory. On the other hand, it effec-
tively captures the 3þ 1-dimensional dynamics of erasure
of cosmic strings by walls (or F strings by D-branes) as
long as the curvature radius of the string loop and the wall
bubble is larger than the string and wall thickness. Figure 1
shows a graphical representation of such a situation.

II. DVALI-SHIFMAN MODEL

First of all, we shall briefly review the model of [2]. We
shall consider the version of the model with a single scalar

field, as discussed in [4,5]. Let us introduce a SUð2Þ gauge
theory with the Higgs field ϕa in the adjoint representation
of the group, with a ¼ 1, 2, 3 the adjoint index. The
Lagrangian has the following form,

L ¼ −
1

4
Fa
μνFμνa þ ðDμϕÞaðDμϕÞa − VðϕÞ; ð1Þ

where the potential is chosen as

VðϕÞ ¼ λ2ðϕbϕbÞðϕaϕa − ν2Þ2: ð2Þ

The gauge field strength is Fa
μν¼∂μAa

ν−∂νAa
μ−eϵabcAb

μAc
ν,

and the covariant derivative is ðDμϕÞa¼∂μϕ
a−eϵabcAb

μϕ
c.

Notice that the nonrenormalizable appearance of the
potential is no concern for our analysis since such a
potential can easily be obtained from the renormalizable
theory of [2] by integrating out an additional gauge singled
field. Several such examples were discussed in [4].
At the classical level, this theory possesses two degen-

erate vacua. In the first minimum, the vacuum expect-
ation value (VEV) of the Higgs triplet vanishes, ϕa ¼ 0.
Correspondingly, all three SUð2Þ gauge bosons are mass-
less. The Higgs triplet has a mass mϕ ¼ ffiffiffi

2
p

λν2.
In the second vacuum, ϕ has a nonzero VEV, and SUð2Þ

is Higgsed down to Uð1Þ. In the basis in which the VEV is
chosen as ϕa ¼ δa3ν, the massless Uð1Þ gauge field is A3

μ,
whereas the other two components form a charged massive
vector field and its antiparticle, A�

μ ≡ 1ffiffi
2

p ðA1 � iA2Þ. The
longitudinal components of these massive vectors are the
two would-be Goldstone components of the Higgs triplet,
ϕ�
μ ≡ 1ffiffi

2
p ðϕ1 � iϕ2Þ. The third component is a neutral

scalar of mass mh ¼ 2
ffiffiffi
2

p
λv2.

Notice that the Higgs vacuum, SUð2Þ → Uð1Þ, supports
the ’t Hooft-Polyakov magnetic monopoles in the form
of solitons. These are in the “magnetic” Coulomb phase.

FIG. 1. Graphical representation of the interaction between a string of the bulk theory, in orange, with a layer representing a domain
wall or a brane, in gray. Whenever the string touches the layer, the flux flowing through it spreads throughout the layer in the form of a
Uð1Þ Coulomb electric field, in purple. From the point of view of a 2þ 1-dimensional observer, the string-wall junction plays the role of
a pointlike electric charge. The same behavior applies to the dual case.
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At the same time, the electric charges are in the “electric”
Coulomb phase.
At the quantum level, the situation changes in the

following way. In the un-Higgsed vacuum, the theory
confines and develops a mass gap set by the corresponding
scale of QCD, Λ. At distances larger than Λ−1, the theory
becomes a theory of composite degrees of freedom. The
chromo-electric field is trapped in flux tubes, which form
the QCD strings. This phenomenon is commonly under-
stood as the dual Meissner effect of condensation of SUð2Þ
magnetic monopoles [31].
In the Higgs vacuum, the situation is different. If ν ≫ Λ,

the Higgs phase is unaffected by the quantum effects. Then,
at distances > 1=ν, the low energy theory is described by a
masslessUð1Þ photon and thereby is in the Coulomb phase.
The situation can thus be summarized as follows:

hϕai ¼
�
0; SUð2Þ confining phase;

δa3ν; Uð1ÞCoulomb phase:
ð3Þ

In the Uð1Þ vacuum, both elementary electric charges and
solitonic magnetic ones are in the Coulomb phase. In the
SUð2Þ confining vacuum, the magnetic charges condense,
and the magnetic field is screened, whereas the electric
field is trapped in fluxed tubes, and electric charges are
confining.
The two vacua can coexist while being separated by a

domain wall. The classical solutions for infinite wall and
antiwall located in x ¼ 0 plane can be evaluated exactly
and have the following forms1:

ϕð�ν;0ÞðxÞ ¼ �ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ emhx

r
; ð4Þ

ϕð0;�νÞðxÞ ¼ �ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ e−mhx

r
: ð5Þ

In this situation, one can envisage the following dynam-
ics. The massless photon existing in Uð1Þ vacuum cannot
pass through the wall unless its energy exceeds the mass
gap of the confining phase. Hitting the wall with a high-
energy photon, we can excite some glueballs on the
other side.
At the same time, a glueball of energy < ν hitting the

wall from the SUð2Þ-confining side will excite massless
photons propagating on the other side of the wall. Of
course, in both cases, there also will be waves induced
along the wall. In this setup, in [5], the DS model was
realized by placing the parallel wall and antiwall at some
distance l apart. In this way, a layer of the Uð1Þ Coulomb
phase of thickness l is created in between the two confining
SUð2Þ phases. In this case, the effective 2þ 1-dimensional
theory describing the physics inside the layer at distances

> l contains a massless photon [2]. This theory confines,
due to instantons representing the monopoles that tunnel
through the layer [5]. In this sense, the low energy 2þ 1-
dimensional theory realizes the confinement mechanism by
Polyakov [33]. However, the scale of the confinement of
the world-volume Uð1Þ theory is exponentially small and
can be ignored for present purposes. Correspondingly, the
system supports the QCD strings of the bulk SUð2Þ theory
that end on the layer. Whenever the QCD string touches the
layer, the flux flowing through the string spreads through-
out the layer in the form of a Uð1Þ Coulomb electric field.
From the point of view of a 2þ 1-dimensional observer,
the string-wall junction plays the role of a pointlike electric
charge, as shown in Fig. 1.
In this way, the model realizes the idea of a field-

theoretic D-brane. The QCD strings attached to the layer
play the role of the fundamental open strings, whereas the
layer takes up the role of a D-brane. Due to the above, a
QCD string can be erased if it encounters a layer. What is
the probability of erasure? That is, we would like to know
what are the chances for a QCD string to pass through
the layer.
For definiteness, we consider a string that lies in the

plane parallel to the layer. For example, the simplest case is
a straight infinite string parallel to the layer. Of course, if
the string moves slowly, the erasure is inevitable. The
question is what happens if the sting moves sufficiently
rapidly. The coherence-loss argument suggests that such a
passage must be exponentially suppressed. Namely, upon
the collision with the layer, the QCD string is expected to
create the traveling waves that take away coherence. This
suppresses the possibility of creating a highly coherent
configuration on the other side of the layer. The string does
not have sufficient entropy for matching the entropy of the
multiparticle waves.
We shall study this phenomenon on a dual system in

which the role of the QCD string is played by a Uð1Þ
magnetic flux tube of Nielsen-Olesen type. In the case of a
string parallel to the wall, due to translation symmetry
along it, the problem effectively becomes 2þ 1-dimen-
sional. The same is true in any collision process in which
the curvature radii of touching wall and string segments are
much larger than the thicknesses of the two objects.
In all such situations, the problem can be effectively

substituted by a dimensionally reduced version in which a
vortex replaces the string. As already noticed, since the
vortex is pointlike, the 2þ 1-dimensional version also
serves as a prototype model for the erasure of a monopole
by the domain wall.

III. THE MODEL

We shall study the dimensionally reduced version of the
Uð1Þmodel constructed in [4] as a dual prototype of SUð2Þ
confining theory (1). It is obtained by replacing the SUð2Þ
gauge group by Uð1Þ and replacing the adjoint scalar1See also [32].
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Higgs of SUð2Þ by a complex scalar charged under Uð1Þ.
Thus, let us consider a (2þ 1)-dimensional renormalizable
model of a complex scalar field, ϕ with a Uð1Þ gauge
symmetry, and Lagrangian given by

L ¼ −
1

4
FμνFμν þ ðDμϕÞ�Dμϕ − VðϕÞ; ð6Þ

where the potential is

VðϕÞ ¼ λ2ϕϕ�ðϕϕ� − ν2Þ2: ð7Þ

The gauge field strength is Fμν ¼ ∂μAν − ∂νAμ, and the
covariant derivative is Dμ ¼ ∂μ − ieAμ. Notice that the
form of the potential is similar to (2). This allows for having
the two degenerate vacua with different phases of the gauge
theory, with and without a mass gap. The gapless phase is
again represented by a massless Uð1Þ gauge field in the
Coulomb regime. However, unlike the previous example,
the phase with a mass gap is realized differently: Instead of
becoming a subgroup of a confining SUð2Þ theory, the
Uð1Þ is simply Higgsed.
The field equations for ϕ and Aμ are, respectively,

□ϕþ ∂VðϕÞ
∂ϕ� ¼ 0; ð8Þ

∂μFμν ¼ jν; ð9Þ

where □ ¼ DμDμ, and jμ ¼ −ieðϕ�Dμϕ − ðDμϕÞ�ϕÞ is
the Noether current associated to the Uð1Þ symmetry.
As in the SUð2Þ example, the minimum of the potential

(7) has two disconnected components. As the field ϕ
acquires a certain VEV, hϕi, it has the following two
possibilities:

hϕi ¼
�
0; Coulomb or Symmetric Phase;

νeiα; Higgs or Broken Phase;
ð10Þ

where α ¼ αðxÞ is an arbitrary phase.
In the first possibility, hϕi ¼ 0, if we consider perturba-

tions around the VEV, we find the following spectrum of
excitations: a charged boson—corresponding to the field
ϕ—with mass mϕ ¼ λν2, and a massless gauge boson—
corresponding to the gauge field Aμ. We notice that the
spectrum corresponds to a Coulomb or symmetric phase.
On the other hand, hϕi ¼ νeiα corresponds to a Higgs or
broken phase. More precisely, the Higgs mechanism
occurs, and the gauge boson becomes massive.
Lets consider perturbations about the VEV as ϕ ¼

ðνþ hffiffi
2

p Þeiθ, where h and θ are real fields. We then find

the following spectrum: a neutral Higgs boson—
corresponding to the scalar field h—with mass
mh ¼ 2λν2; and a massive vector boson—corresponding

to the vector field Bμ ¼ Aμ − 1
e ∂μθ, with mass mv ¼

ffiffiffi
2

p
eν.

So far, we have shown that there exist two different
phases in the model. For the case at hand, there can exist
static field configurations that depend on one space
dimension and asymptotically approach the two different
phases. We will refer to these configurations as ðν; 0Þ
domain walls. Additionally, in the broken phase, one can
show that π1ðMHÞ ¼ Z. Thus, there exist static field
configurations that approach the Higgs Phase with nonzero
winding number asymptotically. These configurations are
Nielsen-Olesen-like vortices.
It is possible to form a finite-size configuration that

asymptotically interpolates two broken phases with a core
inside which the full symmetry group Uð1Þ is nearly un-
Higgsed. Strictly speaking, such configurations are not
topologically protected. However, they can be sufficiently
long-lived for our purposes. To set the terminology, we will
refer to this configuration as a Coulomb vacuum layer
(CVL). This name encodes the information that in the limit
of an infinite layer width, the electric and magnetic charges
would be in the Coulomb phase. However, for a finite
width, this is not the case, as shall be explained in a separate
section. So, the name “Coulomb” refers to the nature of the
layer in the limit of infinite width.
As a first approximation, a Coulomb vacuum layer can

be achieved as a concatenation of two ðν; 0Þ domain walls:
one interpolating between the Higgs and the Coulomb
phases and a second one interpolating between the
Coulomb and the Higgs phases. As a result, inside the
core of a Coulomb vacuum layer, the Uð1Þ symmetry is
nearly un-Higgsed, as required, while asymptotically inter-
polating toward Higgs phases.
We are then ready to study the interaction of vortices

and Coulomb vacuum layers. In the following sections, we
describe in detail the Coulomb vacuum layers, the vortices,
and their interactions. Finally, we present our results
of the numerical simulations and discuss how the vortex
unwinding occurs in the core of the Coulomb vacuum
layer.

A. Domain walls and vacuum layers

Domain walls and vortices belong to the spectrum of the
model (6). A ðν; 0Þ domain wall is a topological field
configuration interpolating the Higgs and the Coulomb
vacua. More precisely, let’s assume for now that the field
ϕ ¼ ϕðt; x; yÞ depends only on the coordinate x. Moreover,
let’s assume that the domain wall does not carry an electric
charge. Therefore, we can fix Aμ ¼ 0 and ϕ to be real.
Under these assumptions, the Lagrangian (6) becomes the
(1þ 1)-dimensional ϕ6 model. The Field profiles can be
computed analytically to be

ϕð�ν;0ÞðxÞ ¼ �ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ emhx

r
; ð11Þ
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ϕð0;�νÞðxÞ ¼ �ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ e−mhx

r
; ð12Þ

and we refer to them as ð�ν; 0Þ and ð0;�νÞ domain walls,
respectively. There are four different solutions correspond-
ing to the possible asymptotic behaviors of a domain wall:
ðν; 0Þ, ð−ν; 0Þ, ð0; νÞ, and ð0;−νÞ.2
Now, let us construct a field configuration interpolating

between two different Higgs phases with a core inside
which the symmetry is restored, i.e., a Coulomb vacuum
layer. We achieve this by concatenating a ð�ν; 0Þ and a
ð0;�νÞ domain wall. The ansatz for these configurations is
given by

ϕðν;0;νÞðxÞ ¼ ϕðν;0Þ

�
xþ l

2

�
þ ϕð0;νÞ

�
x −

l
2

�
; ð13Þ

where l is the distance between the domain walls. We will
refer to these field configurations as a Coulomb vacuum
layer or a ð�ν; 0;�νÞ domain wall. Figure 2 shows an
example of a Coulomb vacuum layer profile.
Notice that the ansatz (13) is not a solution to the static

field equation (8). Therefore, it is expected to be unstable
under time evolution. The dynamical evolution of such
configurations has been investigated by Gani et al. [32].
They used the collective coordinate approximation and
numerical simulations to study the classical evolution of the
ansatz. There are two conclusions that are relevant to our
discussion. The first one is with respect to the dynamical
evolution of the ðν; 0; νÞ domain wall. It is energetically
favorable for the ðν; 0Þ and the ð0; νÞ walls to attract each
other, and eventually, they collide. As a consequence, the
Coulomb vacuum layer is unstable. The two colliding walls
can form a long-lived bound state (referred to as bion). We

have reproduced these phenomena by solving the field
equation (8) numerically. The second relevant conclusion is
with respect to the dynamical evolution of the ð−ν; 0; νÞ
domain wall. In this case, the two walls repel each other till
they get a limited speed, and the parameter l increases
infinitely.3

In this setup, a ðν; 0; νÞ domain wall configuration forms
a Coulomb vacuum layer characterized by its width l.
Although this configuration is unstable, we find numeri-
cally that if 40m−1

h ≲ L, the layer can be considered to be
long-lived for timescales of order Oð102m−1

h Þ, where mh is
the mass of the Higgs-like boson.

B. Vortex

It is well known that vortex lines—or cosmic strings—
arise in models in which the vacuum manifold M is not
simply connected. This is the case for the model (6) in the
Higgs phase. In this case, π1ðMHÞ ¼ π1ðUð1ÞÞ ¼ Z.
Each homotopy class corresponds to a different winding
number, n. These solutions are similar to the Nielsen and
Olesen [30] vortex lines that arise in the Abelian Higgs
model. Moreover, the winding number is a topological
number characterizing the field configuration, and it is an
integral of motion [34]. In fact, the winding number can be
written as

n ¼ lim
r→∞

1

2πiν2

I
Cr

dxi
1

2
ðϕ�

∂iϕ − ϕ∂iϕ
�Þ; ð14Þ

where Cr is the circle of radius r and centered at the origin.
The gauge invariance is explicit. Consequently, field
configurations with a fixed winding number n are (asymp-
totically) equivalent up to smooth gauge transformations.
The winding number can also be computed from the flux of
the magnetic field B as

n ¼ e
2π

Z
Bd2x: ð15Þ

We look for field configurations with finite energy,
that asymptotically approach the Higgs Phase, and wind
around MH n times. As a first approach, we look for
static cylindrical-symmetric solutions ðϕ; AμÞ in the tem-
poral gauge A0 ¼ 0. The most general—up to gauge
transformations—invariant ansatz for the field profiles are

ϕðr; θÞ ¼ νeinθFðrÞ; ð16Þ

Aiðr; θÞ ¼ −
n
er

ϵijnjAðrÞ; ð17Þ

FIG. 2. Coulomb vacuum layer profile, ϕðν;0;νÞðxÞ, for a core
size l ¼ 40m−1

h .

2Here, we used the notation ðϕ−;ϕþÞ, where ϕ� ≡
limx→�∞ ϕðxÞ.

3A similar discussion applies to the evolution of the ðν; 0;−νÞ
domain wall. We reproduced these phenomena numerically in
both cases.
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where FðrÞ and AðrÞ are smooth numerical functions that
have the following asymptotic behavior:

FðrÞ → 1; AðrÞ → 1: ð18Þ

Moreover, the requirement that the fields are smooth at 0
implies that

Fð0Þ ¼ 0; Að0Þ ¼ 0: ð19Þ

Substituting the ansatz (16) and (17) in the field equa-
tions (8) and (9), we find the following system of equations
for AðrÞ and FðrÞ:

0 ¼ −rF00ðrÞ − F0ðrÞ þ ð1 − AðrÞÞ2
r

n2FðrÞ

þm2
h

4
rFðrÞðFðrÞ2 − 1Þð3FðrÞ2 − 1Þ; ð20Þ

0 ¼ −
A00ðrÞ
r

þ A0ðrÞ
r2

−
m2

v

r
ð1 − AðrÞÞFðrÞ2: ð21Þ

Solutions to Eqs. (20) and (21) determine the field
profiles (16) and (17). Analytical solutions for F and A
are not known so far, but approximate solutions can be
found numerically. In what follows, we have set ν ¼ 1
unless stated otherwise. We used a shooting parameter
method to solve the Eqs. (20) and (21). Examples of the
solutions we found are shown in Fig. 3.
Figures 4 and 5 show the vortex profiles for ϕ and Aμ,

respectively. Using these field configurations as the initial
conditions of the fields and ∂tAi ¼ 0 and ∂tϕ ¼ 0 as initial
conditions of the time derivative of the fields, we were able
to establish the numerical stability of such solutions.

C. Phase inside the Coulomb layer

Let us briefly clarify certain aspects of the physics inside
the Coulomb layer. As already said, we use this name to
indicate that in the limit of infinite width, l → ∞, the layer

becomes a vacuum in which the gaugeUð1Þ theory is in the
2þ 1-dimensional Coulomb phase. For example, the elec-
tric potential energy of a pair of opposite charges separated
by a distance r scales as lnðrÞ. In this vacuum, the magnetic
vortex configurations are unstable. If we prepare a localized
magnetic field with nonzero flux, it will spread out. Of
course, the same is true in the 3þ 1-dimensional version of

FIG. 3. Numerical approximations of the vortex profile func-
tions FðrÞ, continuous lines, and AðrÞ, dashed lines, for different
winding number, n. Here, mh ¼ 1, and mv ¼ 1.

FIG. 4. Vortex field configuration for the field ϕ -equation (16).
Here, n ¼ 1, mh ¼ 1, mv ¼ 1, and n ¼ 1. The vector at the point
ðx; yÞ has components ðReðϕðx; yÞÞ; Imðϕðx; yÞÞÞ. Consequently,
the direction of each vector represents the phase Argðϕðx; yÞÞ,
while the color represents the norm jϕðx; yÞj.

FIG. 5. Vortex field configuration for the field Ai equation (17).
Here, e ¼ 1=

ffiffiffi
2

p
, mh ¼ 1, mv ¼ 1, and n ¼ 1. The vector at the

point ðx; yÞ has components ðA1ðx; yÞ; A2ðx; yÞÞ. The color
represents the norm jAiðx; yÞj.
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the theory: The magnetic flux tubes are unstable in the
Coulomb vacuum.
In the Higgs vacuum, the picture is very different. First,

the electric field potential decays exponentially at distances
r > mV . In other words, in the Higgs phase, the electric
charges become screened. Secondly, in the Higgs vacuum,
the stable vortex configurations of the Nielsen-Olesen type
exist with the quantized magnetic flux (15). Similarly, the
theory uplifted to 3þ 1-dimensions, supports the vortex
lines and cosmic strings.
Let us now discuss the layer of a would-be Coulomb

vacuum of a finite extend, l, separating the two Higgs
vacua. This is described by a configuration of the type
given in Fig. 2. Although naively, one may think that, if
placed inside the layer, the electric charges can be in the
1þ 1-dimensional Coulomb phase, this is not the case.
It is easy to see that in the effective 1þ 1-dimensional

theory of the layer, no massless photon excitation exists but
only the massive ones. That is, a linearized gauge theory on
the background shown in Fig. 2 has no gapless correlators.4

This is a manifestation of a well-understood effect [2,3]
that a massless “electric” photon cannot be localized on a
lower-dimension defect (brane) by means of a Higgs
mechanism in the bulk. The easy way to understand this
is to remember that in the Higgs phase, the vacuum is a
superconductor with respect to Uð1Þ, and the mobile
charges are available. In the present case, this mobility
is provided by the would-be Goldstone phase θ. Due to this,
whenever a nonzero charge is placed inside the layer, the
mobile bulk charges swiftly respond and create an infinite
number of images that screen the electric field. In other
words, the Higgs medium does not repel the electric field
lines but instead absorbs them. This is the reason why the
DS mechanism [2] of localization of the massless photon
on the brane requires that the extra-dimensional bulk is in a
confining phase rather than in a Higgs one.
As already mentioned, in DS theory, at the quantum level,

the Uð1Þ electric field of the low-dimensional theory is
confining due to the monopole tunneling through the
layer [5]. That is, the low-dimensional theory of DS
brane realizes the confinement via the mechanism of
Polyakov [33].
In the dual version of the theory, a similar effect takes

place with respect to the magnetic field. This is true both in
3þ 1-dimensional theory as well in the dimensionally
reduced 2þ 1-dimensional one, which we are currently
considering.
That is, in both cases, if the vortex is placed inside the

layer, the magnetic field will not spread all the way to
infinity but will become confined at a finite distance.

In [35], this was explained by Tetradis as a close analogy
with the Josephson Junction effect familiar in ordinary
superconducting materials.
Correspondingly, in our 1þ 1-dimensional layer, the

magnetic field is expected to spread to a finite distance.
However, for l > 1=mV, this distance is exponentially large
and therefore, does not affect the probability of the erasure
significantly. A similar effect is expected in the theory lifted
to one dimension higher. There too, an infinite straight
cosmic string, parallel to the wall, when erased by it, will
spread the flux over an exponentially large distance.

IV. VORTEX UNWINDING

We are now ready to discuss the erasure of a vortex by a
Coulomb vacuum layer sweeping. We simulated the
collision for different parameters of the model. Within this
approach, one can observe how the collision leads to the
unwinding of the scalar field, and the dissipation of the
magnetic flux in the core of the Coulomb vacuum layer. As
a result, the magnetic field spreads and dissipated in the
core of the layer.
To avoid gauge redundancies, we use the time

gauge, At ¼ 0, as it is convenient for solving time evolution
problems and numerically solving the field equations (8)
and (9). For the time gauge, the Cauchy data—
ðAi; ∂tAi;ϕ; ∂tϕÞ—or initial conditions must satisfy the
Gauss constraint,

DiFi0 ¼ j0; ð22Þ

at t ¼ 0. Then, the field equations can be integrated to
evaluate Ai and ϕ at t > 0. Proceeding in this way, after
fixing the time gauge, the field equations (8) and (9)
become:

∂
2
tϕ ¼ ∂i∂iϕ − 2ieAi∂iϕ − ½e2AiAi þ ie∂iAi�ϕ

− ½λ2ν4 − 4λ2ν2jϕj2 þ 3λ2jϕj4�ϕ;
∂
2
t Ax ¼ ∂

2
yAx − ∂x∂yAy − 2ejϕj2Ax þ 2Im½ϕ�

∂xϕ�;
∂
2
t Ay ¼ ∂

2
xAy − ∂y∂xAx − 2ejϕj2Ay þ 2Im½ϕ�

∂yϕ�: ð23Þ

The integration of the system of partial differential
equations (23) gives the time evolution for a given
Cauchy data. General analytical solutions for this system
are not known. However, approximate solutions can be
found through numerical simulations. We implemented this
approach using a PDE solver [36], using a finite element
method. The simulations allowed us to study the vortex and
domain wall separately and their interactions. To approxi-
mate the initial conditions, we construct a vortex Coulomb
vacuum layer configuration described below.
Lets denote the vortex field configuration (16) and (17)

by ϕvoðx; yÞ, and Aivoðx; yÞ, respectively. On the other

4Of course, in 1þ 1-dimensions, there exists no propagating
massless photon in general but there can exist a long-range
electric field. It is the absence of this field that is the key in the
present discussion.
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hand, the Coulomb vacuum layer configuration we will
consider is given by ϕðν;0;νÞðxÞ—Eq. (13).
For the vortex Coulomb vacuum layer configuration, we

consider the following ansatz to approximate the initial
conditions:

ϕvo−dwðx; yÞ ¼ ϕðν;0Þ

�
ðxþ LvdÞ þ

l
2

�

þ
�
ϕð0;νÞððxþ LvdÞ − l

2
Þ

ν

�
ϕvoðx; yÞ; ð24Þ

Aivo−dwðx; yÞ ¼
�
ϕð0;νÞððxþ LvdÞ − l

2
Þ

ν

�
Aivoðx; yÞ; ð25Þ

where Lvd is the initial distance between the cores of the
vortex and the Coulomb vacuum layer. For Lvd → ∞,
the fields configuration (24) and (25) reproduce asymp-
totically the required initial conditions, as it is shown in
Appendix B. More generally, we consider an initial
relativistic velocity, v, of the Coulomb vacuum layer.
For doing so, we boost the domain wall profiles as shown
in Eq. (A.4). We checked numerically that the field
configuration (A.4) satisfies approximately the Gauss
constraint (22), allowing us to use it as an initial condition.
An example of such initial conditions is shown in Fig. 6.
During the simulation of the time evolution, we observed

the unwinding of the scalar vortex when it enters the
Coulomb phase, producing two perturbations that travel
along the ϕð0;νÞ-domain wall. In addition, the magnetic field
gets unconfined in the Coulomb phase producing radiation
modes that are reflected by the ϕðν;0Þ domain wall.
Subsequently, most of this radiation is confined to the
core of the layer. Below we present these results, first
describing the time evolution for the field ϕ and afterward
the evolution of Ai and B. Additionally, the results of our
numerical simulations can be visualized in the following
video: https://youtu.be/6VFgjXrUHq0.
ϕ evolution: Figure 7 shows the time evolution of the

scalar field, ϕ. Recall that in the Higgs phase, the degree of
freedom corresponding to jϕj becomes the degree of
freedom of the neutral scalar field h. On the other hand,
in the Coulomb phase, jϕj is one of the two degrees of
freedom of the complex field ϕ. Observe the wave modes
corresponding to h and jϕj that are generated as the domain
wall interacts with the vortex. As the vortex encounters the
Coulomb vacuum layer, two perturbations on the ð0; νÞ
domain wall are produced, and they start propagating in
opposite directions along the wall.
If a domain wall evolution is tension dominated, the

evolution of perturbations on the wall is effectively
described by considering the thin-wall approximation.
Then the total energy will be proportional to the length
[or area in (3þ 1)-dimensions] of the wall. The corre-
sponding action is the Nambu-Goto action [1].

S ¼ −σ
Z

dA; ð26Þ

where σ ¼ m2
h

8λ is the tension of the ðν; 0Þ domain wall, and
dA is the differential area of the world sheet. The dynamics
of such perturbations on domain walls have been exten-
sively studied in [37]. It can be shown that the speed of
propagation of perturbations on the wall is c ¼ 1, as it is
observed in our simulation.

FIG. 6. Vortex Coulomb vacuum layer configuration
ϕvo−dwðx; yÞ at t ¼ 0. Here, ν ¼ 1, mh ¼ 1, l ¼ 20, Lvd ¼ 20,
and v ¼ 0.8. On the top, the field ϕ is plotted. Observe the
Coulomb vacuum layer centered at x ¼ −20 and the vortex core
at the origin. The phase ArgðϕÞwinds around the origin, while for
x < −20, the phase is approximately constant. Below, we plot the
magnetic field, Bðx; yÞ corresponding to the gauge field con-
figuration Avo−dwðx; yÞ. The dashed black lines correspond to the
points where jϕðx; yÞj ¼ ν=

ffiffiffi
3

p
, where the maximum of the

potential is attained.
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B evolution: The time evolution of the field Ai provides
the time evolution of the magnetic field B, which is shown
in Fig. 8. As the vortex enters the Coulomb layer, the
electric current jμ—that localizes the magnetic field on the

core of the vortex—approaches zero. In fact, the electric
current, jμ ¼ −iðϕ�Dμϕ − ðDμϕÞ�ϕÞ, is proportional to
the norm of the field jϕj. Since jϕj ∼ 0 in the core of
the Coulomb vacuum layer, then jjμj ∼ 0. Consequently,

FIG. 7. Time evolution of the field ϕ near the vortex position. At t ¼ 0, the initial vortex configuration is observed. On the other hand,
at t ¼ 50, no winding of the phase is observed. The color represents jϕðx; yÞj=ν. The blue regions correspond to the Coulomb phase,
while the orange regions correspond to the Higgs phase. The dashed black lines correspond to the points where jϕðx; yÞj ¼ ν=

ffiffiffi
3

p
.

Observe at t ¼ 12.7, the moment the vortex enters the Coulomb vacuum layer, and two perturbations are generated on the wall. At
subsequent times, observe how these two perturbations travel along the wall in opposite directions.

FIG. 8. Time evolution of the magnetic field B near the vortex position. At t ¼ 0, the initial field configuration corresponds to the
vortex configuration. As the Coulomb layer encounters the vortex, at t ¼ 12.7, the magnetic field starts to dissipate in the core of the
layer. As a consequence, electromagnetic radiation is produced. Observe a hemispherical wavefront of such radiation at t ¼ 22. At
t ¼ 24, the ðν; 0Þ domain wall encounters the wavefront, and most of the electromagnetic radiation is reflected.
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the field equations (9) become approximately the Maxwell
equations in (Coulomb) vacuum. Thus, the magnetic field
dissipates in the core of the layer while producing electro-
magnetic radiation. This behavior is precisely observed at
t ¼ 40 in Fig. 8. Afterward, as the front of the electro-
magnetic radiation encounters the ðν; 0Þ domain wall, it
gets reflected.

V. PHYSICS OF ERASURE

In our numerical analysis, we observe that vortex never
makes it to the other side of the layer. Once the vortex
enters the layer, it unwinds and the magnetic flux spreads
over, suppressing the probability for the vortex to be re-
created on the opposite side of the wall. In other words, we
observe that the erasure happens with almost a unit
probability. That is, it nearly saturates the unitarity of
the evolution process. As we have done it previously for the
erasure of the colliding monopole-antimonopole pair [15],
we give to the present phenomenon the interpretation in
terms of a loss of coherence and an undersaturation by the
vortex of the unitarity entropy bound in the sense of [17].
Namely, in the considered model, the vortex represents a

coherent state of quanta of very low microstate degeneracy.
Correspondingly, its microstate entropy is much lower than
the maximal entropy permitted by the unitarity bound
of [17]. In the field configuration space, the vortex
corresponds to a very special configuration in which the
particles are arranged in a highly coherent way. It, there-
fore, covers a tiny fraction of all possible microstates. In
other words, the random field configurations of similar
winding numbers and energy, which are supported by the
layer, have much higher entropy.
Of course, far away from the layer, the vortex corre-

sponds to the lowest energy state for a given winding
number. However, when the vortex collides with the layer,
it produces waves. They have a double effect. First, they let
the magnetic field spread out. Secondly, they carry away
some coherence. That is, the constituents of the vortex
“thermalize.” The further time evolution is toward the more
entropic state. Entropically, it is much more convenient for
the field to further spread out, rather than to compose a new
vortex. Due to this, the re-creation of the vortex is sup-
pressed by the entropy factor.
Lifting the problem to one higher dimension, the same

reasoning applies to the erasure of the cosmic string by a
domain wall. Moreover, in a similar kinematic regime, the
same outcome is expected in the case of a passage of the
QCD string through the deconfining domain wall in DS
model [2]. The gluon electric flux, which outside of the
wall is trapped in a tube, upon colliding with the wall,
spreads over it, as described by Fig. 1. Again, the entropy
argument tells us that the re-creation of the string on the
other side of the wall must be exponentially suppressed
since the string carries a much lower entropy than the
spread-out flux. As we already discussed, due to quantum

tunneling effects, inside the wall, the flux will not spread all
the way to infinity but will become exponentially wide [5].
This does not make much difference for the erasure
mechanism since the entropy of the spread-out flux is still
much higher relative to a localized flux tube outside of
the wall.
Due to the analogy between the field-theoretic walls

of [2] and D-branes [4], the same outcome is expected in
the interactions between F strings and D-branes. This can
have implications for cosmology and the signatures of
gravitational waves.

VI. IMPLICATION FOR BRANE-WORLD
SCENARIOS

Here, we wish to discuss that the erasure of strings is a
generic prediction for the brane-world scenarios, such
as [3]. This is due to universal fundamental features of
the phenomenon of the gauge field localization on the
brane [2,3].
In brane-world scenarios, the massless gauge fields [such

as the Uð1Þ-photon] are localized on a 3-brane (i.e., the
brane with three noncompact spatial world-volume dimen-
sions, which we can label as xj; j ¼ 1, 2, 3). This 3-brane is
embedded in space with n compact extra dimensions, with
coordinates ya; a ¼ 1; 2;…; n.
This setup universally implies the existence of strings

with Uð1Þ electric flux [2,3]. This follows from the
gauge invariance of the 3þ 1-dimensional Uð1Þ theory
of a massless photon, which demands that the medium
outside of the brane must confine theUð1Þ electric flux into
flux tubes. In the DS model [2], in which the localization
mechanism was originally proposed, these are QCD flux
tubes. However, the phenomenon is very general. As
explained there, the localization requires a dual Meissner
effect, which implies confinement in the bulk. How this
confinement is realized in each particular case is not
essential for the existence of strings.
For example, in string theoretic realization [38] of brane-

world model of [3], the 3-brane is a D-brane, and the bulk
flux tubes are the fundamental strings. These can play the
role of cosmic F and D strings [18,19].
Thus, a generic brane-world setup, with localized pho-

tons, universally includes the strings in the formof flux tubes
and the 3-branes that deconfine this flux. Correspondingly,
when a string meets the brane, it gets erased.
In order to be more precise, let us consider a situation in

which “our” 3-brane is placed at ya ¼ 0 point in extra
space. The brane supports a Uð1Þ gauge theory with the
massless photon in the Coulomb phase. The electric flux of
the same Uð1Þ, in the bulk, is confined in flux tubes, which
form strings. Now let us consider a bulk electric string that
is extended along one of the world-volume dimensions, say
x3, and simultaneously is displaced from our brane in the
extra space by a distance r. Let us assume that the string
coordinates are ya ¼ δa1r. For the world-volume observers
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of our 3-brane, the string looks like an ordinary straight
cosmic string extended along x3 axes. This continues to be
true up until the string touches our brane. At this point, the
portion of the string, that enters the brane, gets erased. That
is, the flux gets deconfined and spreads out in the form of
an electric field of a dipole, as it is depicted in Fig. 1. From
the point of view of a world-volume observer, the string-
wall junction points appear as electric charges. If the angle
between the string and the 3-brane is small, the charges will
be pulled apart by the string tension.
This breakup of the cosmic string is very different from a

more familiar breakup due to the nucleation of a pair of
monopole and antimonopole [39]. First, the monopole
nucleation process is exponentially suppressed, whereas
the erasure has a probability close to one. Secondly, in the
case of monopoles, the endpoints do not create an electric
field of a dipole.
More importantly, in general, the bulk string is expected

to enter our brane-world in multiple locations. So, the
breakup of the string will happen simultaneously in several
places, leading to spectacular events accompanied by the
emission of gravitational waves and electromagnetic radi-
ation. They can be of observational importance and, in
particular, are expected to give correlated signals.

VII. CONCLUSION

In this paper, the collision of a vortex with a layer of a
Coulomb vacuum is simulated numerically, and it is found
that none of the vortices cross the Coulomb vacuum layer.
We observe how the collision leads to the unwinding of the
vortex and the unconfinement of the magnetic flux, which
dissipates in the core of the layer. The same behavior of
vortex unwinding was observed in different regimes of
parameters of the model, different winding numbers n, and
different widths of the Coulomb vacuum layer l. Our results
allow us to conclude that the mechanism of the erasure of
defects takes place in the model (6). The outcome is largely
insensitive to the parameters.
We explain the observed robustness of the erasure

phenomenon by the arguments that have been originally
used in [8] in the context of 3þ 1-dimensional wall and
monopole system and were refined recently in [15] in terms
of the low entropy of the vortex relative to the unitarity
bound [17].
These arguments suggest that the high probability of the

erasure is due to the fact that upon the collision with the
wall, the vortex of the 2þ 1-dimensional theory (or a string
of the 3þ 1 dimensional one) enter the deconfinement
phase during which the flux spreads out over the wall. This
takes away some coherence required for the formation of a
vortex (string). A further re-creation of the vortex is
exponentially suppressed due to its low microstate entropy.
This diminishes the phase space for its production. Instead,
the system evolves toward a much higher entropy state of
the spread-out flux and waves.

Since the argument is very general, it must equally apply
both to cosmic strings which carry magnetic fluxes, as well
as to QCD strings, which represent the electric flux tubes.
Thus, the QCD strings scattered at a layer of the deconfined
phase, as is the case in the DS model [2], is expected to be
erased with almost unit probability.
Judging from [18,19], the same outcome is expected for

the cosmic F strings upon hitting the D-branes. The further
study of such systems is interesting from fundamental as
well as observational perspectives. In particular, they can
lead to distinct signatures of gravitational waves. Also,
preventing a cosmic string from passing through the brane
can lead to a high concentration of energy in the wall
vicinity, which can result in a black hole formation in the
spirit of [25].
Finally, we have pointed out that due to the universal

fundamental features of the DS gauge field localization
mechanism on the brane [2,3], the existence of erasing
electric cosmic strings is a generic prediction of brane-
world scenarios. Due to the Uð1Þ gauge invariance of the
localized photon, such theories inevitably possess the bulk
strings. Strings represent the electric flux of the ordinary
photon, which gets confined into tubes away from “our”
brane. This happens due to a dual Meissner effect in the
bulk, which is a necessary condition for the localization on
the gauge field on the brane [2,3].
Upon touching our brane world, the cosmic strings get

erased, breaking apart in multiple locations. This breakup is
expected to result in spectacular events accompanied by
gravitational and electromagnetic radiation of an observa-
tional interest.
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APPENDIX A: COULOMB VACUUM
LAYER DECAY

The Coulomb vacuum Layer configuration (13) is not a
solution to the static field equations, and consequently, it
evolves in time and will decay. This behavior can be
observed in Fig. 9. We circumvent this by taking a larger
initial distance l so the vacuum layer can be considered
long-lived for the timescales of our simulations. An
example of such a case is shown in Fig. 10. For this
simulation, we have fixed the parameters ν ¼ 1 and
λ ¼ 1=2, corresponding to mh ¼ 1.
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APPENDIX B: INITIAL CONDITIONS

For Lvd → ∞, the fields configuration (24) and (25)
reproduce asymptotically the required vortex CVL initial
conditions. To observe this limit, consider a region of space
R ¼ ½−Lx; Lx� × ½−Ly; Ly� such that

1

mh
< Ly ≪ Lx ≪ Lvd:

In the limit Lvd → ∞, the field configuration for x > −Lx
approaches the vortex configuration

lim
Lvd→∞
x>−Lx

ϕvo−dwðx; yÞ ¼ ϕvoðx; yÞ;

lim
Lvd→∞
x>−Lx

Aivo−dwðx; yÞ ¼ Aivoðx; yÞ:

On the other hand, if x < −Lx, the field configuration
approaches a ðν; 0; eiανÞ domain wall configuration cen-
tered at x ¼ −Lvd; i.e.,

lim
Lvd→∞
x≪−Lx

ϕvo−dwðx; yÞ ¼ ϕðν;0Þ

�
x0 þ l

2

�

þ ϕð0;νÞ

�
x0 −

l
2

�
eiαðx;yÞ; ðB1Þ

lim
Lvd→∞
x≪−Lx

Aivo−dwðx; yÞ < Aivoð−Lx; yÞ ∼ 0; ðB2Þ

where x0 ¼ xþ Lvd, and eiαðx;yÞ ¼ ð xþiyffiffiffiffiffiffiffiffiffi
x2þy2

p Þn.

FIG. 9. Time evolution of a ðν; 0; νÞ-domain wall. We observe
the creation of a bion after the collision of the two Walls.
(a) shows the time evolution of the field profile, while (b) shows
the time evolution of the energy density. At t ¼ 0, the core size of
the Coulomb vacuum layer is l ¼ 15m−1

h .

FIG. 10. Time evolution of a of a long-lived ðν; 0; νÞ-domain
wall. At t ¼ 0, the core size of the vacuum layer is l ¼ 40m−1

h .
The time evolution of the field profile and the energy density are
shown in (a) and (b), respectively.
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Moreover, if jyj ≪ jxj, then eiαðx;yÞ ∼ ð−1Þn. Thus,

lim
Lvd→∞
x<−Lxjyj<Ly

ϕvo−dwðx; yÞ ¼ ϕðν;0Þ

�
x0 þ l

2

�
þ ϕð0;ð−1ÞnνÞ

�
x0 −

l
2

�

¼ ϕðν;0;ð−1ÞnνÞðx0Þ: ðB3Þ

We conclude that the field configuration ðϕvo−dwðx; yÞ;
Aivo−dwðx; yÞÞ, in the limit Lvd → ∞, approaches a vortex
configuration near the origin, and a Coulomb vacuum layer
configuration for x ∼ −Lvd. In addition, motivated by the
fact that domain walls are generally very highly energetic
objects moving through space, we consider an initial
relativistic velocity, v, of the Coulomb vacuum layer. To
do it, we boost the domain walls profiles as

ϕðt;x;yÞ¼ϕðν;0Þ

�
γ

�
xþLvd−vtþ l

2

��

þ
�
ϕð0;νÞðγðxþLvd−vt− l

2
ÞÞ

ν

�
ϕvoðx;yÞ;

Aiðt;x;yÞ¼
�
ϕð0;νÞðγðxþLvd−vt− l

2
ÞÞ

ν

�
Aivoðx;yÞ; ðB4Þ

where γ ¼ 1ffiffiffiffiffiffiffiffi
1−v2

p is the Lorentz factor. Figure 6 shows an

example of the field configuration ϕvo−dwðt; x; yÞ, and
Aivo−dwðt; x; yÞ at t ¼ 0, respectively.

APPENDIX C: UNWINDING OF THE
VORTEX: TIME EVOLUTION OF n

To describe the unwinding process of the vortex, we have
numerically computed the time evolution of the winding
number n near the vortex position by two different methods.
As we described before, the winding number is proportional
to the magnetic flux ΦB—see Eq. (15). We used this first
method to compute the winding number over a finite region
Cr. As shown in Fig. 11, for r ¼ 10, the magnetic flux is
initially constant for the vortex configuration we are con-
sidering. As the vortex is swept away by the Coulomb
vacuum layer, the flux stops being localized in the region and
thus decreases and eventually tends to 0. Figure 11 shows
precisely this behavior for the time evolution of nðtÞ. From
the simulation results described above, this is to be expected
since the magnetic field dissipates in the layer, and its flux is
not localized around the origin any more.
The second method we used to compute the winding

number is in terms of the scalar field. From Eq. (14), we
define nϕ as

nϕ ¼ 1

2πiν2

I
Cr

dxi
1

2
ðϕ�

∂iϕ − ϕ∂iϕ
�Þ; ðC1Þ

where r is a finite radius. Figure 12 shows the time
evolution of nϕðtÞ for r ¼ 10. We observe that nϕ ¼ 1 at
t ¼ 0, as it corresponds to the vortex configuration. As the

vortex approaches the Coulomb vacuum layer, nϕ
decreases and becomes negative. To understand this behav-
ior, let us consider the case t ∼ 18. Notice that
nϕð18Þ ∼ 0.5, and that the ð0; νÞ domain wall is localised
approximately at x ¼ 0—see Fig. 7. As a first approxima-
tion, in the boundary of the region of integration Cr,

ϕðt ¼ 18; x; yÞ ∼ Θð−xÞνeinθ: ðC2Þ
Thus, the integral nϕðt ¼ 18Þ ∼ n=2 ¼ 0.5. As the
Coulomb vacuum layer passes over the origin, the winding
number nϕ is not well defined until the ðν; 0Þ domain
wall passes over the origin. As we mentioned before,
the phase near the origin becomes ArgðϕÞ ∼ 0; thus, as a
first approximation, in the region of integration Cr:
ϕðt; x; yÞ ∼ ν, for t≳ 50. Thus, the winding number
nϕ ∼ 0. From the previous results, we conclude that locally,
the vortex is unwinded once it is swept by the Coulomb
vacuum layer. The previous discussion and time evolution
can be observed in more detail in Figs. 13 and 14, where we
plotted the ArgðϕÞ and the energy density during the
unwinding process, respectively. Additionally, the results
of our numerical simulations can be visualized in the
following video: https://youtu.be/6VFgjXrUHq0.

FIG. 11. Time evolution of the magnetic Flux ΦB.

FIG. 12. Time evolution of winding number nϕ computed in a
finite region around the origin.
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FIG. 13. Time evolution of the winding of field ϕ for the same simulation shown in Figs. 7 and 8. The color represents the phase
ArgðϕÞ, while the darkness measures the norm jϕj. At t ¼ 0, note the winding n ¼ 1 around the vortex. Once the layer swaps the vortex,
the phase ArgðϕÞ unwinds, and the vortex is erased.

FIG. 14. Time evolution of the total energy density for the simulation shown in Figs. 7 and 8. Observe that most of the vortex energy is
carried away by the modes propagating along the wall.
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