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We present a lattice calculation of the leading order hadronic vacuum polarization contribution to the
muon anomalous magnetic moment for the connected light and strange quarks, aWcon;l=s in the widely used
window t0 ¼ 0.4 fm, t1 ¼ 1.0 fm, Δ ¼ 0.15 fm, and also of aScon;l=s in the short distance region. We use

overlap fermions on four physical-point ensembles. Two 2þ 1 flavor RBC/UKQCD ensembles use
domain wall fermions and Iwasaki gauge actions at a ¼ 0.084 and 0.114 fm, and two 2þ 1þ 1 flavor
MILC ensembles use the highly improved staggered quark and Symanzik gauge actions at a ¼ 0.088 and
0.121 fm. We have incorporated infinite volume corrections from three additional domain wall fermion
ensembles at L ¼ 4.8, 6.4, and 9.6 fm and physical pion mass. For aWcon;l, we find that our results on the two
smaller lattice spacings are consistent with those using the unitary setup, but those at the two coarser lattice
spacings are slightly different. Eventually, we predict aWcon;l ¼ 206.7ð1.5Þð1.0Þ and aWcon;s ¼ 26.8ð0.1Þð0.3Þ,
using linear extrapolation in a2, with systematic uncertainties estimated from the difference of the central
values from the RBC/UKQCD and MILC ensembles.

DOI: 10.1103/PhysRevD.107.034513

I. INTRODUCTION

The anomalous magnetic moment of the muon
(aμ ≡ ðgμ − 2Þ=2) is one of the crucial benchmarks to verify
the correctness of the standard model. The current analysis
of the Fermilab experiment [1,2] is consistent with the
previous BNL E821 [3] result with comparable precision,
and the Fermilab experiment is planned to reduce the
uncertainty by a factor of 4. Those results are higher than
the current standard model predictions [4] using phenom-
enological estimates by around 4σ, and so have attracted
much theoretical interest about possible new physics.
But such a deviation is very sensitive to the theoretical

prediction of the strong interaction contribution to aμ,

especially the leading order hadronic vacuum polarization
(LO-HVP) contribution, aLO-HVPμ . The most recent determi-
nations from the hadronic R-ratio, a dispersion integral
over hadronic cross section ratio σðeþe− → hadronsÞ=
σðeþe− → μþμ−Þ, are ā≡aLO-HVPμ ×1010¼693.9ð4.0Þ [5]
and 692.8(2.4) [6], while that required for no new physics
is 718(4) [1–4]. Compared to aLO-HVPμ , the electron mass
suppresses aLO-HVPe , the corresponding quantity for the
electron, by a factor of ðme=mμÞ2 ∼ 10−4, and so the
theoretical uncertainty of HVP will not affect the agreement
between the current theoretical and experimental determi-
nations of ae.
aLO-HVPμ can be obtained using first-principles latticeQCD

calculations, which avoid the possible phenomenological
uncertainty from the R-ratio determination. There are many
recent lattice QCD results [7–18], and the most precise
one [12] obtains ā ¼ 707.5ð5.5Þ and agrees with the “no new
physics” requirement within 1.5σ. Recent studies [17–19]
suggest that the so-calledwindowvalue [8] ofaμ, which picks
the contribution around the ρmeson pole, can be sensitive to
the discretized fermion action if the continuum extrapolation
is not conservative enough. In this work, wewill calculate the
window value of aμ using the overlap valence fermion action
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on ensembles with either the domainwall fermion (DWF) sea
from the RBC/UKQCD collaboration [20–22] or the
highly improved staggered quark (HISQ) sea from the
MILC collaboration [23,24], to study the fermion action
dependence. We will also examine the lattice spacing
dependence in these cases.
The numerical setups of this work are collected in Sec. II.

Section III presents our results with their statistical and
systematic uncertainties. The summary and extended dis-
cussions are given in Sec. IV.

II. NUMERICAL SETUP

One can calculate aLO-HVPμ with the following expression:

aLO-HVPμ ¼ 4α2
Z

∞

0

dq2

m2
μ
f

�
q2

m2
μ

�
ðΠðq2Þ − Πð0ÞÞ;

fðrÞ ¼ Z3ðrÞð1 − ffiffiffi
r

p
ZðrÞÞffiffiffi

r
p ð1þ Z2ðrÞÞ ; ZðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
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p
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ffiffiffi
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where α ¼ e2
4π ∼ 1=137 is the fine structure constant, mμ is

the muon mass, the HVP Πðq2Þ can be obtained from the
Fourier transform of the vector current two-point function
in Euclidean space-time,

ΠμνðqÞ ¼
Z

d4xeiqxhjμðxÞjνð0Þi ¼ Πðq2Þðq2δμν − qμqνÞ;

ð2Þ

and the electromagnetic current jμ ¼
P

f Qfψ̄fγμψf is
summed over all the quark flavors f ¼ u; d; s; c;… with
their electric charge Qf in units of the electron charge e.
The factor Z has the properties Zð0Þ ¼ 1 and ZðrÞ ∝ 1=

ffiffiffi
r

p
at r → ∞, which ensures that the major contribution in the
q2 integration comes from the small q2 region.
One can select the momentum q to be along the temporal

direction to simplify the expression of Πðq2Þ to

Πðq2Þ ¼
Z

dt
cosðtqÞ

q2
CðtÞ; ð3Þ

where CðtÞ≡ 1
3

P
ih
R
d3xjiðx⃗; tÞjið0⃗; 0Þi. This definition

includes the 1=q2 divergence, but then the subtracted
Πðq2Þ [25] is

Πðq2Þ − Πð0Þ ¼
Z

dt

�
cosðtqÞ − 1

q2
þ 1

2
t2
�
CðtÞ: ð4Þ

One can show that Πðq2Þ ∝ 1=M2 if CðtÞ ∝ e−Mt and then
aHVPμ ∝ m2

μ=M2 if CðtÞ is dominated by a single state with
mass M ≫ mμ, and then the heavy quark contribution to
aHVPμ is also suppressed by 1=m2

Q.

Eventually one can rewrite aLO-HVPμ in terms of CðtÞ and
the weight function ωðtÞ,

aLO-HVPμ ¼
Z

dtωðtÞCðtÞ;

ωðtÞ ¼ 4α2
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On the lattice, one could use the original ωðtÞ or replace
ωðtÞ by its lattice version [8],

ω̂ðtÞ ¼ 4α2
Z
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and sum t over all the discretized time slices ð− Ta
2
; Ta
2
�:

aLO-HVP;ωμ ¼
�X

ωðtÞClatðt; aÞ
�����

a→0;T→∞
; ð7Þ

aLO-HVP;ω̂μ ¼
�X

ω̂ðtÞClatðt; aÞ
�����

a→0;T→∞
; ð8Þ

to obtain the final prediction of aLO-HVPμ , where a is the
lattice spacing, T is the dimensionless number of lattice
sites along the temporal direction, and Clatðt; aÞ ¼
afCðtÞ þOða2Þg is the correlation function on the lattice.
Based on numerical calculation, changing the upper limit of
the integral in Eq. (6) to a finite constant, such as ðπ=aÞ2,
changes the value of the integral by less than 0.005%,
which is much smaller than our other uncertainties. Also,
Ref. [7] suggests that the correction is about 0.02% by
introducing an integral cutoff Q2

max ¼ 3 GeV2 in Eq. (6),
which is also much smaller than all our total uncertainties.
In the practical calculation on the ensemble with two

degenerate light flavors, CðtÞ can be decomposed into
several pieces [8],

CðtÞ ¼ 5

9
Cconðt;mlÞ þ

1

9
Cconðt;msÞ þ

4

9
Cconðt;mcÞ

þ CdisðtÞ þ αCQEDðtÞ þ ΔmCSIBðtÞ
þOðα2; αΔm;Δm2Þ; ð9Þ

where ml ¼ ðmd þmuÞ=2 is the isosymmetric light quark
mass, ms;c are the strange and charm quark masses,

respectively, Cconðt;mfÞ ¼ Cconðt; Sðx⃗ ¼ 0⃗; t0 ¼ 0;mfÞÞ,
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Cconðt; Sðx⃗0; t0;mfÞÞ

¼ 1
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X
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�	Z
d3xTr½γiγ5S†ðx⃗; tþ t0; x⃗0; t0;mfÞγ5γi
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ð10Þ

is the connected correlation function with the quark
propagator SðmÞ≡ 1=ðDþmÞ, Cdis is the contribution
from the disconnected quark diagram, CQED is the leading
order QED correction which can be accessed from
the 4-point correlation function with an infinite-volume
photon [26] (the next order contribution is negligible for the
precision required by aμ), and CSIB is the strong isospin
breaking effect which is proportional to ðmd −muÞ=2.
In this work, we use overlap fermions on several gauge

ensembles with 1-step HYP smearing to calculate aWμ . The
ensembles include the 2þ 1 flavor DWF ensembles with
the Iwasaki gauge action from the RBC/UKQCD collabo-
ration [20–22] and the 2þ 1þ 1 flavor HISQ ensemble
with the Symanzik gauge action from the MILC collabo-
ration [23,24].
The overlap fermion action uses a matrix sign function

ϵðHwÞ ¼ Hwffiffiffiffiffi
H2

w

p of the Hermitian Wilson Dirac operator

Hwð−M0Þ ¼ γ5Dwð−M0Þ to construct

Dov ¼ M0ð1þ γ5ϵðHwð−M0ÞÞÞ; ð11Þ

which was proposed in Refs. [27,28] as a discretized
fermion operator satisfying the Ginsburg-Wilson relation
Dovγ5 þ γ5Dov ¼ a

M0
Dovγ5Dov [29], where Dw is the

Wilson Dirac operator with a negative mass such as
M0 ¼ 1.5. The DWF action can be considered as an
approximation of the overlap fermion action using a

slightly inaccurate ϵðxÞ, and the HISQ action [30] is a
modified version of the staggered fermion action which is
much cheaper than either DWF or overlap but which suffers
from the taste mixing effect (see Ref. [19], for example).
Using the overlap fermion action for the valence quark

allows us to implement low-mode substitution [31,32] to
improve the signal based on the low-lying eigenvectors
of Dc,

Ccon;LMSðtÞ ¼ 1

NsrcN3
g

X
i

fCconðt; Sgridðx⃗i; tiÞÞ

− Cconðt; SgridL ðx⃗i; tiÞÞg

þ 1

L3T

X
x⃗;t

Cconðt; SLðx⃗; tÞÞ; ð12Þ

where Nsrc is the number of Sgrid located at different origins
ðx⃗i; tiÞ, SLðmÞ≡P

jλj<λc
1

λþm vλv
†
λ , vλ satisfies Dcvλ ¼ λvλ

and λc ∼ 200 MeV is the upper bound of the eigenvalue
λ. The quark propagator Sgridðx⃗i; tiÞ ¼

P
y∈grid Sðx⃗; tþ

t0; x⃗i þ y⃗; tiÞ above uses a random Z3 [33] grid source with
Ng points in each spacial dimension. Such a grid source has a
starting point x⃗0 ¼ ðx0; y0; z0Þ and x⃗i ∈ ðx0 þmxΔx; y0 þ
myΔy; z0 þmzΔzÞwhereΔx;y;z ¼ L=Ng is the spatial direc-
tion offset and mx;y;z ∈ f0; 1;…; L=Δx;y;zg is the offset
number in each direction for each grid point, and n ¼ N3

g

is the number of grid points of the grid source.
In order to evaluate the standard window with

t0 ¼ 0.4 fm, t1 ¼ 1.0 fm, Δ¼0.15 fm efficiently, we have
chosen Δx;y;z ∼ 1.0 fm to reduce the number of inversions
needed. The low-mode source point x⃗; t loops over the
whole lattice volume to have full statistics for the low-mode
parts. The information of the gauge ensembles, grid source
parameters, and λc are listed in Table I.

TABLE I. Information of the ensembles, grid sources and λc used in this calculation, including the DWFþ
Iwasaki ensembles 48I and 64I [21,22] and also the HISQ þ Symanzik ensembles a12m130 and a09m130 [24] with
the lattice spacings from Ref. [19]. Three DWFþ Iwasaki þ DSDR ensembles 24D/32D/48D [20,22] are used
to estimate the finite-volume effect, and four HISQþ Symanzik ensembles a04m310/a06m310/a09m310/
a12m310 [23,24] with the lattice spacings from Ref. [34] are used to study the continuum extrapolation. The
pion mass mπ and upper bound λc of the eigenvalues are in the unit of MeV.

Symbol L3 × T a (fm) mπ Ncfg Nsrc Ng λc

48I 483 × 96 0.11406(26) 139 100 12 4 234
64I 643 × 128 0.08365(25) 139 92 8 4 187

a12m130 483 × 64 0.12121(64) 131 23 8 4 180
a09m130 643 × 96 0.08786(47) 128 22 8 4 200
a12m310 243 × 64 0.12129(89) 305 54 16 1 224
a09m310 323 × 96 0.08821(71) 313 39 16 1 195
a06m310 483 × 144 0.05740(50) 319 32 8 1 243
a04m310 643 × 192 0.04250(40) 310 54 2 1 167

24D 243 × 64 0.1940(19) 141 232 8 2 263
32D 323 × 64 0.1940(19) 141 134 8 4 230
48D 483 × 64 0.1940(19) 141 47 8 6 116
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III. RESULTS AND SYSTEMATICS

The window method proposed in Refs. [8,25] allows a
more precise prediction to combine the “window” value of
aLO−HYPμ using the CðtÞ from lattice QCD

aWμ ¼
Z

dt wWðtÞωðtÞCðtÞ; ð13Þ

wWðtÞ≡ θðt; t0;ΔÞ − θðt; t1;ΔÞ; ð14Þ

θðt; t0;ΔÞ≡ 1

2
ð1þ tanh½ðt − t0Þ=Δ�Þ; ð15Þ

with the remaining parts

aetc:μ ¼ aSμ þ aLμ ;

aSμ ¼
Z

dt wSðtÞωðtÞCðtÞ; ð16Þ

aLμ ¼
Z

dt wLðtÞωðtÞCðtÞ; ð17Þ

with wSðtÞ≡ 1 − θðt; t0;ΔÞ, wLðtÞ≡ θðt; t1;ΔÞ, and the
CðtÞ from the R-ratio. The extra weight functions wS;W;L

pick the short, medium, and long distance contributions
of CðtÞ, respectively, and separate aμ into three pieces.
With typical parameters (t0 ¼ 0.4 fm, t1 ¼ 1.0 fm,
Δ ¼ 0.15 fm), aWμ suppresses the contribution of CðtÞ from
t ≪ t0 and t ≫ t1, and can have smaller uncertainty using
CðtÞ from lattice QCD compared to that from theR-ratio. aWμ
also provides a good reference to compare the independent
lattice QCD results with good precision, in order to check the
systematic uncertainties due to different lattice actions and
their respective discretization errors.
We shall define the rescaled connected light and strange

quark contributions as

āXcon;l ¼ āXconðmlÞ; āXcon;s ¼
1

5
āXconðmsÞ;

āXconðmqÞ≡ 5

9

Z
dt wXðtÞωðtÞCcon

f ðt;mqÞ × 1010; ð18Þ

where X ∈ fS;W;Lg and ml and ms are the physical light
and strange quark masses, respectively. We use the local
vector current in the calculation and apply the axial-vector
normalization constant ZA obtained from partially con-
served axial vector current (PCAC) [35] since the local
vector current normalization constant obeys ZV ¼ ZA for
overlap fermions. As shown in Fig. 1, ZA agrees with ZV
very well at the massless limit. (ZV is determined from the
forward matrix element ZV ≡ 2E=hπðpÞjV4jπðpÞi with
p⃗ ¼ 0 in Ref. [36].) The uncertainty of ZA is at the
0.01% level and can be ignored based on the precision
target. Note that the last systematic uncertainty of ZA in
Ref. [35] is not necessary here as we do not need to

extrapolate the strange quark mass in the sea to the
chiral limit.
Since suppressing the statistical uncertainty using the

bounding method for the long distance contribution can be
nontrivial, we will concentrate on the medium range
contribution, āWcon, and the short range one, āScon, in this
work. In Fig. 2, we show the result of āWconðm2

πÞ on the four
physical-point ensembles as a function of the pion mass

FIG. 1. Comparison of the axial normalization constant and the
vector normalization constant for the local vector current on 48I.
The blue band is a linear fit of the vector normalization constant
versus the pion mass squared, m2

π .

FIG. 2. The m2
π dependence of the connected insertion con-

tribution āWconðm2
πÞ based on the original ω [defined in Eq. (5),

upper panel] and the modified one [ω̂ as defined in Eq. (6), lower
panel], on four ensembles we used.
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squared. Compared to the values in the upper panel which
use the original ω, those in the lower panel using the
discretized ω̂ have smaller differences between ensembles
except for the light quark mass region of the OV/HISQ
case. It suggests that the modified definition might suppress
the discretization error. But the m2

π dependence in the small
m2

π region is nonlinear and then the difference between the
OV/HISQ results from the a12m130 and a09m130 ensem-
bles is larger with ω̂ compared to that using ω.
By interpolating the partially quenched valence pion

mass to the physical value 135 MeV, we obtain the light
quark contribution āWcon;l as shown in Fig. 3. We note that
the modification of ω to ω̂ suppresses the discretization
error in the OV/DWF setup (cyan and purple) but has the
reversed effect on the overlap fermions (OV)/HISQ setup
(green and gray). For comparison, we also show the results
for unitary DWF [8] (open black boxes) and unitary HISQ
[19] (open triangles). One can see that while those at larger
lattice spacings have obvious differences, our results at a ∼
0.08–0.09 fm are consistent with the unitary results within
uncertainties. Note that we used the local vector current
with normalization while the unitary HISQ result [19] used
the conserved current, and so the agreement here could
be accidental. Such a difference would be a discretization
effect since it decreases with smaller lattice spacing. The
OV/DWF and OV/HISQ results are conspicuously different
at a ∼ 0.08–0.09 fm. This is an indication that there is still

large sea fermion action dependence at this lattice spacing.
One possible source of the OV/DWF-OV/HISQ discrep-
ancy at a ∼ 0.08–0.09 fm could be related to the gauge
actions used in the DWF and HISQ ensembles, as different
improvements make the bare gauge coupling in the RBC
ensembles (2.13–2.25) and MILC ensembles (3.60–3.78)
differ by a factor of ∼ 1.7. Such a possibility can be
checked with HISQþ Iwasaki and DWFþ Iwasaki simu-
lations at a ¼ 0.08 fm on a smaller lattice.
After the linear a2 continuum extrapolation, the OV/

DWF result using ω̂, 206.7(1.5), is consistent with that
usingω, 206.4(1.5). Similar consistency is also found in the
OV/HISQ case, with 207.7(3.1) using ω̂ and 207.6(3.1)
usingω. All the values are consistent with each other within
their uncertainties. Thus we combine these values to predict
āWcon;l ¼ 206.7ð1.5Þð1.0Þ using the OV/DWF value with ω̂
and smaller statistical uncertainty as the central value, and
the difference of the results as a systematic uncertainty.
These results are consistent with the Budapest-Marseille-
Wuppertal collaboration value 207.3(1.4) [12] and the latest
RBC results [17,18], but are less than 2σ higher than the
RBC-18 value 202.9(1.5) [8].
Note thatOða4Þ behavior in OV/DWF and OV/HISQ has

been observed in Δmix, the leading order low-energy
constant of the chiral perturbation theory with different
valence and sea actions [37,38]. Thus it’s possible that
the current agreement under simple linear a2 continuum
extrapolation may be due to some unknown cancellation of
the higher-order terms under our mixed-action setups.
Various recent studies [13–18] have shown that Oða4Þ
corrections are important, so it would be natural to further
extend our studies to smaller a to have better control of the
continuum extrapolations.
Since the volumes of the four ensembles are close to each

other (1=L ∈ ½0.172; 0.184� fm−1), we use the Mobiusþ
Iwasakiþ DSDR ensembles [20,22] from the RBC/
UKQCD collaboration to estimate the finite volume effect.
As shown in Fig. 4, the finite volume effect with an

FIG. 3. The lattice spacing dependence of āWcon;l for different
actions and weight functions are plotted with filled symbols.
Results with unitary valence and sea actions, namely, RBC-18 [8]
and RBC-22 [17,18] with DWF (black open boxes and black
open hexagon, respectively), Aubin-19 [19] with HISQ (blue and
purple open triangles) and BMWc-20 [12] with a 4-stout,
staggered fermion action (red open diamonds), are also shown
in the figure for comparison. The dashed lines are a2 extrapo-
lations of the mixed action results based only on two lattice
spacings.

FIG. 4. The volume dependence of āWcon;l (red boxes and left y
axis) and āWcon;s (blue triangles and right y axis) based on the
DSDR ensembles at a ¼ 0.194 fm. The āWcon;l values here are
much larger than those in Fig. 3 due to the discretization errors.
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empirical form aþ b expð−mπLÞ for the case with 1=L ∼
0.18 fm−1 is −0.36ð56Þ for the light quarks (red boxes, left
y axis) and 0.01(18) for the strange quark (blue triangles,
right y axis).
With the ratio ms=ml ¼ 27.42ð12Þ from the flavour

lattice averaging group (FLAG) review [39] and the bare
valence light quark mass corresponding to the physical
pion mass, we can estimate the physical bare valence
strange quark mass on each ensemble. With this strategy,
we show the strange quark contribution āWcon;s in Fig. 5.
Similar to the light quark case, the linear a2 extrapolated
OV/DWF result of 26.8(1) and OV/HISQ result of 27.1(2)
are consistent within the systematic uncertainty due to the
strange quark mass (which is about 0.1). They are con-
sistent with each other under uncertainty and also con-
sistent with the RBC value of 27.0(2) (open black box in
the figure). At the same time, if we use the so-called ηs
“mass” 689.89(69) MeV [12] to determine the physical
strange quark mass, we get OV/DWF result 26.7(3) and
OV/HISQ result 26.7(6). Since the scale setting uncertainty
enters the strange quark mass definitions, these results are
consistent with those using the quark mass ratio ms=ml but
have larger uncertainties. Thus we combine these values to
predict āWcon;s ¼ 26.8ð1Þð3Þ with the OV/DWF value using
the bare quark mass ratio ms=ml ¼ 27.42ð12Þ and smaller
statistical uncertainty as the central value, and the differ-
ence of the results as a systematic uncertainty.
Next, we turn to the short distance contribution āScon;l=s,

with the results shown in Fig. 6. We can see that the linear
Oða2Þ lines are almost the same on both the RBC and
MILC ensembles for both the light and strange quark mass
cases, and the linear a2 continuum extrapolated values
of the OV/DWF and OV/HISQ setups are consistent within
the uncertainty [except for the case of āScon;s using ω where
the extrapolated values from the two setups differ by 0.04
(2)]. But it is interesting that the discretization error of āScon
using ω is much smaller compared to that using ω̂, and the
extrapolated values using the two definitions are separated

by more than ∼ 5% difference for both the light and strange
quark cases. Thus we predict āScon;l ¼ 48.58ð0.07Þð1.20Þ
and āScon;s ¼ 9.18ð01Þð25Þ with the systematic error esti-
mated from half of the difference between the predictions
of the results from w and ŵ.
This motivates us to repeat the calculation on the HISQ

ensembles at a ∼ 310 MeV pion mass with a larger lattice
spacing range a ∈ ½0.04; 0.12� fm to check the lattice
spacing dependence. Figure 7 shows that the linear a2

extrapolation still works well for āWcon;l (blue data points
with the right y axis), and using ω̂ can suppress the
discretization error (similar to the OV/DWF results at
the physical point). On the other hand, we can also see
that āScon;l (red data points with the left y axis) is less
sensitive to the lattice spacing when we use the original ω
instead of ω̂, and the tension between the linear a2

extrapolated values using either ω or ω̂ still exists. It
suggests that using ω̂ introduces an extra discretization

FIG. 5. The lattice spacing dependence of āWcon;s. The DWF
result extrapolated to the continuum limit [8] is also shown in the
figure for comparison.

FIG. 6. The lattice spacing dependence of the short distance
contributions āScon;l (red data points with the left y axis) and ā

S
con;s

(blue data points with the right y axis), using either ω or ω̂. One
can see that the action dependence almost vanishes and then is
much weaker than that of the medium distance contribution āWcon.

FIG. 7. The lattice spacing dependence of āScon;l (red data points
with the left y axis) and āWcon;l (blue data points with the right y
axis) on HISQ ensembles with pion mass mπ ≃ 310 MeV, using
either ω or ω̂.
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error in the small t region. Adding a4 terms in the
continuum extrapolation of āScon;l using ω̂ can suppress
the inconsistency.
āScon;l corresponds to the integral of ωðtÞCðtÞ in the small

t region, and thus its discretization effect can be illustrated
through the values of ωðtÞCðtÞ (Fig. 8, upper panel) and
those of ω̂ðtÞCðtÞ (lower panel). The definition of ω̂ forces
ω̂ðaÞ ∝ a2, and, as a consequence, the integral of ω̂ðtÞCðtÞ
has a sizable discretization error around t ∼ 1a [8]. This is
illustrated in the lower panel of Fig. 8. Since ω̂ðtÞCðtÞ is not
linear in t in the range of t ∈ ½0.0; 0.2� fm, the extra Oða4Þ
effect is not avoidable and cannot be mocked up with a
linear a2 continuum extrapolation.
As shown in Figs. 5 and 6, āScon;l is insensitive to the

quark mass. It is also verified in the recent study [17,18]
and used to suppress the uncertainty of āScon;l by combining
the ∼ 300 MeV result at fine lattice spacing and the mass
correction at larger lattice spacing. Thus we also show the
values using the physical ensembles a09m130 and
a12m130 in Fig. 8, and they are consistent with the data
using heavier pion mass at short distance.
Eventually, we show the values of CðtÞωðtÞ (pink band),

with CðtÞ ¼ 1=ð12π2Þ R∞
0 dð ffiffiffi

s
p ÞRðsÞse− ffiffi

s
p

t from [25] in
Fig. 9, using the most recent analysis of the R-ratio data [6],
and compare with the connected light contribution

5
9
Cconðt; mlÞωðtÞ (blue dots) and the connected lightþ

strange contribution ð5
9
Cconðt; mlÞ þ 1

9
Cconðt; msÞÞωðtÞ (red

dots) based on the OV/DWF result at 0.084 fm. The pink
band is about 40% higher than the blue dots at t ∼ 0.1 fm
while the relative difference becomes smaller at t ∼ 0.2 fm.
The difference should be primarily due to the connected
charm contribution and is worth further investigation in
the future.

IV. SUMMARY AND DISCUSSION

In this work, we calculated the light and strange contri-
butions of aμ from the connected vector correlators in the
medium window (t0 ¼ 0.4 fm, t1 ¼ 1.0 fm, Δ ¼ 0.15 fm)
using the overlap fermions, on the physical point ensembles
using either DWFþ Iwasaki (at a ¼ 0.084=0.114 fm) or
HISQþ Symanzik (at a ¼ 0.088=0.121 fm) configura-
tions. Our linear a2 extrapolated āWcon;s result is 26.7(3) using
the OV/DWF setup; it is consistent with the value 27.5(6)
using the OV/HISQ setup and also with the unitary DWF
value from RBC [8].
For āWcon;l, the mixed action results on the ensembles with

a < 0.1 fm are consistent with the unitary DWF or HISQ
calculations, but those at a > 0.1 fm are different from
their respective unitary results by many sigmas. After linear
a2 continuum extrapolations, the OV/DWF and OV/HISQ
results are consistent with each other and are combined to
give 206.7(1.5)(1.0) which is consistent with the BMWc
value 207.3(1.4) [12] and with the recent RBC update [17].
Furthermore, we note that using ω̂ can suppress the
discretization error of āWcon;l with the OV/DWF setup, but
this is not the case with the OV/HISQ setup. Such an
observation is similar to that using the unitary DWF or
HISQ setups [19,20].
We also calculated the short range contribution and

predict āScon;lþs ¼ 57.8ð0.1Þð1.5Þ with the systematic error
estimated from half of the difference between the predic-
tions of the results from ω and ω̂. Such a systematic

FIG. 8. The values of ωðtÞCðtÞ (upper panel) and ω̂ðtÞCðtÞ
(lower panel) at the small t region with pion mass mπ ≃ 310 and
135 MeV.

FIG. 9. The values of ωðtÞCðtÞ of the connected light and
strange contributions at the small t region with pion mass
mπ ≃ 130 MeV at lattice spacing 0.084 fm.
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uncertainty is much larger than the statistical uncertainty, as
the result using ω̂ has a much stronger discretization error
than that using ω. Our result also shows that sensitivity to
the sea fermion action is much weaker than that in the
window range. It would be valuable to verify our obser-
vations on other lattice setups.
Based on our calculation in both the short distance and

window ranges we find that the sensitivity to the sea
fermion (or gauge) action and to using either ω̂ or ω is
range dependent. Thus a similar study of the long distance
range contribution should be important to improve our
understanding of the discretization error there. We also
suggest a unitary HISQþ Iwasaki simulation at around
a ¼ 0.09 fm to test the gauge action dependence.
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