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We develop a number of sum rules comparing spectral integrals involving judiciously chosen
weights to integrals over the corresponding Euclidean two-point function. The applications we have in
mind are to the hadronic vacuum polarization that determines the most important hadronic correction aHVPμ

to the muon anomalous magnetic moment. First, we point out how spectral weights may be chosen that
emphasize narrow regions in

ffiffiffi
s

p
, providing a tool to investigate emerging discrepancies between data-

driven and lattice determinations of aHVPμ . Alternatively, for a narrow region around the ρ mass, they may

allow for a comparison of the dispersive determination of aHVPμ with lattice determinations zooming in on
the region of the well-known BABAR-KLOE discrepancy. Second, we show how such sum rules can in
principle be used for carrying out precision comparisons of hadronic-τ-decay-based data and
eþe− → hadronsðγÞ-based data, where lattice computations can provide the necessary isospin-breaking
corrections.
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I. INTRODUCTION

As is well known, the recent FNAL E989 experimental
result for the muon anomalous magnetic moment aμ ¼
ðg − 2Þ=2 [1] confirms the earlier BNL E821 result [2] and
produces an updated experimental world average 4.2σ
larger than the g − 2 theory initiative assessment [3] of the
Standard Model (SM) prediction, based on the work of
Refs. [4–27]. However, a lattice result for the hadronic
vacuum polarization (HVP) contribution aHVPμ [28] comes
out 2.1σ higher than the dispersive R-ratio-based estimate
which underlies the SM value of Ref. [3]. Replacing the
dispersive estimate for aHVPμ with the value found in
Ref. [28], the SM-based estimate for aμ is only 1.5σ
lower than the world-average experimental value. As there
is no evidence for discrepancies in other contributions to
aμ, the recent focus has been on understanding the

discrepancy between the dispersive and lattice values
for aHVPμ .1

The dispersive vs lattice discrepancy becomes even more
pronounced if we consider the “intermediate window”
quantity introduced by RBC/UKQCD [29], in which the
integral over Euclidean time, t, of the lattice correlator that
yields aHVPμ is restricted to a “window” between t ¼ 0.4
and t ¼ 1 fm (smeared by a width of 0.15 fm on both
boundaries to avoid lattice artifacts) by multiplying the
integrand with a (smoothed-out) double step function in t.
While the original RBC/UKQCD study found agreement
between the lattice-based result and the corresponding
electro-production-based dispersive estimate, Ref. [30]
found a significantly larger lattice value. This larger value
was subsequently confirmed in Ref. [28], which produced a
lattice result 3.7σ above the dispersive estimate. The virtue
of the RBC/UKQD intermediate window quantity is that it
can be computed with smaller errors on the lattice than the
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1For instance, there is good agreement between data-driven
and lattice values for the hadronic light-by-light contribution,
within ≲20% errors. This 20% error corresponds to an uncer-
tainty of about 2 × 10−10 in aμ, which is not sufficient to explain
the discrepancy.
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quantity aHVPμ itself, thus allowing more stringent tests
between different lattice computations, as well as between
lattice and dispersive results.
Meanwhile, the larger lattice values for the intermediate

window quantity found in Refs. [28,30] have been con-
firmed, with different lattice discretizations of the QCD
action and the electromagnetic (EM) current, by a number
of other groups as well as in updates of the results of
Refs. [29,30], in Refs. [31–37].
Clearly, then, it is important to develop further tools to

study the discrepancies between dispersive and lattice
estimates for aHVPμ and closely related quantities such as
the intermediate window. To obtain dispersive estimates for
the window quantity, which is defined as a function of
Euclidean time, the window function needs to be converted
to a window in

ffiffiffi
s

p
, the center-of-mass energy in eþe− →

hadrons. As a function of
ffiffiffi
s

p
, however, the weight which

defines the intermediate window is very broad, ranging
from about 0.7 GeV to 3 GeV (taking the values of

ffiffiffi
s

p
where it exceeds roughly half of its maximum value). To
explore the lattice vs dispersive discrepancy in more detail,
it would be useful to have access to tools to compare data-
driven dispersive results with lattice results in narrower,
more “custom-designed” windows in

ffiffiffi
s

p
. In this paper, we

propose a class of sum rules designed with precisely this
goal in mind. Similar ideas were recently explored in
Ref. [38], by considering linear combinations of a set of
Euclidean windows, and in Ref. [39]. Here, instead, we
define the weights we will employ in our weighted spectral
integrals directly as a function of s, and derive sum rules
relating these weighted spectral integrals to integrals in
Euclidean time over correlation functions which can be
evaluated on the lattice.
In Sec. II we develop two sets of sum rules starting from

weights defined as a function of s. In Sec. II Awe consider
a class of rational weights that allow us to define windows
localized in s. They are similar to those used recently in
Ref. [40] to obtain a lattice-based determination of jVusj
from strange hadronic τ-decay data. In Sec. II B we use
these rational weights as the starting point for defining a set
of sum-of-exponential weights with shapes very similar to
those defined by the underlying rational weights, following
ideas proposed in Ref. [41]. In both cases exact sum rules
exist relating spectral integrals employing these weights to
quantities that can be directly computed on the lattice. We
explain why the sum-of-exponential weights may lead to
smaller errors for the lattice side of the sum rules than the
corresponding rational weights, and provide examples of
this reduction in Sec. III.
Narrower windows in

ffiffiffi
s

p
are also potentially useful for

comparing I ¼ 1 contributions to aHVPμ inferred from I ¼ 1

hadronic τ-decay data with the corresponding contributions
obtained using R-ratio data. An example of the potential
usefulness of narrower windows is the application to the
BABAR-KLOE discrepancy in the two-pion spectral

distributions (for a review, see Ref. [3]), where the
discrepancy occurs over a fairly narrow range in energy
around the ρ peak. Attempts to use τ-based data have a long
history [42–45], but have been abandoned more recently
because of the increased precision of electroproduction data
and the lack of a solid theoretical framework for evaluating
the isospin-breaking (IB) corrections that must be applied
to the τ-based data. It would be interesting to revisit this
possibility since (i) a more precise τ-based nonstrange
vector spectral function is now available [46], and (ii) Belle
II may provide improved τ-decay-distribution data for at
least some of the most important vector-channel exclusive
modes [47,48]. Moreover, we will argue in Sec. IV of this
paper that if the combined 2π and 4π channels are taken
from τ, then, to good accuracy, the lattice can be used to
compute the necessary IB corrections from first principles.
We illustrate the comparison of electroproduction- and
hadronic-τ-decay-based 2π þ 4π data using two rational
weight choices, W1;5 and W2;5, defined in Sec. III.
We end the paper with a brief conclusion in Sec. V, and

relegate some technical details to two appendices.

II. SUM RULES

In this section, we develop two types of sum rules, one,
in Sec. II A, based on a set of weights used before in
Ref. [40], and one, in Sec. II B, based on the ideas
advocated in Ref. [41]. They are closely related, and we
will explore their differences in examples in Sec. III.
We start from a Euclidean current-current correlator

GμνðxÞ¼hjμð0Þj0νðxÞi¼
Z

d4q
ð2πÞ4e

iqxðδμνq2−qμqνÞΠðq2Þ

ð2:1Þ

for two potentially different vector currents jμ and j0ν, and
define from this the time-momentum correlator CðtÞ by

CðtÞ ¼ −
1

3

X3
k¼1

Z
d3xhjkð0Þj0kðx⃗; tÞi

¼ −
Z

dQ
2π

eiQtQ2ΠðQ2Þ; ð2:2Þ

where Q ¼ q4, and we have assumed that a regulator (such
as the lattice) has been introduced, so that CðtÞ and ΠðQ2Þ
are finite. While in straightforward applications to aHVPμ the
currents jμ and j0ν will both be the hadronic electromagnetic
current, they can also be chosen different, as will be done in
the application described in Sec. IV below. The corre-
sponding subtracted polarization

Π̂ðQ2Þ ¼ ΠðQ2Þ − Πð0Þ ð2:3Þ

can be expressed in terms of CðtÞ by
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Π̂ðQ2Þ ¼ −
1

Q2

Z
∞

−∞
dtðeiQt − 1ÞCðtÞ − Πð0Þ;

¼ −
2

Q2

Z
∞

0

dtðcosðQtÞ − 1ÞCðtÞ − Πð0Þ;

¼
Z

∞

0

dt

�
4 sin2ðQt=2Þ

Q2
− t2

�
CðtÞ; ð2:4Þ

where we used
R
dtCðtÞ ¼ 0 and, in the second step, that

CðtÞ is an even function of t. We define the spectral
function ρðsÞ as usual by

ρðsÞ ¼ 1

π
ImΠðsÞ; ð2:5Þ

with Π̂ðQ2Þ and ρðsÞ satisfying the subtracted dispersion
relation

Π̂ðQ2Þ ¼ −Q2

Z
∞

sth

ds
ρðsÞ

sðsþQ2Þ ; ð2:6Þ

with sth the relevant threshold value for ρðsÞ.

A. Rational-weight sum rules

We begin with a set of spectral weights of the form

Wm;nðs; fQ2
lgÞ ¼ μ2ðn−m−1Þ ðs − sthÞmQ

n
l¼1ðsþQ2

lÞ
;

Q2
n > Q2

n−1 > � � � > Q2
1 > 0: ð2:7Þ

Here the Q2
l are a set of fixed Euclidean squared momenta,

and we will always take m sufficiently smaller than n that
the weighted spectral integral with weight (2.7) is finite. We
multiply by a generic mass scale μ2ðn−m−1Þ to make the
weighted spectral integrals considered below dimension-
less; any precisely known scale is suitable for this purpose
and we will employ the choice μ ¼ mτ in what follows.
We then consider the integral

1

2πi

Z
C
dzWm;nðz; fQ2

lgÞΠð−zÞ

¼ ð−1Þmm2ðn−m−1Þ
τ

Xn
k¼1

ðQ2
k þ sthÞmQ

l≠kðQ2
l −Q2

kÞ
ΠðQ2

kÞ; ð2:8Þ

with C as the contour in the complex z ¼ q2 ¼ −Q2 plane
shown in Fig. 1, assumed to have a radius large enough that
all the z ¼ −Q2

k points lie in its interior on the negative z
axis. The result on the right-hand side follows from the fact
that Πð−zÞ is analytic in the complex plane except for a cut
starting at sth on the positive real z axis, as shown in Fig. 1.
If we now take the radius of the circular part of C to infinity,
we obtain the sum rule

Im;n ≡
Z

∞

sth

dsWm;nðs; fQ2
lgÞρðsÞ

¼ ð−1Þmm2ðn−m−1Þ
τ

Xn
k¼1

ðQ2
k þ sthÞmQ

l≠kðQ2
l −Q2

kÞ
ΠðQ2

kÞ; ð2:9Þ

where the integral over the spectral function comes from
the discontinuity along the positive real z axis. We will
prove in Appendix A that

Xn
k¼1

ðQ2
k þ sthÞmQ

l≠kðQ2
l −Q2

kÞ
¼ 0; ð2:10Þ

from which it follows that we can replace ΠðQ2
kÞ by Π̂ðQ2

kÞ
on the right-hand side of Eq. (2.9). This has to be the case,
as the left-hand side is finite by construction, and thus the
term proportional to Πð0Þ on the right-hand side has to
vanish.
A potentially useful application of this sum rule is to

evaluate the spectral integral using data, for instance
obtained from R-ratio measurements, and the sum on the
right-hand side using data from lattice QCD. In fact, what is
usually computed in lattice QCD is a position-space
correlator; in the case of aHVPμ , Eq. (2.2) with jμ ¼ j0μ
the hadronic electromagnetic current. Replacing ΠðQ2

kÞ
with Π̂ðQ2

kÞ and using Eq. (2.4), the sum rule (2.9) can then
be recast asZ

∞

sth

dsWm;nðs; fQ2
lgÞρðsÞ ¼

Z
∞

0

dt cðm;nÞðtÞCðtÞ; ð2:11Þ

with

cðm;nÞðtÞ ¼ ð−1Þmm2ðn−m−1Þ
τ

Xn
k¼1

ðQ2
k þ sthÞmQ

l≠kðQ2
l −Q2

kÞ

×

�
4 sin2ðQkt=2Þ

Q2
k

− t2
�
: ð2:12Þ

FIG. 1. Contour C used in Eq. (2.8): z ¼ q2 ¼ −Q2. The black
dot indicates the point q2 ¼ sth.
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We will refer to the sum rules of Eq. (2.11) as “rational-
weight sum rules” (RWSRs). On the lattice, the integral
over t on the right-hand side of Eq. (2.11) would be
replaced by a sum over the discrete values of t available on
the lattice, using, for example, the trapezoidal rule. We will
discuss examples in Sec. III A below.

B. Exponential-weight sum rules

The sum rules of Eq. (2.11) require the evaluation ofCðtÞ
at all values of t. In lattice QCD, the signal-to-noise ratio
for CðtÞ deteriorates when t gets large, and the contribu-
tions for these larger t values will thus “degrade” the
precision with which the right-hand side of Eq. (2.11) can
be computed.
In this section, we therefore develop modified sum rules,

involving new weights constructed to require the evaluation
of CðtÞ at only a limited set of t values. While these new
weights will, of necessity, differ from the old weightsWm;n,
we will see that, following the ideas of Ref. [41], it is
possible to choose them to be remarkably similar to
the Wm;n.
We begin with the observation that

CðtÞ ¼
Z

∞

Eth

dE ρðE2ÞðE2e−Ejtj − 2EδðtÞÞ; ð2:13Þ

with Eth ¼ ffiffiffiffiffi
sth

p
the threshold energy. The term propor-

tional to δðtÞ ensures that
R
dtCðtÞ ¼ 0.2 We then define

new weights

wnðE; ftjg; fxjgÞ ¼
Xn
j¼1

xjðE2e−jtjjE − 2EδðtjÞÞ; ð2:14Þ

with ftjg a fixed set of t values and fxjg a set of
coefficients to be determined below. In all our applications,
the tj will be chosen positive, and we can ignore the term
with the δ function. The wnðE; ftjg; fxjgÞ-weighted spec-
tral integrals then satisfy sum rules,

Z
∞

Eth

dE ρðE2ÞwnðE; ftjg; fxjgÞ ¼
Xn
j¼1

xjCðtjÞ; ð2:15Þ

in which only the n values CðtjÞ occur on the right-
hand side.
The goal then is to start with an initial weight, WðsÞ,

having some desired s dependence [for example, one of the
weights Wm;nðs; fQ2

lgÞ] and find a set of n, ftjg and fxjg
such that the associated wnðE; ftjg; fxjgÞ represents a close
approximation to the weight 2EWðs ¼ E2Þ appearing in the
alternate, E-dependent expression

Z
∞

sth

dsWðsÞρðsÞ ¼
Z

∞

Eth

dE 2EWðE2ÞρðE2Þ ð2:16Þ

for the WðsÞ-weighted spectral integral. If such a choice
exists, the associated sum rule, Eq. (2.15), will involve a
spectral integral whose weighting, by construction, is
similar to that of the desired original WðsÞ-weighted
spectral integral, but whose right-hand side involves values
of CðtÞ at only the finite number of chosen t.
The key point is that it is indeed possible, using

the method of Ref. [41], to choose n, the ftjg and the
fxjg such that wnðE; ftjg; fxjgÞ provides a very good
approximation to 2EWðs ¼ E2Þ for weight choices, like
WðsÞ ¼ Wm;nðs; fQ2

lgÞ, of interest in exploring the aHVPμ

problem. While in what follows we focus, to be specific, on
examples withWðsÞ ¼ Wm;nðs ¼ E2; fQ2

lgÞ, we stress that
the method is applicable to more general initial weight
choices as well.
The construction of Ref. [41] proceeds as follows.

Starting with an initial desired weight WðsÞ, to be referred
to in what follows as the “premold,” we choose a set of
(positive) t values ftjg, j ¼ 1;…; n, and minimize

Z
∞

Eth

dE
E4

���wnðE; ftjg; fxjgÞ − 2EWðE2Þ
���2 ð2:17Þ

with respect to the parameters xj, j ¼ 1;…; n. We denote
the parameter values which accomplish this minimization
by fxWj g. The result is a wnðE; ftjg; fxWj gÞ which repre-
sents a (close) approximation to 2EWðE2Þ, one having the
form of E2 times a weighted sum of exponentials. We will
refer to the product 2EWðE2Þ as the “mold,” and the
approximation wnðE; ftjg; fxWj gÞ as the “cast.” The sum
rule Eq. (2.15) then takes the form

IW0 ≡
Z

∞

Eth

dE ρðE2ÞwnðE; ftjg; fxWj gÞ ¼
Xn
j¼1

xWj CðtjÞ;

ð2:18Þ

where the subscript/superscript W emphasizes the role of
the underlying premold function, WðsÞ, while the prime
reminds us that the spectral integral is evaluated with the
derived cast wn. We will refer to sum rules of the form
(2.18) as “exponential-weight sum rules” (EWSRs).
Equation (2.17) is solved by

xi ¼
Xn
j¼1

A−1
ij fj; ð2:19Þ

with the matrix A and the input vector f defined by
2This term is formally divergent, but, as before, we assume that

CðtÞ has been regulated.
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Aij ¼
Z

∞

Eth

dEe−ðtiþtjÞE; fi ¼ 2

Z
∞

Eth

dEe−tiEWðE2Þ=E:

ð2:20Þ

At this point, we depart from the philosophy of Ref. [41]:
we throw away the mold and keep the cast. If the cast is a
good approximation of the mold, it will serve equally well
for comparing experimental data, represented by ρðsÞ, with
lattice data, represented by CðtÞ, in the region of energies
characterized by the mold, and there is thus no need to keep
the mold. Instead, we work directly with the cast sum
rule, Eq. (2.18).
Following this philosophy, there is also no need to keep

the values of the xj obtained from Eq. (2.19) to a very high
precision. One can keep a fixed number of digits, and
declare the values chopped off after the last of these digits
as the exact values of the xj to be used. The only
requirement is that the thus-defined exponential weight
still fulfills the goal for which it was designed, i.e., that it
probes the desired energy range. In our examples in the
next section, we will chop off the xj values at six digits, cf.
Eqs. (3.5) and (3.6).
The only role of the premold and mold functions in this

approach is to fix the type of weighting one wants in the
weighted spectral integral in cases (such as exploring the
BABAR-KLOE discrepancy) where the desired weighting is
naturally formulated in the s-space spectral integral repre-
sentation. The cast then provides a similarly weighted
spectral integral having the advantage that the correspond-
ing weighted Euclidean integral is trivially written down
using the exact sum rule (2.18) above. Attempting to find a
set of xj which produces such a desired spectral integral
weighting is a much more challenging task without the
intermediate step of first setting up the mold function and
using it to find a set of xj which implement the Euclidean
representation corresponding to the closely related s-
dependent cast weighting. We will discuss examples of
this strategy in Sec. III B, where the premolds will be the
weights we consider in Sec. III A.
It is important to realize that, once one has a cast, i.e., one

has chosen the set ftjg and a strategy for determining the
associated coefficients fxjg, the resulting sum rule, (2.18),
is exact. Different choices for the set ftjg produce different
cast functions, even when starting from the same pre-mold.
These different casts, moreover, all differ from their
original pre-mold(s). The exact cast sum rules correspond-
ing to different cast choices are then just that, different
exact sum rules in their own right, and not to be thought of
as approximations to the (equally exact) premold sum rule.
Differences in the values of the left-hand sides (or right-
hand sides) of the sum rules (2.18) corresponding to
different cast choices thus simply reflect the fact that those
sum rules involve different weights. Such differences in no

way constitute an additional systematic uncertainty on the
values of any of the individual cast sum rules.3

To illustrate the freedom to choose different casts, we
discuss one more variant. For the types of weight functions
we consider in this paper, the matrix A defined in Eq. (2.20)
may have very small eigenvalues, and, correspondingly, the
xWj values may span a rather large range [as in Eqs. (3.5)
and (3.6) below], leading to potentially sizeable cancella-
tions and possible error inflation. We may reduce this range
by modifying the matrix A to some extent, while keeping
the cast close to the mold, so that the modified sum rule still
probes essentially the same range in

ffiffiffi
s

p
. The specific

modification we will consider is to replace the matrix A
with the related matrix Â, defined by

ÂðλÞ ¼ ð1 − λÞAþ λ1n; ð2:21Þ

where 1n is the n × n unit matrix. This simply replaces
eigenvalues of Amuch smaller than λ with new eigenvalues
of order λ, leaving eigenvalues much larger than λ essen-
tially unchanged. We thus expect, and indeed find to be the
case below, that if we choose λ larger than the smallest
eigenvalue of A the range of the xWj values, and hence the
error on the lattice sides of the resulting EWSRs, will be
reduced. We will denote the analog of the spectral integral
IW0 of Eq. (2.18) obtained using the modified set of xWj
resulting from this replacement by IŴ in what follows.
We close this subsection with a recap of the key points of

the motivation for the EWSR construction. The goal of this
paper is to provide a method for exploring the tension
between lattice and dispersive results for aHVPμ by identify-
ing s-dependent weights, WðsÞ, which are simultaneously
localized to relatively narrow regions in s and such that the
alternate, Euclidean-time (t) representations of the WðsÞ-
weighted spectral integrals, IW , evaluated using input
lattice data, have errors small enough to make the resulting
dispersive-lattice comparison numerically interesting. Such
dispersive-lattice comparisons are, in principle, possible for
any WðsÞ, provided both the spectral data and lattice data
are known to sufficiently high precision. In practice,
however, lattice errors grow rapidly at large Euclidean t.
The IW produced by the vast majority of WðsÞ have, as in
the case of the RWSR examples above, equivalent

3This remark should be kept in mind when considering the
results in Sec. III B below. The results quoted in the first (or
second) lines of Eqs. (3.12) and (3.13), for example, correspond
to the same premold choice, but different choices of the related
cast. The (slightly different) cast choices produce (slightly
different) central values for the (weight-dependent) right-hand
sides of the corresponding cast sum rules. These values, of
course, also differ slightly from those of the right-hand sides of
the sum rules corresponding to the (also slightly different) pre-
mold weights, given in Eq. (3.3). The results of Eqs. (3.3), (3.12),
and (3.13) are those of three independent sum rules involving
three different weights.
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Euclidean-t representations which contain contributions
from CðtÞ at arbitrarily large t, and hence typically have
enhanced errors when evaluated using real-world lattice
data. The EWSR construction, in restricting by hand the
range of Euclidean t for which lattice results for CðtÞ are
required, allows one to mitigate this problem, while at the
same time retaining the desired qualitative s-dependent
weighting.
Another way of describing what is going on in the

EWSR construction is as follows: given a typical premold,
WðsÞ, chosen with a particular localization in s in mind, the
Euclidean-t representations equivalent to the spectral inte-
grals produced by, not just that premold, but also the vast
majority of qualitatively similar “nearby” weights, will all
suffer from the error-enhancing feature of having nontrivial
support at large Euclidean t. The EWSR construction,
however, shows that this is not a generic feature of all such
“nearby” weights: weights VðsÞ qualitatively similar to
WðsÞ exist for which the corresponding weighted spectral
integral has a Euclidean-t representation with no support
whatsoever beyond the maximum t employed in construct-
ing VðsÞ. We expect such special “nearby” weights to
produce equivalent lattice evaluations of IV with signifi-
cantly reduced relative errors, and show, in Sec. III B, that
this expectation is, indeed, borne out. An important lesson
to be drawn from this observation is that, when real-world
lattice errors are taken into account, s-dependent weights
which are very similar as functions of s may differ
significantly in how accurately the equivalent lattice
representations of their weighted spectral integrals can
be evaluated. Sum rules based on judicious choices of
EWSR weights, VðsÞ, constructed starting from generic
premolds, WðsÞ, are thus likely to represent better choices
for use in exploring dispersive-lattice differences than
would the apparently rather similar sum rules based on
the underlying generic premolds.

III. EXAMPLE: APPLICATION TO COMPARISON
BETWEEN EXPERIMENTAL AND

LATTICE DATA

We will now turn to two numerical examples, using
two different weights Wm;n of the type (2.7), both with
sth ¼ 4m2

π and

Q2
l ¼ 0.25þ 0.075ðl− 1Þ GeV2; l¼ 1;…;5: ð3:1Þ

The first has m ¼ 1, n ¼ 5, and the second m ¼ 2, n ¼ 5.
We choose mπ ¼ 134.977 MeV and mτ ¼ 1776.86 MeV.
These two weights are plotted as a function of

ffiffiffi
s

p
in Fig. 2,

whereW2;5 has been multiplied by a factor of 15 to show it
on approximately the same scale asW1;5.

4 The weightW2;5

overlaps better with the region dominated by the ρ, but falls
off more slowly for large s. The value of n −m is smaller
for W2;5 than for W1;5, which leads us to expect a smaller
error on the right-hand side of theW2;5 sum rule, according
to Appendix A. For comparison, we also show the
Minkowski version [38] of the “intermediate window”
weight introduced as a function of t in Ref. [29]. These
weights will be used for a study of the sum rule (2.11) in
Sec. III A and a study of the sum rule (2.18) in Sec. III B.
In Fig. 3 we show the functions cð1;5ÞðtÞ and cð2;5ÞðtÞ

defined in Eq. (2.12), multiplied by 10−5 and 15 × 10−5,
respectively. We see that these functions have the bulk of
their support toward larger t, while being very small at
values of t smaller than approximately 1 fm. This is not
surprising, as the weights W1;5ðsÞ and W2;5ðsÞ have their
support at relatively small

ffiffiffi
s

p
. We will see below to what

extent this has an effect on the size of the errors with which
the right-hand side of Eq. (2.11) can be evaluated.
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FIG. 2. The weights W1;5 (blue, solid), and 15 ×W2;5 (red,
dashed) with Q2

i defined in Eq. (3.1). (W2;5 is multiplied by a
factor of 15 for clarity.) The black dotted curve shows the
“intermediate window” weight of Ref. [29], transformed to the
equivalent

ffiffiffi
s

p
-dependent form [38].
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FIG. 3. The weights 10−5cð1;5ÞðtÞ (blue) and 15 × 10−5cð2;5ÞðtÞ
(red) with Q2

l as in Eq. (3.1).
4The absolute scale of the weights is arbitrary, as long as the

same scale is used on both sides of the sum rules.
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In these examples, we will use the combined R-ratio data
from Ref. [11] to evaluate the weighted spectral integrals on
the left-hand side (lhs) and the light-quark-connected lattice
data from Ref. [33] to evaluate the weighted integrals over
CðtÞ on the right-hand side (rhs).5 Since the data from
Ref. [33] are for the light-quark-connected part only, this is a
comparison between apples and oranges as far as the central
results are concerned. Here, however, we are interested in
seeing the size of typical errors on each side of the sum rule,
and using these immediately accessible recent data sources
suffices for this purpose. We emphasize that our intent is to
investigate the size of lattice and spectral integral errors in
our proposed methodology, and that, at present, no con-
clusions should be drawn from the level of numerical
agreement between the two sides of the sum rules considered
throughout Sec. III.We also neglect corrections to the lattice
data of Ref. [33] for finite-volume, taste-breaking and pion-
mass mistuning effects, having convinced ourselves that
these corrections are small, and do not lead to qualitative
changes in the conclusions we obtain below. This is
consistent with our intent to study the methodology of these
sum rules, leaving concrete applications to the future.

A. Examples using rational-weight sum rules

We begin with the values of the spectral integrals
appearing on the lhs of the sum rule (2.11) for the weights
W1;5 and W2;5 obtained using the R-ratio data from
Ref. [11]. We find

IW1;5
ðlhsÞ ¼ 0.4756ð16Þ;

IW2;5
ðlhsÞ ¼ 0.09107ð34Þ: ð3:2Þ

Both spectral integrals are obtained with a precision better
than 0.4%.
We next turn to the evaluation of the rhss of theW1;5 and

W2;5 RWSRs using lattice data for the light-quark con-
nected contribution to the correlator CðtÞ obtained using

the five ensembles of Ref. [33]. Table I shows the ensemble
parameters to the left of the double vertical line, and the
associated finite-lattice-spacing results for IW1;5

ðrhsÞ and
IW2;5

ðrhsÞ to the right of it. We note that the values of the
pion mass and the volume differ from ensemble to
ensemble, and would, in principle, need to be adjusted
to common values before carrying out an extrapolation to
the continuum limit. Since, however, the current statistical
errors are large enough that these mistunings would make
no difference in practice, we have, instead, neglected such
corrections, and carried out an extrapolation linear in a2 to
the continuum limit. For the a ¼ 0.15 fm lattice spacing we
chose the larger of the two volumes, not using the 32
ensemble. The fits have excellent p-values, and we find the
continuum-limit values

IW1;5
ðrhsÞ ¼ 0.468ð26Þ;

IW2;5
ðrhsÞ ¼ 0.0838ð33Þ: ð3:3Þ

These integrals have a precision of 5.6%, respectively,
3.9%.6 Based on these results we make the following
observations. First, the errors in Eq. (3.3) are large, and a
significant reduction in errors would be needed to make
these sum rules useful. However, as we will see in the next
subsection, errors on the rhs, obtained using the same
lattice data, are smaller for sum rules of the type (2.18) than
for those of the type (2.11). Second, from the different size
of the errors for the sum rules withW1;5 andW2;5, it is clear
that a fine-tuning of the rational weight may be necessary to
make optimal use of a certain set of lattice data. We
emphasize again that the numbers in Eqs. (3.2) and (3.3)
should not be directly compared in this example, because,
in this pilot study, we used the fully inclusive data on the
lhs, but only light-quark-connected data on the rhs. Of
course, fully inclusive lattice data are becoming available,
and with such data, a direct comparison will be possible. It
is, moreover, reasonable to expect such lattice data to have
significantly improved errors, allowing for significant
improvements to the relative errors in Eq. (3.3) as well.

B. Examples using exponential-weight sum rules

We now turn to sum rules of the type (2.18), using as
examples of the premold the weights W1;5 and W2;5 of
Sec. III A. We still need to choose the tj appearing in
Eq. (2.18) and, in this section, will employ the following
values, given in units of GeV−1:

t1 ¼ 3; t2 ¼ 6; t3 ¼ 9; t4 ¼ 12; t5 ¼ 15:

ð3:4Þ

TABLE I. The right-hand sides of Eq. (2.11) for the lattice
ensembles of Ref. [33]. The columns to the left of the double
vertical line contain the label of the ensemble, the lattice spacing
a, the spatial/temporal extent, L3 × T (in lattice units), and the
Nambu-Goldstone pion mass mπ . The columns to the right of the
double line contain the integrals IW1;5

ðrhsÞ and IW2;5
ðrhsÞ.

Label a (fm) L3 × T mπ (MeV) IW1;5
ðrhsÞ IW2;5

ðrhsÞ
96 0.05684 963 × 192 134.3 0.463(45) 0.0860(74)
64 0.08787 643 × 96 129.5 0.453(23) 0.0826(28)
48I 0.12121 483 × 64 132.7 0.426(13) 0.0831(13)
32 0.15148 323 × 48 133.0 0.433(13) 0.0801(17)
48II 0.15099 483 × 64 134.3 0.411(14) 0.0824(18)

5The results of Ref. [33] were obtained using ensembles from
Refs. [49,50].

6The relatively large errors make the figures showing these fits
not very interesting, and we thus omit them. In the next
subsection we will show the equivalent fits for the EWSRs,
for which the lattice values have smaller errors.
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Since these values do not exactly coincide with the values
of t available for the lattice ensembles we employ, we
obtain the associated CðtjÞ values, in all cases, by linear
interpolation from the nearest available t, taking into
account all correlations in the interpolation. The range of
values in Eq. (3.4) is one for which lattice computations of
CðtÞ generally have small statistical errors.
With the tj defined, the values of the coefficients xj are

fixed by the premold choice. For W0
1;5 we find

W0
1;5∶ x1 ¼ 37.4123; x2 ¼ 2625.13; x3 ¼ 25912.1;

x4 ¼ −106707; x5 ¼ 78192.8; ð3:5Þ

while for W0
2;5 we find

W0
2;5∶ x1 ¼ 34.0249; x2 ¼ 870.640; x3 ¼−5501.14;

x4 ¼ 9933.01; x5 ¼−5284.24: ð3:6Þ

For Ŵ1;5 and Ŵ2;5, obtained by replacing A by the λ ¼ 10−9

version of Â of Eq. (2.21) in Eq. (2.19), we find

Ŵ1;5∶ x1 ¼−78.8487; x2 ¼ 5688.30; x3 ¼ 2223.96;

x4 ¼−36638.0; x5 ¼ 8047.38; ð3:7Þ

and

Ŵ2;5∶x1 ¼ 44.8916; x2 ¼ 590.933; x3 ¼ −3373.53;

x4 ¼ 3716.86; x5 ¼ 879.149: ð3:8Þ
As already explained in Sec. II B, we will use these exact

values in the rest of this subsection.
In the upper panels of Fig. 4 we show the molds

2
ffiffiffi
s

p
W1;5ðsÞ and 2

ffiffiffi
s

p
W2;5ðsÞ together with their associated

casts,W0
1;5ðsÞ ¼ w5ðE; ftjg; fx

W0
1;5

j gÞ and W0
2;5ðsÞ ¼ w5ðE;

ftjg; fx
W0

2;5
j gÞ, determined byEqs. (3.4)–(3.6).We also show

the casts Ŵ1;5ðsÞ¼w5ðE;ftjg;fxŴ1;5
j gÞ and Ŵ2;5ðsÞ ¼

w5ðE; ftjg; fxŴ2;5
j gÞ, determined with Eqs. (3.7) and (3.8)

instead. On the scale of these figures, the casts are almost
indistinguishable from the underlyingmolds for theA-based
casts, and quite close for the Â-based casts. The smaller-
vertical-scale lower panels show the corresponding cast-
mold differences in more visually evident form.
As for the RWSR cases, we first give the lhs values, IW0

1;5
and IW0

2;5
, obtained by integrating over the R-ratio data:

IW0
1;5
ðlhsÞ ¼ 0.4788ð16Þ;

IW0
2;5
ðlhsÞ ¼ 0.08922ð34Þ: ð3:9Þ
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FIG. 4. Upper panels: molds (blue continuous curves) and casts (red dashed curves) for the molds 2
ffiffiffi
s

p
W1;5ðsÞ (left panel) and

2
ffiffiffi
s

p
W2;5ðsÞ (right panel). The black dot-dashed curves show the casts obtained with Â of Eq. (2.21) instead of A of Eq. (2.20), choosing

λ ¼ 10−9. Lower panels: differences between mold and cast, for each case (with the dashed curves the difference for the Â-based casts).
Note the very different scales on the vertical axes in the upper and lower figures.
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For IŴ1;5
and IŴ2;5

we find

IŴ1;5
ðlhsÞ ¼ 0.4488ð16Þ;

IŴ2;5
ðlhsÞ ¼ 0.09214ð37Þ: ð3:10Þ

As before, the R-ratio data of Ref. [11] allow us to
determine these values with errors ≲0.4%. We note that
the values in Eq. (3.9) or (3.10) are not the same as those in
Eq. (3.2), even if they are rather close. This reflects the fact
that mold and cast weights are not identical.
Because of the well-known even-odd time oscillation of

staggered correlators, we define smoothed-out correlators

ĈðtÞ ¼ 1

4
ðCðt − 1Þ þ 2CðtÞ þ Cðtþ 1ÞÞ: ð3:11Þ

We will use the averaged correlator ĈðtÞ when evaluating
the rhs of Eq. (2.18).7

We show the results for IW0
1;5
ðrhsÞ, IW0

2;5
ðrhsÞ, IŴ1;5

ðrhsÞ
and IŴ2;5

ðrhsÞ in Table II. Using the values obtained with
the three smallest lattice spacings, i.e., the ensembles 96, 64
and 48I, and performing fits linear in a2, we find the
continuum-limit values

IW0
1;5
ðrhsÞ ¼ 0.496ð17Þ;

IW0
2;5
ðrhsÞ ¼ 0.0798ð18Þ; ð3:12Þ

and

IŴ1;5
ðrhsÞ ¼ 0.4669ð68Þ;

IŴ2;5
ðrhsÞ ¼ 0.0824ð10Þ: ð3:13Þ

These linear fit results are shown by the red lines in Fig. 5.
The blue curves in the same figure show the results of
alternate fits quadratic in a2 obtained using the four
ensembles 96, 64, 48I and 48II. The linear and quadratic
fits give consistent continuum-limit results.
As shown in the Table II, the integrals, IW0

1;5
ðrhsÞ and

IW0
2;5
ðrhsÞ in Eq. (3.12) have precisions of 3.4% and 2.2%,

respectively, while IŴ1;5
ðrhsÞ and IŴ2;5

ðrhsÞ in Eq. (3.13)
have precisions of 1.5% and 1.2%, respectively. We see that
the modification (2.21) indeed pays off. We emphasize
again that the lhs and rhs central values should not be
directly compared in this study. What is of interest here is
the size of the statistical errors in Eqs. (3.9), (3.10), (3.12),
and (3.13). While those in Eqs. (3.9) and (3.10) are the
same as those in Eq. (3.2), those in Eqs. (3.12) and (3.13)
are significantly smaller than those in Eq. (3.3). This
reflects the freedom to avoid, through the restricted set
of tj values employed in Eqs. (3.12) and (3.13), higher-
error, large-t contributions, and provides a concrete exam-
ple of the potential enhanced utility of EWSRs over their
closely related RWSR counterparts.
The improvement represented by the EWSR construc-

tion is, of course, expected to vary depending on the choice
of the ftjg and the strategy chosen for obtaining the
associated coefficients fxjg. We have already seen that,
for the set of ftjg chosen above, using the strategy of
Eq. (2.21) produces generally smaller fxjg and hence, as a
result of reduced cancellation, improved errors on the
lattice sides of the associated EWSRs. We thus expect
other strategies for constructing EWSRweights which limit
the size of the fxjg to also produce EWSRs with reduced
lattice-side relative errors. Such considerations suggest,
e.g., avoiding sets ftjg in which the tj are too closely
spaced since reducing the spacing between adjacent tj,
in reducing the difference between the associated basis
functions E2 expð−tjEÞ, is likely to force an increase in the
size of the associated coefficients fxjg.8
We add several comments. First, it is likely that lattice

data in the near future will have smaller statistical errors
than does the lattice data of Ref. [33], used in the current
study. This makes it not unlikely that sub-percent precision
can be reached with EWSRs. Second, we did not discuss

TABLE II. The right-hand side of Eq. (2.18) for the lattice
ensembles of Ref. [33]. The second and third columns give,
respectively, the values for IW0

1;5
and IW0

2;5
, obtained using

Eq. (3.11). The fourth and fifth columns give, respectively, the
values for IŴ1;5

and IŴ2;5
, obtained using Â of Eq. (2.21) instead of

A, with λ ¼ 10−9. Below the blank line we show (i) the
continuum extrapolation for each column, obtained using fits
linear in a2 to the values for the first three ensembles (96, 64 and
48I), (ii) the p-value of that fit, and (iii) the relative statistical
error (Rel. error) of the continuum limit value.

Label IW 0
1;5
ðrhsÞ IW0

2;5
ðrhsÞ IŴ1;5

ðrhsÞ IŴ2;5
ðrhsÞ

96 0.504(20) 0.0799(23) 0.4625(75) 0.0838(12)
64 0.4822(92) 0.08703(94) 0.4520(38) 0.08994(54)
48I 0.4790(72) 0.09187(80) 0.4401(40) 0.09558(51)
32 0.498(12) 0.10073(76) 0.4398(68) 0.10623(45)
48II 0.4837(85) 0.1009(11) 0.4301(46) 0.10605(64)

a ¼ 0 0.496(17) 0.0798(18) 0.4669(68) 0.0824(10)
p-value 0.44 0.15 0.78 0.10
Rel. error 3.4% 2.2% 1.5% 1.2%

7More sophisticated approaches are possible, but we consider
this average sufficient for the explorative nature of this section.

8An example of the impact of choosing an overly finely spaced
set ftjg is provided by EWSRs based on alternate versions, W00

15
and W00

25, of the primed weights above, obtained using the more
finely spaced set, ftjg ¼ f3; 5; 7; 9; 11; 13; 15g GeV−1, covering
the same range in t as the set (3.4). This finer spacing produces
relative errors on the lattice sides of W00

15 and W00
25 EWSRs of

3.5% and 3.3%, respectively, which represents a 50% error
increase in the case of W00

25 when compared with the results of
Table II.
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systematic errors, which of course also need to be con-
trolled. In particular, for staggered fermions, smaller lattice
spacings than the current smallest value of about 0.06 fm
will be needed [33]. We thus do not claim that our linear fits
to the results in Table II are the final word. However, similar
fits to improved data at smaller lattice spacings should
allow these sum rules to become of practical use. Finally,
we note that the W1;5 versions of Eqs. (3.9) and (3.12)
are closer together than the W2;5 versions. This can be
qualitatively understood. The large-t part of the full HVP
correlator CðtÞ with jμ ¼ j0μ the hadronic electromagnetic
current is dominated by the light-quark-connected part,
more so than the smaller-t part. As can be seen from Fig. 2,
the weightW1;5 has support at smaller s. This translates into
having support at larger t, as can be seen in Fig. 3. This
explains the closer agreement for the W1;5-based case. A
similar observation also holds for Eqs. (3.2) and (3.3) in
Sec. III A.

C. Comparison with BABAR-KLOE discrepancy

One would like to get an idea about what is needed to
make the lattice errors in Eq. (3.12) small enough for
concrete applications of these sum rules. To this end,
we consider, as an example, the difference of the values
of IW0

1;5
and IW0

2;5
computed using the BABAR [51,52] or

KLOE [53] versions of the two-pion contribution to the EM

spectral function. As Ref. [53] provides the eþe− → πþπ−

cross sections only up to s ¼ 0.95 GeV2, we will assume
that the full discrepancy originates from the difference in
the measured cross sections below s ¼ 0.95 GeV2.
This allows us to evaluate the two-pion contributions to
IW1=2;5

, IW0
1=2;5

and IŴ1=2;5
on both the BABAR and KLOE

data. We find

IππW1;5
ðBABARÞ − IππW1;5

ðKLOEÞ ¼ 0.0091ð39Þ;
IππW2;5

ðBABARÞ − IππW2;5
ðKLOEÞ ¼ 0.00152ð51Þ;

IππW0
1;5
ðBABARÞ − IππW0

1;5
ðKLOEÞ ¼ 0.0091ð39Þ;

IππW0
2;5
ðBABARÞ − IππW0

2;5
ðKLOEÞ ¼ 0.00153ð52Þ;

Iππ
Ŵ1;5

ðBABARÞ − Iππ
Ŵ1;5

ðKLOEÞ ¼ 0.0094ð40Þ;
Iππ
Ŵ2;5

ðBABARÞ − Iππ
Ŵ2;5

ðKLOEÞ ¼ 0.00150ð51Þ: ð3:14Þ

Comparing these values with the lattice values of
Eqs. (3.12) and (3.13), we see that the lattice errors are
factors of about 1.9, 1.2, 0.7 and 0.7 times the differences
shown in Eq. (3.14) for W0

1;5, W0
2;5, bW1;5 and bW2;5,

respectively. This implies that in order to use the
EWSRs with the primed weights, an improvement of a
factor about 2 to 4 in the lattice errors would be needed,
while for the hatted weights, a very modest improvement

FIG. 5. Continuum extrapolations of IW0
1;5
ðrhsÞ (left upper panel) and IW0

2;5
ðrhsÞ (right upper panel), and IŴ1;5

ðrhsÞ (left lower panel)
and IŴ2;5

ðrhsÞ (right lower panel). The data points show the lattice results for the various ensembles. Linear fits to the three left-most
points (omitting the gray filled circles) are shown by the red lines, and quadratic fits to all four data points (the black and gray filled
circles) by the dashed blue curves. Results for the 32 ensemble, shown as orange diamonds, are not used in either of these extrapolations.
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would be sufficient for the EWSRs to weigh in on the
BABAR-KLOE discrepancy. A combination of more pre-
cise lattice data and possibly a more fine-tuned design of
the sum-rule weight functions would help accomplishing
this. We note that, for this goal, the weight W0

2;5 was better

“designed” than the weight W0
1;5, and the weight Ŵ2;5

similarly better “designed” than the weight Ŵ1;5. We also
note that, in both cases, the hatted weights outperform their
primed counterparts.

IV. USING HADRONIC τ-DECAY DATA FOR aHVP
μ

We now turn to a different application of the sum rules
introduced in Sec. II: the use of spectral data obtained from
nonstrange vector-current-induced hadronic τ-decay data in
the determination of aHVPμ .
The idea of using τ data is straightforward in the isospin

limit. If isospin were an exact symmetry, one could replace
contributions to the R-ratio from I ¼ 1 exclusive modes in
eþe− → hadrons by the corresponding contributions
implied by the conserved vector current relation and the
related vector-channel (G-parity positive) exclusive-mode
hadronic τ-decay distributions, for s ≤ m2

τ. Doing so is
potentially useful for three reasons: (i) if, for a certain
energy region, the τ data are more precise, this would help
in improving the precision of the dispersive determination
of aHVPμ ; (ii) the τ data might shed light on the long-standing
discrepancy between BABAR and KLOE results for the
eþe− → πþπ− cross sections observed in the ρ region
discussed in Sec. III C; and (iii) likewise, the τ data might
shed light on the increasing evidence for discrepancies
between R-ratio and lattice based evaluations of aHVPμ or
closely related window quantities.
One of the reasons the current best dispersive determi-

nation of aHVPμ does not employ hadronic τ-decay data is
that, in the real world, isospin is broken by electromagnetic
corrections and the difference in up and down quark
masses. Typically, both isospin-breaking (IB) effects are
expected to be of order a percent or so (except possibly in
the region of narrow interfering resonances, where the
effects may be larger). Given the precision with which aHVPμ

is obtained in the dispersive approach, IB effects thus need
to be brought under quantitative control. Models for IB
have been employed in the past [3], but these are not under
full phenomenological control, as evidenced by the fact that
they fail to account for the observed differences between
the experimental τ and electroproduction ππ distributions
(see, for example, Figs. 20 and 22 of Ref. [3]). Because of
the steady improvement in R-ratio data, and the problem of
achieving an understanding of the IB corrections one needs
to apply to the τ ππ data, recent high-precision dispersive
estimates of aHVPμ do not involve τ-decay data at all.
There are, nevertheless, several reasons to revisit this

topic. First, lattice QCD may be able to produce relevant,

first-principle, estimates for IB effects that are useful in the
comparison between eþe−-based and τ-based data, aswill be
discussed below. Second, a new combination of the sum of
the π−π0, 2π−πþπ0 and π−3π0 contributions to the isovector,
vector spectral function from ALEPH and OPAL data has
recently beenobtained, producing an at-present-best publicly
available result for the sum of the contributions from these
modes [46].9 Significant further improvements to the pre-
cision for this sum may, moreover, be achievable using
Belle II data.10

The basic idea is, using the weightsWm;n,W0
m;n or Ŵm;n,

to compare the weighted spectral integrals computed with
spectral data obtained from electroproduction and from
hadronic τ decays. For any (sum of) I ¼ 1 channels, the SM
difference is caused by IB, and can be expressed as the
corresponding difference of the rhs of Eq. (2.11) [or (2.18)].
In principle, the rhs differences can be computed on the
lattice, as we will discuss in Sec. IVA. The other important
ingredient is the precision with which the Wm;n-, W0

m;n- or
Ŵm;n-weighted spectral integrals can be evaluated. As we
will see, choosing weights likeW1;5 andW2;5, which zoom
in on the region of the BABAR-KLOE discrepancy, the
weighted spectral integrals of the electroproduction- and
τ-based data are already sufficiently precise that results
using current τ data will allow one to weigh in on the
BABAR-KLOE discrepancy, provided the required IB
corrections can be evaluated with comparable precision
on the lattice. We will discuss this point more quantitatively
in Sec. IV B.

A. Isospin breaking

The main problem in comparing spectral data from
electroproduction and hadronic τ decays using lattice data
to compute IB effects in the hadronic vacuum polarization
ΠðQ2Þ is that the lattice can only access ΠðQ2Þ for
Euclidean Q2.11 This is not a problem if one wants to
compare fully inclusive results for aHVPμ , since representa-
tions exist for aHVPμ both as a weighted integral of the R
ratio, RðsÞ, over s [55–57] and as a weighted integral of
Π̂ðQ2Þ over Q2 [58–60]. It does, however, become a
problem if one wants to restrict oneself to contributions
from a subset of exclusive modes, and/or to restrict s to a
given region smin ≤ s ≤ smax. Because of the kinematic

9The reason only the sum is available is that the ALEPH and
OPAL covariance matrices for the two 4π distributions are highly
singular, which can lead to biased results in the data-combination
procedure. The sum of 2π and 4π contributions has a much better
behaved covariance matrix and avoids this issue.

10An additional practical issue is the need to ensure the
radiative corrections applied to τ data match those employed
in the analysis of electroproduction data. For more on this issue,
and work in progress on evaluating the relevant corrections, see
Ref. [54].

11Or, equivalently, CðtÞ for Euclidean t.
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restriction s ≤ m2
τ for τ decays, smax by necessity has to be

chosen ≤ m2
τ , whereas one may want to choose smin larger

than threshold to reduce the relative statistical errors.
Similar observations apply to the sum rules of Sec. II, in
which, as for aHVPμ , the spectral integrals are evaluated from
sth to ∞.
The bulk of the dispersive contributions to aHVPμ come

from electroproduction data below
ffiffiffi
s

p ¼ 1.937 GeV, with
eþe− → 2π, 3π, 4π and KK̄ accounting for 72.8%, 6.7%,
4.9% and 5.2%, respectively, for a total of 89.7%, accord-
ing to Ref. [11].
Contributions from all other exclusive modes belowffiffiffi
s

p ¼ 1.937 GeV represent a further 2.6%, those from
narrow charm and bottom resonances a further 1.1%, those
from inclusive RðsÞ data between

ffiffiffi
s

p ¼ 1.937 and
11.199 GeV a further 6.3%, and those [evaluated using
perturbative QCD (pQCD)] from

ffiffiffi
s

p
above 11.199 GeV a

further 0.3%. The contributions from the 2π, 3π, 4π and
KK̄ exclusive modes below

ffiffiffi
s

p ¼ 1.937 GeV, similarly,
represent 98% and 89%, respectively, of the full spectral
integrals IW1;5

and IW2;5
.

With contributions from the remaining exclusive modes
below

ffiffiffi
s

p ¼ 1.937 GeV lying at s far removed from
narrow interfering resonances which might enhance IB,
it seems reasonable to expect IB in these residual exclusive-
mode contributions to be very small. We estimate these
as of order 1% of the 2.6% total contribution from these
modes.
In the region above

ffiffiffi
s

p ¼ 1.937 GeV, away from the
narrow charm and bottom resonances, the experimental
RðsÞ data used in obtaining the 6.3% inclusive-region
contribution of Ref. [11] agrees with pQCD expectations
to significantly better than 10%. With IB corrections
well below 1% in the OPE representation of ρEMðsÞ,
estimating possible IB contributions from the region
above

ffiffiffi
s

p ¼ 1.937 GeV as less than 1% of the 7.7%
total from this region should represent a very conservative
assessment.
With the 1% or less estimates discussed above for IB in

both the contributions from exclusive modes other than 2π,
3π, 4π and KK̄ below

ffiffiffi
s

p ¼ 1.937 GeV and all contribu-
tions in the region above

ffiffiffi
s

p ¼ 1.937 GeV, we conclude
that IB contributions from these sources should represent
less than 0.1% of the total for aHVPμ ; a similar conclusion
holds for IW1;5

and IW2;5
. In summary, since the contribu-

tions from channels other than 2π, 3π, 4π and KK̄ belowffiffiffi
s

p ¼ 1.937 GeV and all contributions in the region aboveffiffiffi
s

p ¼ 1.937 GeV represent less than 11% of the totals for
all of aHVPμ , IW1;5

and IW2;5
, and it is safe to estimate IB for

these quantities as at most of order 1%, IB contributions
should represent of order 0.1% or less of the total for all
three quantities. The uncertainty resulting from neglecting
such contributions can thus be safely neglected given the
present state of the art.

In Ref. [61] it was shown that the IB effect in the I ¼ 1

vector KK̄ channel is expected to be much smaller than
the typical few percent of the full I ¼ 0þ 1 sum, because
τ-decay data for the I ¼ 1 contribution allows one to see
that the KK̄ electroproduction cross sections are strongly
dominated by the I ¼ 0 contribution from the ϕ-peak
region [62]. The IB effects on the small I ¼ 1 part of
the KK̄ channel should thus also be negligibly small.
It follows from the analysis of Ref. [61] that, to first order

in IB, IB effects for all nonstrange vector-channel τ
exclusive-mode contributions except those from the 2-pion
and 4-pion modes are so small that for the purpose of
estimating IB corrections (apart from possible IB effects in
the eþe− → 3π distribution to be discussed in more detail
below) a fully inclusive lattice result for

ΠIBðQ2Þ≡ 2ffiffiffi
3

p Π38ðQ2Þþ
h
Π33ðQ2Þ−1

2
Πud;VðQ2Þ

i
ð4:1Þ

can be used to correct the sum of 2π and 4π contributions
obtained from non-strange vector-channel hadronic τ-decay
data, producing an alternate, combined τ-plus-lattice-IB
determination for the sum of πþπ−, 2πþ2π− and πþπ−2π0
electroproduction contributions.12

From the above discussion, it follows, using Eq. (2.9),
again up to possible IB contributions in the eþe− → 3π
distribution which, to first order in IB, would produce
unwanted 3-pion contributions to the mixed-isospin, ab ¼
38 part of ρEMðsÞ, and hence also to Π38ðQ2Þ in Eq. (4.1),
that

Δm;n ≡
Z

sKNT

sth

dsWm;nðs; fQ2
lgÞρe

þe−
2πþ4πðsÞ

−
Z

sKNT

sth

dsWm;nðs; fQ2
lgÞρτ2πþ4πðsÞÞ;

¼ ð−1Þmm2ðn−m−1Þ
τ

Xn
k¼1

ðQ2
k þ sthÞmQ

l≠kðQ2
l −Q2

kÞ
ΠIBðQ2

kÞ;

ð4:2Þ

where sKNT ¼ ð1.937 GeVÞ2 is the upper edge of the
exclusive-mode data region of Ref. [11], ρe

þe−
2πþ4π is the

sum of the 2π and 4π contributions to the electromagnetic
current spectral function implied by 2π and 4π electro-
production cross sections and ρτ2πþ4π is the sum of the 2π
and 4π contributions to the consistently normalized vector
I ¼ 1 spectral function implied by nonstrange vector-
current-induced hadronic τ decay distribution results.
Alternate versions of this sum rule in terms of CIBðtÞ
[cf. Eqs. (2.11) or (2.18)] can of course also be employed.
We will discuss the feasibility of this through concrete

12A preliminary lattice study of some of the contributions to
Eq. (4.1) already exists [54,63].
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examples in Sec. IV B, where we will evaluate the lhs of
Eq. (4.2) for the weights W1;5 and W2;5 using data from
Refs. [11,46].
We now return to the issue of possible nontrivial IB

effects in the eþe− → 3π distribution, which complicates
the process of identifying the exclusive-mode contributions
in the dispersive integral over the electroproduction data to
be replaced by lattice-IB-corrected τ results. This compli-
cation arises because there may be 3-pion exclusive-mode
contributions to the spectral function of the mixed-isospin
Π38 polarization. In the isospin limit, the 3π mode is pure
I ¼ 0, and thus not affected by the replacement of part of
the I ¼ 1 component of the electromagnetic spectral
function by the corresponding part of the vector-channel,
I ¼ 1 τ spectral function. With IB, however, the 38 part of
Eq. (4.1) will contain a 3-pion contribution, with ρ − ω
mixing, for example, inducing a contribution to the 38
spectral function via eþe− → ρ → ω → 3π. Applying the
inclusive lattice IB correction to the weighted τ 2π þ 4π
integral and using the result to replace the corresponding
2π þ 4π contribution to the weighted electroproduction
integral, the modified all-exclusive-mode sum would then
include this 3π IB component twice, once in the inclusive
lattice IB correction, and once in the 3π contribution
produced by use of the experimental eþe− → 3π cross
sections. The result of Ref. [11] for the contribution of the
3π channel to aHVPμ , 46.73ð94Þ × 10−10, is sufficiently large
that, were the associated IB 3π contribution to be larger
than naively expected, say at a level a few to several percent
of the full 3π contribution, a controlled estimate of its size
might be required to make an inclusive lattice ΠIBðQ2Þ
determination, however precise, of actual numerical use in
performing an IB correction of τ-decay data.
Fortunately, experimental information is now available

on what should be the dominant contribution to this 3π
double counting, with recent BABAR results [64]
providing >6σ evidence for an IB eþe− → ρ → 3π con-
tribution to the eþe− → 3π amplitude. The interference
of this contribution with the isospin-conserving (IC)
eþe− → ω → 3π, eþe− → ϕ → 3π, eþe− → ω0 → 3π
and eþe− → ω00 → 3π contributions produces IB contri-
butions to the cross section, and hence IB contributions to
the weighted integrals over the 3π distribution involving the
weights discussed in this paper. The normalization of these
interference contributions is fixed by the square root
of the fitted ρ → 3π branching fraction, Bðρ → 3πÞ, to
which these contributions are proportional. Taking the
integrals up to the upper edge, s ¼ ð1.937 GeVÞ2, of the
KNT19 exclusive-mode region to be specific, the IB
contributions implied by the preferred BABAR cross-
section fit, as detailed in Appendix B, turn out to represent
−1.2ð1.2Þ%, −1.1ð1.1Þ% and −1.6ð1.6Þ% of the corre-
sponding full 3π contributions to aHVPμ , IW1;5

and IW2;5
,

respectively.

In the aHVPμ case, the resulting 3π-double-counting
correction,þ0.54ð0.54Þ × 10−10 [fromEq. (B1)], represents
þ0.08ð0.08Þ% of the aHVPμ total. At present, a�0.54×10−10

uncertainty on the τ-modified alternate determination of
aHVPμ is sufficiently small that replacing electroproduction
data by τ-based data for the 2π and 4π channels is potentially
useful for the purposes of investigating, for example, the
BABAR-KLOEdiscrepancy, where the discrepancy between
BABAR and KLOE 2π contributions from the region
0.6 GeV <

ffiffiffi
s

p
< 0.9GeV [11], ð9.8� 3.5Þ × 10−10, is

much larger than the 3π double-counting-correction uncer-
tainty. In Sec. IV B we will show that a similar conclusion
holds for theW1;5 andW2;5 weight cases: the�0.00041 and
�0.00012 uncertainties on the W1;5 and W2;5 3π-double-
counting corrections obtained in Appendix B are once more
much smaller than the central values and experimental errors
on the corresponding electroproduction-τ spectral integral
differences.
A more detailed discussion of the IB contributions to the

weighted 3π integrals may be found in Appendix B.

B. Comparison of τ-based and e + e− -based
spectral integrals

We now turn to the evaluation of the 2π þ 4π contribu-
tions to the spectral integrals appearing in Eq. (4.2), for the
examples Wm;n ¼ W1;5 and W2;5. The 2π þ 4π data of
Ref. [11] is used in the first integral and that of Ref. [46] in
the second integral. We also consider the 3π channel, in
view of the discussion at the end of Sec. IVA. The
discussion is restricted to contributions from the exclu-
sive-mode region of Ref. [11], s ≤ sKNT ¼ ð1.937 GeVÞ2,
since 2π, 3π and 4π contributions above that point form
part of the multimode inclusive contribution, dealt with
already in Sec. IVA. Since no lattice data is currently
available to evaluate the rhs of either Eq. (4.2) or its
EWSR analog, we restrict our attention to the W1;5 and
W2;5 RWSR examples, and do not consider the EWSR
analogs. Once suitable IB lattice data become available, the
analogous EWSR cases may become of interest, for the
reasons explained in Sec. III B.
Our goal here is to see whether the two integrals on the

lhs of Eq. (4.2) can be evaluated with sufficient precision to
make this sum rule of potential use. Of relevance to
investigating this question is the size of the uncertainty
on the spectral integral differences appearing on the lhs of
Eq. (4.2) relative to (i) the uncertainties on estimates
for the corresponding 3π-double-counting corrections,
and (ii) variations in the spectral integral differences
themselves, induced, for example, by the BABAR-KLOE
ππ discrepancy.
We start with the electroproduction-based W1;5- and

W2;5-weighted integrals over the 2π, 3π and 4π contribu-
tions to ρEMðsÞ, results for which are shown in Table III.
We use sth ¼ 4m2

π .

SPECTRAL-WEIGHT SUM RULES FOR THE HADRONIC VACUUM … PHYS. REV. D 107, 034512 (2023)

034512-13



The data files containing the exclusive-mode contribu-
tions to RðsÞ provided by the authors of Ref. [11] extend up
to s ¼ sKNT ¼ 3.7520 GeV2. Results for the exclusive-
mode, sKNT-truncated X ¼ πþπ−, 2πþ2π−, πþπ−2π0 and
πþπ−π0, W1;5- and W2;5-weighted spectral integrals
obtained using this input, are denoted IXW1;5

ðsKNTÞ and

IXW2;5
ðsKNTÞ in what follows, and listed in columns 2 and 5

of Table III.
The upper endpoints of the τ-based spectral integrals are,

in contrast, limited by the largest s for which the
τ-based spectral function of Ref. [46] is available, which
is s≡ sτ ¼ 3.0574 GeV2, slightly below m2

τ. To compare
to the resulting sτ-truncated τ-based integrals, we thus also
require values for sτ-truncated versions of the exclusive-
mode electroproduction-based integrals. These are denoted
IXW1;5

ðsτÞ and IXW2;5
ðsτÞ and listed in columns 3 and 6 of

Table III. As can be seen from the table, the sτ-truncated
integrals constitute more than 99% of the corresponding
sKNT-truncated versions for the 2π and 3π modes and more
than 90% of the sKNT-truncated versions for the two
4π modes.
The sτ-truncated 2π þ 4π τ-based integrals to be com-

pared to the R-ratio-based analogs of Table III are obtained
using the 2π þ 4π τ-based spectral function of Ref. [46].
The results,

Iτ;2πþ4π
W1;5

ðsτÞ ¼ 0.4103ð22Þ;
Iτ;2πþ4π
W2;5

ðsτÞ ¼ 0.06693ð22Þ; ð4:3Þ

differ from the electroproduction results of Table III,

I2πþ4π
W1;5

ðsτÞ ¼ 0.3995ð14Þ;
I2πþ4π
W2;5

ðsτÞ ¼ 0.06459ð26Þ; ð4:4Þ

by 4.1σ and 6.7σ, respectively, for theW1;5 andW2;5 cases.
The sτ-truncated contributions to the differences appearing
on the lhs of the W1;5 and W2;5 versions of Eq. (4.2),

I2πþ4π
W1;5

ðsτÞ − Iτ;2πþ4π
W1;5

ðsτÞ ¼ −0.0108ð26Þ;
I2πþ4π
W2;5

ðsτÞ − Iτ;2πþ4π
W2;5

ðsτÞ ¼ −0.00233ð35Þ; ð4:5Þ

are thus determined with ∼24% and ∼15% precision. We
note that the errors in Eq. (4.5) are significantly smaller
than the central values of the BABAR-KLOE discrepancies
in Eq. (3.14). The analogous values for aHVPμ itself are

a2πþ4π
μ ðsτÞ ¼ 535.0ð2.0Þ × 10−10;

aτ;2πþ4π
μ ðsτÞ ¼ 552.4ð5.0Þ × 10−10;

a2πþ4π
μ ðsτÞ − aτ;2πþ4π

μ ðsτÞ ¼ −17.4ð5.4Þ × 10−10: ð4:6Þ

We comment on the τ-based value in Eq. (4.6) (i.e., the
second line of this equation). The τ-based data are very
sparse near the 2-pion threshold end of the spectral
function, and a comparison with the R-ratio-based data
(which are much denser in the threshold region) suggests
that the trapezoidal interpolation of the τ-based data may
overestimate the near-threshold, τ-based contribution to
aτ;2πþ4π
μ ðsτÞ. A rough estimate of this effect can be obtained

by replacing the contribution to aτ;2πþ4π
μ ðsτÞ between

threshold and sChPT ≡ s ¼ ð0.305 GeVÞ2 by the chiral
perturbation theory (ChPT)-based 2-pion contribution
from Ref. [11], and then employing trapezoidal integration
above sChPT. Doing so would lead to a downward shift of
0.90ð42Þ × 10−10 of the value 552.4ð5.0Þ × 10−10 in
Eq. (4.6). This small additional near-threshold uncertainty
in the τ result for a2πþ4π

μ is a consequence of the enhance-
ment of low-s contributions by the aHVPμ kernel. The
weights W1;5 and W2;5, in contrast, produce no such
low-s enhancement (and in fact strongly suppress near-
threshold contributions). The uncertainty in the low-s
τ-based 2π spectral distribution resulting from the coarse-
ness of the τ data near threshold thus has negligible impact
on the results in Eq. (4.3). Since weighted spectral integrals
with the weights W1;5 and W2;5 are the main focus of this
paper, we do not pursue this issue further here.
Of course, before we can meaningfully compare the

τ- and electroproduction-based integrals, we need to take
the rhs, i.e., the projected lattice-based IB correction, into

TABLE III. Electroproduction-based exclusive-mode spectral integrals with weights W1;5 (left of the double vertical line) and W2;5

(right of the double vertical line). The second and fifth columns show the integrals computed up to s ¼ sKNT ¼ ð1.937 GeVÞ2, the third
and sixth columns the same integrals computed up to s ¼ sτ ¼ 3.0574 GeV2.

Channel IW1;5
ðsKNTÞ IW1;5

ðsτÞ
IW1;5

ðsτÞ
IW1;5

ðsKNTÞ IW2;5
ðsKNTÞ IW2;5

ðsτÞ
IW2;5

ðsτÞ
IW2;5

ðsKNTÞ

πþπ− 0.3864(14) 0.3863(14) 1.00 0.05713(19) 0.05710(19) 1.00
2πþ2π− 0.005743(81) 0.005450(77) 0.95 0.003568(49) 0.003267(45) 0.92
πþπ−2π0 0.00813(33) 0.00772(32) 0.95 0.00464(19) 0.00422(17) 0.91
2π þ 4π 0.4002(14) 0.3995(14) 1.00 0.06534(27) 0.06459(26) 0.99
πþπ−π0 0.03880(81) 0.03877(81) 1.00 0.00798(15) 0.00794(15) 1.00
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account. Since this contribution is inclusive, we have to
deal with the fact that the sτ-truncated spectral integrals
whose differences we are actually able to determine from
data are smaller than the complete spectral integrals. While
we have already argued in Sec. IVA that IB contributions
from modes other than 2π and 4π below s ¼ sKNT, and
from all modes above s ¼ sKNT, can be safely neglected,
we still need to address the size of possible IB contributions
from the 2π and 4π modes in the region sτ < s < sKNT. For
the 2π modes, this is not an issue, as the integrals up to sτ
capture essentially the full contribution up to sKNT for both
weights we consider here. The sτ-truncated 4π integrals
constitute 95%, respectively, 91–92% of the full 4π
integrals, for the weights W1;5 and W2;5. In this high-s,
s > sτ region, we expect IB to be of order 1% of the
corresponding 4π totals. With this estimate, the IB con-
tribution missed as a result of truncating the W1;5 and W2;5

integrals at s ¼ sτ rather than sKNT are expected to be (i) in
the W1;5 case, of order 1% of 5%, or 0.05%, of the
corresponding full sKNT-truncated 4π contribution, and
hence of order 0.000007, and (ii) in the W2;5 case, of
order 1% of 9%, or 0.09%, of the corresponding full sKNT-
truncated 4π contribution, and hence of order 0.000007 as
well. These estimated higher-s 2π þ 4π IB contribution
effects, missed when one considers the differences of
electroproduction- and τ-based 2π þ 4π integrals only up
to s ¼ sτ, are thus more than an order of magnitude smaller
than the uncertainties, 0.00041 and 0.00012, on the
corresponding 3π-double-counting corrections estimated
in Appendix B, which are, themselves, significantly
smaller than both the central values and experimental
errors of the Eq. (4.5) results, −0.0108� 0.0026 and
−0.00233� 0.00035, for the W1;5- and W2;5-weighted,
s ¼ sτ-truncated experimental electroproduction-τ 2π þ 4π
spectral integral differences, indicating that a sufficiently
precise lattice determination of the corresponding rhss of
Eq. (4.2) will, indeed, make these sum rules useful for
investigating current electroproduction- and τ-based inte-
gral results. It remains of course crucial that a lattice
estimate of the inclusive IB correction reach a precision
commensurate with the precision with which the spectral
integral differences in Eq. (4.5) have been obtained.

V. CONCLUSIONS

At present, there are several discrepancies in the com-
putation of aHVPμ that limit our ability to compare a SM-
based estimate for aμ with the experimentally measured
value. Most recently, a puzzling discrepancy has emerged
between data-driven and lattice evaluations of the RBC/
UKQCD intermediate window quantity, suggesting that a
lattice-based value for aHVPμ may bring the SM value for aμ
much closer to the experimental value. This may confirm
the lattice result for aHVPμ found by the BMW collaboration,
which is 2.1σ higher than the data-driven value. The

discrepancy for the intermediate window turns out to be
about half the total difference between the experimental and
SM values for aμ, when for the latter the data-driven white-
paper value for aHVPμ of Ref. [3] is used.
Another discrepancy results from the long-standing

difference between the BABAR and KLOE measured
spectral distributions in the two-pion channel, in the region
around the ρ mass. Taking this discrepancy at face value,
i.e., considering the difference between the values obtained
using either the BABAR or the KLOE data, leads to a
difference of about 10−9 in aHVPμ , which is more than half
the difference between the experimental and white-paper
values for aμ.
Given this puzzling state of affairs, it is important to

develop methods that allow for detailed comparisons,
zooming in on specific regions in s. The sum rules
developed in this paper provide a tool for such inves-
tigations. The RWSRs of Sec. II A are based on weighted
spectral integrals with an adjustable narrow-weight func-
tion defined directly as a function of s. The quantities
defined by such sum rules complement the window
quantities of Ref. [29], which are defined as a function
of Euclidean time, and translate into rather wide windows
as a function of s.13

In Sec. II B we modified the RWSR approach by
borrowing ideas from Ref. [41], proposing a different set
of sum rules, with weight functions that are linear combi-
nations of simple exponential functions of

ffiffiffi
s

p
. This class of

sum rules has the advantage that the lattice side involves the
lattice correlator for the vacuum polarization at a set of
Euclidean t values which are chosen by hand and which
hence allow one to avoid contributions from the high-t
region, where lattice errors are large. This aids in the
optimization of the precision of the lattice side of the sum
rule. A key observation is that the weights used for the
RWSRs can, moreover, be used as molds to cast the
exponential weights, thus retaining the advantage of
RWSRs. We note that our goal is not to reconstruct spectral
data from the lattice, but rather to compare appropriately
weighted, moderately localized versions of existing exper-
imental spectral data with correspondingly weighted lattice
data. Our goal is thus simpler than the goal of Ref. [41]. In
particular, the casts are not used in any approximations;
once a useful cast has been designed, it can be used in an
exact EWSR, and the underlying mold discarded. In fact,
there is considerable flexibility in designing EWSRs. An
example of this flexibility is provided by the hatted weight
functions based on Eq. (2.21).
Two key points are worth reiterating here. First, weights

WðsÞ very similar as functions of s may produce signifi-
cantly different relative errors on the lattice sides of the

13Our method differs from that of Ref. [38], which attempts to
narrow the window as a function of s by taking linear combi-
nations of windows defined as a function of Euclidean time.
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associated EWSRs. And second, given that the sum rules
corresponding to different weights are all exact, one is free
to choose, from any set of such similar weights, the one that
produces the most stringent dispersive-lattice comparison.
In the examples explored above, this would be the hatted
EWSR weights.
Additional ideas for designing practical exponential

weights that are narrow as a function of s, moreover,
almost certainly remain to be explored.
At first glance, it is not obvious that these new methods

will be practically useful, as there are reasons to worry that
the lattice sides of our sum rules will typically have large
errors. To investigate this worry, we studied, in Sec. III,
two rational weights, W1;5 and W2;5, and their exponential
cousins, numerically, using data from Ref. [11] on the data
side, and from Ref. [33] on the lattice side. We found that
especially the exponential weights perform quite well for an
investigation of, for example, the BABAR-KLOE discrep-
ancy. With the projected increase in the precision of data
from the lattice, and with more fine-tuning of the weights of
Sec. II B, we believe that the new tools provided in this
paper are likely to prove quite useful for the investigation of
currently existing discrepancies.
In Sec. IV we applied these ideas in a somewhat different

context, the comparison between contributions to aHVPμ

from R-ratio data and hadronic τ-decay data. In the past,
such comparisons were difficult to carry out because of the
lack of a reliable method for estimating isospin-breaking
effects. We derived a sum rule allowing for the comparison
between R-ratio and hadronic τ-decay based data in which
the required IB effects can, to a good approximation, be
obtained from the lattice. In particular, we showed that if
the two- and four-pion channels are included in the R − τ
comparison, IB effects in other channels are small enough
that IB effects can be reliably incorporated by an inclusive
lattice computation, thus avoiding the difficulties associ-
ated with obtaining exclusive data from the lattice. Using
the weights of Sec. III, we demonstrated that this com-
parison can become practical with sufficiently precise
lattice data for the inclusive IB correction.
We conclude by emphasizing that this paper is a method

paper. The main reason is that we do not have access to
lattice data for the complete hadronic vacuum polarization,
or for the IB part of it needed in Sec. IV. We have not
optimized the concrete examples of Sec. III and Sec. IV for
the specific goals for which they may be used. We leave the
optimization of these new classes of sum rules to future
work, and here just comment that this optimization will
depend on the specific application.
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APPENDIX A: RELATION BETWEEN
WEIGHTS AND PRECISION

Consider the weights of Eq. (2.7), without the extra
factors of mτ:

Wm;nðsÞ ¼
ðs − sthÞmQ
n
k¼1ðsþQ2

kÞ
; ðA1Þ

where 0 < Q2
1 < Q2

2 < � � � < Q2
n. What we will discuss in

this appendix is the issue of the cancellations involved
when this weight is used in the sum-rule approach
discussed in the main text.
The function Wm;nðsÞ can be rewritten in the alternate

partial-fraction representation form

Wm;nðsÞ ¼
Xn
k¼1

ck
ðsþQ2

kÞ
; ðA2Þ

where the ck are easily seen to be

ck ¼
ð−1ÞmðQ2

k þ sthÞmQ
l≠kðQ2

l −Q2
kÞ

: ðA3Þ

By expanding in 1=s for large s, it is straightforward to
work out a number of relations satisfied by the ck, as
follows. In the form Eq. (A1), it is clear that

Wm;nðsÞ ¼
1

sn−m
þO

�
1

sn−mþ1

�
; ðA4Þ

where the expansion is convergent for s > Q2
N. In contrast,

expanding the form Eq. (A2), the large s behavior is

Wm;nðsÞ ¼
Xn
k¼1

ck
1

s

X∞
l¼0

ð−1Þl
�
Q2

k

s

�
l

: ðA5Þ

Comparing the two large s expansions, it follows that the ck
satisfy the relations
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Xn
k¼1

ckQ2l
k ¼ 0; l ¼ 0;…; n −m − 2: ðA6Þ

The general dispersive sum rules involving these
weights, assuming n is large enough that the weighted
spectral integral converges, are of course Eq. (2.9), without
the factors of mτ:Z

∞

sth

dsWm;nðsÞρðsÞ ¼
Xn
k¼1

ckΠðQ2
kÞ

¼ ð−1Þm
Xn
k¼1

ðQ2
k þ sthÞmQ

l≠kðQ2
l −Q2

kÞ
ΠðQ2

kÞ:

ðA7Þ

The constraints of Eq. (A6) allow us to understand the
cancellations involved in forming the sum that appears on
the right-hand side of Eq. (A7). ΠðQ2Þ is analytic on the
Q2 > 0 axis, and hence has a convergent Taylor series
expansion around any point on that axis with radius of
convergence the distance from that point to the start of the
cut at Q2 ¼ −sth. For illustration in what follows let us
expand about the midpoint of the interval containing all
pole locations, Q̃2 ≡ ðQ2

1 þQ2
nÞ=2. All of theQ2

k then lie in
the region of convergence of the Taylor expansion, and we
have

ΠðQ2
kÞ ¼

X∞
l¼0

1

l!
dlΠðQ2Þ
dðQ2Þl

����
Q2¼Q̃2

ðQ2
k − Q̃2Þl: ðA8Þ

The (first version of the) right-hand side of Eq. (A7) then
becomes

X∞
l¼0

1

l!
dlΠðQ2Þ
dðQ2Þl

����
Q2¼Q̃2

Xn
k¼1

ckðQ2
k − Q̃2Þl; ðA9Þ

and the constraints of Eq. (A6) imply that terms in the last
factor vanish for l ¼ 0;…; n −m − 2. The terms involving
the derivatives of order 0 through n −m − 2 of ΠðQ2Þ with
respect to Q2 at Q2 ¼ Q̃2 thus vanish, and the first
surviving terms are those involving the ðn −m − 1Þth
derivative.
There is thus significant cancellation on the right-hand

side of the dispersive sum rule for weights with the product-
of-pole rational structure of Eq. (A1), and this cancellation
gets stronger with increasing n −m. This will lead to errors
on a lattice evaluation of the right-hand side which will
typically increase with increasing n −m. This growth of
lattice errors with increasing n −m was seen already in the
dispersive analysis used to extract jVusj from the exper-
imental strange τ-decay distribution, which employed
similar product-of-pole weights, though with a constant
numerator. There it was found that lattice errors could be

kept under good control for weights with 3, 4 or 5 poles, but
the errors did grow as the number of pole factors
increased [40].

APPENDIX B: ISOSPIN BREAKING IN
THE 3-PION CHANNEL

Experimental information on IB in the 3-pion channel is
provided by BABAR’s vector-meson-dominance (VMD)
model fit to its recent high-precision eþe− → 3π cross
sections, detailed in Ref. [64]. The VMD model for the
amplitude is a sum of IC ω, ϕ, ω0 and ω00 resonance
contributions, supplemented by an IB ρ contribution and
provides an excellent fit (with χ2=dof ¼ 136=129) to the
experimental cross sections in the region ECM ≤ 1.8 GeV.
The explicit model forms of the resonance contributions are
as specified in Refs. [64,65]. The fit confirms the necessity
of including the IB ρ contribution at the >6σ level. The
model includes what should be the dominant (resonance-
enhanced) IB contributions to the cross section in the
region from threshold to slightly above the ϕ resonance
peak, namely the effects of ρ − ω and ρ − ϕ interference. It
also includes subleading IB effects in the form of ρ − ω0
and ρ − ω00 interference contributions from the region
above the ϕ peak. With no IB contributions to the
amplitude from the excited ρ resonances, however, it will
miss IB contributions in this higher-s region from, e.g.,
ρ0 − ω0 and ρ0 − ω00 interference. Such contributions will be
suppressed by the falloff with s of the weights considered in
this paper and are thus also expected to be numerically
subdominant.
In what follows, we take, as our estimates for the IB

contributions to weighted, s ≤ sKNT, 3π spectral integrals,
the results produced using the full BABAR VMD fit. As
noted above, with the VMD model omitting terms which
would model, e.g., IB ρ0 and ρ00 contributions to the 3π
amplitude, such estimates will miss some contributions
from the region above the ϕ peak. We will discuss IB in this
region in more detail below and demonstrate that such
missing contributions are expected to be much smaller than
the uncertainties on the dominant low-s ρ − ω plus ρ − ϕ
interference contributions, and hence that the estimates for
the IB contributions to the variously weighted, s ≤ sKNT,
3π spectral integrals obtained using the BABAR VMD
model fit are expected to be reliable within their stated
errors.
The BABAR paper [64] contains full results for the

central values and errors (though not the correlations) of the
fit parameters governing the ω, ϕ and ρ contributions to the
amplitude, but not those governing the ω0 and ω00 con-
tributions. It is thus possible to determine the s dependence
of the combined ωþ ϕþ ρ contribution to the VMD
model representation of the cross section, but not that of
the full VMD model. BABAR has, however, provided a
table of central values of the full model representation at the
midpoints of the BABAR experimental bins, both with the ρ
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contribution included and with that contribution turned
off [66]. This provides us with the s dependence of the
central fit values of the IB part of the VMD representation
of the cross section and allows us to evaluate the central
values of the variously weighted integrated versions of the
IB 3π spectral distribution of interest in this paper.
In the discussions which follow, we will denote the 3π

spectral integrals up to s ¼ smax with the aHVPμ , W1;5 and
W2;5 weights by aHVP;3πμ ðsmaxÞ, I3πW1;5

ðsmaxÞ and I3πW2;5
ðsmaxÞ.

The corresponding IB contributions obtained using
BABAR’s fitted VMD model, again up to s ¼ smax, are
similarly denoted ½aHVP;3πμ ðsmaxÞ�VMD

IB , ½I3πW1;5
ðsmaxÞ�VMD

IB
and

½I3πW2;5
ðsmaxÞ�VMD

IB
. Finally, the sums of the corresponding

fully known IB VMD ρ − ω and ρ − ϕ interference
contributions from the region up to just above the ϕ
peak (which we characterize, to be specific, as s ≤ sϕ≡
ðmϕ þ 4ΓϕÞ2) are denoted by ½aHVP;3πμ ðsϕÞ�ρωϕ;VMD

IB ,
½I3πW1;5

ðsϕÞ�ρωϕ;VMD
IB

and ½I3πW2;5
ðsϕÞ�ρωϕ;VMD

IB
, respectively.

With this notation, we find the low-s IB contri-
butions, ½aHVP;3πμ ðsϕÞ�ρωϕ;VMD

IB , ½I3πW1;5
ðsϕÞ�ρωϕ;VMD

IB
and

½I3πW2;5
ðsϕÞ�ρωϕ;VMD

IB
to represent 80%, 87% and 76%, respec-

tively, of the corresponding full IB estimates, ½aHVP;3πμ

ðsKNTÞ�VMD
IB , ½I3πW1;5

ðsKNTÞ�VMD
IB

and ½I3πW2;5
ðsKNTÞ�VMD

IB
,

in line with the expectation that the IB integrals in question
will be dominated by the contributions from the low-s
region. The full VMD-model-based IB contributions,
which provide our estimates for the IB contributions to
the s ≤ sKNT, 3π integrals, represent −1.2%, −1.1% and
−1.6% of the corresponding s ≤ sKNT, 3π totals,
aHVP;3πμ ðsKNTÞ, I3πW1;5

ðsKNTÞ and I3πW2;5
ðsKNTÞ, respectively.

As noted above, BABAR provides full information on the
central values and errors only for the fit parameters
determining the ρ, ω and ϕ contributions to the 3π
amplitude, and not for those determining the ω0 and ω00
contributions. The information that is provided is, however,
sufficient to allow us to study what should be the dominant
uncertainties on the estimated IB 3π contributions ½aHVP;3πμ

ðsKNTÞ�VMD
IB , ½I3πW1;5

ðsKNTÞ�VMD
IB

and ½I3πW2;5
ðsKNTÞ�VMD

IB
,

namely those produced by the uncertainties on the param-
eters entering the dominant, fully known, low-s contribu-
tions, ½aHVP;3πμ ðsϕÞ�ρωϕ;VMD

IB , ½I3πW1;5
ðsϕÞ�ρωϕ;VMD

IB
and ½I3πW2;5

ðsϕÞ�ρωϕ;VMD
IB . We find that the dominant uncertainties on

these low-s contributions come from the fit error in the
relative phase, ϕρ, of the ρ and ω contributions to
the amplitude, which produces sizeable relative uncer-
tainties of 87%, 92% and 70% on ½aHVP;3πμ ðsϕÞ�ρωϕ;VMD

IB ,
½I3πW1;5

ðsϕÞ�ρωϕ;VMD
IB

and ½I3πW2;5
ðsϕÞ�ρωϕ;VMD

IB
. There is a

smaller ∼22% uncertainty in all cases associated with that
on the square root of Bðρ → 3πÞ, to which the ρ − ω and

ρ − ϕ interference contributions are proportional. We
expect the uncertainties in the full VMD model estimates
for the total IB contributions resulting from the absence of a
representation of excited ρ resonance effects in the region
above s ¼ sϕ to be much smaller than the dominant ϕρ-
induced uncertainties, for the following reason. First, the
contributions to aHVP;3πμ ðsKNTÞ, I3πW1;5

ðsKNTÞ and I3πW2;5
ðsKNTÞ

from the region between sϕ and sKNT represent, respec-
tively, only 6.6%, 3.5% and 9.4% of these totals. Even if the
omitted IB ρ0 − ω0, ρ0 − ω00, etc. interference contributions
represented anomalously high 3% fractions of the total
contributions from this region, they would represent only
0.20%, 0.11% and 0.28% of the corresponding 3π spectral
integral totals, aHVP;3πμ ðsKNTÞ, I3πW1;5

ðsKNTÞ and I3πW2;5
ðsKNTÞ,

and hence only 17%, 10% and 18%, respectively, of the
corresponding full VMD model IB estimates ½aHVP;3πμ

ðsKNTÞ�VMD
IB , ½I3πW1;5

ðsKNTÞ�VMD
IB

and ½I3πW2;5
ðsKNTÞ�VMD

IB
, a level

well below that of the dominant low-s-region uncertainties.
The s ≤ sϕ, ϕρ-induced uncertainties thus strongly domi-
nate the uncertainties on the estimated IB 3π double-
counting correction, especially so in the quadrature
combination of the above three error contributions.
Since BABAR does not provide the correlations between its
fitted VMD parameters, and a positive ϕρ − Bðρ → 3πÞ
correlation would further increase the combined
error, we assign, rather than the quadrature combination,
an expanded 100% uncertainty on our integrated full
VMD-model 3π IB estimates, ½aHVP;3πμ ðsKNTÞ�VMD

IB ,
½I3πW1;5

ðsKNTÞ�VMD
IB

and ½I3πW2;5
ðsKNTÞ�VMD

IB
.

From the results above, we conclude that it is possible to
obtain an experimentally constrained estimate of the IB 3π
double-counting correction, albeit with an uncertainty of
order 100%. This estimate is of use, despite the sizeable
uncertainty, because of the small size of the central values.
Explicitly, the full VMD model IB results, including this
100% uncertainty, yield

½aHVP;3πμ ðsKNTÞ�IB ¼ −0.54ð54Þ × 10−10;

½I3πW1;5
ðsKNTÞ�IB ¼ −0.00041ð41Þ;

½I3πW2;5
ðsKNTÞ�IB ¼ −0.00012ð12Þ; ðB1Þ

representing −1.2� 1.2%, −1.1� 1.1% and −1.6� 1.6%,
respectively, of the full 3π VMD contributions. As shown
in the main text, the uncertainties on these corrections, even
at 100%, are much smaller than the experimental uncer-
tainties on the differences of the correspondingly weighted
s ¼ sτ, 2π þ 4π electroproduction and τ integrals. The IB
3π double-counting correction is thus under good control
for the purposes envisioned in this paper.
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