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We investigate static quark-antiquark operators based on trial states formed from eigenvectors of the
covariant three-dimensional lattice Laplace operator. We test the method by computing the static quark-
antiquark potential and comparing results to standard Wilson loop measurements. The new method is
efficient not only for on-axis, but also for many off-axis quark-antiquark separations when a fine spatial
resolution is required. We further improve the ground-state overlap by using multiple eigenvector pairs,
weighted with Gaussian profile functions of the eigenvalues, providing a variational basis. The method
presented here can be applied to potential functions for all possible excitations of a gluonic string with fixed
ends, hybrid or tetraquark potentials, as well as static-light systems and allows visualization of the spatial
distribution of the Laplace trial states.
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I. INTRODUCTION

The potential of a static quark-antiquark pair V0ðrÞ has
always played an important role in quantum chromody-
namics (QCD). It can be computed via Wilson loops [1]
and established an understanding of confinement and its
interplay with asymptotic freedom, a central problem of
particle physics, via the formation of a flux tube between
quark-antiquark static charges [2–9]. Confinement mani-
fests itself in the linear rise of V0ðrÞ at large r; the
corresponding slope is known as the string tension. The
static potential can be used in the Born-Oppenheimer
approximation [10] to compute the spectrum of quarko-
nium [11–16]. It is also an important observable in setting
the scale in lattice QCD. In quenched calculations, the scale
has been set using the string tension, but in full QCD the
string breaks at the pair-production threshold, making a
precise definition difficult. The static energy allows deter-
mination of the strong coupling, αs, or, equivalently, ΛMS;
see Refs. [17,18] for recent reviews. Instead of the static
energy, one can also use the force FðrÞ≡ dV0ðrÞ=dr,
which is free of the self-energy linear divergence. The
dimensionless product r2FðrÞ can be used to set the scale
[19] at distances where statistical and systematic uncer-
tainties are under good control, e.g., r0 or r1, defined by
r2i FðriÞ ¼ ci, with c0 ¼ 1.65 [19], c1 ¼ 1 [20].

In this paper, we investigate a method for computing the
static quark-antiquark potential in lattice QCD not based on
Wilson loops, but where trial states are formed from
components of eigenvectors of the covariant lattice
Laplace operator [21]. In this construction, the spatial
Wilson lines in the Wilson loop are replaced by outer
products of Laplacian eigenvectors. This idea was proposed
in the context of adjoint string breaking [22] and of
Polyakov loops and the static potential at finite temperature
[23,24]. The main advantage is we can not only form
straight lines (on-axis), but also off-axis paths very easily.
These correspond to very complicated stairlike construc-
tions of spatial link variables. It is important to compute the
static potential for many off-axis separations whenever a
fine resolution is required, e.g., for a detailed investigation
of string breaking [25,26] or to determine the scale ΛMS via
matching the perturbative and the lattice QCD static
potential [27–30]. It is even mandatory to compute all
possible on- and off-axis separations to determine the static
potential in momentum space representation [31].
The implementation of [21] which uses only the eigen-

vector corresponding to the lowest eigenvalue can be
significantly improved by summing over several eigenvec-
tors, weighted by Gaussian profile functions of their
corresponding eigenvalues. A similar method was success-
fully applied to hadronic correlation functions in [32]
where an optimal smearing profile was introduced in the
distillation framework [33], which can be equivalently
expressed as an optimal creation operator for a meson.
In the case of the static potential we get an improvement
for the static energies, which reach their plateau values
at earlier temporal distances, to be quantified below.
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The improved implementation can also be adapted to
measure multiquark potentials, hybrid static potentials of
exotic mesons, where the gluonic string excitations can be
realized by applying covariant derivatives to the Laplacian
eigenvectors, as well as static-light energies with insertions
of light quark propagators. Further, we present a simple
way to illustrate the flux tube between a static quark and
antiquark pair using a Laplacian eigenvector pair as a “test
charge” scanning the chromoelectromagnetic field.
The article is organized as follows: First, we reintroduce

the notation of Laplace trial states in Sec. II. Next we
reformulate the standard Wilson loop in terms of Laplace
trial state correlators and discuss their improvement via
Gaussian profile functions in Sec. III, allowing us to
formulate a generalized eigenvalue problem (GEVP) for
the Laplace trial state correlation basis matrix of the static
potential, resulting in optimal profile functions for ground
and excited states. We test the new improved method on a
dynamical fermion ensemble in Sec. IV, presenting results
for effective energies, static potentials as well as excited
states. In Sec. V we look at the spatial distribution of the
optimal Laplace trial states which probe the ground and
excited static potentials of a quark-antiquark pair. We draw
our conclusions and give a short outlook in Sec. VI.

II. LAPLACE TRIAL STATES

Let Q̄aðx⃗Þ denote a static color source with a ¼ 1, 2, 3 at
spatial position x⃗. Wilson loops arise from correlations in
time of trial states Q̄ðx⃗ÞUsðx⃗; y⃗ÞQðy⃗Þ for a static color-
anticolor source pair located at spatial positions x⃗ and y⃗
respectively.1 Note the same Wilson loops are obtained
when the static color sources are replaced by static quarks
since the heavy quark spins decouple in the static limit and
the trace over spin yields a constant, see [34]. The spatial

Wilson line Usðx⃗; y⃗Þ ¼ expði R y⃗
x⃗ AμdxμÞ ¼

Q
Uμ is a path-

ordered product of link variables from x⃗ to y⃗. We want to
replace the spatial part of trial states in each time slice with
an alternative operator which respects the gauge trans-
formation behavior of the spatial Wilson line, given by

U0
sðx⃗; y⃗Þ ¼ Gðx⃗ÞUsðx⃗; y⃗ÞG†ðy⃗Þ; ð1Þ

to ensure gauge invariance of the trial state.
The three-dimensional gauge-covariant lattice Laplace

operator Δ, acting on a field ψðx⃗Þ on a single time slice of
the four-dimensional lattice gives

Δψðx⃗Þ ¼ 1

a2
X3
k¼1

½U†
kðx⃗ − ak̂Þψðx⃗ − ak̂Þ

− 2ψðx⃗Þ þ Ukðx⃗Þψðx⃗þ ak̂Þ� ð2Þ

and has the required transformation behavior Δ0ðx⃗; y⃗Þ ¼
Gðx⃗ÞΔðx⃗; y⃗ÞG†ðy⃗Þ. Eigenvalues λ of Δ are gauge invariant,
while eigenvectors v0ðx⃗Þ ¼ Gðx⃗Þvðx⃗Þ transform covariantly
[35]. It follows, that we can write down a combination of
eigenvector components for a given eigenvalue λ, namely
vðx⃗Þv†ðy⃗Þ, which has the same behavior under gauge
transformations as the spatial Wilson line Usðx⃗; y⃗Þ:

v0ðx⃗Þv0†ðy⃗Þ ¼ Gðx⃗Þvðx⃗Þv†ðy⃗ÞG†ðy⃗Þ:
At this point, inspired by the distillation operator [33]

□
abðz⃗; x⃗Þ ¼

XNv

i¼1

vai ðz⃗Þv†bi ðx⃗Þ; ð3Þ

we introduce the more general operator

□̃
abðz⃗; x⃗Þ ¼

XNv

i¼1

ρivai ðz⃗Þv†bi ðx⃗Þ; ð4Þ

by including a quark profile ρi, which modulates contri-
bution from different eigenmodes. Note □ is a projection
matrix, □2 ¼ □ onto V, the vector space spanned by fvig,
while □̃ is no longer idempotent, it still has an image given
by the span of vi. Next, we define the auxiliary field on
each time slice

χaðz⃗jx⃗Þ ¼ □̃
abðz⃗; x⃗ÞQbðx⃗Þ ðno sum over x⃗Þ

¼
XNv

i¼1

ρivai ðz⃗Þv†bi ðx⃗ÞQbðx⃗Þ: ð5Þ

χaðz⃗jx⃗Þ can be interpreted as an effective smeared color-
electromagnetic field over the whole time slice induced by
the static source at x⃗. At first this seems contradictory to a
“static” color source, but it follows thenotationof distillation.
We stress the role of the “smearing parameter” Nv, the
number of eigenvectors to be summed over in Eq. (3),
behaves opposite to intuition. Nv ¼ 1 corresponds to the
maximal smearing and in the limit where all eigenvectors are
included Nv → 3N3

s with N3
s the spatial lattice volume of a

time slice, the smearing operator becomes the identity. This
we have to keep in mind when constructing gauge invariant
trial states for a color-anticolor source pair located at spatial
positions x⃗ and y⃗, respectively, via

Φðx⃗; y⃗Þ ¼
X
z⃗

χ̄ðz⃗jx⃗Þχðz⃗jy⃗Þ

¼ Q̄ðx⃗Þ
XNv

i;j¼1

ρiρjviðx⃗Þ
X
z⃗

v†i ðz⃗Þvjðz⃗Þ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼δij

v†jðy⃗ÞQðy⃗Þ

¼ Q̄ðx⃗Þ
XNv

i¼1

ρ2i viðx⃗Þv†i ðy⃗ÞQðy⃗Þ; ð6Þ1We omit the time coordinate in this section since trial states
exist on single time slices only.
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where we used the orthonormality of the Laplacian eigen-
vectors, which ensures that the standard distillation operator
is idempotent, i.e.,□2 ¼ □. We denote Eq. (6) as a Laplace
trial state, the positions x⃗ and y⃗ label the sector of the Hilbert
space in which the static energies will be determined.
Notice the sum over eigenvectors in Eq. (6) must be

truncated at finite Nv or a nontrivial profile ρi must be
applied to avoid the collapse of the Laplace trial state, or
the annihilation of the quark-antiquark pair. For example
ρi ¼ δik corresponds to the choice of a single eigenvector
vk. A simple truncation of the sum at some finite Nv ¼ k
could be formulated via ρi ¼ Θðk − iÞ and we can of
course introduce multiple profile functions to define an

operator basis ΨðkÞ via different profiles ρðkÞi For example,

ΨðkÞ with ρðkÞi ¼ e−λ
2
i =4σ

2
k corresponds to a sum over

eigenvectors weighted with Gaussian profiles in eigenvalue
space with different Gaussian widths σk, which turned out
to be very efficient for meson operators in [32]. In the
following section we will reformulate the usual Wilson
loops in terms of Laplace trial state correlators and follow
the same strategy as in [32] by introducing a set of Gaussian
profile functions into the correlators and solving a gener-
alized eigenvalue problem (GEVP) for the Laplace trial
state correlation matrix to extract optimal trial state profiles

ρ̃ðnÞi for ground and excited states of the static potential
VnðRÞ, (n ¼ 0; 1; 2…). We also tried other profile func-
tions, e.g., δ- or Θ-functions to construct an Nv × Nv
transfer matrix with individual eigenmode pair contribu-
tions or summing up different numbers of eigenmodes Nv
to construct a GEVP basis matrix like the ordinary
construction using Wilson loops with different spatial
smearing levels. Different profiles yield the same results,
yet the Gaussian basis seems the most natural (vs. δ- or
step-functions) and numerically stable choice.

III. THE STATIC QUARK-ANTIQUARK
POTENTIAL FROM LAPLACE TRIAL STATE

CORRELATORS

The standard Wilson loop WðR; TÞ of size ðR ¼ jr⃗j ¼
jy⃗ − x⃗jÞ × ðT ¼ jt1 − t0jÞ can be rewritten using Laplace

trial state correlators by replacing the spatial Wilson lines
Usðx⃗; y⃗; tÞ with Laplacian eigenvector pairs viðx⃗; tÞv†i ðy⃗; tÞ,
as depicted in Fig. 1. The temporal Wilson lineUtðy⃗; t0; t1Þ,
representing static timelike propagation for a color source
at space point y⃗ from time t0 to t1 is sandwiched between
eigenvectors at the corresponding start- and end-times
v†i ðy⃗; t0Þ and vjðy⃗; t1Þ. Distinct eigenvector indices appear
at the source and sink times, so this can be interpreted as the
static perambulator

τijðy⃗; t0; t1Þ ¼ v†i ðy⃗; t0ÞUtðy⃗; t0; t1Þvjðy⃗; t1Þ; ð7Þ

at y⃗ of time extent T ¼ jt1 − t0j. Its expectation value
hτijðy⃗; t0; t1Þi vanishes of course. When combined with
another static perambulator τjiðx⃗; t1; t0Þ at x⃗, it gives the
Laplace trial state correlator

LðR;TÞ¼
�XNv

i;j

ρ2i ðt0Þρ2jðt1Þτijðy⃗; t0; t1Þτjiðx⃗; t1; t0Þ
�

ð8Þ

for R ¼ jy⃗ − x⃗j (in our measurements we average over all r⃗
of the same R). To test the method, the correlation function
of Eq. (8) is computed on a Nt × N3

s lattice ensemble with
Nt ¼ 48, Ns ¼ 24 and compared with standard Wilson
loops. The Wilson loops are determined on 4646 gauge
configurations while the Laplace trial-state correlators
are computed on every fourth configuration only to
give 1160 measurements. We extract the static potential
via aV0ðRÞ ¼ limT→∞ log½LðR; TÞ=LðR; T þ aÞ�. First, we
analyze the effect of increasing the number of eigenmodes
Nv for trivial quark profiles. In Fig. 2 we plot the effective
energies for the static quark-antiquark pair for R=a ¼ 2, 3,
and 4, and clearly see an increasing number Nv of
Laplacian eigenvector pairs improves the overlap with
the ground state drastically. Already Nv ¼ 8 eigenvector
pairs reach the plateau values faster than the original
Wilson loops. The improvement seems to saturate at about
Nv ≈ 100, we do not see a difference between Nv ¼ 100
and Nv ¼ 200. The ground state overlaps can also be
quantified by taking the t-average over the mass-plateau
region of the fractional overlap
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FIG. 1. The spatial Wilson lines Usðx⃗; y⃗; tÞ of the classical Wilson loop WðR; TÞ of size ðR ¼ jy⃗ − x⃗jÞ × ðT ¼ jt1 − t0jÞ (left) can be
replaced by Laplacian eigenvector pairs viðx⃗; tÞv†i ðy⃗; tÞ (right, eigenvector pairs to be read in anticlockwise direction), to form Laplace
trial state correlators via the two static perambulators τ̄ijðx⃗; t0; t1Þ and τijðy⃗; t0; t1Þ.
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Aeff ¼
LðR; tÞ
LðR; tSÞ

cosh ððaNt
2
− tSÞaV0ðRÞÞ

cosh ððaNt
2
− tÞaV0ðRÞÞ

; ð9Þ

using the same tS ¼ 3a for all R=a and corresponding
ground state energies aV0ðRÞ from a cosh-fit, for more
details see [32]. These fractional overlaps are listed in
Table I and demonstrate that a large number Nv of
eigenvector pairs gives better overlaps for small distances
R=a, but with decreasing importance for large distances,
where already Nv < 100 shows better overlaps.
Next, instead of trivial quark profiles ρi;j, we use

Gaussian quark profile functions ρðkÞi ¼ e−λ
2
i =4σ

2
k and ρðlÞj ¼

e−λ
2
j =4σ

2
l for the Laplace trial states at t0 and t1 with

corresponding eigenvalues λi;j and Gaussian widths σk;l ∈
½0.05; 0.0894; 0.1289; 0.1683; 0.2078; 0.2472; 0.2867�. We
define the 7 × 7 Laplace trial state correlation matrix
LklðR; TÞ and solve a generalized eigenvalue problem
(GEVP) [36] to identify the optimal trial state profiles

ρ̃ðnÞR ðλÞ for various energy levels VnðRÞ (n ¼ 0; 1; 2;…).
First, we apply the strategy presented in [37,38] and prune
Lkl using the three most significant singular vectors ui from
a singular value decomposition2 (SVD) at a specific tG ¼ 4

via L̃mn ¼ u†mLklun, which keeps a smaller set of distinct
profiles which improves the stability of the GEVP. We
perform the latter at the same tG, separately for all spatial
distances R:

L̃ðtÞνðnÞðt; tGÞ ¼ μðnÞðt; tGÞL̃ðtGÞνðnÞðt; tGÞ: ð10Þ

From the eigenvalues or so-called principal correlators
limt→∞ μðnÞðt; tGÞ ¼ e−Enðt−tGÞ we get the effective energies
for a fixed tG, by performing a cosh-fit in practice, due to
periodic boundary conditions. From the generalized eigen-

vectors νðnÞk we can construct the optimal trial state profiles

ρ̃ðnÞR for the energy states provided by the GEVP, which also
depend on the quark separation R, obviously. First, we use
the singular vectors ul to get the pruned (or most signifi-

cant) profiles ρ̄ðkÞR ðλiÞ ¼
P

l uk;le
−λ2i =2σ

2
l . Then we form the

linear combination of pruned profiles using the generalized
eigenvectors νk to give the optimal trial state profiles

ρ̃ðnÞR ðλiÞ ¼
X
k

νðnÞk ρ̄ðkÞR ¼
X
k;l

νðnÞk uk;le
−λ2i =2σ

2
l ; ð11Þ
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FIG. 2. The effective energies for R=a ¼ 2–4 from Wilson
loops and Laplace trial state correlators with increasing numbers
of eigenvectors Nv. The ground state overlap drastically improves
by using more eigenvectors, we see earlier plateaus for larger Nv,
also quantified in Table I. The lines connecting the measured
points just help to guide the eye.

TABLE I. Fractional overlaps with the corresponding ground
state energy aV0ðRÞ as defined in Eq. (9). An increasing number
Nv of Laplacian eigenvector pairs enhances the overlap up to
about Nv ≈ 100. The overlaps for Laplace trial states from a
GEVP with optimal quark profiles in the 6th column are better
than standard Wilson loop results from a GEVP with different
HYP smearing levels in column 7.

R=a Nv ¼ 1 8 100 200 Optimal Wloop

2 0.747(4) 0.929(2) 0.988(1) 0.987(1) 0.989(1) 0.978(1)
3 0.723(4) 0.878(2) 0.987(2) 0.986(1) 0.988(1) 0.972(2)
4 0.726(5) 0.874(3) 0.982(2) 0.984(2) 0.986(2) 0.965(3)
5 0.637(6) 0.871(4) 0.983(3) 0.982(3) 0.983(3) 0.956(5)
6 0.629(6) 0.869(4) 0.981(4) 0.980(3) 0.981(3) 0.948(6)
7 0.619(7) 0.869(5) 0.982(4) 0.979(4) 0.987(4) 0.934(7)
8 0.598(8) 0.862(6) 0.971(5) 0.970(4) 0.974(4) 0.953(8)
9 0.572(8) 0.857(6) 0.954(5) 0.934(4) 0.963(3) 0.947(9)
10 0.540(9) 0.840(7) 0.941(6) 0.931(5) 0.965(1) 0.94(1)
11 0.426(9) 0.807(7) 0.934(5) 0.93(1) 0.956(9) 0.93(1)
12 0.33(7) 0.79(2) 0.932(9) 0.92(1) 0.95(1) 0.92(1)

0 50 100 150 200
-0.5

0

0.5

1

1.5

FIG. 3. The optimal trial state profiles for ground (blue) and
excited (red, green) states ρ̃ðnÞR ðλiÞ, Eq. (11) at R ¼ 4a.

2Lkl ¼ UDV† with U ¼ V (because L is Hermitian in our
case) being a unitary matrix, whose column vectors ui form an
orthonormal basis, and D being diagonal with non-negative real
numbers on the diagonal.
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depicted in Fig. 3 for the ground and excited states at
R ¼ 4a. The optimal profiles suggest a number Nv < 100
of significant/important eigenvectors in the correlator,
because each trial state comes with a profile and the
combination falls off about twice as fast compared to
Fig. 3. The fractional overlaps with the ground state in
Table I also favor the Laplace trial states from a GEVP with
optimal profiles in the 6th column, which are even better
than standard Wilson loop results from a GEVP with
different HYP smearing levels (col. 7).

IV. RESULTS FROM OPTIMAL LAPLACE
TRIAL STATES

We performed all our measurements on 48 × 243 lattices
with periodic boundary conditions except for antiperiodic
boundary conditions for the fermions in the temporal
direction. They were produced with the openQCD package
[39] using the plaquette gauge action and two dynamical
nonperturbativelyOðaÞ improvedWilson quarks [40] with a
mass equal to half of thephysical charmquarkmass.The bare
gauge coupling is g20 ¼ 6=5.3 and the hopping parameter is
κ ¼ 0.13270. The scale r0=a ¼ 4.2866ð24Þ [19] and the
flow scale [41] is t0=a2 ¼ 1.8477ð3Þ. The corresponding
lattice spacing is a ¼ 0.0658ð10Þ fm [42,43]. All measure-
ments were performed by our CþMPI based library that
facilitates massively parallel QCD calculations. A total of
Nv ¼ 200 eigenvectors of the 3D covariant Laplacian were
calculated on each time slice of the lattices as described in
[32]. A total of 20 3D APE smearing [44] steps with
αAPE ¼ 0.5 were applied on each gauge field before the
eigenvector calculation so as to smooth the link variables that
enter the Laplacian operator. When forming the correlations
of the Laplace trial states, we apply one HYP2 smearing step
to the temporal links [34,45–48]. Standard Wilson loops
were measured using the wloop package [49], also applying
one HYP2 step to all gauge links, and 4 levels (0 10 20 30
steps) of spatial HYP smearing to form a variational basis.
Wilson loops were measured on 4646 gauge configurations,
while Laplace trial states were measured on every fourth
configuration only (1160 measurements). The error analysis
in this work was done using the Γ method [50,51] with a
recent Python implementation (PYERROR) [52] with automatic
differentiation [53].
We compare the effective energies using the improved

Laplacian eigenvector approach with Gaussian profiles
after solving the GEVP together with smeared Wilson
loop results in Fig. 4. Results from Laplacian modes show
better ground state overlaps and higher accuracy than those
from Wilson loops with only a quarter of the statistics.
In Fig. 5 we present the static potentials Vn for the ground

(n ¼ 0) and excited (n ¼ 1, 2) states using the Laplace trial
states with optimal quark profiles after solving the GEVP.
The excited states are just included to show the potential of
the method, we want to stress here, that we only have the
Laplace trial states in the operator basis, which just like

Wilson loops may not have a good overlap with multi-
particle states. Note, that we only analyze the Σþ

g state
according to the nomenclature in [54,55] and its radial
excitations, not the first-excited (hybrid) potentialΠu, lying
between Σþ

g (V0) and Σþ
g ’ (V1), which will be investigated

in a futurework, using covariant derivatives of eigenvectors
in the trial states. For comparison we plot the radially
excited string states V0 þ ðnþ 1Þπ=R, as well as the
lowest 0þþ isoscalar meson (possible glueball) V0 þmG
from [56] and two times the static-charmmesonmass 2mBc

.
The latter was also evaluated using the new method, by
combining our static perambulators τijðx⃗; t0; t1Þ with a
projector Pþ ¼ ð1þ γ0Þ=2 and charm-quark perambula-
tors ταβji ðt1; t0Þ ¼ v†jðt1Þ½D−1�αβt1t0viðt0Þ from [32], where the
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T
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R
=

10
,T

)

T/a

FIG. 4. The effective energies/masses using the Laplace trial
states with an optimal Gaussian profiles and Wilson loops with
different HYP smearing levels for R=a ¼ 2 and 10.
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1.5
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2.5

aV
n(R

)

V0
V1
V0 + 2 /R
V2
V0 + 3 /R
V0 + mG
2mBc

FIG. 5. The static potentials Vn for the ground (n ¼ 0) and
excited (n ¼ 1, 2) states. We compare with radially excited string
states V0 þ ðnþ 1Þπ=R, the lowest 0þþ isoscalar meson (possible
glueball)V0 þmG from [56] and two times the static-charmmeson
mass 2mBc

, also evaluated from Laplace trial states.
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quark propagatorD−1 includes the dependence on the mass
of the quark.
The computational effort of this new method is less than

the standard Wilson loop calculation, especially for off-axis
separations. In fact, for our test ensemble on a 243 × 48
lattice the computation of on-axis Wilson loops using 4
spatial smearing levels (0, 10, 20, 30 HYP steps) is equally

expensive as the calculation of 100 Laplacian eigenvectors
and Laplace trial states with 7 Gaussian profiles including
off-axis distances. The computational advantage of new
method can be explained by the fact that the static peram-
bulators can be computed first at each position, resulting in
complex numbers, which then can easily be multiplied for
arbitrary on- and off-axis separations without the need to
compute spatialWilson lines. InFig. 6wepresent the optimal
static potentialV0ðRÞ for all on- and off-axis separationsR=a
fromNv ¼ 100 Laplacian eigenvectors compared to on-axis
Wilson loop results, which agree well within errors. We also
include a measurement of un-smeared Laplace trial state
correlators for R=a ≤ 3 (no HYP smearing), showing the
Coulomb behavior of the potential at small R. The green
points in the plot are shifted vertically such that the
unsmeared potential matches the potential with HYP2
smeared temporal links at R=a ¼ 2, which corresponds to
removing the free energy difference. Further, wewant to note
that contrary to Wilson loops, Laplace trial states have an
exact symmetry of the potential around half the lattice
extension (in a specific direction r⃗), where in fact the force
between QQ̄ must vanish due to the periodic boundary
conditions, i.e., the static potential should be flat.

V. THE SPATIAL DISTRIBUTION OF OPTIMAL
LAPLACE TRIAL STATES

If we do not evaluate the spatial sum in the third line
of the Laplace trial state in Eq. (6), we are left with an

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

aV
0(

R
)

R/a

Laplace trial state � correlators
unsmeared � correlators
smeared Wilson loops

 0.94
 0.96
 0.98

 1
 1.02
 1.04

 11  11.2 11.4 11.6 11.8  12

FIG. 6. The static ground state potential from optimal Laplace
trial state correlators, computed for all on- and off-axis separa-
tions R compared to on-axis Wilson loops. The green points for
R=a ≤ 3 result from un-smeared Laplace trial state correlators
(no HYP), showing the Coulomb behavior of the potential at
small R, these are shifted vertically to match the potential with
HYP2 smeared temporal links at R=a ¼ 2.

FIG. 7. Spatial distribution along and perpendicular to (right) the quark separation (R ¼ 10a) axis of the optimal Laplace trial state to
measure the ground (top) and first excited (bottom) state potential of a static quark-antiquark pair, indicated by red dots.
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eigenvector pair v†ðz⃗Þvðz⃗Þ which acts as a “test-charge” in
the original Laplace trial state

ψ ðnÞðz⃗;RÞ

¼
�����

XNv

ij

ρ̃ðnÞR ðλi;λjÞviðx⃗Þv†i ðz⃗Þvjðz⃗Þv†jðx⃗þRÞ
����
2

�
; ð12Þ

which allows the scanning of individual contributions
of the quark-antiquark operator in a 3D time slice via
the free coordinate z⃗. We average over the whole lattice
(x⃗; t), which already gives a very smooth signal on a single
configuration. Note that we include the optimal trial state
profiles

ρ̃ðnÞR ðλi; λjÞ ¼
X
k;l

νðnÞk uk;le
−λ2i =4σ

2
l e−λ

2
j =4σ

2
l ; ð13Þ

which in this case still depend on the two eigenvalues λi and
λj, since we did not perform the sum over z⃗ in Eq. (6) and
therefore did not get a δij. The singular vectors uk and
generalized eigenvectors νðnÞ come from the SVD and
GEVP in the static potential calculations for specific quark
separation distances R and allow us to look at the flux tube
profiles for various energy states of VnðRÞ.
In Fig. 7 we present the spatial distributions of the

optimal Laplace trial states to measure the ground resp. first
excited state potentials of a static quark-antiquark pair at
spatial distance R ¼ 10a. The first excitation shows addi-
tional nodes in the spatial distribution along and
perpendicular to the quark separation axis. The physical
interpretation of these distributions in terms of the chro-
moelectromagnetic flux tube is not clear yet, the optimal
profiles certainly contain some information of the ground
and excited states of the static potential, the test-charge
vðz⃗Þv†ðz⃗Þ however does not measure a specific color field
component.

VI. CONCLUSIONS AND OUTLOOK

Alternative creation operators for static-quark-antiquark
states based on Laplacian eigenmodes are investigated. The
use of a large number of eigenvectors weighted with
Gaussian profiles is found to improve performance. An
operator basis can be defined via different Gaussian profiles

which can be analyzed with the GEVP formalism to extract
optimal profiles and Laplace trial states. Temporal corre-
lations of the new operators are used to compute static
quark-antiquark ground and excited state potentials. We
observe earlier plateaus in the effective masses compared to
standard Wilson loops. One significant advantage of the
approach is its efficiency for computing the static potential
not only for on-axis, but also for many off-axis quark-
antiquark separations. Indeed the new method requires far
less computing time in particular for the latter case, since
the eigenvector components of the covariant lattice Laplace
operator have to be computed only once and can then be
used for arbitrary on-axis and off-axis separations without
the need to compute stairlike gauge-link connections.
Finally, we visualize the spatial distribution of the optimal
Laplace trial states for ground and excited state creation
operators of the quark-antiquark pair. We are currently
working on an adaptation of the method to compute hybrid
static potentials of exotic mesons, where gluonic string
excitations requiring gluonic handles in the standard
Wilson loop approach can be realized with covariant
derivatives acting on the Laplacian eigenvectors, and to
static-light mesons, cf. [26]. First results were presented
at the ConfinementXV [57], Lattice 2022 [58], and
ExcitedQCD [59] conferences.
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