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Removing ultraviolet noise from the gauge fields is necessary for glueball spectroscopy in lattice QCD.
It is known that the Yang-Mills gradient flow method is an alternative approach instead of link smearing or
link fuzzing in various aspects. In this work we study the application of the gradient flow technique to the
construction of the extended glueball operators. We examine a simple application of the gradient flow
method, which has some problems in glueball mass calculations at large flow time because of its nature of
diffusion in space-time. To avoid this problem, the spatial links are evolved by the “spatial gradient flow”,
that is defined to restrict the diffusion to spatial directions only. We test the spatial gradient flow in
calculations of glueball two-point functions and Wilson loops as a new smearing method, and then discuss
its efficiency in comparison with the original gradient flow method and the conventional method.
Furthermore, to demonstrate the feasibility of our proposed method, we determine the masses of the three
lowest-lying glueball states, corresponding to the 0þþ, 2þþ, and 0−þ glueballs, in the continuum limit in
pure Yang-Mills theory.

DOI: 10.1103/PhysRevD.107.034510

I. INTRODUCTION

The existence of composite states consisting solely of
gluons, called glueballs, is one of the important predictions
of QCD. Since none of them have been identified in
experiments as a glueball state, the lattice QCD results
play an essential role in studying properties of the glueball
states including their masses. However, ultraviolet noise
from the gauge fields makes it difficult to calculate the
glueball spectrum in lattice QCD. Therefore, noise reduc-
tion techniques such as the single-link smearing or the
double-link fuzzing procedure plays an increasingly impor-
tant role in the construction of the extended glueball
operators.
Various smearing techniques such as APE smearing [1],

HYP-smearing [2], and stout smearing [3] are developed
for many purposes, while the fuzzing approach is proposed
for a specific purpose that requires a significant improve-
ment of having a better overlap with the glueball ground
states [4]. In several previous works on the lattice glueball
mass calculations [5–8], some sophisticated combinations
of both the single-link smearing and the double-link

fuzzing schemes are conventionally adopted (denoted as
the conventional approach).
Recently, it was found that the Yang-Mills gradient

flow method [9] is an alternative approach instead of the
smearing in various aspects (e.g., the computation of
topological charge [10]). Indeed, the gradient flow equation
can be regarded as a continuous version of the recursive
update procedure in the stout-link smearing with the small
smearing parameter [9,10]. Therefore, in this study, we
investigate the application of the gradient flow technique to
the glueball calculation and also demonstrate its effective-
ness in comparison to the conventional approach.
This paper is organized as follows. In Sec. II, after a brief

introduction of the original Yang-Mills gradient flow, we
describe our proposal of “spatial gradient flow” as a new
smearing method. In Sec. III, we give a short outline of how
to construct glueball two-point functions based on space-
like Wilson loops. In Sec. IV, we first briefly summarize the
numerical ensembles used in this study. Then we present
results of the static quark potential computed with the
spatial gradient flow on every ensemble. Section V gives
the features of the spatial gradient flow in glueball
spectroscopy. The results of glueball masses obtained by
the spatial gradient flow are summarized in Sec. VI. Finally,
we close with summary in Sec. VII.

II. CALCULATION METHOD I:
GRADIENT FLOW METHOD

In this section, we first provide a brief review of the
original Yang-Mills gradient flow, which makes the Wilson
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flow diffused in the four-dimensional space-time, in
Sec. II A. As reported in Ref. [11], a simple application
of the gradient flow technique to the glueball calculation
has some problem in measuring the glueball mass from the
two-point function. We thus propose the “spatial gradient
flow” as a new smearing method, which is described in
Sec. II B.

A. Original gradient flow

The Yang-Mills gradient flow on the lattice is a kind of
diffusion equation, where the link variables UμðxÞ evolve
smoothly as a function of fictitious time τ (denoted as flow
time) [9]. The associated flow Vμðx; τÞ of the link variables
(hereafter called the Wilson flow) driven by the gradient of
the action with respect the link variables [9]. The simplest
choice of the action of the link variables UμðxÞ is the
standard Wilson plaquette action,

SW ½U� ¼ 2

g20

X
x;μ>ν

Trf1 − Re½UμðxÞUνðxþ μ̂Þ

× U†
μðxþ ν̂; τÞU†

νðxÞ�g; ð1Þ

where g0 is the bare coupling. The flowed link variables
Vμðx; τÞ are defined by the following equation with the
initial conditions Vμðx; 0Þ ¼ UμðxÞ,

∂

∂τ
Vμðx; τÞ · V−1

μ ðx; τÞ ¼ −g20∂x;μSW ½V�; ð2Þ

where SW ½V� denotes the standard Wilson plaquette action
in terms of the flowed link variables (see Appendix A for
the definition of the link derivative operator ∂x;μ and the
explicit expression of ∂x;μSW).
According to Eq. (2), the link variables are diffused in

the four-dimensional space-time, so that the Wilson flow is
approximately spread out in a Gaussian distribution with
the diffusion radius (or length) of Rd ¼

ffiffiffiffiffi
8τ

p
[9]. Although

such smearing procedure works well with the longer flow
time, too much smearing will destroy or hide the true
temporal correlation of the glueball two-point function due
to the overlap of two glueball operators given by the Wilson
flow as discussed in Ref. [11]. Therefore, the longer flow is
not applicable for the glueball spectroscopy to avoid over
smearing, that was observed in Ref. [12].

B. Spatial gradient flow as a new smearing method

As described in Sec. II A, the previous attempt to apply
the gradient flow to the glueball spectroscopy is not fully
satisfactory [12]. We propose the “spatial gradient flow”
as a new smearing method in order to overcome the
limited usage of the Wilson flow due to over smearing.
The spatial gradient flow is defined to restrict the diffusion
to spatial directions only, so that the spatial links UiðxÞ are
evolved into the spatial Wilson flow Viðx; τÞ as the initial

conditions of Viðx; 0Þ ¼ UiðxÞ in the following gradient
flow equation:

∂

∂τ
Viðx; τÞ · V−1

i ðx; τÞ ¼ −g20∂x;iSsW ½Viðx; τÞ�: ð3Þ

Here, SsW denotes the spatial part of the standard Wilson
plaquette action,

SsW½Viðx; τÞ� ¼
2

g20

X
x;i>j

Trf1 − Re½Viðx; τÞVjðxþ î; τÞ

× V†
i ðxþ ĵ; τÞV†

jðx; τÞ�g; ð4Þ

where the plaquette values are composed only of the
spatial links. The indices i and j run only over spatial
directions. Since the spatial Wilson flow is diffused only
in three-dimensional space, its diffusion radius is given by
Rd ¼

ffiffiffiffiffi
6τ

p
. We will later show that this new smearing

works well even for the glueball spectroscopy without
over smearing.

III. CALCULATION METHOD II: GLUEBALL
TWO-POINT FUNCTION

We are interested in three lowest-lying glueball states,
which carry specific quantum numbers, JPC ¼ 0þþ (sca-
lar), 0−þ (pseudoscalar), or 2þþ (tensor), in this study. In
this section, we briefly describe how to construct two-point
correlation functions of the desired glueball state having
spin J, parity P, and charge-conjugation parity C.
First of all, on the lattice, rotational symmetry is reduced

to the octahedral point group O, which is a finite subgroup
of the rotation group SOð3Þ. There are 24 rotational
operations associated with all proper rotations in the group
O. The irreducible representations (irreps) R of O are the
counterparts of spin J for the continuum rotation group
SOð3Þ. There are five irreps, which are classified by two
one-dimensional representations (denoted as A1 and A2),
one two-dimensional representation (denoted as E), and
two three-dimensional representations (denoted as T1 and
T2) [13].
The inclusion of inversion (X is mapped to −X) results in

the symmetry group known asOh, which has 48ð¼ 24 × 2Þ
symmetry operations. The irreducible representations ofOh
are obtained from those of O by appending the index g
(gerade) or u (ungerade), which indicates even or odd
parity [14]. For convenience, we use the indices þ and −,
instead of g and u. Therefore, ten different irreducible
representations of Oh are denoted as RP, hereafter. The
glueball states are also eigenstates of charge conjugation.
Therefore, the quantum number of the lattice glueball state
is specified by RPC. The quantum number RPC is expected
to have the following correspondence: 0þþ ↔ Aþþ

1 ,
0−þ ↔ A−þ

1 and 2þþ ↔ Eþþ ⊕ Tþþ
2 in the continuum

limit [13,14].
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A. Glueball operators

We use six prototypes of spacelike Wilson loops to
construct the glueball operators for four specific channels
of RPC ¼ Aþþ

1 , A−þ
1 , Eþþ and Tþþ

2 as depicted in Fig. 1.
First four operators are all types of spacelike Wilson loops
with four and six links, while the remaining two operators
are chosen from spacelike Wilson loops of eight links. Each
operator Ok is classified with the numbers of the links
(denoted as l) involved in the Wilson loop, the shape
characterized by the ordered closed path Ck and the
associated orientation as listed in Table I. In the case of
SUðNÞ with N ≥ 3, the real part of Wilson loops has a
charge conjugation parity C ¼ þ1, while the imaginary
part has C-parity C ¼ −1 [14]. In this study, we restrict
ourselves to consider the real part of Wilson loops, since the
three lowest-lying glueball states carry C ¼ þ1.
We take the following procedure to get the irreducible

contents of the representation RP with fixed C-parity from
the operatorsOk according to Ref. [14]. First, 48 symmetry
operations Ŝi, which are defined in Table II, are applied to

each prototype of Wilson loops Ok½Ck� so as to obtain 48
copies with different orientations of Wilson loopsOk½ŜiCk�.
A linear combination of them with weights equal to the
irreducible characters χΓðSiÞ of Si for the Γ irreps provides
the operator projected onto the Γ irrep as

OΓ
k ¼ P̂ΓOk½Ck� ¼

1

48

X48
i¼1

χ�ΓðSiÞOk½ŜiCk�; ð5Þ

where the characters χΓðSiÞ of the irreps Γ ¼ Aþ
1 , A

−
1 , E

þ

and Tþ
2 are listed in Table III.

We next construct two-point correlation functions of
glueball states for given irreps Γ as

CΓ
kðtÞ ¼

X
t0
h0jÕΓ

kðtþ t0ÞÕΓ
kðt0Þ†j0i; ð6Þ

where the tilde over OΓ
k implies the vacuum-subtracted

operator defined as ÕΓ
k ðtÞ ¼ OΓ

k ðtÞ − h0jOΓ
kðtÞj0i. We may

also consider an N × N correlation matrix using a set of
different shape operators for given irreps Γ [15] as

CΓ
kk0 ðtÞ ¼

X
t0
h0jÕΓ

kðtþ t0ÞÕΓ
k0 ðt0Þ†j0i; ð7Þ

which allow us to perform the variational method [16,17].

IV. LATTICE SETUP

A. Gauge ensembles

We perform the pure Yang-Mills lattice simulations
using the standard Wilson plaquette action with a fixed
physical volume (La ≈ 1.6 fm) at four different gauge
couplings (β ¼ 6=g20 ¼ 6.2, 6.4, 6.71, and 6.93). The
gauge configurations in each simulation are separated
by nupdate sweeps after ntherm sweeps for thermalization as
summarized in Table IV. Each sweep consists of one heat
bath [18] combined with four over-relaxation [19] steps.
The number of configurations analyzed is Oð500–4000Þ.

(1) (2) (3)

(4) (5) (6)

FIG. 1. Six prototypes of spacelike Wilson loops used to
construct the glueball operators: (1) plaquette operator (denoted
as Oplaq), (2) rectangle operator (denoted as Orect), (3) twist
operator (denoted asOtwist), (4) chair operator (denoted asOchair),
(5) “fish-shaped” operator (denoted as Ofish), and (6) “hand-
shaped” operator (denoted as Ohand).

TABLE I. Classification of spacelike Wilson loops used in this study. Each operator Ok is classified with the shape (labeled as k)
characterized by the ordered closed path (denoted as Ck) and the numbers of the links (denoted as l) involved in the Wilson loop. In the
table, the paths for prototype of Wilson loops depicted in Fig. 1 are given with an l-tuple composed of the direction of the coordinate
axes as �X, �Y, and �Z. The minus sign indicates the path along in the negative direction. The check mark symbol (✓) in the table
indicates that the operator contains the corresponding irreducible representation [14].

Label No. of links Prototype path Target irreps

k l Ck Aþþ
1 A−þ

1 Eþþ Tþþ
2

Plaq 4 ½X; Y;−X;−Y� ✓ ✓
Rect 6 ½X;X; Y;−X;−X;−Y� ✓ ✓
Twist 6 ½X; Y; Z;−X;−Y;−Z� ✓ ✓
Chair 6 ½X; Y; Z;−X;−Z;−Y� ✓ ✓ ✓
Fish 8 ½X; Y; X; Z;−X;−Z;−X;−Y� ✓ ✓ ✓ ✓
Hand 8 ½X; Y; X; Z;−X;−X;−Z;−Y� ✓ ✓ ✓ ✓
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All lattice spacings are set by the Sommer scale
(r0 ¼ 0.5 fm) [20,21].
For both original and spatial gradient flows, the forth-

order Runge-Kutta scheme is used with an integration step
size of ϵ ¼ 0.025. The flow time τ is given by nflow × ϵ

where nflow denotes the number of flow iterations. Our
simulation code for the gradient flow had been already
checked in Table II of Ref. [22], where the values of the
gradient flow reference scale are directly compared with the
results given in the original work of Lüscher [9].

TABLE II. Each of 48 elements Si of the groupOh, which are presented by the coordinate transformations, is divided into ten different
conjugacy classes fE; 3C4

2; 6C4; 8C3; 6C0
2; I; 3σh; 6IC4; 8IC3; 6σdg ∈ Oh.

Class i Operation Class i Operation

E 1 ðX; Y; ZÞ → ðX; Y; ZÞ I 25 ðX; Y; ZÞ → ð−X;−Y;−ZÞ
3C4

2 2 ðX; Y; ZÞ → ð−X;−Y; ZÞ 3σh 26 ðX; Y; ZÞ → ðX; Y;−ZÞ
3 ðX; Y; ZÞ → ð−X; Y;−ZÞ 27 ðX; Y; ZÞ → ðX;−Y; ZÞ
4 ðX; Y; ZÞ → ðX;−Y;−ZÞ 28 ðX; Y; ZÞ → ð−X; Y; ZÞ

6C4 5 ðX; Y; ZÞ → ð−Y; X; ZÞ 6IC4 29 ðX; Y; ZÞ → ðY;−X;−ZÞ
6 ðX; Y; ZÞ → ðY;−X; ZÞ 30 ðX; Y; ZÞ → ð−Y; X;−ZÞ
7 ðX; Y; ZÞ → ðZ; Y;−XÞ 31 ðX; Y; ZÞ → ð−Z;−Y; XÞ
8 ðX; Y; ZÞ → ð−Z; Y; XÞ 32 ðX; Y; ZÞ → ðZ;−Y;−XÞ
9 ðX; Y; ZÞ → ðX;−Z; YÞ 33 ðX; Y; ZÞ → ð−X; Z;−YÞ
10 ðX; Y; ZÞ → ðX; Z;−YÞ 34 ðX; Y; ZÞ → ð−X;−Z; YÞ

8C3 11 ðX; Y; ZÞ → ðY; Z; XÞ 8IC3 35 ðX; Y; ZÞ → ð−Y;−Z;−XÞ
12 ðX; Y; ZÞ → ðZ; X; YÞ 36 ðX; Y; ZÞ → ð−Z;−X;−YÞ
13 ðX; Y; ZÞ → ðY;−Z;−XÞ 37 ðX; Y; ZÞ → ð−Y; Z; XÞ
14 ðX; Y; ZÞ → ð−Z;−X; YÞ 38 ðX; Y; ZÞ → ðZ; X;−YÞ
15 ðX; Y; ZÞ → ð−Y; Z;−XÞ 39 ðX; Y; ZÞ → ðY;−Z; XÞ
16 ðX; Y; ZÞ → ðZ;−X;−YÞ 40 ðX; Y; ZÞ → ð−Z; X; YÞ
17 ðX; Y; ZÞ → ð−Y;−Z; XÞ 41 ðX; Y; ZÞ → ðY; Z;−XÞ
18 ðX; Y; ZÞ → ð−Z; X;−YÞ 42 ðX; Y; ZÞ → ðZ;−X; YÞ

6C0
2 19 ðX; Y; ZÞ → ðY; X;−ZÞ 6σd 43 ðX; Y; ZÞ → ð−Y;−X; ZÞ

20 ðX; Y; ZÞ → ðZ;−Y; XÞ 44 ðX; Y; ZÞ → ð−Z; Y;−XÞ
21 ðX; Y; ZÞ → ð−X; Z; YÞ 45 ðX; Y; ZÞ → ðX;−Z;−YÞ
22 ðX; Y; ZÞ → ð−Y;−X;−ZÞ 46 ðX; Y; ZÞ → ðY; X; ZÞ
23 ðX; Y; ZÞ → ð−Z;−Y;−XÞ 47 ðX; Y; ZÞ → ðZ; Y; XÞ
24 ðX; Y; ZÞ → ð−X;−Z;−YÞ 48 ðX; Y; ZÞ → ðX; Z; YÞ

TABLE III. Table of characters χΓðSiÞ for four irreps, Aþ
1 , A

−
1 , E

þ, and Tþ
2 of the groupOh. The elements Si of the groupOh belong to

ten different conjugacy classes fE; 3C4
2; 6C4; 8C3; 6C0

2; I; 3σh; 6IC4; 8IC3; 6σdg [14].

Irreps E 3C4
2 6C4 8C3 6C0

2 I 3σh 6IC4 8IC3 6σd

Aþ
1

þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1 þ1

A−
1 þ1 þ1 þ1 þ1 þ1 −1 −1 −1 −1 −1

Eþ þ2 þ2 0 −1 0 þ2 þ2 0 −1 0
Tþ
2

þ3 −1 −1 0 þ1 þ3 −1 −1 0 þ1

TABLE IV. Summary of the gauge ensembles: gauge coupling, lattice size (L3 × T), plaquette value, lattice spacing (a), spatial extent
(La), the Sommer scale (r0), the number of the gauge field configurations (Nconf ), the number of thermalization sweeps (ntherm) and the
number of update sweeps (nupdate). All lattice spacings are set by the Sommer scale (r0 ¼ 0.5 fm) [20,21].

β ¼ 6=g20 L3 × T plaquette a [fm] ∼La [fm] r0=a (Ref. [21]) Nconf ntherm nupdate

6.20 243 × 24 0.613644(3) 0.0677(3) 1.62 7.38(3) 4000 5000 200
6.40 323 × 32 0.630646(2) 0.0513(3) 1.64 9.74(5) 3000 5000 200
6.71 483 × 48 0.653298(2) 0.0345(2) 1.66 14.49(10) 1000 25000 200
6.93 643 × 64 0.667376(1) 0.0256(2) 1.64 19.48(12) 500 64000 600
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B. Scale setting and static quark potential

The static potential VðrÞ between heavy quark and
antiquark pairs, which are separated by relative distance
r, is calculated from the Wilson-loop expectation value
hWðr; tÞi with spatial extent r and temporal extent t as

hWðr; tÞi ¼ CðrÞe−VðrÞt þ · · ·; ð8Þ

where the ellipsis denotes some contribution from the
excited states.
To determine the static quark potential VðrÞ, let us

consider the following quantity:

Vðr; tÞ ¼ ln

� hWðr; tÞi
hWðr; tþ 1Þi

�
: ð9Þ

Since the t-dependence of Vðr; tÞ is expected to disappear
for sufficiently large t, the static potential VðrÞ can be
determined from a plateau seen in Vðr; tÞ as t increases for
fixed r.
Figure 2 shows the t-dependence of Vðr; tÞ calculated at

β ¼ 6.4 for fixed r=a (r=a ¼ 2, 4, 6, 8, 10 from top panel to
bottom panel) as typical examples. The Wilson loops
Wðr; tÞ are constructed by the smeared spatial links, which
are computed with either APE smearing or spatial gradient

flow. The diamond symbols represent the results calculated
using APE smearing with αAPE ¼ 0.5 and 5 steps, while the
circle symbols represent the results calculated using spatial
gradient flow with nflow ¼ 50.
At glance, spatial gradient flow provides the better

behavior, where the plateau starts at earlier t and extends
to larger t, comparing with APE smearing. It indicates
that the systematic uncertainties stemming from the
excited-state contamination are better under control to
determine the static potential using the spatial gradient
flow method.
Hereafter, we adopt the spatial gradient flow method to

evaluate the value of VðrÞ from the Wilson-loop expect-
ation value, and then aim to determine the Sommer scale
from the resulting static potential at each β. In this study,
the Wilson loops are restricted to on-axis loops only. To
extract the value of VðrÞ from hWðr; tÞi at fixed r, we use
the double-exponential fit, where the a correlation among
hWðr; tÞi at different value of t is taken into account by
using a covariance matrix, for our final analysis. To apply a
tree-level improvement on the static quark potential, we
consider

VIðRÞ ¼ VðrÞ ð10Þ

with ð4πRÞ−1 ¼ Gðr; 0; 0Þ whereGðrÞ is the (scalar) lattice
propagator in three dimensions [21].
In Fig. 3, all data points of VIðRÞ, which are computed at

four different lattice spacings, are plotted as a function of R.
The vertical and horizontal axes are normalized by the
Sommer scale r0 given in Ref. [21]. For clarity of the figure,
the self-energy contribution is subtracted by the value at
R ¼ r0. Our results of VIðRÞ obtained by spatial gradient
flow exhibit good scaling behavior with the literature
values of r0=a [21]. We finally determine r0 from our
results of the static quark potentials computed at four gauge

0.48

0.49

0.5

0.51
APE smearing

Spatial gradient flow

0.55

0.6

0.65

0.7

0.4

0.6

0.8

0.4

0.6

0.8

1

0 5 10 15

t/a

0.4

0.6

0.8

1

1.2

r/a=2

r/a=4

r/a=6

r/a=8

r/a=10

FIG. 2. The t-dependence of Vðr; tÞ for several values of fixed
r=a (r=a ¼ 2, 4, 6, 8, 10 from top panel to bottom panel). The
Wilson loopsWðr; tÞ are constructed by the smeared spatial links,
which are computed with either APE smearing (diamonds) or
spatial gradient flow (circles). The spatial gradient flow provides
longer plateau behaviors than those of APE smearing.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

R/r
0

-6

-4

-2

0

2

r 0
(V

I(R
)-

V
I(r

0
))

beta=6.93
beta=6.71
beta=6.40
beta=6.20

FIG. 3. The lattice spacing dependence of VIðRÞ. The vertical
and horizontal axes are normalized by the Sommer scale r0 given
in Ref. [21]. For clarity of the figure, a constant shift has been
applied by subtraction of the value at R ¼ r0.
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couplings. For this purpose, we first adopt the Cornell
potential parametrization by fitting the data of VIðRÞ as

VIðRÞ ¼ V0 −
A
R
þ σR ð11Þ

with the Coulombic coefficient A, the string tension σ, and
a constant V0. Finally, the parameters A and σ can be used
to determine the Sommer scale r0 as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.65 − A

σ

r
ð12Þ

for each gauge coupling β. In Table V, we summarize the fit
results of the Cornell potential parameters (V0, A, and

ffiffiffi
σ

p
)

and the Sommer parameter r0 obtained from all four
ensembles, in lattice units. Although all measured values
of the Sommer parameter are barely consistent with the
literature values of r0=a [21], while our estimates of r0=a
are systematically underestimated.
The origin for the underestimation of r0=a is twofold.

According to Eq. (12), one is the overestimation of A, while
the other is the overestimation of σ. In the string regime
(R > 1 fm) [23], the effective string theory predicts that the
coefficient A is given by the universal Lüscher constant
A ¼ π=12 [24], which is smaller than our estimates of A.
Thus, we alternatively choose fits with A fixed at π=12,
though our data falls outside of this range. Nevertheless, the
obtained results for the string tension σ becomes slightly
larger than thevalues tabulated inTableV, so that the resulting
values of r0=a get smaller and go slightly further away from
the literature values. We thus consider that the systematic
underestimation of our values of r0 is mainly caused by a
slight overestimation of the string tension since the excited-
state contaminations are not fully eliminated inour analysis of
VðrÞ especially for large r. We simply use the double-
exponential fit to determine VðrÞ from hWðr; tÞi instead of
the variational method that was adopted in Ref. [21].
Figure 3 shows the lattice spacing dependence of VIðRÞ.

The vertical and horizontal axes are normalized by the
Sommer scale r0 given in Ref. [21]. For clarity of the figure,
a constant shift has been applied by subtraction of the value
at R ¼ r0. Indeed, the scaling behavior, where the data
points of VIðRÞ measured at different lattice spacings
collapse on a single curve, is clearly seen in Fig. 3. We
hereafter use the literature values of r0=a [21] for whole
analysis instead of our measured values.

V. FEATURES OF THE SPATIAL GRADIENT
FLOW

A. Comparison with the original gradient flow

We first recapitulate the problem of a simple application
of the original gradient flow to calculate the glueball two-
point functions. In this subsection, we focus on the results
of the Aþþ

1 glueball state calculated on a 324 lattice at β ¼
6.4 with the “plaquette” glueball operator Oplaq as a typical
example. In Fig. 4, we show the results of two-point
functions (left panel) and their effective mass plots (right
panel) using the original gradient flow with three values of
flow time τ, which are represented by the values of the
diffusion radius Rd ¼

ffiffiffiffiffi
8τ

p
in lattice units.

As shown in the left panel of Fig. 4, the statistical errors
on the glueball two-point function are dramatically reduced
up to the large time slice region as the flow time increases.
However, the temporal correlation in the region of t < Rd
become suffered from the overlap of two glueball operators
which are smeared in space-time according to a Gaussian
spread. In fact that if the two-point function CðtÞ forms a
Gaussian shape, CðtÞ ∝ CguassðtÞ ¼ e−t

2=ð2R2
dÞ, with a

Gaussian width corresponding to the diffusion radius Rd,
its effective mass gives rise to a peculiar t-dependence as

Meffðt0Þ ¼ ln

�
CðtÞ

Cðtþ 1Þ
�
≈

t0

R2
d

; ð13Þ

whose value linearly increases from zero with a coefficient
of 1=R2

d as a function of the time slice t0 ¼ tþ 1
2
. This

feature can be observed in the right panel of Fig. 4, where
each effective mass1 approximately starts from zero and
linearly raise up to around t ≈ Rd with increasing of the
time slice t. Furthermore, as expected in Eq. (13), it is easily
observed that the slope of the linear dependence decreases
with the larger flow time. When the shorter flow time such
as the case of Rd=a ¼ 4.47 is chosen to avoid over
smearing, the effective mass shows a plateau behavior in
the region of t > Rd. For the longer flow time such as the
cases of Rd=a ¼ 7.75 and 10.0, the plateau formation
becomes uncertain because Rd approaches the vicinity of
the temporal midpoint (t=a ¼ 16), where the signals of the

TABLE V. Summary of the Cornell potential parameters (V0, A, and
ffiffiffi
σ

p
) and the Sommer parameter r0 in lattice units for all four

ensembles.

β aV0 A a
ffiffiffi
σ

p
r0=a [rmin=a; rmax=a] χ2=dof

6.2 0.623(7) 0.257(9) 0.1647(38) 7.16(15) [2, 9] 1.02
6.4 0.606(9) 0.284(26) 0.1220(32) 9.58(17) [4,13] 0.81
6.71 0.569(13) 0.331(65) 0.0819(39) 14.02(33) [8,16] 1.15
6.93 0.541(8) 0.339(43) 0.0608(29) 18.84(61) [8,21] 0.98

1To take into account “the wrap-around effect” due to the
periodic boundary condition, the effective masses Meffðt0Þ are
given by a solution of CðtÞ

Cðtþ1Þ ¼ cosh½Meff ðt0Þðt−T=2Þ�
cosh½Meff ðt0Þðtþ1−T=2Þ� in the right

panels of Figs. 4 and 5.
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effective mass get noisier. As a result, the plateau behavior,
which highly depends on the choice of the flow time, is too
uncertain to extract the ground-state mass of the glueball
with high accuracy.
We next show the results obtained from the spatial

gradient flow in Fig. 5. First of all, in the left panel of Fig. 5,
the exponential falloffs are clearly seen for all three values
of the flow time and their slopes in the asymptotic region
are independent of the choice of the flow time. The latter
point can be confirmed in the right panel of Fig. 5, where
their effective mass plots are displayed. For sufficiently
large flow time (Rd=a > 6.71), the plateau behavior in the
effective mass plot does not change with variation in flow
time. This is a great advantage compared to the original
gradient flow. Furthermore, the plateau behavior starts at a
smaller time slice, where the true temporal correlation of
the glueball two-point function is kept unaffected during
the smearing procedure contrast to the original gradient
flow. It is another advantage for extracting the ground-state
mass of the glueball with high accuracy, though the large
statistical fluctuations still remain in the large t region.
Finally, we calculate the ground-state mass of the Aþþ

1

glueball by fitting the glueball two-point function with a

single exponential form for both gradient flow cases. The
choice of Rd=a ¼ 4.47 for the original gradient flow is
taken to avoid over smearing, while the data with Rd=a ¼
8.66 is used for the spatial gradient flow as a typical
example. The Aþþ

1 glueball masses are respectively evalu-
ated from two types of the gradient flow as below,

aMAþþ
1

¼
�
0.446ð14Þ ðoriginal gradient flowÞ
0.404ð9Þ ðspatial gradient flowÞ: ð14Þ

In the right panel of Figs. 4 and 5, each of the central
values and errors is displayed as a blue dotted line and
yellow shaded bands within the fit range. The statistical
error on the original gradient flow result is slightly larger
than that of the spatial gradient flow, while the central value
of the former is slightly overestimated in comparison to the
latter. Recall that the central value of the original gradient
flow result tends to be lower when the flow time is taken
longer regardless of over smearing. Needless to say, the
original gradient flow requires the optimal choice of the
flow time, while the spatial gradient flow result becomes
stable for the large flow time.
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FIG. 4. Examples of the Aþþ
1 glueball results obtained from the original gradient flow: two-point functions (left) and their effective

mass plots (right) as functions of the time slice t for three values of flow time τ.

0 5 10 15 20 25 30
t/a

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

2
p

t.
 f

u
n

c
.

R
d
/a=6.71

R
d
/a=8.66

R
d
/a=9.48A

1

++

0 2 4 6 8 10 12 14 16
t/a

0

0.2

0.4

0.6

0.8

1

E
ff

e
c
ti
v
e

 m
a

s
s

R
d
/a=6.71

R
d
/a=8.66

R
d
/a=9.48

A
1

++

FIG. 5. Examples of the Aþþ
1 glueball results obtained from the spatial gradient flow: two-point functions (left) and their effective mass

plots (right) as functions of the time slice t for three values of flow time τ.

GLUEBALL SPECTROSCOPY IN LATTICE QCD USING … PHYS. REV. D 107, 034510 (2023)

034510-7



As will be discussed in Appendix A, the spatial gradient
flow is slightly more efficient than the gradient flow, which
is diffused in the four-dimensional space-time, in terms of
reduction of relative uncertainties. As reported in an earlier
work [25], although the cooling method that can smoothen
the whole four-dimensional space-time was also used for
calculating the string tension and glueball masses, the
similar conclusion is made that the results were not better
than the conventional approach that can smoothen only the
three-dimensional space.

B. Equivalence to the stout smearing

We will later show numerical equivalence between the
spatial gradient flow and the stout smearing in the glueball
calculations. As emphasized in Ref. [3], the stout smearing
is a relatively new type of smearing technique, which can
keep the differentiability with respect to the link variables
during the smearing procedure. This property is maintained
by the use of the exponential function in the stout-link
smearing algorithm to remain within the SUð3Þ group. For
the gradient flow, the numerical integrations of Eqs. (2) and
(3) with respect to the flow time are performwith the Runge-
Kutta scheme to obtain the Wilson flow as a solution of

Eqs. (2) and (3). This procedure requires the exponentiation
of the “Lie-algebra fields” for the integration. In this sense,
neither of the twomethods uses the projection intoSUð3Þ for
the flowed or smeared link variables.
The gradient flow equation can be regarded as a

continuous version of the recursive update procedure in
the stout-link smearing as pointed out in the original paper
[9]. Moreover, the authors of Ref. [10] relate the smoothing
parameter for other smearing schemes to the gradient flow
time τ under the assumption that the lattice spacing and the
smearing parameters are small enough. For the case of the
stout smearing, the corresponding flow time τ is given by
the matching relation of τ ¼ ρnst with the number of stout
smearing steps nst for the isotropic four-dimensional case
of the stout smearing parameters (ρμν ¼ ρ) [10]. We will
later rederive the above matching relation in more rigorous
manner in Appendix A.
In Fig. 7, we show the effective masses of the Aþþ

1

glueball state obtained from the spatial gradient flow and
the stout smearing at the same flow time τ that is
determined by the matching relation, τ ¼ ρnst, between
the two methods. In this work, for the stout smearing, the
spatially isotropic three-dimensional parameter set is chosen
to be ρij ¼ ρ ¼ 0.1 and ρ4μ ¼ ρμ4 ¼ 0. The numerical
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FIG. 6. Comparisons of the two-point functions for the Aþþ
1 glueball using the spatial gradient flow and the stout smearing. The left

panel is for the lower-diffusion case (Rd=a ¼ 5.48), while the right panel is for the higher-diffusion case (Rd=a ¼ 9.48).
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panel is for the lower-diffusion case (Rd=a ¼ 5.48), while the right panel is for the higher-diffusion case (Rd=a ¼ 9.48).
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equivalence between the twomethods is clearly observed in
both the lower and higher-diffusion cases as shown in
Fig. 6. It is worth remarking that the values of nst adopted
in Fig. 7, is much larger than a typical value of less than
ten in the usual usage. Although the usage of the stout
smearing with a small value of nst is not effective for the
glueball calculations, the almost identical result to the one
made by the spatial gradient flow with the diffusion radius
(

ffiffiffiffiffi
6τ

p
) can be obtained by the case if the same amount of the

diffusion radius (
ffiffiffiffiffiffiffiffiffiffi
6ρnst

p
) is adopted in the stout smearing.

VI. RESULTS

In this section, we present the results of glueball masses
in the four channels (Aþþ

1 , A−þ
1 , Eþþ, and Tþþ

2 ) using
the spatial gradient flow. To perform the continuum

extrapolation, we calculate the glueball masses at four
different gauge couplings with a fixed physical volume
(La ≈ 1.6 fm). In this section, we rotate the temporal
direction using hypercubic symmetry of each gauge
configuration and then increase the total number of glue-
ball mass measurements by a factor of four as listed in
Table VI. The maximum number of flow iterations corre-
sponds to the diffusion radius Rd ≈ 0.5–0.6 fm at each
ensemble.

A. Less shape-dependence

As described in Sec. V B, in this study, we adopt six
types of Wilson loop shapes (plaquette, rectangle, twist,
chair, fish, hand) [15] to construct the glueball operators. In
the largest case, the Aþþ

1 glueball state can be created with
all six operators, and even in the smallest case, at least two
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FIG. 8. Operator shape-dependence of effective masses with Aþþ
1 (top-left), A−þ

1 (top-right), Eþþ (bottom-left), and Tþþ
2 (bottom-

right) irreps. at β ¼ 6.93 with nflow ¼ 2000 (Rd ≈ 0.44 fm).

TABLE VI. Summary of glueball simulation parameters: gauge coupling, lattice size (L3 × T), the number of the accumulated gauge
configurations (Nconf ), the number of measurements per configuration (Nmeas), the number of total measurements
(Ntotal ¼ Nconf × Nmeas) and the number of flow iterations (nflow).

β L3 × T Nconf Nmeas Ntotal nflow

6.2 243 × 24 4000 4 16000 From 50 to 500 (every 50)
6.4 323 × 24 3000 4 12000 From 50 to 800 (every 50)
6.71 483 × 48 1000 4 4000 From 50 to 1400 (every 50)
6.93 643 × 64 500 4 2000 From 50 to 2600 (every 50)
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operators can be used to compute the A−þ
1 glueball state as

summarized in Table I. In this sense, the variational analysis
[16,17] based on the different shapes is in principle
applicable, according to Ref. [15]. However, it is found
that the shape-dependence of the resulting two-point
functions disappears due to a strong isotropic nature in
the spatial gradient flow method as shown in Fig. 8. These
figures are displayed as typical examples.
The top panels of Fig. 8 show the effective mass plots for

the Aþþ
1 (left) and A−þ

1 (right) channels at β ¼ 6.93 with
nflow ¼ 2000 (Rd ≈ 0.44 fm). All data points of different
symbols including their error bars overlap each other. As
shown in the bottom panels of Fig. 8, some of different
operators are almost identical (e.g., plaquette and rectangle
operators for the Eþþ channel, and also fish and hand
operators for the Tþþ

2 channel), though all data points of the
effective mass are almost similar at a smaller time slice even
for the tensor cases.
It is worth remarking that both the spatial gradient flow

and stout smearing methods share this strong isotropic
nature in the extended glueball operators after the large
flow time or the high-diffusion case. Therefore, the
variational analysis [16,17] based on the different shapes
is not applicable at the fixed flow time or the fixed smearing
step. However, instead of the different shapes, we can use
the different diffuseness of the extended operator, which is
given at the different flow time or the different smearing
step, to carry out the variational analysis.

B. Variational analysis

As described in the previous subsection, we perform the
variational analysis [16,17] with a set of basis operators,
which are made of the flowed link variables at the different
flow time for a fixed shape k. In this study, we choose the
“fish” shaped operatorOfish which contains all irreps of our
target states (Aþþ

1 , A−þ
1 , Eþþ, Tþþ

2 ).
For the variational analysis, we construct the N × N

correlation matrix of two-point functions of glueball states
for given irreps Γ as

CΓ
αβðtÞ ¼

X
t0
h0jÕΓ

αðtþ t0ÞÕΓ
βðt0Þ†j0i; ð15Þ

where the labels of α, β, which run from 1 to N,
identify the different flow iterations. The tilde over OΓ

α

indicates the vacuum-subtracted operator as ÕΓ
αðtÞ ¼

OΓ
αðtÞ − h0jOΓ

αðtÞj0i. We next solve the generalized eigen-
value problem,

CΓ
αβðtÞωn;β ¼ λn;Γðt; t0Þωn;β ð16Þ

to obtain the nth eigenvalue λn;Γðt; t0Þ, where t0 is a
reference time slice, and its eigenvector ωn;β. If only the
N lowest states are propagating in the region where t ≥ t0,

the nth eigenvalue λn;Γðt; t0Þ for n ≤ N is given by a single
exponential form with the rest mass of the nth glueball
state as

λn;Γðt; t0Þ ¼ e−ðt−t0ÞMn;Γ ; ð17Þ

which corresponds to the eigenvalue of the transfer matrix
between two time slices t and t0. Details of how to
practically compute the eigenvalues λn;Γðt; t0Þ are described
in Appendix B of Ref. [26]. An effective mass is defined as

Meff
n;ΓðtÞ ¼ ln

λn;Γðt; t0Þ
λn;Γðtþ 1; t0Þ

; ð18Þ

where λn;Γðt; t0Þ is the nth eigenvalue of the N × N
correlation matrix for Γ ¼ Aþþ

1 , A−þ
1 , Eþþ, Tþþ

2 . In this
study, we choose N ¼ 6 and the reference time slice as
t0=a ¼ 0, where the resulting mass is less sensitive to
variation of t0.
Let us first present the effective masses of glueballs

obtained from the variational method using the 6 × 6
correlation matrix constructed by the Ofish operator with
six different flow iterations. Figure 9 show the effective
mass plots of the first two eigenvalues in the Aþþ

1 (top-left),
A−þ
1 (top-right), Eþþ (bottom-left), and Tþþ

2 (bottom-right)
representations at β ¼ 6.20. Figures 10–12 are also plotted
for the results obtained at β ¼ 6.40, 6.71, and 6.93,
respectively. In each panel of these figures, the horizontal
solid lines represent each fit result obtained by a correlated
fit using a single-exponential functional form, and shaded
bands display the fit range and one standard deviation. As
can be seen, the variational analysis with the correlation
matrix constructed in our chosen basis successfully sepa-
rates the first excited state from the ground state in each
channel. In Table VII, we summarize the results of masses
of the two lowest-lying glueball states in all four channels,
together with fit ranges used in the fits and value of χ2 per
degrees of freedom (dof).

C. Continuum extrapolation and comparison
with previous results

It is worth comparing our result obtained from the spatial
gradient flow with previous results obtained from both the
original gradient flow and a conventional approach. For this
purpose, we choose the results obtained in the simulations
performed on isotropic lattice with the standard Wilson
plaquette action. The previous attempt to apply the gradient
flow to the Aþþ

1 glueball spectroscopy was done by
Chowdhury-Harindranath-Maiti [12] (denoted as CHJ
result). Meyer [7] and Athenodorou-Teper [8] (denoted
as AT result) performed comprehensive studies of the low-
lying glueball states using the conventional approach at
several lattice spacings.
In Fig. 13, we show our results of the ground-state

glueball masses calculated in the Aþþ
1 (top-left), A−þ

1
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FIG. 10. Effective mass plots for the ground state and the first excited state in Aþþ
1 (top-left), A−þ

1 (top-right), Eþþ (bottom-left), and
Tþþ
2 (bottom-right) channels at β ¼ 6.40.
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Tþþ
2 (bottom-right) channels at β ¼ 6.71.
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TABLE VII. Masses of the ground state and the first excited state of glueballs obtained from the variational method using the 6 × 6
correlation matrix constructed by the Ofish operator with six different flow iterations.

Ground state First excited-state

Irreps β aMG Fit range χ2=dof aMG Fit range χ2=dof

Aþþ
1

6.2 0.5198(67) [2, 8] 0.82 0.928(30) [2, 6] 0.42
6.4 0.4025(62) [3, 8] 0.61 0.714(32) [3, 6] 0.89
6.71 0.2664(45) [3,10] 0.85 0.518(10) [2, 6] 0.85
6.93 0.1970(36) [3,12] 0.98 0.374(10) [3, 9] 0.30

Eþþ 6.2 0.8032(74) [1, 6] 0.84 1.109(16) [1, 4] 0.66
6.4 0.6035(85) [2, 6] 1.47 0.858(21) [2, 5] 0.83
6.71 0.3884(83) [3,10] 0.12 0.556(19) [3, 7] 0.66
6.93 0.2849(61) [3,12] 1.16 0.411(12) [3, 6] 0.25

Tþþ
2

6.2 0.7989(74) [1, 6] 0.31 1.117(16) [1, 4] 0.47
6.4 0.5878(84) [2, 6] 1.58 0.843(21) [2, 5] 0.90
6.71 0.3871(85) [3,10] 0.35 0.544(20) [3, 7] 1.24
6.93 0.2904(62) [3,12] 0.81 0.448(14) [3, 7] 1.36

A−þ
1

6.2 0.859(20) [2, 5] 0.37 1.225(21) [1, 3] 2.13
6.4 0.618(18) [3, 8] 1.04 0.938(29) [2, 4] 1.14
6.71 0.415(10) [3, 9] 0.87 0.629(14) [2, 6] 1.12
6.93 0.313(10) [4,12] 0.54 0.441(14) [3, 8] 0.55
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FIG. 13. Comparisons of the glueball mass results for the ground states in the Aþþ
1 (top-left), A−þ

1 (top-right), Eþþ (bottom-left), and
Tþþ
2 (bottom-right) channels from this work, Meyer [7], CHJ [12], and AT [8]. Our results are calculated by the spatial gradient flow

method. On the other hand, both the Meyer and AT results are given by the conventional approach, while the CHJ result are given by the
ordinary gradient flow.
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(top-right), Eþþ (bottom-left), and Tþþ
2 (bottom-right)

channels. Our results are calculated by the spatial gradient
flow method. In each panel of Fig. 13, the dimensionless
products of the glueball masses MG and the Sommer scale
r0 are shown as functions of ða=r0Þ2 for a comparison with
the previous works.
In the Aþþ

1 channel, our results are fairly consistent with
the previous works. On the other hand, although overall
agreements with Meyer and AT results are observed in
the other three channels, a more detailed comparison
reveals a slight difference between these results and our
results at the coarser lattice spacing. Especially, our data
points calculated at β ¼ 6.2 are slightly overestimated
except for the Aþþ

1 state. Nevertheless, our results obtained
at the finer lattice spacings are consistent with the
continuum-extrapolated AT result (marked as asterisk
symbols) in all four channels.
We next perform the continuum extrapolation of the

glueball masses MGð0Þ from the glueball masses MGðaÞ
measured at the finite lattice spacing a. To remove the
lattice discretization corrections on the measured glueball
massesMGðaÞ, we use a linear fit with respect to ða=r0Þ2 as

MGðaÞr0 ¼ c0 þ c2

�
a
r0

�
2

ð19Þ

with c0 being the continuum-extrapolated glueball masses
MGð0Þ in units of r0. The fit results using all four data
points are shown in Fig. 13 as solid lines. The statistical
uncertainty which is estimated by the jackknife analysis is
indicated as the gray-shaded band in each panel. The data
points are well described by the fitted curves. As mentioned
above, our data points calculated at β ¼ 6.2 are slightly
overestimated in comparison to the previous works except
for the Aþþ

1 state, though our continuum results (marked
as filled circles) are consistent with the continuum-
extrapolated AT results obtained from their high-precision
data in all four channels.
Our fit results are compiled in Table VIII. The quoted

values of r0MG include a systematic error stemming from
the continuum-extrapolation fits as the second error, which
are evaluated from a difference between the fit results
obtained by all four data points and three data points closest
to the continuum. Table VIII also includes the previous
continuum-limit results for comparison.

In Fig. 14, we finally plot all of data included in
Table VIII. The masses are given in terms of the
Sommer scale r0 along the left vertical axis, while the
right vertical axis is converted to physical units by
r0 ¼ 0.472ð5Þ fm,2 which was adopted in Ref. [8]. For
the 2þþ results, we use a weighted average of M2þþ ¼
ð2MEþþ þ 3MTþþ

2
Þ=5 for the final estimation. The inner and

outer error bars on our results represent their statistical and
total (adding statistical and systematic errors in quadrature)

TABLE VIII. Comparison of the continuum-limit results of r0MG for the ground states of the Aþþ
1 , Eþþ, Tþþ

2 , and A−þ
1 irreps. For

comparison, the previous continuum-limit results are also included.

Irreps This work Meyer [7] AT [8] MP [5] Chen [6]

Aþþ
1

3.871(62)(61) 3.883(79) 3.950(24) 4.21(11) 4.16(11)
Eþþ 5.563(98)(129) 5.703(106) 5.689(23) 5.85(2) 5.82(5)
Tþþ
2

5.556(104)(40) 5.658(75) 5.667(22) 5.85(2) 5.83(4)
A−þ
1

5.938(147)(132) 5.93(16) 6.120(52) 6.33(7) 6.25(6)
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FIG. 14. Comparison of our continuum-limit results (circles)
with the previous continuum-limit results: MP (upper triangles),
Chen et al. (lower triangles), Meyer (cross symbols), and AT
(squares) results, respectively. The masses are given in terms of
the Sommer scale r0 along the left vertical axis, while the right
vertical axis is converted to physical units by r0 ¼ 0.472 fm,
which is adopted in Ref. [8]. The inner and outer error bars
on our results represent their statistical and total uncertainties,
respectively.

2The quoted value is determined from Nf > 2 lattice QCD
simulations in Ref. [27].
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uncertainties, respectively. Our final results of the ground-
states masses of the 0þþ, 2þþ, and 0−þ glueballs are
obtained in physical units as follows:

M0þþ ¼ 1.618ð26Þð25Þ GeV; ð20Þ

M2þþ ¼ 2.324ð42Þð32Þ GeV; ð21Þ

M0−þ ¼ 2.483ð61Þð55Þ GeV; ð22Þ

where the first error is statistical, while the second one
represents a systematic error in the continuum extrapolation
as explained above.
It is worth recalling that our results and the results of

Meyer [7] and AT [8] are obtained from the isotropic lattice
simulations, while the results given by Morningstar-
Peardon [5] (denoted as MP result) and Chen et al. [6]
are obtained from the anisotropic lattice simulations. The
results from the isotropic lattice simulations are system-
atically underestimated in comparison to those of the
anisotropic lattice simulations. This may suggest that
there remains some subtlety in taking the continuum limit
for the results obtained from the anisotropic lattice
simulations. It is beyond the scope of this study, while
our aim is rather to demonstrate the feasibility of our
proposed approach. Furthermore, as discussed in
Appendix B, we found that the spatial gradient flow is
a few times more effective than the original gradient flow
and the conventional approach. We therefore stress that
the spatial gradient flow method can efficiently reproduce
the recent high precision results of the glueball masses [8]
within the statistical uncertainties.

VII. SUMMARY

We have studied the glueball two-point function with
two types of the gradient flow method. The original
gradient flow, which makes the Wilson flow diffused in
the four-dimensional space-time, has some problem in
measuring the glueball mass from the two-point function.
It is known to be over smearing due to the overlap of two
glueball operators extended in both space-time as reported
in the previous study [12]. This particular issue makes the
plateau behavior uncertain in the effective mass plot, so that
it is difficult to extract the ground-state mass of the glueball
with high accuracy.
To avoid over smearing, we propose the spatial gradient

flow approach and also apply it to the glueball calcu-
lations. Our numerical simulations show that the spatial
gradient flow method works well as a noise-reduction
technique, meanwhile it has a good property that the
plateau behavior in the effective mass plot does not
change with variation in flow time for sufficiently large
flow time. The latter point gives an advantage for
extracting the ground-state mass of the glueball with high
accuracy without over smearing.

It is also observed that the spatial gradient flow
eliminates dependence of the Wilson loop shapes in the
glueball two-point function due to a strong isotropic
nature. Therefore, the variational method based on the
different shapes is not applicable. Instead, the different
diffuseness of the extended operator, which is given at the
different flow time, are used for the variational analysis to
separate the ground-state contribution from the excited-
state contributions.
To demonstrate the feasibility of our proposed method,

we have determined the masses of the three lowest-lying
glueball states, corresponding to the 0þþ, 2þþ, and 0−þ

glueballs, in the continuum limit by using four lattice
QCD simulations for the lattice spacings ranging from
0.026 to 0.068 fm. Our results of the 0þþ, 2þþ, and 0−þ

glueball masses are consistent with the previous works
[7,8]. Especially, it is worth emphasizing that the spatial
gradient flow method can efficiently reproduce the recent
high-precision results [8], which are slightly underesti-
mated in comparison to the results given by the aniso-
tropic lattice simulations [5,6], within the statistical
uncertainties.
We have also showed numerical equivalence between

the spatial gradient flow and the stout smearing in the
glueball calculations at the relatively fine lattice spacing of
0.0513(3) fm. This observation can be understood through
the analytical derivation that demonstrates the equivalence
between the gradient flow and stout smearing methods in
the vicinity of the continuum limit as described in
Appendix A. This fact can help to reflect actual efficiency
for the glueball spectroscopy.
As discussed in Appendix B, although the spatial

gradient flow requires several times fewer statistics to
achieve the same statistical accuracy than the conventional
method, its computational cost is roughly a factor of
Oð10Þ higher than the conventional one. Thus, by replac-
ing the spatial gradient flow method with the stout
smearing method, which is almost as computationally
inexpensive as the conventional method, the gradient flow
approach becomes really an efficient scheme for the
glueball spectroscopy.
We plan to extend our research to calculate the glueball

three-point function with the renormalized energy-
momentum tensor formulated in the gradient flow method
[28] in order to investigate the origin of the glueball masses.
Such study is now in progress [29].
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APPENDIX A: EQUIVALENCE BETWEEN
GRADIENT FLOW AND STOUT SMEARING

This section is devoted to a discussion of the equiv-
alence between gradient flow and stout smearing referred
in Sec. V B. For this purpose, we will first provide the
explicit form of ∂x;μSW ½U� appeared in the left-hand side
of Eq. (2).
The link derivative operator ∂x;μ is defined as follows.

The operator ∂μ;x stands for the Lie algebra valued
differential operator with respect to the link variable [9].
Let us introduce the anti-Hermitian traceless N × N
matrices Ta ða ¼ 1;…; N2 − 1Þ as generators of
SUðNÞ group.3 In general, with respect to a basis Ta,
the elements M of the Lie algebra of SUðNÞ are given by
M ¼ MaTa with real components Ma. Therefore, the
operator ∂x;μ can be expressed with respect to a basis
Ta as

∂μ;x ¼ Ta
∂
a
μ;x; ðA1Þ

where the operators ∂
a
μ;x are defined by

∂
a
μ;xfðUÞ ¼ d

ds
fðesXa

UÞjs¼0 ðA2Þ

with

Xaðy; νÞ ¼
�
Ta if ðy; νÞ ¼ ðx; μÞ;
0 otherwise;

ðA3Þ

and act as differential operators on functions f of the link
variable U.
When the link derivative ∂x;μ acts on the action, we may

simply focus on the term that explicitly depends on UμðxÞ
in the action as

SW ½U� ¼ −
2

g20

X
x;μ>ν

½ReTrfUμðxÞX†
μðxÞg

þ fterms independent of UμðxÞg�; ðA4Þ

where XμðxÞ is the sum of all the path ordered products of
the link variables, called the “staple”. The staple XμðxÞ is
given by

XμðxÞ ¼
X
μ>ν

½UνðxÞUμðxþ ν̂ÞU†
νðxþ μ̂Þ

þU†
νðx − ν̂ÞUμðx − ν̂ÞUνðx − ν̂þ μ̂Þ�: ðA5Þ

If we set ΩμðxÞ ¼ XμðxÞU†
μðxÞ, each basis component is

given as

g20∂
a
μ;xSW ½U� ¼ −2ReTrfTaΩ†

μðxÞg
¼ −TrfTaðΩ†

μðxÞ −ΩμðxÞÞg; ðA6Þ

where Ω†
μðxÞ denotes the sum of all plaquettes that include

UμðxÞ. Therefore, we finally get

g20∂μ;xSW ½U� ¼ −iQμðxÞ ðA7Þ

with

QμðxÞ ¼
i
2
ðΩ†

μðxÞ −ΩμðxÞÞ −
i
2N

TrðΩ†
μðxÞ −ΩμðxÞÞ;

ðA8Þ

which becomes a Lie algebra valued quantity.
In the stout smearing, the link smearing is defined as the

following recursive procedure [3]. Here, for simplicity,
the stout smearing parameters ρμν are taken as ρμν ¼ ρ. The

link variables UðkÞ
μ ðxÞ at step k are mapped into the link

variables Uðkþ1Þ
μ ðxÞ using

Uðkþ1Þ
μ ðxÞ ¼ exp ðiρQðkÞ

μ ðxÞÞUðkÞ
μ ðxÞ; ðA9Þ

where QðkÞ
μ ðxÞ is given by Eq. (A8) with the stout link

UðkÞ
μ ðxÞ [3]. By taking the logarithm of both sides of

Eq. (A9), one can get

Δk logU
ðkÞ
μ ðxÞ ¼ iρQðkÞ

μ ðxÞ; ðA10Þ

where Δk represents a forward difference with respect to k
as ΔkfðkÞ≡ fðkþ 1Þ − fðkÞ.
Next, let us introduce a continuous variable

s ¼ kρ, and then reexpress the link variable UðkÞ
μ ðxÞ by

writing a function of s as Ũμðx; sÞ. Since ∂

∂s fðsÞ ¼
limρ→0

fðsþρÞ−fðsÞ
ρ , the above difference equation (A10)

becomes the differential equation with respect to the
variable s in the limit of ρ → 0.

∂

∂s
log Ũμðx; sÞ ¼ −g20∂μ;xSW ½Ũ�; ðA11Þ

3In this paper, we use the notational conventions adopted in the
original Lüscher’s paper [9]. Namely, they are normalized by
TrðTaTbÞ ¼ − 1

2
δab and also satisfy the commutation relations

½Ta; Tb� ¼ fabcTc with the structure constants fabc.
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where the left-hand side of Eq. (A10) is rewritten by using
the expression of Eq. (A7). Finally, Eq. (A11) reduces to a
gradient flow equation with respect to the link variable
Ũμðx; sÞ as

∂

∂s
Ũμðx; sÞ · fŨμðx; sÞg−1 ¼ −g20∂μ;xSW ½Ũ� þOðaÞ

ðA12Þ

in the vicinity of the continuum limit.4

It is clear that Eq. (A12) is equivalent to Eq. (2) at the
leading order. Since the variable s ¼ kρ directly corre-
sponds to the Wilson flow time τ, the perturbative
matching relation of τ, ρ and the number of stout smearing
steps nst as τ ¼ ρnst found in Ref. [10] is also rigorously
proved. Therefore, the gradient flow equation is certainly
regarded as a continuous version of the recursive update
procedure in the stout smearing at the smaller lattice
spacing. When SW is replaced by SsW in the gradient flow
equation, and ρμν is set as ρij ¼ ρ and ρ4μ ¼ ρμ4 ¼ 0 in the
stout smearing, above consideration fully supports our
finding that there is the numerical equivalence between
the spatial gradient flow and the spatial stout smearing in
the glueball spectroscopy at the relatively fine lattice
spacing of 0.0513(3) fm.

APPENDIX B: EFFECTIVENESS OF THE
SPATIAL GRADIENT FLOW

In this appendix, we aim to assess effectiveness of our
proposed method in comparison to the conventional

approach. A simple indicator of effectiveness or efficiency
of a given method to calculate the glueball mass is defined
as the following index:

Effectiveness index ðEIÞ¼
� ðErrorÞ
ðCentral valueÞ

�
2

× ðNo: of measurementsÞ; ðB1Þ

which is inversely proportional to the relative size
of the square of the signal-to-noise ratio with respect
to the statistics. When the EI index gets smaller, effi-
ciency of the method becomes better with fixed statistics.
Table IX compiles the values of effectiveness of respec-
tive smearing methods among three simulations (CHJ,
AT, and this work) performed at the similar lattice spacing
(β ≈ 6.4). According to the EI value, the spatial gradient
flow or the stout smearing with the high value of nst is
several times more effective than the original gradient
flow and the conventional approach (see Ref. [30] for
details of the smearing and fuzzing methods used
in Ref. [8]).
It should be noted that the EI value does not reflect actual

efficiency since the computational cost for the gradient flow
method is relatively higher than the conventional approach.
Indeed, in our actual numerical code, we find that the
single-link smearing including APE smearing and stout
smearing are a factor ofOð10Þ faster than the gradient flow
method even with the same numbers of flow iterations nflow
and smearing steps nst. Moreover, the required number of
flow iterations increases quadratically as the lattice spacing
decreases.
Nevertheless, as numerically found in Sec. V B and

analytically proven in Appendix B, the gradient flow
method can be replaced by the stout smearing at the finer
lattice spacing with keeping the same value of EI as shown
in Table IX. Since the stout smearing is comparable to the
conventional approach regarding the computational cost,
the gradient flow approach is really an efficient scheme
for the glueball spectroscopy and would have an
advantage in dynamical lattice QCD simulations for glue-
ball observables.

TABLE IX. Comparison of effectiveness of respective smearing methods among three simulations (CHJ, AT, and this work)
performed at the similar lattice spacing (β ≈ 6.4). Ntotal denotes the number of total measurements in each simulation.

Label β L3 × T Ntotal Method aMAþþ
1

EI

This work 6.40 323 × 32 3000 Spatial gradient flow 0.404(9) 1.5
Stout smearing (high nst) 0.403(9) 1.5
Stout smearing (low nst) 0.442(31) 14.8

Gradient flow (Rd ¼ 0.23 fm) 0.446(14) 3.0
CHJ [12] 6.42 323 × 64 1958 Gradient flow (Rd ¼ 0.3 fm) 0.393(15) 2.9

Gradient flow (Rd ¼ 0.35 fm) 0.387(18) 4.3
AT [8] 6.338 303 × 30 80000 Conventional approach 0.4276(37) 6.0

4When UðsÞ is a matrix Lie group, ∂U
∂s U

−1 is given in terms of
∂

∂s logU as

∂U
∂s

U−1 ¼ ∂

∂s
logU þ 1

2!

�
logU;

∂

∂s
logU

�

þ 1

3!

�
logU;

�
logU;

∂

∂s
logU

��
þ · · ·: ðA13Þ

In the case when U is the link variable, the power series of
logU in the left-hand side can be neglected for the small lattice
spacing a.
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