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We investigate efficiency of a gauge-covariant neural network and an approximation of the Jacobian
in optimizing the complexified integration path toward evading the sign problem in lattice field theories.
For the construction of the complexified integration path, we employ the path optimization method. The
two-dimensional U(1) gauge theory with the complex gauge-coupling constant is used as a laboratory
to evaluate the efficiency. It is found that the gauge-covariant neural network, which is composed of the
Stout-like smearing, can enhance the average phase factor, as the gauge-invariant input does. For the
approximation of the Jacobian, we test the most drastic case in which we perfectly drop the Jacobian during
the learning process. It reduces the numerical cost of the Jacobian calculation from OðN3Þ to Oð1Þ, where
N means the number of degrees of freedom of the theory. The path optimization using this Jacobian
approximation still enhances the average phase factor at expense of a slight increase of the statistical error.
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I. INTRODUCTION

The Monte Carlo (MC) method is an important tool for
investigating nonperturbative properties of quantum field
theories in which we do not know the analytic results. The
MCmethod with the probability weight is, however, difficult
to perform in high precision when the sign problem arises.
The probability distribution function that controls the update
of the configuration becomes complex and/or seriously
oscillating functions. Actually, quantum chromodynamics
(QCD) at finite density is a well-known theory that has a
serious sign problem (for example, see Ref. [1]). Recently,
several newmethods have been developed to control the sign
problem at high densities. One of the famous examples is
the complex Langevin method [2,3], which is based on a
stochastic quantization with complexified dynamical varia-
bles and is free from the sign problem. Thanks to the low
numerical cost of the complex Langevin method, it has
already been applied to four-dimensional QCD at finite
density [4–11]. However, the validity region of the complex

Langevin method is limited. The complex Langevin method
is proved to provide correct results if the boundary term
disappears [12], or equivalently, the distribution of the
driving force decays exponentially or faster [13]. Another
famous method is the tensor renormalization group
method [14], which is based on a coarse graining non-
MC algorithm using a tensor network. Although the com-
putational cost is extremely high, it has been vigorously
tested even in four-dimensional theoretical models [15–18]
as well as non-Abelian theories [19–23]. The improved
algorithms are proposed to reduce the enormous computa-
tional cost [24,25]. The Lefschetz thimble method [26] is a
MC scheme that complexifies dynamical variables and
determines the integration path by solving an antiholomor-
phic flow equation from fixed points such that the imaginary
part of the action is constant. Cauchy’s integral theorem
ensures that the integral is independent of a choice of the
integration path if the path is given as a result of continuous
deformation from the original path [27], crosses no poles
of the integrand, and the integral at infinity has no con-
tribution. A numerical study has been started with Langevin
algorithm [28], Metropolis algorithm [29], and hybrid
MC algorithm [30]. The additional ergodicity problem and
the high-computational cost are the main bottlenecks of
this method, but the algorithm development is overcoming
them [31,32]. The path optimization method (POM) [33,34],
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also known as the sign-optimized manifold [35,36], is an
alternative approach that modifies the integration path
using machine learning through neural networks. Machine
learning finds the best path on which the sign problem
is maximally weakened. The POM successfully works for
the complex λϕ4 theory [33], the Polyakov-loop extended
Nambu–Jona-Lasinio model [37,38], the Thirring model
[35,39], the (0þ 1-dimensional Bose gas [40], the (0þ 1)-
dimensional QCD [41], the two-dimensional U(1) gauge
theory with complexified coupling constant [42], the
(2þ 1)-dimensional XY model [43], as well as noise
reduction in observables [44]. The recent progress of the
complexified path approaches is reviewed in Ref. [45].
A crucial issue of the POM in gauge theories is control

of redundancy from the gauge symmetry. In (0þ 1)-
dimensional QCD at finite density [41], the POM works
with and without the gauge fixing. In higher dimensions,
however, the gauge-fixing or gauge-invariant input is
required for neural networks to find an improved integral
path. The two-dimensional U(1) gauge theory with a
complex coupling [42,46,47] is a good test ground to
investigate the effect of gauge degrees of freedom on
the sign problem. The sign problem originates from the
imaginary part of the complex coupling. Since the analytic
result is available [48–50], we can use it to verify the
simulation results. It has been found that the average phase
factor, an indicator of the sign problem, is not improved
without the gauge fixing. This may be related to the
insufficient performance of the considering neural network
in Ref. [42] compared to the complexity of the gauge
symmetry. In contrast, the gauge-invariant input success-
fully enhances the average phase factor without the gauge
fixing [47]. The link variables are no longer a direct input to
the neural network. Gauge-invariant quantities, plaquettes
in this case, are chosen as the input. This treatment
mitigates the difficulties induced by the gauge symmetry,
even in a simple neural network. A similar idea is employed
as a part of lattice-gauge equivariant convolutional neural
networks [51].
To tackle the sign problem in more realistic systems, it is

hoped to develop efficient optimization methods further.
In this study, we try to implement the feasible ways to the
path optimization method using two methods:

(i) Improvement 1: gauge-covariant neural network. and
(ii) Improvement 2: Approximation of the Jacobian

calculation in the learning process.
The gauge-covariant neural network is an alternative neural
network which respects the gauge symmetry [52]. In the
method, the usual neural network is replaced by the Stout-
like smearing functions. Since the smearing process does
not break the gauge covariance by definition, we can
exactly deal with the gauge symmetry of theories. It is
important to evaluate the performance of the gauge-
covariant neural network toward large scale simulations.
It is also necessary to reduce the numerical cost to calculate

the Jacobian. The cost is OðN3Þ with N being the degrees
of freedom. We test the most drastic approximation. We
completely neglect the Jacobian in the learning part. The
Jacobian is calculated only at the configuration generation
and the final step of the POM for measurement.
This paper is organized as follows. In Sec. II, the current

status of the path optimization method is summarized.
Improvements in the path optimization method using the
gauge-covariant neural network and the approximation
of Jacobian are discussed in Sec. III. Section IV shows
numerical results and Sec. V summarizes this paper. In the
Appendix, we discuss improvements in the optimization
using the link-variable input.

II. PATH OPTIMIZATION METHOD

We compile the current status of the path optimization
method. In the path optimization method, dynamical vari-
ables are complexified to control the sign problem. The path
integral contour is deformed on the complexified dynamical
variable plane. Because of the Cauchy’s integral theorem,
such deformation provides the same result obtained on the
original integral contour, as long as the modified path does
not cross any poles of the integrand, the Boltzmann weight,
and its infinities do not contribute to the result. Note that the
singular points of the action are generally irrelevant. They
appear from the zeros of the fermion determinant and result
in the zeros, not poles, of the integrand.
The procedure of the path optimization method can be

summarized as follows:
(i) Step 1: Create configurations on the original integral

path using the MC method.
(ii) Step 2: Using the back-propagation method to

optimize the network parameters to construct the
modified integral path.

(iii) Step 3: Create configurations on the modified
integral path using the reweighting method.

(iv) Step 4: Evaluate the average phase factor.
(v) Step 5: Return to Step 2 if the growth of the average

phase factor is not sufficient.
In addition, we occasionally need the replica exchange
MC method [53–56], as needed in the Lefschetz thimble
method [57–59], when the integral path becomes compli-
cated (see Ref. [42]). Details of the path optimization
method are explained below.

A. Gauge-variant input

The simplest way is to directly complexify the dynamical
variables AμðnÞ in the path optimization method as

AμðnÞ → AμðnÞ ¼ AμðnÞ þ izμðnÞ; ð1Þ

whereAμðnÞ ∈ C and AμðnÞ; zμðnÞ ∈ R at the lattice site n
in the direction of μ. Complexified variables, AμðnÞ,
represent the modification of the integral path. To construct
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the best zμðnÞ for reduction of the sign problem, we use the
neural network, which obeys the universal approximation
theorem [60,61]. The actual procedure then becomes

AμðnÞ|fflffl{zfflffl}
input layer

→ hidden layer → AμðnÞ|fflffl{zfflffl}
output layer

: ð2Þ

In the lattice simulation, it is convenient to transform
the above dynamical quantities into the link variables at the
input layer because the lattice action is composed of the
link variables,

AμðnÞ → UμðnÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
input layer

→ hidden layer → UμðnÞ|fflffl{zfflffl}
output layer

; ð3Þ

where UμðnÞ≔ expðig0AμðnÞÞ and UμðnÞ≔ expðig0AμðnÞÞ
are the original and modified (complexified) link variables,
respectively, with the bare coupling constant g0. Such
compact variables make the path integral finite.
In the neural network with the input represented as ti,

corresponding to the real and imaginary parts of UμðnÞ,
the variables on the hidden layer (yj) and the output (zk) are
given as

yj ¼ Fðwð1Þ
ji ti þ bð1Þj Þ;

zk ¼ ωkFðwð2Þ
kj yj þ bð2Þk Þ; ð4Þ

where i¼1;…;Ninput, j¼1;…;Nhidden, and k¼1;…;Noutput

with the numbers of units in the input, hidden, and output
layers, Ninput, Nhidden, and Noutput. In the case of the gauge-
variant input, Ninput¼Noutput¼4Nvol, where Nvol ¼ N1N2

with Nμ being the lattice size in the μ-direction. Nhidden is
taken to be proportional to Nvol. w, b, and ω are parameters
of the neural network and F is the so-called activation
function. We employ a hyperbolic tangent function for the
activation function.

B. Gauge-invariant input

For the learning process in the path optimization method,
the gauge invariance plays a central role and thus should be
imposed on the neural network. One possible way is using
the gauge-invariant input. The link variables are trans-
formed into the plaquette on the input layer, which is the
gauge-invariant quantity and the fundamental building
block of the lattice Lagrangian density,

AμðnÞ → UμðnÞ → PμνðnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
input layer

→ hidden layer → UμðnÞ|fflffl{zfflffl}
output layer

;

ð5Þ

where the plaquette Pμν is defined as

PμνðnÞ ≔ UμðnÞUνðnþ μ̂ÞU−1
μ ðnþ ν̂ÞU−1

ν ðnÞ; ð6Þ

where μ̂ (ν̂) is a unit vector in the μ (ν) direction. In this
case, Ninput ¼ 2Nvol.
It is applicable to any lattice gauge action including the

plaquette. The path-optimized lattice action is represented
by the modified plaquettes. With this procedure, the hidden
layer has the gauge invariance by definition. This procedure
corresponds to the data preprocessing known in the
machine learning community. Its effectiveness is confirmed
in the two-dimensional U(1) gauge theory [47].

C. Cost function and observables

The cost function (F ) is needed to optimize several
parameters of the neural network in Eq. (4). The convenient
form of the cost function for the POM is

F ½z� ¼
Z

dNinputtjeiθðtÞ − 1j2 × jJðtÞe−SðtÞj; ð7Þ

where JðtÞ means the Jacobian of the input and complexi-
fied variables and S represents the action. θðtÞ is the
total phase defined by eiθðtÞ ¼ JðtÞe−SðtÞ=jJðtÞe−SðtÞj.
Minimization of the cost function (7) provides a modified
integral path, which usually makes the Boltzmann weight,
e−S, being complex. The phase reweighting is required as

hOi ¼ hOeiθipq
heiθipq

; hOipq ≔
1

Z

Z
DU½OjJe−Sj�U∈C ð8Þ

where O represents any operator such as the plaquette.
h� � �ipq means the phase-quenched expectation value and
Z is the partition function. The denominator, heiθipq, is
so-called the average phase factor which dominates the
statistical error of observables with the phase reweighting.
The absolute value jJe−Sj in Eq. (8) is used as the
Boltzmann weight. Since jJe−Sj is definitely real, we
can perform the MC simulation exactly. Another way is
to use expð−ReSÞ as the Boltzmann weight. In this case, the
upper bound of the average phase factor he−ðS−ln J−ReSÞiR is
not necessarily 1 where h� � �iR means the expectation values
with the Boltzmann weight, e−ReS.

III. IMPROVEMENTS

We explain two improvements to the path optimization;
the gauge-covariant neural network to represent the modi-
fied integral path, and the approximation of the Jacobian in
the learning process.

A. Gauge-covariant neural network

One of the possible ways to suitably treat the gauge
symmetry in the neural network is to use the gauge-
covariant neural network [52]. The neural network is
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represented by the gauge-covariant function using some
smearing process. We employ the following Stout-like
smearing,

AμðnÞ → UμðnÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
input layer

→ Ũð1Þ
μ ðnÞ → � � �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
hidden layer

→ UμðnÞ|fflffl{zfflffl}
output layer

; ð9Þ

where UμðnÞ denotes the original link variable, ŨμðnÞ
means the smeared (complexified) link variable defined as

Ũðlþ1Þ
μ ðnÞ ¼ exp

h
iWðlÞ

μ ðnÞ
i
ŨðlÞ
μ ðnÞ; ð10Þ

with

WðlÞ
μ ¼

X
ν≠μ

�
ρðlÞþ PðlÞ

μν þ ρðlÞ− PðlÞ
μν

−1
�
; ð11Þ

here l means the number of smearing steps in the hidden

layer, and ρðlÞ� ∈ C are parameters optimized via the back-
propagation method. We use the Stout-like smearing twice
in the hidden layer to complexify the dynamical variables.
The complexified plaquette PðlÞ in Eq. (11) is calculated
from the link variable of that in the step l. The smearing
process combines the link variables again and again as l
increases and forms a gauge-covariant neural network. This
network does not correspond to the fully connected layer,
but to the residual connection. The link variables in the
previous step is reflected in the total factor in Eq. (10), and
thus may be robust against the vanishing gradient problem.
Note that the gauge-covariant neural network has a

smaller number of parameters than those of the neural
network with gauge-variant and gauge-invariant inputs.
The number of the gauge-covariant neural network
parameters is 2lNvol, while that of the neural network
with gauge-invariant input is ðNinputNhidden þ NhiddenÞ þ
ð2NhiddenNvol þ 2NvolÞ þ 2Nvol, where Ninput; Nhidden are
proportional to Nvol.

B. Approximation of Jacobian

The calculation cost of the Jacobian in the modification
of the path integral contour is rather high, OðN3Þ for the
system with the degrees of freedom N. Reduction of the
cost of the Jacobian is necessary for a large-scale simu-
lation using the POM.
There are several studies for reducing the Jacobian

calculation cost in the MC update; the Gaussian or
real approximations [62] that reduce OðN3Þ to OðNÞ,
the implementation of the Grady algorithm in the holo-
morphic gradient flow [63] that reduces OðN3Þ to OðN2Þ,
the diagonal ansatz of the Jacobian matrix [35] that reduces
OðN3Þ toOðNÞ, the nearest neighbor lattice site ansatz [40]
that reducesOðN3Þ toOðNÞ, the introduction of the world-
volume approach [31] which requires only a combination

of the Jacobian and the vector, i.e., ðJvÞ evaluated using the
antiholomorphic flow without the explicit form of the
Jacobian in the MC update and thus the cost is reduced
from OðN3Þ to OðN2Þ, and the application of complex-
valued affine coupling layers [64] that reduces OðN3Þ to
OðNÞ, in principle.
As a first attempt, we use the simplest treatment for the

Jacobian calculation in the path optimization method. We
completely neglect the Jacobian contribution in the learning
part. The numerical cost for the Jacobian calculation is
reduced from OðN3Þ to Oð1Þ. It should be noted that we
need the Jacobian calculation in the evaluation part of
observables. We will see that this drastic approximation in
the path optimization method can work well compared to
the full calculation.

IV. NUMERICAL RESULT

We employ two-dimensional U(1) gauge theory with
a complex gauge-coupling constant as a laboratory to test
the improvements for the path optimization method. The
action is

S ¼ −
β

2

X
n

ðP12ðnÞ þ P12ðnÞ−1Þ; ð12Þ

where β¼1=g20. A complex value of β causes a sign
problem. The analytic solution can be found in
Refs. [48–50]. The theoretical setup is the same as that
in Ref. [47]. We only change some parts of the POM for the
improvements mentioned above. 50,000 gauge configura-
tions are generated by the hybrid MC with its error
estimation by the jackknife procedure. The Adam optimizer
[65] is used for the neural network.
Figure 1 shows a comparison of the average phase factor

by several inputs to the POM as functions of the neural-
network iteration. The POM using the gauge-covariant
neural-network and gauge-invariant inputs successfully
enhances the average phase factor up to 0.99, while that
using the link input does not. It clearly shows the
importance of the gauge symmetry in a neural network.
The neural network respecting the gauge symmetry is
efficient to control the sign problem by the POM.
The volume dependence of the average phase factor is

plotted in Fig. 2. Both the gauge-covariant neural network
and the gauge-invariant input lead to enhancement of the
average phase factor and milder volume dependence.
Lower enhancement of the average phase factor by the
gauge-covariant neural network may be related to the
fact that the gauge-covariant neural network has fewer
network parameters than the neural network with the
gauge-invariant input.
Figure 3 presents a comparison of the average phase

factor by the POM using the gauge-invariant input with
and without the Jacobian calculation in the neural network.
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The POM without the Jacobian gives less enhancement of
the average phase factor. However, the decrease is tiny in
our setup. We also compare the expectation values of the
imaginary part of the plaquette in Fig. 4. All results are
consistent with the analytic value. The naive reweighting
gives a huge error, whereas the POM with and without
the Jacobian gives a much smaller error, indicating that the
sign problem is under control. The difference between
errors of the POM with and without the Jacobian is 1%. It
suggests that the J ¼ 1 approximation in the neural net-
work works well.

V. SUMMARY

We explored the improvement in the path optimization
method for the gauge theory by the following two methods:
(1) Gauge-covariant neural network.
(2) Approximation of the Jacobian in the learning

process.

Using Method 1, the neural network is gauge covariant
by definition. Due to this property of the network, we do
not need the gauge fixing to enhance the average phase
factor, unlike Ref. [42]. The enhancement is not as
impressive as that of the gauge-invariant input [47] prob-
ably due to the fewer number of network parameters.
However, the gauge-covariant neural network has an
advantage that it can be applied to the non-Abelian theory
in a straightforward manner. Similar performance evalu-
ation in the non-Abelian theory is desirable, especially in
QCD at finite density.
Using Method 2, we can significantly reduce the

numerical cost. Neglecting the Jacobian contributions in
the learning part reduces the cost from OðN3Þ to Oð1Þ.
Even with this drastic approximation, the path optimization
can proceed well, and the average phase factor is suffi-
ciently increased. The drawback is a larger statistical error,
but the increase is small, 1% in our calculation. We can
extend Method 2 by first repeating the learning process
without Jacobian contributions and then performing the
learning process with the exact Jacobian calculation. This
way has the similarity with the pretraining known in the
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machine learning community and may accelerate the
learning of networks.
By using the above two improvements, we can control

the gauge symmetry and reduce the numerical cost sig-
nificantly in the path optimization method at least for the
two-dimensional U(1) gauge theory with complex coupling
constant. These improvements may lead us to an explora-
tion of the non-Abelian theory, such as SU(2) and SU(3),
which has more serious sign problem and requires a higher
numerical cost. We hope to report this attempt in the future.
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APPENDIX: IMPROVEMENTS WITH
LINK-VARIABLE INPUT

We revisit efficiency of the link-variable input to the
neural network. As already shown in Fig. 1, the average
phase factor does not increase with the link-variable input
in our setup. According to the universal approximation
theorem [60,61], however, any continuous function can be
expressed in a neural network with a large number of units
in hidden layers. The failure of the optimization implies
lack of the expressive power in the present neural network,
or lack of enough number of training data for the network to
learn the gauge symmetry.
We examine the improvements in the expression power

of the network. The default network parameters (hyper-
parameters) are as follows [47]. The batch size (number of
configurations used in calculating the derivatives in the
stochastic gradient method) is Nbatch ¼ 10, the number of
the hidden layers isNlay ¼ 1, and the number of units in the
hidden layer is Nunit ¼ 10 on a 2 × 2 lattice. These hyper-
parameters are increased to explore enhancement of the
average phase factor.
We also test enlargement of the gauge configurations

by use of the gauge transformation. After generating
gauge configurations in the standard way, we adopt the
gauge transformation to the configurations. It produces
additional configurations though equivalent under the

gauge symmetry. This approach is similar to the data
augmentation known in the machine learning community.
Through the data augmentation, we can increase the
training data and avoid the overtraining. The neural net-
work with the enlarged gauge-transformed configurations
is expected to learn the symmetry of the input data better.
With this expectation, we have performed the optimization
using the enlarged configurations.
In Fig. 5 we show the average phase factor using the link

input with increased hyperparameters Nbatch ¼ 1000,
Nlay ¼ 5, and Nunit ¼ 15, 30, 45 on a 2 × 2 lattice. The
enhancement of the average phase factor with larger Nbatch,
Nlay, and Nunit is observed, as expected from the universal
approximation theorem. We also find the gauge configu-
rations enlarged by a factor of 100 using the gauge
transformation give no additional enhancement, and hence
less effective. With Nunit ¼ 30 and 45, the average phase
factor go through a sudden increase once or twice and
reaches 0.99 after 12,000 and 5,000 iterations, respectively.
The Nunit ¼ 15 case seems to require a larger number of the
neural-network iterations for the average phase factor
of 0.99.
From the numerical results, we can clearly see that even a

simple neural network using the link input can learn the
gauge symmetry, though the cost of the optimization is
significantly higher than that of the gauge-invariant input
and the gauge-covariant neural network.
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and F. Ziesché, Phys. Rev. D 103, 094505 (2021).
[47] Y. Namekawa, K. Kashiwa, A. Ohnishi, and H. Takase,

Phys. Rev. D 105, 034502 (2022).
[48] U. J. Wiese, Nucl. Phys. B318, 153 (1989).
[49] B. E. Rusakov, Mod. Phys. Lett. A 05, 693 (1990).
[50] C. Bonati and P. Rossi, Phys. Rev. D 99, 054503 (2019).
[51] M. Favoni, A. Ipp, D. I. Müller, and D. Schuh, Phys. Rev.

Lett. 128, 032003 (2022).
[52] A. Tomiya and Y. Nagai, arXiv:2103.11965.
[53] R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607

(1986).
[54] C. J. Geyer, Comput. Sci. Stat. 23, 156 (1991).
[55] E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).
[56] K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604

(1996).
[57] M. Fukuma and N. Umeda, Prog. Theor. Exp. Phys. 2017,

073B01 (2017).
[58] M. Fukuma, N. Matsumoto, and N. Umeda, Phys. Rev. D

100, 114510 (2019).
[59] M. Fukuma, N. Matsumoto, and N. Umeda, arXiv:1912

.13303.
[60] G. Cybenko, Math. Control. Signal. Syst. (MCSS) 2, 303

(1989).
[61] K. Hornik, Neural Netw. 4, 251 (1991).
[62] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridgway, and

N. C. Warrington, Phys. Rev. D 93, 094514 (2016).
[63] A. Alexandru, G. Basar, P. F. Bedaque, and G.W. Ridgway,

Phys. Rev. D 95, 114501 (2017).
[64] M. Rodekamp, E. Berkowitz, C. Gäntgen, S. Krieg, T. Luu,

and J. Ostmeyer, Phys. Rev. B 106, 125139 (2022).
[65] D. P. Kingma and J. Ba, in 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings(2014),
arXiv:1412.6980.

[66] S. Choe, S. Muroya, A. Nakamura, C. Nonaka, T. Saito, and
F. Shoji, Nucl. Phys. B, Proc. Suppl. 106, 1037 (2002).

IMPROVING EFFICIENCY OF THE PATH OPTIMIZATION … PHYS. REV. D 107, 034509 (2023)

034509-7

https://doi.org/10.1103/PhysRevD.92.094516
https://doi.org/10.1103/PhysRevD.92.094516
https://doi.org/10.1103/PhysRevD.98.114513
https://doi.org/10.1103/PhysRevD.98.114513
https://doi.org/10.1103/PhysRevD.92.094516
https://doi.org/10.1103/PhysRevD.92.094516
https://doi.org/10.1103/PhysRevD.100.074503
https://doi.org/10.1103/PhysRevD.102.014515
https://doi.org/10.1103/PhysRevD.102.014515
https://doi.org/10.1007/JHEP10(2020)144
https://doi.org/10.1007/JHEP10(2020)144
https://doi.org/10.1103/PhysRevD.81.054508
https://doi.org/10.1103/PhysRevD.81.054508
https://doi.org/10.1103/PhysRevD.94.114515
https://doi.org/10.1103/PhysRevD.94.114515
https://doi.org/10.1103/PhysRevLett.99.120601
https://doi.org/10.1103/PhysRevD.100.054510
https://doi.org/10.1007/JHEP09(2020)177
https://doi.org/10.1007/JHEP01(2021)121
https://doi.org/10.1103/PhysRevD.104.034507
https://doi.org/10.1103/PhysRevD.104.034507
https://doi.org/10.1103/PhysRevD.99.114507
https://doi.org/10.1103/PhysRevD.102.054510
https://doi.org/10.1093/ptep/ptab143
https://doi.org/10.1093/ptep/ptab143
https://doi.org/10.1007/JHEP12(2021)011
https://doi.org/10.1093/ptep/ptac103
https://doi.org/10.1093/ptep/ptac103
https://arXiv.org/abs/1912.02414
https://doi.org/10.1007/JHEP04(2022)121
https://doi.org/10.1007/JHEP04(2022)121
https://doi.org/10.1007/JHEP05(2016)053
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.1103/PhysRevD.88.051502
https://doi.org/10.1103/PhysRevD.88.051502
https://doi.org/10.1007/JHEP10(2013)147
https://doi.org/10.1093/ptep/ptab010
https://doi.org/10.1093/ptep/ptab010
https://doi.org/10.1093/ptep/ptab133
https://doi.org/10.1093/ptep/ptab133
https://doi.org/10.1103/PhysRevD.96.111501
https://doi.org/10.1103/PhysRevD.96.111501
https://doi.org/10.1093/ptep/ptx191
https://doi.org/10.1093/ptep/ptx191
https://doi.org/10.1103/PhysRevD.97.094510
https://doi.org/10.1103/PhysRevD.106.114503
https://doi.org/10.1103/PhysRevD.106.114503
https://doi.org/10.1103/PhysRevD.99.014033
https://doi.org/10.1103/PhysRevD.99.014033
https://doi.org/10.1103/PhysRevD.99.114005
https://doi.org/10.1103/PhysRevD.99.114005
https://doi.org/10.1103/PhysRevLett.121.191602
https://doi.org/10.1103/PhysRevLett.121.191602
https://doi.org/10.1007/JHEP12(2018)054
https://doi.org/10.1007/JHEP12(2018)054
https://doi.org/10.1093/ptep/ptz111
https://doi.org/10.1093/ptep/ptz111
https://doi.org/10.1103/PhysRevD.102.054519
https://doi.org/10.1103/PhysRevD.106.054512
https://doi.org/10.1103/PhysRevD.103.094517
https://doi.org/10.1103/RevModPhys.94.015006
https://doi.org/10.1103/PhysRevD.103.094505
https://doi.org/10.1103/PhysRevD.105.034502
https://doi.org/10.1016/0550-3213(89)90051-5
https://doi.org/10.1142/S0217732390000780
https://doi.org/10.1103/PhysRevD.99.054503
https://doi.org/10.1103/PhysRevLett.128.032003
https://doi.org/10.1103/PhysRevLett.128.032003
https://arXiv.org/abs/2103.11965
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1209/0295-5075/19/6/002
https://doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1143/JPSJ.65.1604
https://doi.org/10.1093/ptep/ptx081
https://doi.org/10.1093/ptep/ptx081
https://doi.org/10.1103/PhysRevD.100.114510
https://doi.org/10.1103/PhysRevD.100.114510
https://arXiv.org/abs/1912.13303
https://arXiv.org/abs/1912.13303
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1103/PhysRevD.93.094514
https://doi.org/10.1103/PhysRevD.95.114501
https://doi.org/10.1103/PhysRevB.106.125139
https://arXiv.org/abs/1412.6980

