
Neural-network preconditioners for solving the
Dirac equation in lattice gauge theory

Salvatore Calì,1 Daniel C. Hackett ,1,2 Yin Lin ,1,2 Phiala E. Shanahan ,1,2 and Brian Xiao 1

1Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

2The NSF AI Institute for Artificial Intelligence and Fundamental Interactions

(Received 2 September 2022; accepted 31 January 2023; published 22 February 2023)

This work develops neural-network-based preconditioners to accelerate solution of the Wilson-Dirac
normal equation in lattice quantum field theories. The approach is implemented for the two-flavor lattice
Schwinger model near the critical point. In this system, neural-network preconditioners are found to
accelerate the convergence of the conjugate gradient solver compared with the solution of unprecondi-
tioned systems or those preconditioned with conventional approaches based on even-odd or incomplete
Cholesky decompositions, as measured by reductions in the number of iterations and/or complex
operations required for convergence. It is also shown that a preconditioner trained on ensembles with
small lattice volumes can be used to construct preconditioners for ensembles with many times larger lattice
volumes, with minimal degradation of performance. This volume-transferring technique amortizes the
training cost and presents a pathway towards scaling such preconditioners to lattice field theory
calculations with larger lattice volumes and in four dimensions.

DOI: 10.1103/PhysRevD.107.034508

I. INTRODUCTION

Lattice quantum field theory (LQFT) is a nonperturba-
tive regularization of quantum field theory that enables
numerical calculations in the strong coupling regime. For
example, LQFT is the only ab initio approach to calculating
hadronic observables from quantum chromodynamics
(QCD) and has enabled significant contributions to our
understanding of nonperturbative processes in the standard
model; see Refs. [1–8] for recent reviews.
In many LQFT calculations with fermions, the dominant

computational cost arises from solving systems of linear
equations

Ax ¼ b ð1Þ

for square, sparse matrices A constructed from lattice Dirac
operators. These systems arise both in the generation of
gauge field configurations, and in the computation of
fermionic observables. In either case, the linear systems
must be solved with ∼100 s of right-hand sides b and
∼1000 s of different matrices A, with typical matrix sizes
on the order of 106 to 109 on each dimension.

Most LQFT calculations use iterative solvers, typically
Krylov subspace methods like the conjugate gradient
(CG) algorithm [9], to solve Eq. (1). These methods—
which iteratively construct approximate solutions until
some target accuracy is achieved—provide an efficient
approach to solving systems of linear equations at scales
which would be intractable using direct methods such as
Gaussian elimination or LU decomposition. Their compu-
tational cost, however, is still significant, particularly in the
context of lattice QCD calculations with small physical
lattice spacings and light quark masses, where the number
of iterations required for convergence becomes large due to
increasingly large condition numbers [8]. Accelerating
these algorithms would enable more precise calculations
given fixed computing resources.
One approach to accelerating the solution of linear

equations is via preconditioning, i.e., the transformation
of a linear system into a different but equivalent linear
system that is better conditioned, and thus easier to solve in
terms of time to solution. The quality of any preconditioning
procedure is a result of the inherent trade-offs between the
costs of constructing and applying the preconditioner and its
ability to accelerate convergence. Some of the most com-
monly used preconditioners in LQFT calculations include
even-odd preconditioners [10], inexact deflation [11], alge-
braic multigrid methods [12–18], and the Schwarz alternat-
ing procedure [19]. There have also been attempts to apply
other preconditioners, such as incomplete LU decomposi-
tion [20] and symmetric successive over-relaxation [21], to

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 034508 (2023)

2470-0010=2023=107(3)=034508(11) 034508-1 Published by the American Physical Society

https://orcid.org/0000-0001-6039-3801
https://orcid.org/0000-0002-0270-666X
https://orcid.org/0000-0002-0916-7603
https://orcid.org/0000-0002-7350-6112
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.034508&domain=pdf&date_stamp=2023-02-22
https://doi.org/10.1103/PhysRevD.107.034508
https://doi.org/10.1103/PhysRevD.107.034508
https://doi.org/10.1103/PhysRevD.107.034508
https://doi.org/10.1103/PhysRevD.107.034508
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


LQFT systems. Different preconditioners can often comple-
ment one another and may be used in sequence; it is thus of
great interest to continue to explore new approaches to
precondition Dirac equations.
In this work, we present a framework for constructing

preconditioners for Dirac normal matrices using convolu-
tional neural networks (CNNs) with sparse [22] and dense
convolutions, and apply the approach to the unquenched
lattice Schwinger model in two dimensions [23] as a
precursor and proof of concept for future applications to
other lattice field theories such as lattice QCD in four
dimensions. We demonstrate that neural-network precondi-
tioners are able to accelerate the convergence of CG solves
in this context. Similar network architectures have been
used to construct preconditioners for solving linear equa-
tions for fluid simulation and computer vision [24,25], with
some success in achieving higher efficiency than other
algorithms such as algebraic multigrid.
To train the preconditioner models, we use a single

ensemble of U(1) gauge fields for a theory with Wilson
fermions [26], two degenerate sea quarks, nearly critical
parameters, and lattice volume 322. After optimizing the
network parameters, we find that the number of CG
iterations required for convergence of preconditioned
Dirac matrices is reduced by a factor of between two
and five over unpreconditioned solves. However, when
assessing computational advantage, the costs of applying
the preconditioners must also be considered. In particular,
we find that preconditioners constructed with only sparse
convolutions result in the best performance in terms of the
number of complex operations to solution, even though the
number of iterations to convergence for these constructions
is larger than that resulting from other preconditioners.
The preconditioner architectures based on CNNs which

are developed here are agnostic to the lattice volume, so a
network trained on one lattice ensemble can trivially
produce preconditioners for other volumes. We find that
a network trained on an ensemble of lattice volume 82

produces preconditioners for larger lattice volumes that are
just as effective as preconditioners trained directly on
larger-volume ensembles. This volume-transferring tech-
nique provides an efficient method to optimize precondi-
tioners for large lattice volumes and will be important for
future applications of this approach to lattice QCD calcu-
lations, for which the computational and memory costs of
training on typical lattice volumes would likely be pro-
hibitive with current approaches and hardware.

II. PRECONDITIONING LATTICE DIRAC
NORMAL EQUATIONS

This section introduces the numerical problem of solving
Dirac equations in a LQFT and outlines how precondition-
ing techniques can help to accelerate solver convergence.
Calculating fermionic observables in a lattice gauge

theory requires solving the linear equation

Dαx;βyψβy ¼ ηαx ð2Þ

to obtain the quark propagator ψ for a given lattice Dirac
matrix D and source vector η. Here, the subscripts α and β
denote the combined spin and color degrees of freedom in
the theory, and x and y denote the sites of the lattice. All
repeated symbols are implicitly summed over. In this work,
we consider solving the normal equation resulting from left
multiplying the Dirac equation with D†, such that the
problem is of the form of Eq. (1) with

A≡D†D; x≡ ψ ; and b≡D†x; ð3Þ

where A is a Hermitian, positive-definite (HPD) matrix, and
all indices have been suppressed.
The n ¼ ðV × dÞ-dimensional vector space of the matrix

A spans both the spacetime and internal degrees of freedom,
where V is the lattice volume and d is the total dimension of
the spinor and color degrees of freedom. Although often
large, the Dirac matrix is typically highly sparse, with the
number of nonzero entries approximately proportional to n.
To precondition Eq. (1), let M−1

L and M−1
R be the so-

called left and right preconditioners, which are nonsingular,
square matrices of the same size as A. The preconditioned
system is defined to be

A0x0 ¼ b0; ð4Þ

where A0 ≡M−1
L AM−1

R , x0 ≡MRx, and b0 ≡M−1
L b.

Equivalently, the preconditioned CG algorithm [9] can
be used to solve the unpreconditioned system, which has
the same effect as solving the preconditioned system with
the standard CG algorithm but avoids the complication of
computing and multiplying explicit representations of M−1

L
and M−1

R .
The rate of convergence of iterative solvers is governed

by the condition number of the matrix A or (A0) [9]:

κðAÞ≡ σmax

σmin
¼ jλmaxj

jλminj
; ð5Þ

where σmin and σmax are the smallest and largest singular
values of A, respectively, which are equal to the absolute
values of the corresponding eigenvalues jλminj and jλmaxj
since A is Hermitian. Preconditioning attempts to alleviate
the numerical problem by producing a better-conditioned
system with κðA0Þ ≪ κðAÞ. An ideal preconditioner
needs to achieve a balance between how close A0 is to
the identity by some metric—and hence the number of CG
iterations required to solve the preconditioned system—and
how costly it is to numerically construct and apply the
preconditioner.
In this work, the even-odd and incomplete Cholesky (IC)

preconditioners are used as baselines against which
the performance of neural-network preconditioners is

CALÌ, HACKETT, LIN, SHANAHAN, and XIAO PHYS. REV. D 107, 034508 (2023)

034508-2



measured. We avoid the complexity of a comparison with
algebraic multigrid methods, for which a fair comparison
would require exploration of the broad family of different
possible implementations on each lattice ensemble. The
details of even-odd and IC preconditioners are outlined in
the Appendix.

III. NEURAL-NETWORK PRECONDITIONERS
FOR THE LATTICE SCHWINGER MODEL

This section describes the construction of neural-
network preconditioners for solving Dirac normal equa-
tions in the lattice Schwinger model.

A. The lattice Schwinger model

The lattice action of the two-flavor Schwinger model can
be defined as the standard plaquette action with two
degenerate Wilson fermions:

S ¼ −β
X
x

ReðPxÞ þ
X1
f¼0

X
x;y

ψ̄ ðfÞ
x Dx;yψ

ðfÞ
y ; ð6Þ

where

Px ¼ U1;xU2;xþ1̂U
�
1;xþ2̂

U�
2;x ð7Þ

is the plaquette, and

Dx;y ¼ ðmþ 2rÞδx;y −
1

2

X2
μ¼1

ðð1 − γμÞUμ;xδxþμ̂;y

þ ð1þ γμÞU�
μ;x−μ̂δx−μ̂;yÞ ð8Þ

is the Wilson discretization of the Dirac operator [26].
The position on a two-dimensional lattice is labeled
by x or y. Uμ;x ∈ Uð1Þ is the complex gauge field where
μ ∈ f1; 2g labels the spatial and temporal components and

ψ ðfÞ
x , ψ̄ ðfÞ

x are two-component Wilson fermion fields with
flavor indices f ∈ f0; 1g. γ1 and γ2 are Euclidean gamma
matrices in two dimensions. The specific representation we
use here is given by Pauli matrices: γ1 ¼ σ1 and γ2 ¼ σ2
such that γ5 ¼ iγ1γ2 ¼ −σ3. m and β are bare lattice
parameters and r is the Wilson parameter; we set r ¼ 1
throughout this work. We also set the lattice spacing a ¼ 1
throughout this work.
Periodic boundary conditions are applied in all directions

for the gauge field Uμ;x; for the fermionic fields ψ ðfÞ
x and

ψ̄ ðfÞ
x , periodic and antiperiodic boundary conditions are

applied in the spatial and temporal directions, respectively.

B. Architecture

The architecture we construct for neural-network pre-
conditioners, shown in Fig. 1, has the following structure:
first, a preprocessing unit prepares the Dirac normal
operators to a format suitable for convolutions. This is
followed by multiple convolutional units. Finally, a post-
processing unit outputs a lower triangular matrix L with
real and positive diagonal entries which can be used to form
a preconditioner. The parameters of the neural network are
optimized to minimize a loss function that is correlated with
the number of CG iterations required for convergence;
choices of loss functions are detailed in Sec. III C.

1. Preprocessing unit

We explicitly construct Dirac normal matrices
from gauge configurations, and then reshape them into

FIG. 1. An illustration of the network architecture designed for preconditioning Dirac normal equations in the lattice Schwinger
model. c@X × T × X × T denotes a tensor with c channels, of dimension ð8cÞ × X × T × X × T as for each channel there are 8 ¼ 2ns
real tensor components, where 2 is the complex dimension, and ns ¼ 2 × 2 is the spinor dimension that is the product of the source and
sink spinor dimensions. The convolution (which is sparse or dense, depending on architecture choice as described in the text) is four-
dimensional and acts on the spatial and temporal indices at the source and sink of Dirac normal matrices. See, for example, Ref. [27] for
an introduction to the convolutional neural network.

NEURAL-NETWORK PRECONDITIONERS FOR SOLVING THE … PHYS. REV. D 107, 034508 (2023)

034508-3



real tensors of shape 8 × X × T × X × T, where X and T
are the spatial and temporal lattice extents, which
are repeated twice to represent the source and sink
indices. The first factor arises as 8 ¼ 2ns. Here, the factor
of 2 arises from the real and imaginary parts, and
ns ¼ 2 × 2 is the product of source and sink spinor
components. The same tensor is denoted as 1@X × T ×
X × T in Fig. 1, where the first index is the channel
dimension, to emphasize that the convolutional kernels
only convolve across spacetime dimensions. Note that a
single channel in this work always consists of eight
components that include both the spinor and complex
dimensions.

2. Convolutional units

The main building blocks of the network are convolu-
tional units that each consist of three layers in sequential
order: the convolutional layer, batch normalization (BN)
layer, and the parametrized rectifiable linear unit activa-
tion layer.
More precisely, first the input tensor is passed into a

convolutional layer with a kernel size of ksrc;X × ksrc;T ×
ksnk;X × ksnk;T acting on the source and sink spacetime
indices. We then apply a BN layer [28] to better condition
the training. Finally, a parametrized rectifiable linear unit
layer follows every convolutional unit, except for the last
unit where only the convolution is applied. A total of n
convolutional units, each with cn channels, are stacked
together in the network. We consider constructions with
both dense and sparse convolutions—as illustrated in
Fig. 2—for the convolutional layers to preserve the sparsity
pattern of input data and constrain the costs of constructing
and applying output preconditioners.

3. Postprocessing unit

The tensor is reshaped into a two-dimensional complex
matrix B in the lexicographic ordering with the spinor
index being the fastest-changing and the spatial index the
slowest. The shape of the matrix is ð2XTÞ × ð2XTÞ. We
then discard the upper triangular part of B to yield L ¼
trilB and enforce the diagonal entries to be real with values
equal or greater than a small parameter ϵ to ensure its
invertibility.
Two types of preconditioners are constructed for each

neural-network output L. In the single-preconditioning
method, M−1

L ¼ ðM−1
R Þ† ¼ L†, whereas in the double-

preconditioning method, M−1
L ¼ ðM−1

R Þ† ¼ L†L. The pre-
conditioners will be hereafter referred to as single and
double preconditioners, respectively. The single precon-
ditioners are inspired by the Cholesky decomposition
of the Dirac normal matrices A ¼ L†

ALA for some lower
triangular matrix LA with real, positive diagonal entries.
However, as discussed below, the double preconditioners
in practice produce larger reductions in the number of
CG iterations required for convergence at the cost of
denser preconditioners.

C. Loss function

Ideally, the free parameters of the architecture should be
optimized to produce preconditioners that minimize the
average time needed to solve Eq. (4) to a given precision.
However, while this defines a learning task, it is not
differentiable and thus not amenable to optimization with
stochastic gradient descent. We instead optimize a differ-
entiable proxy for this objective, training the networks
in stages using both the condition number and the
K-condition number as loss functions.
The use of the condition number [Eq. (5)] as a loss

function is natural, since it pertains to the convergence
theorem of the CG algorithm and other iterative solvers [9].
Similarly, the K-condition number, which is a measure of
the degree of clustering in the eigenvalue spectrum, is
known to be related to the rate of convergence of the CG
algorithm [9,29]. TheK-condition number of a HPDmatrix
Q is defined [30]1 as

KðQÞ≡
1
nTrðQÞ
detðQÞ1n ¼

1
n

P
n
i¼1 λi

ðQn
i¼1 λiÞ

1
n

; ð9Þ

where n is the order and λ1;…; λn are the eigenvalues of Q.
From Eq. (9) we see that KðQÞ ≥ 1 and KðQÞ ¼ 1 if and
only if Q ¼ λI, where λ is the eigenvalue and I is the
identity matrix.FIG. 2. An illustration of the difference between the action of a

conventional (dense) convolution and a sparse convolution on the
same matrix. The same kernel acts on both grids, with zero
padding. Nonzero entries are highlighted in blue.

1In Ref. [30], the K-condition number of a matrixQ is denoted
BðQÞ.

CALÌ, HACKETT, LIN, SHANAHAN, and XIAO PHYS. REV. D 107, 034508 (2023)

034508-4



1. Training single preconditioners

The networks are trained in two stages. In the first stage,
the loss function that we minimize for the Dirac normal
matrix A is

lðsÞ1 ðθ;AÞ ¼ KðL†ALÞ
KðAÞ ;

¼
�1

nTrðL†ALÞ
1
nTrðAÞ

��
1

detðL†LÞ1n
�
; ð10Þ

where θ is the set of neural network parameters which are
optimized and on which the matrix L implicitly depends.
Instead of minimizing KðL†ALÞ directly, we minimize the
ratio KðL†ALÞ=KðAÞ to avoid computing the determinant
of the Dirac normal matrix—detðL†LÞ is efficient to
compute since L is triangular. This means that all training
gradients are weighted by an additional factor of 1=KðAÞ,
so Dirac normal matrices with larger K-condition numbers
will be weighted less heavily in training. In practice, these
extra normalization factors play little role, since we observe
them to be almost identical across the gauge configurations
in an ensemble. In the second stage of the training, we

change to a new loss function, lðsÞ2 ðθ;AÞ≡ κðL†ALÞ; in
practice, this acts to further refine the results.

2. Training double preconditioners

We train the network for double preconditioners in
three stages. In the first stage, we use the same loss

function as the single-preconditioning method, lðsÞ1 ðθ;AÞ.
In practice, the pretrained network obtained for the single-
preconditioning method can simply be reused for this stage,
without additional computation. Even though the definition
of l1ðθ;AÞ in Eq. (10) is motivated by the single-
preconditioning method, it is in practice an effective proxy
for the number of CG iterations required for convergence
for the double preconditioners. In the second and third
stages of training, we refine the optimization by minimiz-

ing lðdÞ2 ðθ; AÞ ≡ KðLL†ALL†Þ=KðAÞ and lðdÞ3 ðθ; AÞ≡
κðLL†ALL†Þ in sequence, which are the K-condition
number ratio and the condition number of the double
preconditioned matrix.
The two strategies for training the single- and double-

preconditioning methods are summarized in Fig. 3. The
motivation for the staged training approach in each case is
twofold; first, optimizing network parameters with respect

to the two final loss functions lðsÞ2 ðθ;AÞ and lðdÞ3 ðθ;AÞ is
computationally expensive due to the need to compute
eigenvalues in the condition number. Loss functions
constructed from K-condition numbers are less computa-
tionally expensive to evaluate, and pretraining with the
K-condition loss functions thus reduces the overall training
time in our numerical investigation. Moreover, in practice

the pretraining procedure is found to improve the final
results compared with those achieved with no pretrain-
ing steps.

IV. NUMERICAL INVESTIGATION

For a numerical demonstration of the training and
evaluation of neural-network preconditioners we generate
a set of ensembles with the HMC algorithm with param-
eters as detailed in Table I. We perform most of our tests on
the “nominal ensemble,” with a 322 lattice volume and
β ¼ 2.0. To maximize the number of CG iterations required
to converge to the solution with a given precision, i.e., to
maximize the numerical difficulty of solving the unpre-
conditioned Dirac normal equation, we choose the hopping
parameter κ ¼ 1=ð2ðmþ 2ÞÞ ¼ 0.276 that corresponds to
m ¼ −0.188. This is close to the critical mass mcrit ≈
−0.197 at β ¼ 2.0 [31,32]. To generate the other ensembles
used in the volume transfer study, we fix the values for β
and m while varying only the lattice volume.
The network architecture used is as detailed in Sec. III B,

with kernel sizes of ksrc;X ¼ ksrc;T ¼ ksnk;X ¼ ksnk;T ¼ 3 for
all convolutions, n ¼ 2 layers, and c1 ¼ c2 ¼ 12 channels.
Diagonal entries of L are clamped to be equal or greater
than ϵ ¼ 10−3. Two types of networks are trained to
investigate the effects of preconditioner sparsities on their
performance. For the sparse networks, only sparse convolu-
tional layers are used; on the other hand, the last two
convolutional layers of the two-dense networks are dense
and the first one is sparse. In either network, there are in
total 871298 trainable parameters.
On the 82 and 322 ensembles, ntrain configurations are

used for training and nvalidate configurations taken from the
end of the sameMonte Carlo stream are used for validation.
Finally, ntest configurations generated from a separate
Monte Carlo stream are used for testing. We find our data
are not significantly autocorrelated, checked by ensuring

FIG. 3. Loss functions for training single (blue) and double
preconditioners (red) as defined in Sec. III B. θ is the set of
parameters for the neural network, on which the preconditioner L
implicitly depends. Both types of preconditioners are pretrained

with lðsÞ1 ðθ;AÞ.

NEURAL-NETWORK PRECONDITIONERS FOR SOLVING THE … PHYS. REV. D 107, 034508 (2023)

034508-5



the uncertainties of the plaquette and topological charge
mean values stay approximately constant when blocking
over increasing ranges of neighboring measurements.
In all training tasks, the loss functions are minimized with

a mini-batch size of 32 gauge configurations, a learning rate
of 10−4, and a gradient-clipping norm of 0.1. We implement
the network with PyTorch [33], together with MINKOWSKI

ENGINE [34] for the sparse convolutions. Parameters in the
networks are optimized using the Adam optimizer [35] with
PyTorch default parameters; the optimizer is reset for each
stage of training. The network evaluations are performed in
single precision to accelerate training, while the rest of
computations are done in double precision.
All networks are trained on 8 GeForce RTX 2080 Ti

GPUs on one node with an Intel Xeon Gold 5218 CPU. We
sequentially minimize each one of the loss functions shown
in Fig. 3 for 300 epochs, so that its value evaluated on the
validation dataset is no longer improving and varies only a
few percent under additional training. For the sparse
network architecture, the training costs for the nominal
ensemble with the single and double preconditioners are
210 and 270 RTX 2080 Ti GPU-hours, respectively; for the
two-dense network architecture, the training costs for the
single and double preconditioners are 260 and 350 RTX
2080 Ti GPU-hours, respectively. The architectures trained
on the 82 ensemble are optimized using the same procedure
as for the nominal ensemble. However, the training costs
are substantially less as a result of the smaller volume—for
the sparse network, the training costs for the single and
double preconditioners are 7 and 10 RTX 2080Ti GPU-
hours, respectively; for the two-dense network, the training
costs for the single and double preconditioners are 12 and
17 RTX 2080Ti GPU-hours, respectively.

A. Results on the nominal ensemble

This section summarizes the results of the neural-
network preconditioner trained on the nominal ensemble
as described in the previous section.
Figure 4 shows the convergence history of various

preconditioners. The relative tolerance for solving Ax ¼
b is defined as

relative tolerance ¼ jjAx0 − bjj2
jjbjj2

; ð11Þ

where x0 is the approximate solution from the solver and
jj · jj2 is the Euclidean norm. Real and imaginary parts of
the source vector b are sampled from [0, 1) independently
for all vector components. The same random source vector
is used for all solves used to construct Fig. 4.
In all cases, neural-network preconditioners reduce the

number of iterations required for convergence at any
relative tolerance when compared to the unpreconditioned
and even-odd preconditioned solves. The IC precondi-
tioner, as defined in Eq. (A7), is a dense triangular matrix;
this approach is outperformed only by the double precon-
ditioner constructed from the two-dense network, which
improves on the IC approach while also maintaining a more
sparse structure. Comparing the various neural-network
preconditioners, it is clear that—despite having the same
numbers of neural-network parameters for optimization—
performance is largely dictated by sparsity: dense networks
outperform sparse networks, and double preconditioners
outperform single preconditioners.

TABLE I. Ensembles of the two-flavor lattice Schwinger model with Wilson fermions used for the numerical study. The 162 and 642

ensembles are not used for training the neural network. The “pion” (lightest pseudoscalar) masses, mπ , in lattice units are obtained from
one-state fits to the correlation functions and the quoted uncertainties are statistical, estimated from 200 bootstrap samples.

X × T β κ mπ mπX ntrain nvalidate ntest Use

8 × 8 2.0 0.276 0.47(1) 3.7(1) 1540 60 200 Volume transfer
16 × 16 2.0 0.276 0.21(1) 3.4(2) n=a n=a 200 Volume transfer
32 × 32 2.0 0.276 0.12(1) 3.7(3) 900 60 200 Nominal & volume transfer
64 × 64 2.0 0.276 0.08(3) 5(2) n=a n=a 32 Volume transfer

FIG. 4. Relative tolerance [Eq. (11)] as a function of CG
iterations for unpreconditioned and preconditioned systems
averaged over solves on 200 test gauge configurations. The first
and second parts of the hyphenated legend labels indicate
whether the corresponding results are for the single or double
preconditioning procedure, with architectures constructed from
sparse or two-dense networks, respectively.

CALÌ, HACKETT, LIN, SHANAHAN, and XIAO PHYS. REV. D 107, 034508 (2023)

034508-6



For a fixed solution tolerance, we can define the
improvement factor resulting from preconditioning to be

improvement factor

≡ CG iterations for the unprecond: solve
CG iterations for the precond: solve

: ð12Þ

As a benchmark, we solve the preconditioned and unpre-
conditioned systems with a relative tolerance of 10−10 on
ntest configurations on each ensemble. For each case, nsrc ¼
10 random source vectors b are used, with both the real and
imaginary parts of each component sampled from [0, 1).
The improvement factors of neural-network precondi-
tioners range from 2.9 for the single preconditioner con-
structed from the sparse network to 5.8 for the double
preconditioner constructed from the two-dense network,
and all results are consistent with those of Fig. 4. The
improvement factors are also shown graphically in Fig. 5 in
Sec. IV B, together with the results of the volume trans-
fer study.
CG iteration counts, as encoded in the improvement

factor, however, are not a complete measure of precondi-
tioner performance. In particular, the costs of applying
neural-network preconditioners must also be taken into
consideration. Both the single and double preconditioners
are constructed from the triangular matrix L in Fig. 1. For
the sparse network, L has approximately half as many

nonzero elements as the Dirac normal matrix A ¼ D†D.
Naive operation counting thus suggests that applying L and
L† sequentially should carry the same computational cost
as applying A once. Assuming the cost of operator
applications dominates, this suggests that an iteration of
single-preconditioned CG costs twice as much as unpre-
conditioned CG, and double-preconditioned three times as
much; that is, despite the significant reduction in the
number of CG iterations for convergence, the number of
operations required to apply preconditioners made by the
two-dense networks would be much larger than for those
made by the sparse network.
To give a quantitative comparison of the numbers of

complex operations required to use different precondi-
tioners, Table II enumerates all the neural-network pre-
conditioners trained and the relative densities of the
preconditioners andDirac normalmatrices on all ensembles.
We also include the relative densities of IC preconditioners,
while the relative density of even-odd preconditioners are
not shown as they can be applied analytically instead of
numerically. As expected, the relative densities of the single
and double preconditioners constructed by the sparse net-
work equal approximately 1 and 3, respectively. Deviations
arise from the fact that diagonal entries are retained when
taking the lower triangular matrix, and the sparse convolu-
tion only preserves the sparsity in spatial and temporal
dimensions and not the channel dimension. On the other
hand, preconditioners constructed by the two-dense net-
works are much denser but their relative densities should
approach a constant value at large volumes.
To evaluate the ultimate performance of various pre-

conditioning schemes, we thus define a metric based on the
number of complex operations required to reach CG
convergence. We define the relative operation advantage
(ROA) at a given relative tolerance to be

ROA≡ complex operations for the unprecond: solve
complex operations for the precond: solve

:

ð13Þ

ROA ¼ 1 for the unpreconditioned system; for the
preconditioned system, it is given by the ratio of the

FIG. 5. Improvement factors [Eq. (12)] resulting from the
various preconditions applied to each of the ensembles listed
in Table I. The relative tolerance for convergence is 10−10. Three
sets of data points are shown: the diamonds are results of neural-
network preconditioners trained on the 322 ensemble, the circles
connected by lines are results of neural-network preconditioners
trained on the 82 ensemble for the volume transfer study, and the
triangles connected by lines are results of IC and even-odd
preconditioners. The diamond markers are offset slightly on the
horizontal axis for clarity. The error bars show the standard
deviations of the solves. Legend labeling is as in Fig. 4.

TABLE II. Ratios of preconditioner densities to the Wilson-
Dirac normal matrix density for all ensembles listed in Table I.

Preconditioner density
D†D density

Network type Precond. type 82 162 322 642

Sparse Single 1.46 1.46 1.46 1.46
Sparse Double 2.92 2.92 2.92 2.92
Two-dense Single 9.92 17.9 18.3 18.5
Two-dense Double 19.8 35.8 36.6 37.0

IC 9.31 38.2 155 625

NEURAL-NETWORK PRECONDITIONERS FOR SOLVING THE … PHYS. REV. D 107, 034508 (2023)

034508-7



improvement factor to one plus the relative preconditioner
density listed in Table II for the corresponding ensemble.
With a relative tolerance for convergence of 10−10, the

ROA value for the single preconditioners constructed from
the sparse network is 1.2, which is the only of the
preconditioners to achieve a value that is greater than 1.
On the other hand, despite their large improvement factors,
preconditioners constructed from dense networks require
approximately five times more complex operations for
convergence. In comparison, the naive ROA value for IC
preconditioners is lower than neural-network precondi-
tioners, because IC preconditioners are dense triangular
matrices. These ROA values, however, do not take into the
account the fact that the IC preconditioners are only
implicitly constructed via forward substitution in practice
so the total operation counts in practice will be less than
those naively assumed here. On the other hand, the even-
odd preconditioner achieves the best ROA value of 1.3
despite scoring the lowest improvement factor on the
nominal ensemble. The ROA values are summarized
graphically in Fig. 6 in Sec. IV B in a comparison to
volume-transfer results.
Although the ROA metric can be used as a guide, in

practice, the precise relation between preconditioner spar-
sity and performance is of course even more complicated.
Beyond the details of implementation, hardware-dependent
concerns such as interconnect speeds, cache sizes, and
memory read/write speeds play an important role in
determining performance, as the performance of most
modern linear solvers in LQFTare bounded by the memory
bandwidth of the hardware [8]. CNN-based preconditioners
with dense convolutional layers provide an opportunity to

increase the arithmetic intensity—the ratio between total
number of operations and the total number of bytes of
data—of the solvers, thereby reducing the total time to
solution despite higher operation counts. For application to
theories such as lattice QCD, it will be necessary to explore
the optimal method with which to implement neural-
network preconditioners, taking into account these practical
complications. The advantage of neural-network precondi-
tioners then lies in the flexibility of the architecture, which
can be tuned to optimize a specific metric balancing the
number of iterations and the ROA value.

B. Volume transfer results

This section describes the results of a volume transfer
study; neural networks are first trained on the 82 lattice
ensemble, then directly applied to larger-volume configu-
rations to construct preconditioners without any reoptim-
ization. Figure 5 shows the neural-network preconditioner
improvement factors defined in Eq. (12) on all ensembles
listed in Table I. A relative tolerance of 10−10 is used as the
stopping criteria for the solves, with random source vectors
for the real and complex components sampled from [0, 1)
on all lattice sites.
On the smallest 82 lattice volume which we use to train

the network for this study, the neural network precondi-
tioners fail to improve on the benchmark IC precondi-
tioners and only the neural-network preconditioners
constructed by the two-dense network outperform the
even-odd preconditioners. However, on lattice volumes
greater than 162, all neural-network preconditioners out-
perform the even-odd preconditioners, while the double
preconditioners constructed by the two-dense network also
outperform the IC preconditioners. Again, we observe that
the relative densities of neural-network preconditioners are
positively correlated with their improvement factors.
Similarly, Fig. 6 shows the ROA values of neural-

network preconditioners on all ensembles, evaluated with
10−10 relative tolerance. In all cases, the ROA value is
negatively correlated with the relative density of the
preconditioner as shown in Table II. The single precondi-
tioner on the sparse network is again the only neural-
network preconditioner that achieves ROA > 1 on lattice
volumes greater than 162. The even-odd preconditioner
remains the most efficient preconditioner with ROA ≈ 1.4
on all volumes. These findings are consistent with the
results of Sec. IVA.
Most noticeably, even though the network is trained on a

small, 82 lattice with a heavy pion mass [mπ ¼ 0.47ð1Þ in
lattice units derived from a one-state fit to the correlation
function], when we apply the network to precondition the
nominal ensemble with a much lighter pion mass
ðmπ ¼ 0.115ð10ÞÞ, its performance is similar to that of
the network trained directly on the nominal ensemble as
shown in Figs. 5 and 6. In our particular implementation, it
is approximately 20 to 30 times cheaper to train a network

FIG. 6. The preconditioner ROA values (Eq. (13)) on ensem-
bles listed in Table I. The relative tolerance for convergence is
10−10. ROA ¼ 1 for unpreconditioned systems is indicated for
reference. Marker style is as in Fig. 5 and legend labeling is as
in Fig. 4.

CALÌ, HACKETT, LIN, SHANAHAN, and XIAO PHYS. REV. D 107, 034508 (2023)

034508-8



on the 82 ensemble than on the 322 ensemble, while the
improvement factors and ROA values degrade minimally.
This result is particularly encouraging for future applica-
tions to lattice QCD in four dimensions, where such a
volume-transfer procedure will be essential to mitigating
high training costs on large lattice volumes.

V. DISCUSSION AND CONCLUSION

In this work, we present CNN architectures based on
both sparse and dense convolutions to construct precond-
tioners for solving Dirac normal matrices in the Schwinger
model. In particular, we show that the neural-network
preconditioners reduce the number of CG iterations
required for convergence by a factor between 2 and 5 on
all ensembles that we consider here, outperforming both the
even-odd and IC preconditioners by this metric. To assess
the practical value of these preconditioners, we also
compare the numbers of complex operations required for
convergence for the unpreconditioned and preconditioned
systems, as quantified by the ROA value defined in
Eq. (13). Using this alternate metric, single preconditioners
constructed by sparse networks are the only ones to achieve
an advantage over unpreconditioned solves. However, even
though other neural-network (and IC) preconditioners
require more complex operations for convergence, in
practice this might not be the limiting factor to the solver
performance as LQFT solvers are not compute-bound on
modern architectures.
Moreover, applying a network trained on an ensemble

with a 82 lattice volume to generate preconditioners for
ensembles with the same bare parameters but larger
volumes, the performance of these preconditioners is
approximately the same as that of preconditioners con-
structed by a network trained directly on those larger lattice
volumes. This allows an important reduction and amor-
tization of the training costs without significant impact on
preconditioner performance.
A natural question is whether neural-network precondi-

tioners similar to those developed here can be used to
accelerate Dirac equation solves in four-dimensional the-
ories of phenomenological interest, such as lattice QCD.
Based on this investigation, it is clear that the high
computational cost of training will likely be one of the
biggest hurdles that will need to be overcome to achieve a
performant algorithm in this setting, regardless of the
network architecture used to construct the preconditioners.
The positive volume-transfer result for the Schwinger
model, however, provides an example of how training
costs can be heavily ameliorated by training only on small-
volume ensembles, which can be partially understood as a
consequence of the locality of quantum field theories [36–
38]. In particular, locality implies that, for a given set of
bare parameters, the preconditioner performance of the
CNN architecture trained on a given lattice volume should
be almost identical to that of the same CNN trained on a

smaller volume, as long as the dimensions of both volumes
are much larger than the correlation length. However, the
numerical volume-transfer study illustrates that the neural-
network preconditioners are still effective even when the
training and testing ensembles have vastly different corre-
lation lengths, which are characterized by the differences in
the lightest pseudoscalar meson masses due to finite-size
corrections. Similar investigations are thus necessary for
each particular theory to determine the volume-transfer
properties of neural-network preconditioners.
Beyond the question of training, attaining an in-practice

advantage in time-to-solution for iterative solvers in the-
ories such as lattice QCD will require further investigation
of efficient implementations. In this work, all algorithms
have been implemented using explicit matrix representa-
tions, since this is feasible for the small problem sizes used
in the proof-of-principle study. An implementation that
does not rely on the explicit matrix representation will
certainly be needed to generalize the approach to larger
volumes. In addition, we have only constructed precondi-
tioners for squared Dirac operators, with the CG algorithm
used to solve the preconditioned linear systems. Instead,
other solvers that do not require squaring Dirac operators
could be used, such as the biconjugate gradient stabilized
method which is used to solve Dirac equations in the clover
fermion discretization, for example. In principle, the
flexibility in designing the neural-network architecture
allows different types of Dirac operators and solvers to
be accommodated by modification of the output layer of the
existing architecture. The efficacy of the modified neural-
network preconditioners, however, should still be tested in
numerical experiments.
We have also shown that large numbers of complex

operations are needed to apply neural-network precondi-
tioners, especially those constructed by the network with
dense convolutional layers. It may nevertheless still be
feasible to accelerate the solves with dense preconditioners
by maximizing the arithmetic intensity and avoiding
memory limitations; possible practical advantages will rely
heavily on implementation details.
Finally, combining machine learning techniques with

existing preconditioning techniques is another viable
approach. In particular, combining even-odd precondition-
ing with neural-network preconditioners has the advantage
of halving the sizes of linear systems and further reducing
the condition numbers. However, it is difficult to naturally
define a network architecture based on convolutions for this
problem, since convolutions are inefficient when operating
on a lattice where only the even or the odd sites are
retained; a different strategy of constructing neural-network
preconditioners is thus needed to precondition even-odd
preconditioned systems.
In addition to sequential preconditioners, hybrid meth-

ods are possible; for example, Ref. [39] proposes a neural-
network parametrization of the prolongator of the multigrid

NEURAL-NETWORK PRECONDITIONERS FOR SOLVING THE … PHYS. REV. D 107, 034508 (2023)

034508-9



algorithm that is more efficient than the black-box algebraic
multigrid method. Given the power of multigrid methods in
solving Dirac equations with Wilson-like fermions, the
hybrid method is then another promising approach to
generalize multigrid methods. However, scaling these
hybrid approaches to typical lattice QCD problem sizes
with current hardware remains challenging [40]. On the
other hand, Ref. [41] shows that there is a one-to-one
correspondence between operations in the CNN and the
geometric multigrid algorithm, so the lessons that have
been learned in implementing multigrid algorithms for
lattice QCD applications could inform future neural-
network architectures, and vice versa.
Clearly, significant work remains before a practical

preconditioning scheme based on neural networks can be
applied to key theories such as for lattice QCD.
Nevertheless, the results of this work demonstrate the
viability of using machine-learned preconditioner construc-
tions applied to a structurally similar problem, and illumi-
nate a potential pathway towards developing neural-network
preconditioners for other LQFT applications.

ACKNOWLEDGMENTS

We thank William Detmold for useful comments on the
manuscript. Y. L. is grateful for the discussions with
Andreas Kronfeld. S. C., D. C. H., Y. L., and P. E. S. are
supported in part by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics, under Grant No. DE-
SC0011090. P. E. S. is additionally supported by the
National Science Foundation under EAGER Grant
No. 2035015, by the U.S. DOE Early Career Award
No. DE-SC0021006, by a NEC research award, and by
the Carl G and Shirley Sontheimer Research Fund. B. X. is
supported by the MIT UROP office. The authors acknowl-
edge the MIT SuperCloud and Lincoln Laboratory
Supercomputing Center [42] for providing HPC resources
that have contributed to the research results reported within
this paper. Numerical experiments and data analysis used
PyTorch [33], MINKOWSKI ENGINE [34], NumPy [43], and SciPy

[44]. Figures were produced using MATPLOTLIB [45].

APPENDIX: PRECONDITIONERS

1. Even-odd preconditioning

Even-odd, or red-black, preconditioning [10] is one of
the most commonly used preconditioners in LQFT calcu-
lations. If the entries in a Dirac matrix are arranged such
that the even sites precede odd sites, then the matrix can be
written as

D ¼
�
Dee Deo

Doe Doo

�
: ðA1Þ

The submatricesDee andDoo connect even to even and odd
to odd sites, and Deo and Doe connect even to odd and odd

to even sites. As long asDee andDoo can be easily inverted,
left and right preconditioners can be defined as

M−1
L ≡

�
1 −DeoD−1

oo

0 1

�
; M−1

R ≡
�

1 0

−D−1
ooDoe 1

�
; ðA2Þ

so that the preconditioned Dirac matrix is block diagonal

D0 ¼ M−1
L DM−1

R ¼
�
D̄ee 0

0 Doo

�
; ðA3Þ

where D̄ee ¼ Dee −DeoD−1
ooDoe. The CG algorithm can

then be applied to the normal equation of the precondi-
tioned matrix

A0 ≡ ðD̄eeÞ†D̄ee: ðA4Þ
Note that D̄ee is simply the Schur complement of the Dirac
matrix in Eq. (A1). We observe that the even-odd decom-
position provides a factor of 2–3 reduction in iteration
numbers required for convergence for Dirac matrices used
in this work.

2. Incomplete Cholesky decomposition

Let A be a sparse HPD matrix of order n. The IC
decomposition of A that we use in this work is defined as

ðLcÞii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aii−

Xi−1
k¼1

ðLcÞikðLcÞ�ik

vuut ;

ðLcÞij¼
1

ðLcÞjj

�
Aij−

Xj−1
k¼1

ðLcÞikðLcÞ�jk
�
; i > j; Aij ≠ 0;

ðA5Þ
where Lc is a lower triangular matrix. Equation (A5) is
similar to the Cholesky decomposition, except the IC
algorithm imposes the constraint that the matrix Lc has
the same sparsity pattern as the lower triangular part of the
matrix A. In the applied mathematics literature, this specific
decomposition is called the IC decomposition with zero
fill-ins, or IC(0) [9]. Note that Eq. (A5) implies that

Aij ¼
Xn
k¼1

ðLcÞikðLcÞ�jk ðA6Þ

for ði; jÞ where Aij ≠ 0, so the IC decomposition repro-
duces nonzero entries of A exactly; however, LcL

†
c is in

general denser than A.
To use Lc as a preconditioner, we define the left and right

preconditioners, M−1
L and M−1

R , to be

M−1
L ¼ ðM−1

R Þ† ¼ L−1
c ; ðA7Þ

where the inverses of triangular matrices could be com-
puted with the forward substitution method.

CALÌ, HACKETT, LIN, SHANAHAN, and XIAO PHYS. REV. D 107, 034508 (2023)

034508-10



[1] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp.
Phys. 2020, 083C01 (2020).

[2] W. Detmold, R. G. Edwards, J. J. Dudek, M. Engelhardt,
H.-W. Lin, S. Meinel, K. Orginos, and P. Shanahan
(USQCD Collaboration), Eur. Phys. J. A 55, 193 (2019).

[3] A. Bazavov, F. Karsch, S. Mukherjee, and P. Petreczky
(USQCD Collaboration), Eur. Phys. J. A 55, 194 (2019).

[4] C. Lehner et al. (USQCD Collaboration), Eur. Phys. J. A 55,
195 (2019).

[5] A. S. Kronfeld, D. G. Richards, W. Detmold, R. Gupta,
H.-W. Lin, K.-F. Liu, A. S. Meyer, R. Sufian, and S.
Syritsyn (USQCD Collaboration), Eur. Phys. J. A 55,
196 (2019).

[6] V. Cirigliano, Z. Davoudi, T. Bhattacharya, T. Izubuchi,
P. E. Shanahan, S. Syritsyn, and M. L. Wagman (USQCD
Collaboration), Eur. Phys. J. A 55, 197 (2019).

[7] R. C. Brower, A. Hasenfratz, E. T. Neil, S. Catterall, G.
Fleming, J. Giedt, E. Rinaldi, D. Schaich, E. Weinberg, and
O. Witzel (USQCD Collaboration), Eur. Phys. J. A 55, 198
(2019).

[8] B. Joó, C. Jung, N. H. Christ, W. Detmold, R. Edwards, M.
Savage, and P. Shanahan (USQCD Collaboration), Eur.
Phys. J. A 55, 199 (2019).

[9] Y. Saad, Iterative Methods for Sparse Linear Systems
(SIAM, University City, Philadelphia, 2003).

[10] T. A. DeGrand, Comput. Phys. Commun. 52, 161 (1988).
[11] M. Lüscher, J. High Energy Phys. 07 (2007) 081.
[12] J. Brannick, R. C. Brower, M. A. Clark, J. C. Osborn, and C.

Rebbi, Phys. Rev. Lett. 100, 041601 (2008).
[13] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A.

Manteuffel, S. F. McCormick, J. C. Osborn, and C. Rebbi,
Phys. Rev. Lett. 105, 201602 (2010).

[14] J. C. Osborn, R. Babich, J. Brannick, R. C. Brower, M. A.
Clark, S. D. Cohen, and C. Rebbi, Proc. Sci. LATTICE2010
(2010) 037.

[15] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann,
SIAM J. Sci. Comput. 36, A1581 (2014).

[16] J. Brannick, A. Frommer, K. Kahl, B. Leder, M. Rottmann,
and A. Strebel, Numer. Math. 132, 463 (2016).

[17] R. C. Brower, M. A. Clark, A. Strelchenko, and E.
Weinberg, Phys. Rev. D 97, 114513 (2018).

[18] R. C. Brower, M. A. Clark, D. Howarth, and E. S. Weinberg,
Phys. Rev. D 102, 094517 (2020).

[19] M. Lüscher, Comput. Phys. Commun. 156, 209 (2004).
[20] Y. Oyanagi, in 23rd International Conference on High-

Energy Physics (Elsevier, 1986).
[21] S. Fischer, A. Frommer, U. Glassner, T. Lippert, G.

Ritzenhofer, and K. Schilling, Comput. Phys. Commun.
98, 20 (1996).

[22] B. Graham,M. Engelcke, and L. van derMaaten, 3d semantic
segmentation with submanifold sparse convolutional net-
works, in Proceedings of the IEEE conference on computer
vision and pattern recognition (2018), pp. 9224–9232.

[23] J. S. Schwinger, Phys. Rev. 128, 2425 (1962).
[24] J. Sappl, L. Seiler, M. Harders, and W. Rauch, arXiv:1906

.06925.
[25] Y. Li, A. Božič, T. Zhang, Y. Ji, T. Harada, and M. Nießner,

arXiv:2003.12230.
[26] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[27] P. Mehta, M. Bukov, C.-H. Wang, A. G. Day, C. Richardson,

C. K. Fisher, and D. J. Schwab, Phys. Rep. 810, 1
(2019).

[28] S. Ioffe and C. Szegedy, in International Conference on
Machine Learning (PMLR, 2015), pp. 448–456, arXiv:1502
.03167.

[29] T. Kalkreuter, Phys. Rev. D 51, 1305 (1995).
[30] I. Kaporin, Numer. Linear Algebra Appl. 1, 179 (1994).
[31] C. R. Gattringer, I. Hip, and C. B. Lang, Nucl. Phys. B508,

329 (1997).
[32] N. Christian, K. Jansen, K. Nagai, and B. Pollakowski,

Nucl. Phys. B739, 60 (2006).
[33] A. Paszke et al., in Advances in Neural Information

Processing Systems 32, edited by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and
R. Garnett (Curran Associates, Inc., La Jolla, California,
2019), pp. 8024–8035.

[34] C. Choy, J. Gwak, and S. Savarese, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (The Institute of Electrical and Electronics Engineers
(IEEE), New York City, New York, 2019), pp. 3075–3084.

[35] D. P. Kingma and J. Ba, arXiv:1412.6980.
[36] R. F. Streater and A. S. Wightman, PCT, spin and statistics,

and all that (Princeton University Press, 1989).
[37] K.-F. Liu, J. Liang, and Y.-B. Yang, Phys. Rev. D 97,

034507 (2018).
[38] M. Lüscher, EPJ Web Conf. 175, 01002 (2018).
[39] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R.

Kimmel, in International Conference on Machine Learning
(PMLR, Cambridge, Massachusetts, 2019), pp. 2415–2423.

[40] T. Louw and S. McIntosh-Smith, in Driving Scientific and
Engineering Discoveries Through the Integration of Experi-
ment, Big Data, and Modeling and Simulation, edited by J.
Nichols, A. B. Maccabe, J. Nutaro, S. Pophale, P. Devineni,
T. Ahearn, and B. Verastegui (Springer International Pub-
lishing, Cham, 2022), pp. 40–57.

[41] J. He and J. Xu, Sci. China Math. 62, 1331 (2019).
[42] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand,

D. Bestor, B. Bergeron, V. Gadepally, M. Houle, M.
Hubbell, M. Jones, A. Klein, L. Milechin, J. Mullen, A.
Prout, A. Rosa, C. Yee, and P. Michaleas, in 2018 IEEE
High Performance extreme Computing Conference (HPEC)
(IEEE, New York City, New York, 2018), pp. 1–6.

[43] C. R. Harris et al., Nature (London) 585, 357 (2020).
[44] P. Virtanen et al. (SciPy 1.0 Contributors), Nat. Methods 17,

261 (2020).
[45] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).

NEURAL-NETWORK PRECONDITIONERS FOR SOLVING THE … PHYS. REV. D 107, 034508 (2023)

034508-11

https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1140/epja/i2019-12902-4
https://doi.org/10.1140/epja/i2019-12922-0
https://doi.org/10.1140/epja/i2019-12891-2
https://doi.org/10.1140/epja/i2019-12891-2
https://doi.org/10.1140/epja/i2019-12916-x
https://doi.org/10.1140/epja/i2019-12916-x
https://doi.org/10.1140/epja/i2019-12889-8
https://doi.org/10.1140/epja/i2019-12901-5
https://doi.org/10.1140/epja/i2019-12901-5
https://doi.org/10.1140/epja/i2019-12919-7
https://doi.org/10.1140/epja/i2019-12919-7
https://doi.org/10.1016/0010-4655(88)90180-4
https://doi.org/10.1088/1126-6708/2007/07/081
https://doi.org/10.1103/PhysRevLett.100.041601
https://doi.org/10.1103/PhysRevLett.105.201602
https://doi.org/10.22323/1.105.0037
https://doi.org/10.22323/1.105.0037
https://doi.org/10.1137/130919507
https://doi.org/10.1007/s00211-015-0725-6
https://doi.org/10.1103/PhysRevD.97.114513
https://doi.org/10.1103/PhysRevD.102.094517
https://doi.org/10.1016/S0010-4655(03)00486-7
https://doi.org/10.1016/0010-4655(96)00089-6
https://doi.org/10.1016/0010-4655(96)00089-6
https://doi.org/10.1103/PhysRev.128.2425
https://arXiv.org/abs/1906.06925
https://arXiv.org/abs/1906.06925
https://arXiv.org/abs/2003.12230
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1016/j.physrep.2019.03.001
https://arXiv.org/abs/1502.03167
https://arXiv.org/abs/1502.03167
https://doi.org/10.1103/PhysRevD.51.1305
https://doi.org/10.1002/nla.1680010208
https://doi.org/10.1016/S0550-3213(97)80015-6
https://doi.org/10.1016/S0550-3213(97)80015-6
https://doi.org/10.1016/j.nuclphysb.2006.01.029
https://arXiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevD.97.034507
https://doi.org/10.1103/PhysRevD.97.034507
https://doi.org/10.1051/epjconf/201817501002
https://doi.org/10.1007/s11425-019-9547-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55

