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We study the critical behavior of the three-dimensional Gross-Neveu (GN)model withNf four-component
Dirac fermionic flavors and quartic interactions, at the chiralZ2 transition in themasslessZ2-symmetric limit.
For this purpose, we consider a lattice GN model with staggered Kogut-Susskind fermions and a scalar field
coupled to the scalar bilinear fermionic operator, which effectively realizes the attractive four-fermion
interaction. We perform Monte Carlo simulations for Nf ¼ 4, 8, 12, 16. By means of finite-size scaling
analyses of the numerical data, we obtain estimates of the critical exponents, which are compared with the
large-Nf predictions obtained using the continuumGN field theory.We observe a substantial agreement. This
confirms that lattice GN models with staggered fermions provide a nonperturbative realization of the GN
quantum field theory, even though the lattice interactions explicitly break the flavor UðNfÞ ⊗ UðNfÞ
symmetry of the GN field theory, which is only recovered in the critical limit.
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I. INTRODUCTION

Three-dimensional (3D) quantum field theories (QFTs)
of interacting fermions emerge in different contexts; for
instance, in condensed-matter physics, they are used to
describe the low-energy excitations in graphene, see, e.g.,
Refs. [1–9]. Among them, we should mention quantum
electrodynamics with charged fermions, the Gross-Neveu
and the Gross-Neveu-Yukawa models, in which the dynam-
ics of Dirac fermions arises from four-fermion interaction
terms or through the coupling with a scalar field [10].
In this paper, we focus on the Gross-Neveu (GN) QFT

defined by the Euclidean Lagrangian density

L ¼ −
XNf

f¼1

Ψ̄fð=∂þmÞΨf −
g2

2Nf

 XNf

f¼1

Ψ̄fΨf

!
2

; ð1Þ

where ΨfðxÞ with f ¼ 1;…; Nf is a fermionic field. Each
flavor component Ψf is a four-dimensional spinor, so that
the total number N of fermionic components is given by
N ¼ 4Nf, and the matrices γμ are the usual Euclidean
4 × 4 matrices used in 4 dimensions [11]. This choice
allows us to define chiral symmetry transformations [12].
It is also somehow necessary if we wish to compare

our findings with ϵ-expansion (ϵ ¼ 4 − d) results obtained
in the four-dimensional model with standard Dirac
spinors [13]. Note that in three dimensions it is also
possible to define GN QFTs with two-component spinors:
in this case no chirality is present, but an analogous role
is played by the reflection with respect to one of the
axes [10,14]. The Lagrangian in Eq. (1), with attractive
four-fermion interactions, can be equivalently written as

L ¼ −
XNf

f¼1

Ψ̄fð=∂þmþΦÞΨf þ
Nf

2g2
Φ2; ð2Þ

where ΦðxÞ is an auxiliary real scalar field associated with
the bilinear fermionic operator

P
f Ψ̄fΨf. Indeed, by inte-

grating out the scalar field Φ, one recovers Lagrangian (1).
The global flavor symmetry of the GN QFT is UðNfÞ ⊗

UðNfÞ [11,13]. If fermions are massless, the 3D
Lagrangian is also invariant under two additional Z2 chiral
transformations [11,13]

Ψf → γ5Ψf; Ψ̄f → −Ψ̄fγ5; Φ → −Φ;

Ψf → γ4Ψf; Ψ̄f → −Ψ̄fγ4; Φ → −Φ: ð3Þ

The presence of two chiral symmetries is related to the
fact that only the γμ matrices with μ ¼ 1, 2, 3 appear in
the Lagrangian, so that γ4 and γ5 play essentially the same
role [13]. In the massless GN models with attractive
interactions and at least for a sufficiently large number of
flavors [14], there is a phase transition where the chiral
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Z2 symmetries are spontaneously broken. This transition
separates a disordered phase, in which the scalar-field
correlations are short ranged and fermions are massless,
from an ordered phase, in which the scalar field orders (in
field-theory terms, it has a nonvanishing expectation value),
providing an effective mass for the fermion fields. As
discussed in Refs. [10,14], a similar behavior is expected
in the Gross-Neveu-Yukawa (GNY) QFT, which is an
extension of the GN model obtained by adding a kinetic
and a quartic-interaction term for the real scalar field.
The massless GN QFTwith attractive interactions should

provide the effective description of the critical behavior of
systems with the same global symmetry, symmetry-break-
ing pattern and field content. In the case of the GN model,
the symmetry that is broken is always the chiral Z2 ⊗ Z2

symmetry, for anyNf. Therefore, the relevant symmetry and
symmetry-breaking pattern at the transition are always the
same. However, the resulting critical behavior depends on
Nf, because of the different fermion content of the model.
Indeed, the chiral transition occurs in the presence of Nf

massless fermions, which generate long-range interactions
for the scalar field, which obviously depend on Nf.
The renormalization-group (RG) flow in the GN and

GNY QFTs has been investigated using different methods.
Critical exponents have been computed in the d-dimensional
theory in the large-Nf limit. Results to order 1=N2

f are
reported in Refs. [14–21]. They provide quantitative
information that can be compared with results obtained
in statistical models that, supposedly, have transitions
associated with these QFTs. The RG flow has also been
studied in perturbation theory. Perturbative calculations
have been performed around four dimensions in the GNY
model [22] to four loops, providing the ϵ expansions of the
critical exponents up to Oðϵ4Þ. A priori, it is not clear if
these results directly apply to the three-dimensional model.
Indeed, in the four-dimensional model the Lagrangian is
invariant under a single chiral symmetry—the chiral
symmetry group is Z2—while in three dimensions the
chiral symmetry group is larger, being Z2 ⊗ Z2. However,
the large-Nf expressions of the critical exponents do not
show nonanalyticities as d → 3, indicating that this dimen-
sion-dependent symmetry enlargement should have no
impact on the d-dependent analyticity properties of the
universal features of the model. We should also remark that
ϵ expansions for the GNYmodel are not Borel summable, at
variance with what happens for the corresponding expan-
sions in Φ4 scalar theories, see, e.g., Refs. [10,23,24].
Therefore, we do not expect them to provide accurate 3D
estimates. A thorough analysis of the perturbative series is
reported in Ref. [25]. Exponents have also been computed
using the functional renormalization group [26] and the
conformal-bootstrap approach [27,28].
Numerical results [29–36] for relatively small values of

Nf, i.e., for Nf ≤ 4, have been compared with the estimates

obtained in the field-theory approaches (see, e.g., the results
reported in Table 3 of Ref. [27], where N ¼ 4Nf). In some
cases, large discrepancies are observed among the results
obtained [for instance, forNf ¼ 1, the estimates of 1=ν vary
between 0.76 and 1.30(5)]. In particular, the conformal-
bootstrap results of Ref. [27], which have been recently
confirmed in Ref. [28], provide estimates that differ
significantly from those obtained using numerical methods.
This uncertain situation calls for further studies, to under-
stand the reasons of such discrepancies, whether QFT
correctly predicts the universal features of the critical
transitions of the corresponding statistical lattice systems.
In this paper we investigate the critical behavior of 3D

statistical fermionic models defined on cubic lattices, to
shed light on the way, or whether, they realize the
continuum GN QFT at the chiral transition. The definition
of fermionic lattice models is affected by the well-known
fermion doubling problem [37,38], which makes it impos-
sible to implement the quartic fermion interaction, or,
equivalently, the interaction between fermionic and scalar
fields, preserving the flavor symmetry UðNfÞ ⊗ UðNfÞ. A
partial solution is provided by Kogut-Susskind (KS) for-
mulations [15,38]. In this case, two doublers are present in
the model, so that Nf=2 KS fermion variables per site are
needed to describe a system with Nf flavors. In these
models the Hamiltonian is only exactly invariant under
UðNf=2Þ global transformations and, in the massless limit,
under a single Z2 chiral symmetry. If the scalar-field
variables are located on the dual lattice sites [15,38], the
terms that break the symmetry between the doublers, and
therefore the full flavor symmetry of the continuum model,
are OðaÞ (a is the lattice spacing) in the formal classical
continuum a → 0 limit. Therefore, the symmetry UðNfÞ ⊗
UðNfÞ of the continuum GN and GNY models is recovered
at the leading classical tree order. In the RG context, this
result is taken as an indication that these breaking terms are
irrelevant perturbations of the GNY QFT fixed point, so that
the lattice systems recover the continuum UðNfÞ ⊗ UðNfÞ
symmetry at the chiral transition point. Thus, their asymp-
totic critical behavior belongs to the same universality class
as that of the continuum QFT of GN and GNY models.
Here we return to this issue, verifying whether the

conjectured irrelevance of the OðaÞ flavor-symmetry vio-
lations holds at the chiral transition of 3D lattice GN
models. Indeed, although the fact that the flavor-symmetry
violating terms areOðaÞ is generally required to recover the
full flavor symmetry, it may not be sufficient at a non-
perturbative level. Therefore, an accurate check at a non-
perturbative level is called for, performed by carefully
studying the critical behavior at the chiral transition. For
this purpose, we focus on the large-Nf regime and compare
Monte Carlo (MC) results with the available nonperturba-
tive large-Nf expansions of the critical exponents com-
puted using the GN QFT. Since the critical behavior in the
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Nf → ∞ limit of lattice models matches that of the
continuum GN models [15], we focus on the OðN−1

f Þ
corrections, which depend on the actual number of flavor
components.
In our numerical simulations we use the KS staggered

formulation of Ref. [15], with scalar fields located at the
sites of the dual lattice. To compare with the large-Nf
predictions obtained for the GN QFT (1), we perform
simulations for Nf ¼ 4, 8, 12, 16, and present numerical
finite-size scaling (FSS) analyses. We anticipate that our
numerical results for the critical behavior of the lattice KS
formulation agree with the available large-Nf QFT results.
Thus, they support the conjectured identification of the GN
QFT as the effective model for the critical behavior of
lattice GN systems.
The paper is organized as follows. In Sec. II we present

the lattice KS formulation of the GN model that we
consider. Section III outlines the strategy of our analysis
of the numerical data. In Sec. IV we report the large-Nf
expansions of the critical exponents, which are then
compared with numerical results. Section V is devoted
to the presentation of the numerical results for various
flavor numbers, i.e., Nf ¼ 4, 8, 12, 16. Finally, in Sec. VI
we summarize and draw our conclusions. In the appendices
we report a discussion of the relation between the fermionic
condensate and the scalar field, some technical details on
the simulations, and a collection of FSS results.

II. LATTICE FORMULATIONS

A naive lattice formulation of the 3D massless GN
model (1) can be obtained by discretizing the Lagrangian
density (2) on a cubic lattice. The lattice Hamiltonian is [38]

HN ¼
X
x;μ;c

ψ̄c
xðγμΔμ þ σxÞψc

x þ
1

2g2
X
x

σ2x; ð4Þ

where c ¼ 1;…; Nψ and μ ¼ 1, 2, 3. Here, ψc
x is a

four-component spinor for each value of the flavor index
c, γμ are the four-dimensional γ matrices, and Δμψ

c
x¼

ðψc
xþμ̂−ψc

x−μ̂Þ=2. We set the lattice spacing a ¼ 1. One can
easily verify that model (4), as the massless GNmodel (2), is
invariant under two chiral Z2 symmetries:

ψc
x → γ5ψ

c
x; ψ̄c

x → −ψ̄c
xγ5; σx → −σx;

ψc
x → γ4ψ

c
x; ψ̄c

x → −ψ̄c
xγ4; σx → −σx; ð5Þ

which protect the fermion field against the generation of a
mass term. Moreover, the model (4) is invariant under the
global symmetry group UðNψ Þ ⊗ UðNψ Þ.
The above model does not have the exact flavor content

of the GN field theory due to the lattice fermion doubling.
Indeed, the Hamiltonian (4) actually describes 8Nψ mass-
less flavors in the formal continuum limit a → 0. They are

associated with the Fourier-transform components with
kμ ¼ 0 and kμ ¼ π=a along each direction. However, the
scalar-field interaction breaks the symmetry of the doublers
and therefore this lattice formulation does not describe
Nf ¼ 8Nψ identical flavors as required by the GN model,
but Nf massless flavors with complex self-interactions that
do not reproduce the field-theory model with Lagrangian
density (2) in the classical continuum limit a → 0. As put
forward in Refs. [15,38], the problem can be attenuated by
defining the scalar fields on the dual lattice, i.e., at the center
of the lattice cubes, located at

x̃ ¼ xþ
X
μ

μ̂ =2; ð6Þ

where μ̂ are the unit vectors associated with the lattice
directions. The Hamiltonian (4) is replaced by

HD ¼
X
x;μ;c

ψ̄c
x

�
γμΔμ þ

1

8

X
hx;x̃i

σx̃

�
ψc
x þ

1

2g2
X
x̃

σ2x̃; ð7Þ

where the second term includes a sum over the eight sites
hx; x̃i of the dual lattice surrounding x. Following Ref. [38],
one can show that the global flavor symmetry for all
Nf ¼ 8Nψ flavors is recovered at the classical tree-order
level: in the formal expansion of the Hamiltonian in powers
of a, the terms breaking the flavor symmetry are of order a
in the a → 0 limit. Therefore, at least in the classical limit,
apart from OðaÞ corrections, one effectively recovers
the UðNfÞ ⊗ UðNfÞ symmetry with Nf ¼ 8Nψ . The
Hamiltonian (7) is also exactly invariant under chiral Z2

symmetry transformations. They are defined as in Eq. (5)
with σx replaced by σx̃. We also mention that alternative
implementations of lattice GN models with naive fermions,
also providing the correct a → 0 limit, have been discussed
and numerically investigated in Refs. [39,40].
To reduce the problem of fermionic doubling, one can

consider the staggered KS formulation. For 3D systems
defined on cubic lattices, there are only two doublers instead
of the eight ones appearing in the naive formulation. By
using Nχ staggered fermionic fields χcx, we obtain a lattice
formulation with Nf ¼ 2Nχ effective massless flavors. The
partition function is [15]

Z ¼
Z

½dχdχ̄�½dσ�e−HS½χ̄;χ;σ�; ð8Þ

HS ¼
X
x;y;c

χ̄cxMx;yχ
c
y þ

κNχ

2

X
x̃

σ2x̃; ð9Þ

where χcx is defined on the sites x of the cubic lattice (the
index c runs from 1 to Nχ), σx̃ is a real scalar field on the
dual lattice site x̃, and κ is the model parameter that is tuned
to approach the critical point [15]. The matrixM is given by
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Mx;yðσÞ ¼
X
μ

ημðxÞ
2

ðδy;xþμ̂ − δy;x−μ̂Þ þ
1

8

X
hx;x̃i

σx̃δx;y: ð10Þ

In the above expression, the second sum is over the sites of
the dual lattice that surround x, and ημðxÞ is the Kawamoto-
Smit phase ημðxÞ ¼ ð−1Þx1þ::þxμ−1 . The matrixMx;y satisfies
the relation

Mx;yð−σÞ ¼ −My;xðσÞ: ð11Þ

Apart from irrelevant normalization constants, by integrat-
ing out the fermionic variables we obtain the partition
function

Z ¼
Z

½dσ�½detMx;yðσÞ�Nχ exp

�
−
κNχ

2

X
x̃

σ2x̃

�
: ð12Þ

The staggered KS formulation (9) maintains an exact chiral
Z2 symmetry, corresponding to

χcx → Pxχ
c
x; χ̄cx → −Pxχ̄

c
x; σx̃ → −σx̃; ð13Þ

where Px ¼ ð−1Þ
P

i
xi is the parity of the site x.

As in the naive fermion formulation, the continuum
flavor symmetry UðNfÞ ⊗ UðNfÞ of the continuum GN
field theory is not exact. The exact flavor-symmetry group
of the lattice model is only UðNχÞ, where Nχ ¼ Nf=2.
However, as shown in Ref. [15], in the formulation (9) with
scalar fields on the dual lattice, the symmetries of the
continuum GN field theory are recovered in the formal
classical limit a → 0. Violations are of order a and vanish
in the formal continuum limit.

III. FINITE-SIZE SCALING AT THE CHIRAL
TRANSITION

We investigate numerically the critical behavior of the
lattice KS formulation, using FSS methods applied to
several observables defined in terms of the scalar and
fermionic fields. In our work boundary conditions (BC)
have been chosen as follows. For fermionic fields we use
antiperiodic BC in one of the directions (we have chosen
the third direction, μ ¼ 3) and periodic BC in the other
ones. For the scalar field σx̃ we use periodic BC in all
directions.

A. Observables

We define the two-point function of the σx̃ field as

Gσðx̃ − ỹÞ ¼ hσx̃σỹi ð14Þ

(it only depends on x̃ − ỹ because of the translation
invariance preserved by the periodic BC) and the corre-
sponding Fourier transform G̃σðpÞ ¼

P
x̃ e

ip·x̃Gσðx̃Þ. The

scalar susceptibility χσ and second-moment correlation
length ξσ are defined as

χσ ¼ G̃σð0Þ; ð15Þ

ξ2σ ¼
1

4 sin2ðpm=2Þ
G̃σð0Þ − G̃σðpmÞ

G̃σðpmÞ
; ð16Þ

where pm ≡ ð0; 0; 2π=LÞ (the third direction is the one in
which we use antiperiodic BC for the fermionic variables).
We also consider the space average of the scalar order
parameter

Σ ¼ 1

V

X
x̃

σx̃ ð17Þ

(note that hΣi ¼ 0 because of the chiral symmetry), and the
corresponding Binder parameters

U4 ¼
hΣ4i
hΣ2i2 ; U2 ¼

hΣ2i
hjΣj2i : ð18Þ

The observables U4, U2, and Rξ ≡ ξσ=L, are RG invariant
at the transition where the scalar-field and fermionic
correlations are critical. They will play a central role in
our numerical FSS analyses.
We define the fermionic susceptibility χχ as

χχ ≡ 1

V
hj
X
x;y

χ̄cxχ
c
y ji ¼

1

V
hj
X
x;y

M−1
x;yji: ð19Þ

The absolute value in Eq. (19) is required by the presence of
the Z2 invariance. Indeed, using Eq. (11) one can easily
prove that hPx;yM

−1
x;yi vanishes.

We also consider the fermionic bilinear
P

c χ̄
c
xχ

c
x and its

space average

Ξ ¼ 1

V

X
c

X
x

χ̄cxχ
c
x: ð20Þ

Because of the chiral Z2 symmetry

hΞi ¼ 1

V
hTrM−1i ¼ 0: ð21Þ

The average value of higher powers of Ξ can be directly
related to averages of the scalar order parameter Σ. Indeed,
in the infinite-volume limit, see Appendix A, we have

hΞni ¼ κnNn
χhΣni: ð22Þ

More generally, see Appendix A, the correlations of the
scalar variable σx̃ and of the fermionic bilinear

P
c χ̄

c
xχ

c
x are

directly related, apart from contact terms. This relation
expresses the equivalence of the scalar field σ and of the
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bilinear χ̄χ operator. The presence of contact terms is not
unexpected, because of the different nature of the two
quantities. For instance, ðχ̄χÞNχ vanishes because of the
Grassmannian nature of the variables, while obviously σNχ

is nonvanishing.

B. FSS strategy to determine the critical exponents

We now present the FSS relations we will use in the
numerical analysis. To estimate the correlation-length
exponent ν and the critical value κc, we analyze the
behavior of RG invariant quantities R (such as U4, U2,
and Rξ ≡ ξσ=L, defined in Sec. III A). Close to the critical
point κ ¼ κc, they are expected to behave as

Rðκ; LÞ ≈RðXÞ; X ¼ ðκ − κcÞL1=ν; ð23Þ

in the large-L FSS limit. The functionRðXÞ is universal up
to a multiplicative rescaling of its argument. In particular,
R� ≡Rð0Þ is universal, depending only on the boundary
conditions and aspect ratio of the lattice. Equation (23)
holds up to scaling corrections, decaying as L−ωl , where
ωl > 0 is the leading scaling-correction exponent.
If a RG invariant quantity R̂ is a monotonic function of

X—this is the case of the ratio Rξ ¼ ξσ=L—in the FSS limit
we can express a different RG invariant quantity R as a
function of R̂ simply as

Rðκ; LÞ ¼ FRðbRÞ þOðL−ωlÞ; ð24Þ

where FRðxÞ depends only on the universality class,
boundary conditions and lattice shape, without nonuniver-
sal multiplicative factors. Scaling (24) is particularly
convenient to test universality-class predictions, since it
permits easy comparisons between different models with-
out requiring the tuning of nonuniversal parameters. FSS
analyses based on Eq. (24) have been recently exploited to
characterize the universality classes of two- and three-
dimensional lattice models, including systems with gauge
symmetries, such as Abelian Higgs models and scalar
chromodynamics, see, e.g., Refs. [41–45].
Another independent critical exponent is ησ . It can be

defined in terms of the critical behavior of the two-point
functionGσ defined in Eq. (14). In the thermodynamic limit
and at the critical point, GσðzÞ behaves as

GσðzÞ ∼ jzj−2yσ ; ð25Þ

where yσ ¼ ðd − 2þ ησÞ=2 is the RG dimension of the
scalar field σ. The exponent ησ can be estimated from the
FSS behavior of the scalar susceptibility χσ defined in
Eq. (15), which is expected to scale as

χσðκ; LÞ ≈ L2−ησSðXÞ; ð26Þ

where S is a universal function apart from an overall factor
and a rescaling of the argument. We can also replace X with
a monotonic RG invariant quantity bR, as

χσðκ; LÞ ≈ L2−ησFσðbRÞ; ð27Þ

where FχðbRÞ is universal apart from a multiplicative factor
only. The critical exponent ηf, related to the RG dimension
of the fermionic field yψ ¼ ðd − 1þ ηfÞ=2, can be
obtained from the analysis of the fermionic susceptibility
χχ defined in Eq. (19). In the FSS limit, it satisfies the
scaling relation

χχðκ; LÞ ≈ L1−ηfFχðbRÞ: ð28Þ

IV. LARGE-Nf RESULTS WITHIN QFT

In this section, we report the known leading terms of the
large-Nf expansion of the exponents ν, ησ , and ηf defined
in the previous section. They are given by [14,18,19,28]

1

ν
≈ 1 −

8

3π2
N−1

f þ 4ð27π2 þ 632Þ
27π4

N−2
f ; ð29Þ

ησ ≈ 1 −
16

3π2
N−1

f −
4ð27π2 − 304Þ

27π4
N−2

f ; ð30Þ

ηf ≈
2

3π2
N−1

f þ 122

27π4
N−2

f þ 4

27π6

�
47π2

12
þ 9π2 ln 2

−
189

2
ζð3Þ − 167

9

�
N−3

f : ð31Þ

The 1=Nf expansion allows us to predict also the exponents
of the scaling corrections. First, there are scaling correc-
tions related to the irrelevant fields that appear in the
continuum GN QFT. The correspondent leading scaling-
correction exponent is [21]

ω ¼ 1 −
32

3π2
N−1

f : ð32Þ

There are also scaling corrections that are specific of the
lattice model. The most relevant ones are associated with
the operator that breaks the flavor symmetry. Since this
term is formally of order a in the continuum tree-level
approximation [15], we can predict that the corresponding
correction-to-scaling exponent ωd is 1 for Nf → ∞, i.e.,

ωd ¼ 1þOðN−1
f Þ: ð33Þ

The exponents defined in Eqs. (32) and (33) coincide for
Nf ¼ ∞. For finite values of Nf, they differ (we do not
know which one is the smallest), but, if Nf is large, they
should be still close enough to justify the use of a single
correction to scaling with exponent ω ≈ 1. For small values
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of Nf their difference might be significant. In this case, the
presence of two different correction terms would make the
numerical analysis quite challenging.
It is important to stress that the large-Nf expansions

reported above refer to the model (1) and four-dimensional
spinors (therefore, the total number of fermionic-field
components is 4Nf). This model is equivalent to the
one in which two-dimensional spinors are used and γ1,
γ2, and γ3 are identified with the Pauli matrices. More
precisely, expectation values of the scalar field σ in the
model with Nf four-dimensional spinors are the same as in
the model with 2Nf two-dimensional spinors [39].
Therefore, the large-Nf expansions also hold in the latter
model, provided Nf is replaced by Nf=2.
We finally mention that the critical value κc for the KS

formulation (9) was computed in the limit Nχ → ∞,
obtaining [15,46,47]

κc;∞ ¼ 2

Z
∞

0

dz e−3zI30ðzÞ ¼
ð ffiffiffi

3
p

− 1ÞΓð 1
24
Þ2Γð11

24
Þ2

48π3
ð34Þ

where I0 is the modified Bessel function. Numerically, we
find κc;∞ ¼ 1.010924039…

V. NUMERICAL ANALYSES

We now outline our numerical FSS analyses of the MC
data. We simulate the staggered KS model (9) using the
hybrid MC algorithm, see Appendix B for technical details.
We present results for various numbers of massless flavors,
i.e., for Nf ¼ 4, 8, 12, 16, to check the approach to the
large-Nf limit. They correspond to Nχ ¼ 2, 4, 6, 8 equal
staggered components χcx. Even numbers of Nχ are required
to avoid the sign problem in the MC simulations, see
Appendix B.
The efficiency of the hybrid MC algorithms for fermionic

models significantly decreases when increasing the size of
the lattice: autocorrelation times generally increase with a
large power of L [48]. The computational cost in our MC
simulations appears to approximately increase as L6 in the
critical region, see Appendix B for some details. For this
reason, we performed simulations on relatively small
lattices, up to L ≈ 40, where it was possible to obtain
accurate data. Obtaining precise estimates for bigger lattices
would require a much larger numerical effort. We also
mention that our MC simulations took about 102 years of
CPU-time on a single core of a standard processor.
The FSS analysis of the MC data shows clear evidence

of a continuous chiral transition for all values of Nf
considered. The MC estimates of the RG invariant quan-
tities Rξ, U4, U2 defined Sec. III A, show a clear crossing
point; see, e.g., Fig. 1, where we report Rξ as a function of
κ for Nf ¼ 8.

To determine the critical point κc and the exponent ν, we
fitted Rξ, U4, and U2 to the general FSS relation (23). We
performed fits parametrizingRðXÞ with a polynomial in X,
including only data satisfying L ≥ Lmin, to identify scaling
corrections. We also performed combined fits of pairs of
observables to

Rðκ; LÞ ¼ RðXÞ þ L−ωlRcðXÞ; ð35Þ

fixing ωl ¼ 1 (this should be a reasonable estimate for Nf

large, as discussed in Sec. IV). The results show some tiny
trends both for κc and ν and also some dependence on the
observable considered. Scaling corrections, numerically
large compared to our tiny error bars, are clearly present.
As an example, we report the estimates of κc for Nf ¼ 12,
obtained from the analysis of the data in the range
−0.3 ≤ X ≤ 0.3. The analysis of Rξ provides κc ¼
0.9463ð1Þ; 0.9470ð1Þ, for Lmin ¼ 12 and 16, respectively.
The analysis of U4 gives instead κc ¼ 0.9472ð1Þ;
0.9479ð3Þ. It is clear that the statistical error is negligible
compared with the systematic error due to the scaling
corrections. If we consider the differences of these
numbers as an estimate of the systematic uncertainty,
we end up with κc ¼ 0.9627ð7Þ; 0.9475ð6Þ; 0.9180ð5Þ;
0.8348ð8Þ for Nf ¼ 16, 12, 8, 4, respectively. Our result
for Nf ¼ 4 is in agreement with the estimate reported in
Ref. [29], κc ¼ 0.835ð1Þ.
The estimates of κc appear to approach the Nf → ∞

critical value κc;∞ ≈ 1.0109with increasingNf, cf. Eq. (34),
as shown in Fig. 2. Actually, they appear to converge to the
Nf ¼ ∞ critical value as

κcðNfÞ ¼ κc;∞ þ a1N−1
f þOðN−2

f Þ ð36Þ

with a1 ≈ −0.8.

0.88 0.9 0.92 0.94 0.96
�

0.3

0.4

0.5

R�

L=8
L=12
L=16
L=22
L=30
L=40

N
f
=8

FIG. 1. MC estimates of Rξ versus κ for Nf ¼ 8. The data for
different lattice sizes have a crossing point for κc ≈ 0.92. The
lines correspond to linear interpolations and are drawn just to
guide the eye.
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The same fits that determine κc provide estimates of the
critical exponent ν. They are reported in Table I. Again the
error takes into account the small differences obtained from
the analyses of Rξ, U4, and U2. Also for ν, the differences
among the estimates obtained by analyzing the different
observables are larger than the statistical error of the fits,
indicating the presence of scaling corrections somehow
larger than the statistical errors. As an example we report the
results for Nf ¼ 12 (the corresponding estimates of κc are
reported above). ForLmin ¼ 12, 16 we obtain ν ¼ 1.027ð5Þ,
1.04(1) from the analysis of Rξ, and ν ¼ 1.01ð1Þ, 1.00(1),
from the analysis ofU4, which are somewhat inconsistent at
the level of the (relatively small) statistical errors. The final
estimates of ν are in good agreement with the estimates
(column LN in Table I) obtained by using the large-Nf

expansion (29) to order N−2
f . As an example of the quality

of the observed scaling, in Fig. 3 we plot Rξ versus X ¼
ðκ − κcÞL1=ν forNf ¼ 12. On the scale of the figure, all data
fall on top of a single curve. Similar plots are obtained for
the other values of Nf.
To obtain a better check of the validity of FSS and verify

that scaling corrections are small, we can use relation (24)
which should hold in the FSS limit, without the need of
fixing any normalization. As an example, in Fig. 4 we plot
U4 versus Rξ for Nf ¼ 8. The data sets for different values
of L approach a universal curve with increasing L, as
predicted by the FSS theory. Scaling corrections are very
small on the scale of the figure. However, at a closer look
one observes a systematic downward drift of the order of
the statistical errors on U4 [for L ≤ 30, typical errors on Rξ

are smaller than 10−3, while errors on U4 are Oð10−3Þ].
Analogous plots are obtained forU2, and for other values of
Nf. For each Nf, the data for U4 versus Rξ for L ≥ 16 have

0 0.1 0.2 0.3

N
f

-1

0.8

0.85

0.9

0.95

1

1.05

�

�
c,�=1.0109..

FIG. 2. Estimates of the critical value κc versus N−1
f . They are

fully consistent with the behavior κcðNfÞ ¼ κc;∞ þ a1N−1
f , where

κc;∞ ≈ 1.0109 is the exact result for Nf ¼ ∞, see Eq. (36). The
blue dotted line corresponds to κcðNfÞ ¼ κc;∞ þ a1N−1

f ; a fit of
the data with Nf ¼ 12 and 16 gives a1 ¼ −0.764ð4Þ. The red
dashed line corresponds to κcðNfÞ ¼ κc;∞ þ a1N−1

f þ a2N−2
f ,

where the coefficients were obtained by fitting all data
(χ2=d:o:f: ≈ 0.4): a1 ¼ −0.788ð4Þ and a2 ¼ 0.33ð2Þ.
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FIG. 3. Plot of Rξ versus X ¼ ðκ − κcÞL1=ν for Nf ¼ 12, using
the MC estimates κc ¼ 0.9475 and ν ¼ 1.02.
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FIG. 4. Plot of U4 versus Rξ for Nf ¼ 8. The data clearly
approach a universal FSS curve, as predicted by the FSS
equation (24). The blue straight line represents the large-size
interpolation of the data reported in Appendix C.

TABLE I. Estimates of the universal critical exponents ν, ησ and
ηf , obtained in this paper (MC). We also report the large-Nf

estimates (LN) obtained using the expansions Eqs. (29)–(31). For
the exponent ν we used the direct expansion to order N−2

f ,
obtained by inverting Eq. (29).

Nf

ν ησ ηf

MC LN MC LN MC LN

16 1.00(2) 1.0118 0.94(3) 0.9664 0.00(1) 0.0044
12 1.02(2) 1.0135 0.92(2) 0.9554 0.01(1) 0.0059
8 1.00(2) 1.0136 0.90(3) 0.9333 0.01(1) 0.0092
4 0.99(1) 0.9867 0.83(2) 0.8685 0.03(2) 0.0197
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been interpolated using polynomials. These interpolations
are reported in Appendix C and shown in Fig. 5. The curves
for different values of Nf clearly differ and appear to
converge to a nontrivial large-Nf curve, which is obtained
by performing an extrapolation assuming a 1=Nf correc-
tion. The result of the extrapolation of the curves for Nf ¼
12 and 16 is reported in Fig. 5. An estimate of the error on
the extrapolation can be obtained by considering the
extrapolation that uses the data corresponding to Nf ¼ 8

and 16, or Nf ¼ 8 and 12; the resulting curves differ
slightly, the largest deviations are approximately of the
order of 3% and are observed for Rξ ≈ 1.
We estimate the critical exponent ησ defined in Eq. (25),

by analyzing the data for the scalar susceptibility χσ. We
exploit the FSS relation (27) which does not require any
knowledge of κc and ν, using Rξ, U4 and U2 as arguments.
The comparison of the fit results allows us to estimate the
systematic error, which, again, turns out to be somewhat
larger than the statistical error. In Table I we report the final
estimates. Again we observe a substantial agreement with
the large-Nf estimates obtained using the expansion (30). To
show the quality of the scaling of the scalar susceptibility, in
Fig. 6 we report χσL−2þησ versus Rξ for Nf ¼ 12, using the
final estimate ησ ¼ 0.92. On the scale of the figure, we
observe a very good collapse of the data. Similar plots are
obtained for the other observables and values of Nf.
A similar analysis is used to estimate the critical

exponent ηf. We fit the fermionic susceptibility χχ to
Eq. (28), using Rξ, U4 and U2. In all cases, fits show a
large χ2 and a systematic drift [the systematic deviations are
Oð10−2Þ and significantly larger than the fit statistical error,

which is Oð10−3Þ] towards lower values. The errors on the
final results, reported in Table I, have been computed
conservatively, looking at all different results obtained by
varying the RG quantity used in the fit and the minimum
value of L of the data that have been considered. Again the
final estimates are consistent with the large-Nf predictions.
In Fig. 7 we show the plot of χχL−1þηχ versusRξ forNf ¼ 8.
Scaling corrections are here clearly visible for L ¼ 8.
We also mention that we have checked whether the exact

UðNχÞ symmetry of the KS formulation (9) is spontane-
ously broken at the chiral transition. For this purpose we
analyzed the correlations of local operators that are not
invariant under the UðNχÞ symmetry, such as

Ax ¼ χ̄cxχ
e
x; Bx ¼ χ̄cxχ

e
x

X
hx;x̃i

σx̃; c ≠ e: ð37Þ
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FIG. 5. FSS curves of U4 versus Rξ for Nf ¼ 4, 8, 12, 16, as
obtained by interpolating the data for the largest available lattices,
see Appendix C. The curves are clearly different, confirming that
the universality class of the chiral transition depends on Nf . We
also report (black continuous line) an estimate of the Nf ¼ ∞
curve: it is an extrapolation of the results for Nf ¼ 12 and 16
assuming a linear 1=Nf approach.
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FIG. 6. Scaling plot of the scalar susceptibility χσ defined in
Eq. (15), for Nf ¼ 12. We report χσ=L2−ησ versus Rξ. We use the
estimate ησ ¼ 0.92.
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FIG. 7. Scaling plot of the fermionic susceptibility χχ defined in
Eq. (19), for Nf ¼ 8. We report χχ=L1−ηf versus Rξ. We use the
estimate ηf ¼ 0.01.
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The results (not reported) do not show any evidence of
spontaneous breaking of the global UðNχÞ symmetry at the
chiral transition, which is thus limited to the spontaneous
breaking of the chiral Z2 symmetry (13).
In conclusion, our numerical estimates of the critical

exponents are in substantial agreement with the large-Nf
estimates obtained using the GN QFT. Thus, they provide a
robust evidence that the GN QFT provides the effective
description of the critical behavior of the lattice GN
model (9), with staggered KS fermionic variables and scalar
fields located on the dual lattice. Therefore, the explicitOðaÞ
breaking of the flavor symmetry occurring in the lattice
model is irrelevant at the chiral critical point, where the
global symmetry enlarges to UðNfÞ ⊗ UðNfÞ.
We finally mention that our exponent estimates for Nf ¼

4 are in agreement with those reported in Ref. [29], ν ¼
0.99ð2Þ and ησ ¼ 0.835ð40Þ. Reference [29] also reported
the value U�

4 of U4 at the critical point: U�
4 ¼ 2.304ð24Þ.

The analysis of our data provides a completely consistent
estimate, U�

4 ¼ 2.31ð1Þ. Functional RG results are reported
in Ref. [26]. For both Nf ¼ 4 and 12 their results are
consistent with ours.

VI. CONCLUSIONS

We present a numerical study of a 3D lattice model with
massless fermions and attractive quartic interactions. We
study the critical behavior at the chiral Z2 transition to shed
light on the relation between the lattice model and the
continuum GN QFT, which is usually assumed to provide
the effective description of the critical behavior. In par-
ticular, we study the lattice GN model (9), defined in terms
of Nχ staggered KS fermionic variables and of an auxiliary
scalar field located on the dual lattice sites. The coupling
between the bilinear fermionic operator and the scalar field
is chosen so as to reproduce an attractive quartic interaction
among Nf ¼ 2Nχ Dirac fermion fields in the formal
continuum limit. The lattice model is only invariant under
global UðNχÞ transformations. Thus, the main issue is
whether the full flavor symmetry is recovered in the critical
limit, i.e., whether the long-distance behavior shows an
enlarged UðNfÞ ⊗ UðNfÞ symmetry. In field-theory terms,
this would imply that the lattice operators that break the
flavor symmetry are irrelevant in the critical theory. This is
clearly the case for large values of Nf (as we discuss in
Sec. IV, for Nf ¼ ∞ the usual formal argument that these
terms are of order a, implies that their RG dimension is−1).
However, one cannot exclude that they become relevant for
small values of Nf.
We present FSS analyses of MC simulations of the lattice

GN model (9). We consider massless fermions with Nχ

components, considering Nχ ¼ 2, 4, 6, 8, which would
correspond to Nf ¼ 4, 8, 12, 16. A detailed FSS analysis of
the numerical data on lattices of size L ≤ 40 allows us to
determine several critical exponents. We compare the

results with those obtained using the GN QFT with
Lagrangian (1) in the large-Nf limit, finding a substantial
agreement for all values of Nf considered. For Nf ¼ 4 we
also confirm the results of Ref. [29]. Our results confirm
that the GN QFT describes the critical behavior of the
lattice GNmodel (9) at the chiralZ2 transition, even though
the interactions explicitly break the flavor UðNfÞ ⊗ UðNfÞ
symmetry of the GN field theory.
The numerical analysis we have presented here indicates

that the main source of error on the estimates of the critical
quantities is systematic. Therefore, to improve the quality
of the final results, it would be crucial to significantly
increase the lattice sizes with comparable accuracy.
However, the hybrid MC dynamics shows a strong critical
slowing down, probably also related to the fact that we are
considering the dynamics of a scalar field in a massless
fermionic background. Thus, increasing L requires a large
computational effort. It is difficult to estimate how large L
should be to obtain a significant improvement, as we have
no direct information on the leading correction-to-scaling
exponent ωl. For Nf ¼ ∞, we have ωl ¼ 1, but we cannot
exclude that ωl is significantly smaller for the values of Nf

investigated.
We finally mention that interesting extensions of this

study on lattice realizations of 3D quantum field theories
with fermions should include Abelian and non-Abelian
gauge interactions, as they are expected to emerge in
several condensed-matter systems, see e.g., Refs. [49–51].

APPENDIX A: FERMIONIC CONDENSATE

In this appendix we derive some relations between
correlation functions of the fermionic condensate and of
the scalar field. To prove Eq. (22), we start from the average
value of a function of the σ and of the fermionic variables:

hfi ¼ 1

Z

Z
½dχ�½dχ̄�½dσ�e−Hsðχ̄;χ;σÞfðσ; χ; χ̄Þ: ðA1Þ

Then, we perform the following change of variables:

σx̃ → σ 0̃x ¼ σx̃ þ δx̃;z̃ϵ; ðA2Þ

where z̃ is a dual lattice point. Obviously, the integral
appearing in Eq. (A1) is invariant under the change of
variables. If we write fðσ0; χ; χ̄Þ ¼ fðσ; χ; χ̄Þ þ δz̃fϵ we
obtain the identity

−
1

8

X
hx;z̃i

X
c

hχ̄cxχcxfi − κNχhσz̃fi þ hδz̃fi ¼ 0: ðA3Þ

If we sum over z̃ and define δf ¼ 1
V

P
z̃ δz̃f, we obtain

hΞfi − κNχhΣfi þ hδfi ¼ 0: ðA4Þ
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Now we use fðσ; χ; χ̄Þ ¼ ΞnΣm, obtaining

hΞnþ1Σmi ¼ κNχhΞnΣmþ1i −m
V
hΞnΣmi: ðA5Þ

This relation immediately implies that

hΞni¼ðκNχÞnhΣni− 1

V

Xn−1
m¼1

mðκNχÞmhΞn−1−mΣm−1i: ðA6Þ

For even values of n, repeated use of relation (A5) gives

hΞni ¼ ðκNχÞnhΣni þ
Xn=2−1
m¼0

anmðκNχÞmþn=2

Vn=2−m hΣ2mi; ðA7Þ

where anm are numerical coefficients. Explicitly we obtain

hΞ2i ¼ ðκNχÞ2hΣ2i − κNχ

V
;

hΞ4i ¼ ðκNχÞ4hΣ4i − 6
ðκNχÞ3

V
hΣ2i þ 3

ðκNχÞ2
V2

;

hΞ6i ¼ ðκNχÞ6hΣ6i − 15
ðκNχÞ5

V
hΣ4i

þ 45
ðκNχÞ4
V2

hΣ2i − 15
ðκNχÞ3
V3

: ðA8Þ

Relation (A7) proves Eq. (22) in the infinite-volume limit.
Size corrections decay as 1=V.
It is easy to generalize these expressions to correlation

functions. For each point of the dual lattice x̃ we define the
local condensate

Ξx̃ ¼
1

8

X
c

X
hxx̃i

χ̄cxχ
c
x; ðA9Þ

where the sum is over the eight lattice points x that
surround the dual-lattice point. Relation (A3) becomes

hΞx̃fi ¼ κNχhσx̃fi − hδx̃fi: ðA10Þ

If we now take

f ¼ Ξx̃1…Ξx̃nσx̃nþ1
…σx̃nþm

; ðA11Þ

and proceed as before, we obtain the local analogue of
Eq. (A7). If all points are distinct, i.e., we disregard contact
contributions, we have simply

hΞx̃1…Ξx̃ni ¼ κnNn
χhσx̃1…σx̃ni: ðA12Þ

APPENDIX B: MONTE CARLO SIMULATIONS

We simulate the lattice model with Hamiltonian (9) using
the hybrid MC algorithm [15,52]. The fundamental fields
are Nχ ¼ Nf=2 (real) bosonic fields ϕc

x defined on the
lattice sites, the scalar field σx̃ and its conjugate momentum
Πx̃, defined instead on the dual lattice [53]. The hybrid MC
Hamiltonian is

HHMC ¼
X
x;y

XNχ

c¼1

1

2
ϕc
xðMMtÞ−1x;yϕc

y

þ κNχ

2

X
x̃

σ2x̃ þ
1

2

X
x̃

Π2
x̃: ðB1Þ

For even values of Nχ , this formulation is equivalent to the
original one with Hamiltonian (9). Indeed, the integration of
the fields ϕc

x provides a factor ½detðMMtÞ�Nχ=2 ¼ jdetMjNχ ,
and therefore Eq. (12). Note that for odd Nχ this algorithm
does not sample the correct probability distribution of the
staggered fermions lattice system because of the presence of
a sign problem [15].
In the simulations, we use a second-order minimum-

norm symplectic integrator for the update of the scalar field
σx (the integrator 2MN, as defined in Ref. [54]). We divide
each hybrid MC trajectory into four elementary integration
steps, whose length has been chosen so that the acceptance
is approximately equal to 0.8. Note that this prescription
fixes the number of inversions required to evaluate a single
trajectory to 4Nχ . The total length of the hybrid MC
trajectories is approximately 1.2–1.6, depending on the
lattice size (the larger the size, the smaller the integration
step and the trajectory). We observe that the average
number of conjugate gradient iterations required for a
single inversion increases approximately as L for fixed
inversion accuracy. As also reported in the paper, the
algorithm is subject to a severe slowdown for large
volumes. The computer time required to obtain results
with the same uncertainty increases approximately as L6 at
the critical point (see Ref. [48] for a general discussion of
the efficiency of the hybrid MC method).
We perform a measurement of the observables after each

hybrid MC update. Indeed, since most of the computer time
is spent in the update, especially for large values of Nχ , the
increase of the frequency of the measurements does not have
any significant impact on the simulation time. To compute
errors, we used standard blocking and jackknife techniques.
Binnings of 103 measures were always sufficient to decor-
relate completely our data. The statistics collected for the
largest sizes are of the order of 1.8 × 106; 8 × 105; 2.4 ×
106; 5.6 × 105 measures, for ðL ¼ 30; Nf ¼ 4Þ, ðL ¼ 40;
Nf ¼ 8Þ, ðL ¼ 30; Nf ¼ 12Þ, and ðL ¼ 40; Nf ¼ 16Þ,
respectively.

BONATI, FRANCHI, PELISSETTO, and VICARI PHYS. REV. D 107, 034507 (2023)

034507-10



APPENDIX C: PARAMETRIZATION OF SOME
UNIVERSAL FSS CURVES

In this appendix, we report the interpolation of the
universal FSS curves of the Binder parameter U4 versus
Rξ ¼ ξ=L, cf. Eq. (24), i.e., U4 ¼ FUðRξÞ, for the available
value of Nf. In all cases the precision is approximately
0.5% in the considered interval.
For Nf ¼ 16, the interpolation of the numerical data for

the largest lattice sizes (for L ≥ 16 there is no evidence of
scaling corrections) is given by

FUðxÞ ≈ 2.99875þ 0.37513xþ 1.72310x2 − 28.55675x3

þ 62.07711x4 − 61.03640x5 þ 30.63879x6

− 7.23447x7 þ 0.54368x8; ðC1Þ

which reproduces the large-L behavior of the data in the
range 0.35≲ x≲ 1.3.

For Nf ¼ 12, an analogous procedure yields

FUðxÞ≈ 3.04445−1.84745xþ 21.69942x2− 111.26622x3

þ 241.48614x4− 280.85629x5þ 184.32165x6

− 64.48946x7þ 9.36899x8; ðC2Þ

which is again valid in the interval 0.35≲ x≲ 1.3.
For Nf ¼ 8, we obtain (expression valid for

0.3≲ x≲ 1.3)

FUðxÞ ≈ 2.97785þ 0.67404xþ 0.57176x2 − 39.62921x3

þ 108.87310x4 − 135.91181x5 þ 91.11470x6

− 31.88431x7 þ 4.58106x8; ðC3Þ

while, for Nf ¼ 4, we have (for 0.35≲ x≲ 0.9)

FUðxÞ ≈ 2.99015þ 1.09675x − 6.49461x2 − 6.12838x3

− 16.68904x4 þ 173.36003x5 − 334.82353x6

þ 266.46361x7 − 78.55113x8: ðC4Þ
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