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We investigate the structure of confining and deconfining phases in SU(2) lattice gauge theory via
persistent homology, which gives us access to the topology of a hierarchy of combinatorial objects
constructed from given data. Specifically, we use filtrations by traced Polyakov loops, topological densities,
holonomy Lie algebra fields, as well as electric and magnetic fields. This allows for a comprehensive picture
of confinement. In particular, topological densities form spatial lumps which show signatures of the classical
probability distribution of instanton-dyons. Signatures of well-separated dyons located at random positions
are encoded in holonomy Lie algebra fields, following the semiclassical temperature dependence of the
instanton appearance probability. Debye screening discriminating between electric and magnetic fields is
visible in persistent homology and pronounced at large gauge coupling. All employed constructions are
gauge-invariant without a priori assumptions on the configurations under study. This work showcases the
versatility of persistent homology for statistical and quantum physics studies, barely explored to date.
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I. INTRODUCTION

Many nonperturbative phenomena are driven by topo-
logical configurations or rather their density, or are accom-
panied by qualitative changes in the latter. This makes
topology changes an ideal probe for investigating the
mechanisms and signatures of these phenomena, ranging
from (topologically driven) phase transitions to nonpertur-
bative scalings as seen in the presence of topological
tunneling effects in the anharmonic oscillator. A prominent
and important example is quantum chromodynamics
(QCD), whose confinement-deconfinement phase transi-
tion is accompanied by a rapid change in the topological
density, and anomalous chiral symmetry breaking is closely
related to instantons—stable, classical (minimal-action)
configurations. Topological confinement mechanisms have
been suggested, based on topological defects in QCD such
as vortices and monopoles. While not being finite-action
configurations in QCD, monopoles and vortices naturally

emerge as constituents of instantons. For the discussion of
finite temperature instantons (calorons), see, e.g., [1–4].
More generically, instanton constituents of different topo-
logical types emerge on general compact manifolds [5–8],
which may be seen as a simulation with a given topological
density.
At finite temperature, instanton-dyons interact with

holonomies (Polyakov loops) [2–4], and have been iden-
tified in pure lattice gauge theory and lattice QCD [9–13].
Ensembles of instanton-dyons can often readily explain
confinement [14–19], even for theories with exceptional
gauge groups exhibiting a trivial center such as G(2)
[20–22], yet consistently giving rise to center symmetry
breaking for theories with nontrivial center. Local corre-
lations exist between topological hotspots and values of the
Polyakov loop trace [23]. Moreover, instantons and instan-
ton-dyons can be linked to spontaneous chiral symmetry
breaking in QCD if sufficiently dense [24–26].
Evidently, phase transitions go hand in hand with a

topology change in the vacuum manifold, and more
generally that of equipotential hypersurfaces [27–30].
Persistent homology has been developed to detect topo-
logical structures in finite, noisy data [31], accompanied
by profound mathematical works on their stability [32–34]
and benign statistical behavior [35,36]. From the data, a
hierarchy of combinatorial objects is constructed, whose
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topology can be algorithmically computed using homol-
ogy. The hierarchical information provides a means to
discriminate topological structures according to their domi-
nance (persistence). In light of topology changes of
equipotential hypersurfaces in the realm of phase transi-
tions, emergent topological structures have been searched
for numerically via persistent homology in configuration
space [37]. Since the scalability of this approach to
larger systems is unclear, studies of a variety of condensed
matter and spin systems have since been focusing on
persistent homology as sensitive observables in their
own right [38–45]. Using a specifically tailored filtration
constructed from plaquettes, center vortices have been
probed in SU(2) lattice gauge theory [46]. Effective
QCD models have also been investigated [47,48].
Further persistent homology applications in physics include
nonthermal fixed points [49], quantum entanglement [50],
physical chemistry and amorphous materials [51,52],
the cosmic web [53–55], and non-Gaussianities in cosmic
microwave background fluctuations [56,57]. Quantum
algorithms for the computation of persistent homology
have also been developed [58]. Furthermore, topological
neural network layers can be constructed using persistent
homology [59,60].
Typically, the study of classical field configurations in

lattice gauge theories requires the application of cooling/
smoothing techniques, as well as sophisticated gauge-
fixing and gauge-projection procedures [61]. To identify
instanton-dyons on the lattice, overlap fermions may be
used as probes [62]. In the present work, we set out to study
finite-temperature pure SU(2) gauge theory on a four-
dimensional Euclidean lattice via observables constructed
from persistent homology. All of the investigated order
parameters are gauge-invariant. In addition, our approach is
not biased towards particular classical field configurations.
The Hybrid/Hamiltonian Monte Carlo (HMC) algorithm
[63] is employed to generate samples. To relate structures
occurring in the full quantum theory to classical field
configurations, a comparison with cooled configurations
is provided. Using persistent homology, we investigate
sublevel and superlevel set cubical complex filtrations
of different gauge-invariant local observables such as
Polyakov loop traces, topological densities, Polyakov loop
algebra element norms, as well as electric and magnetic
field strengths. This allows for diverse insights into the
(non)local structures occurring at different couplings;
topological densities form spatial lumps instead of string-
like structures, approximately invariant under cooling in the
confined phase and thus (near) classical. Probabilistic
predictions for the appearance of instantons and instan-
ton-dyons are met by persistent homology quantifiers.
Debye screening discriminates between spatial structures
of electric and magnetic fields. The identification of the
approximate critical coupling is facilitated by the

simultaneous appearance of qualitative changes across
persistent homology observables.
This paper is organized as follows. We review relevant

aspects of lattice gauge theory calculations as well as the
Polyakov loop trace as the common confinement order
parameter in Sec. II. Section III deals with the persistent
homology of different Polyakov loop descriptors, and
begins with a description of (filtered) cubical complexes
and persistent homology. Results for the traced Polyakov
loop filtration, the Polyakov loop topological-density
filtration, and the so-called angle-difference filtration
of Polyakov loop-algebra element norms are discussed.
In Sec. IV, we investigate filtrations of traced electric and
magnetic field strengths, as well as the topological density.
Finally, we conclude and issue an outlook in Sec. V.

II. ORDER PARAMETERS FROM
LATTICE CALCULATIONS

We provide a brief description of our lattice setup in
Sec. II A. In Sec. II B, we discuss standard order parameters
for the confinement-deconfinement phase transition, based
on the Polyakov loop.

A. Prerequisites

We consider a four-dimensional Euclidean lattice with
N3

σ × Nτ sites and periodic boundary conditions in all
directions. We denote the set of all lattice sites by Λ and
the spatial N3

σ lattice given by the coordinates ðnx; ny; nz; 0Þ
by Λσ. Throughout this work, we fix Nσ ¼ 32 and Nτ ¼ 8,
but aim to investigate different and larger lattice geometries
as well as conduct a detailed analysis of the Nτ dependence
in the future.
The gauge degrees of freedom are described in terms

of SU(2)-valued links denoted as UμðxÞ. Under a local
gauge transformation VðxÞ, links transform as UμðxÞ ↦
VðxÞUμðxÞV†ðxþ μ̂Þ. With β the inverse coupling squared
and the plaquettes UμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU†

μðxþ ν̂Þ×
U†

νðxÞ, the Wilson gauge action reads

S½U� ¼ β

2

X
x∈Λ

X
μ<ν

Tr½1 −UμνðxÞ�: ð1Þ

From lattice renormalization group arguments, close to
the critical point a linear relation exists between β and
the temperature [64]. We evaluate observables at 16 evenly
spaced points ranging from β ¼ 1.5 to β ¼ 3.0.
Throughout this paper, results are given in lattice units.
Field configurations UμðxÞ distributed according to
expð−S½U�Þ are generated and subsequently further decor-
related using the standard HMC algorithm. Details on the
sampling procedure are described in Appendix A 1. All
expectation values given in this work are computed as
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averages of 100 samples for each β. No gauge fixing is
applied during sampling.
In order to understand the occurring structures in relation

to ultraviolet fluctuations, we repeatedly compare with
results from cooled samples. These are obtained by
applying the standard Wilson flow [65], which removes
fluctuations by numerically solving a gradient flow equa-
tion that minimizes the Wilson action defined in Eq. (1),
thereby smoothing the configurations. Further details of our
cooling setup can be found in Appendix A 2.

B. Confinement in Polyakov loops
and their effective potential

Winding around the periodic-time direction, the
Polyakov loop

PðxÞ ¼ P
YNτ

τ¼1

U4ðx; τÞ; ð2Þ

whereP indicates path ordering, provides a sensitive order
parameter for confinement. Related to the free energy
of static test quarks interacting via gluons, of particular
interest is its trace [66],

PðxÞ ¼ 1

2
TrPðxÞ; ð3Þ

as well as the expectation value of its absolute volume
average,

L ¼ 1

N3
σ

�����
X
x∈Λσ

PðxÞ
����
�
: ð4Þ

In order to account for the restoration of center symmetry
for Polyakov loop observables in the statistical limit, for
their evaluation we augment our Monte Carlo ensembles by
adding duplicate samples with PðxÞ ↦ −PðxÞ.
In Fig. 1(a) we display two-dimensional single-sample

slices of PðxÞ for three different values of β, of configu-
rations with and without cooling applied. Throughout
β-values, uncooled samples show many fluctuations on
small-length scales. For β ¼ 2.5 and β ¼ 3.0, a bias
towards nonzero PðxÞ-values can be recognized. A com-
parison with cooled variants shows that for β ¼ 1.5, barely
any structural changes can be observed. For β ¼ 2.5 and
β ¼ 3.0, large domains of like-signed PðxÞ values are
visible after cooling.
Under a center transformation, z ∈ ZðSUð2ÞÞ ¼ f�1g,

the traced Polyakov loop transforms nontrivially as
PðxÞ ↦ zPðxÞ. Unbroken center symmetry requires
L ¼ 0. If center symmetry is spontaneously broken,
L > 0 is possible. This effect shows up in LðβÞ, see
Fig. 1(b). LðβÞ ≈ 0 below β ≃ 2.3 in our calculations,
while for β ≳ 2.3 we find LðβÞ > 0. This signals

spontaneously-broken center symmetry above β ≃ 2.3.
We identify βc ≃ 2.3 as the (approximate) critical inverse
coupling squared,1 similar to previous works on critical
properties of SU(2) lattice gauge theory on lattices of
comparable size to ours [64,67]. This explains the struc-
tures visible in Fig. 1(a) above βc, spontaneous symmetry
breaking is responsible for the formation of like-signed
PðxÞ domains, which in particular show up in cooled
configurations.
All this can be attributed to a second-order phase

transition manifesting in the effective Polyakov loop
potential VðLÞ. We schematically display VðLÞ in Fig. 1(c),
where contributions from a leading-order large-coupling
expansion and contributions from the SU(2) Haar measure
(Vandermonde determinant) are taken into account [66].
Linearly mapping inverse couplings squared to temper-
atures, VðLÞ has a global minimum at L ¼ 0 below βc.
L ¼ 0 corresponds to an infinite energy cost to excite a
single static test quark. It thus becomes impossible to excite
states which transform nontrivially under gauge trans-
formations, indicating confinement. At βc, the minimum
becomes degenerate, leading for β > βc to two global
minima at L ≠ 0. Spatially, this is reflected by domain
formation [68]. For uncooled and cooled configurations,
the probability densities for local PðxÞ-values displayed in
Fig. 1(d) agree with this phenomenology. Including quarks,
similar probability densities have been computed in [69];
the phase transition smears out to a crossover at finite
baryon densities.
Correlations of multiple traced Polyakov loops are

related to the free energy of static multiquark configura-
tions and similarly make up interpretable confinement
order parameters [66]. In Appendix C 1, we discuss two-
point function results for Polyakov loop correlations
computed from the lattice data.
Nontrivial topology is related to nontrivial holonomies

in the Polyakov loop. For jxj → ∞, the Polyakov loop is
diagonalizable with

lim
jxj→∞

PðxÞ ¼
�
expð2πiμ1Þ 0

0 expð2πiμ2Þ

�
; ð5Þ

with μ1 ≤ μ2 and μ1 þ μ2 ¼ 0. The holonomies μ1, μ2 are
related to the masses 8π2ðμ2 − μ1Þ and 8π2ð1þ μ1 − μ2Þ of
SU(2) instanton-dyons, two of which form a KvBLL
caloron [2–4]. Instanton-dyons as well as calorons are
(anti)self-dual solutions to the classical Yang-Mills equa-
tions; FμνðxÞ ¼ �F̃μνðxÞ, i.e., EðxÞ ¼ �BðxÞ. Holonomy
potentials computed from instanton-dyon ensembles can

1Note that the value of βc reported in the literature based on the
computation of the Binder cumulant is slightly larger. A precise
determination of βc is not the aim of this work, and we merely use
the point where LðβÞ becomes nonzero as a rough approximation.
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approximately account for the Polyakov loop effective
potential VðLÞ [19,21].
Without cooling, calorons and instanton-dyons are

specific field configurations difficult to detect in lattice
data. However, the cooling process also unavoidably

removes relevant physical information. This prompts the
question whether persistent homology is able to detect
meaningful signatures of the underlying topology in the
raw data.

III. GEOMETRIC STRUCTURES IN POLYAKOV
LOOPS FROM PERSISTENT HOMOLOGY

Persistent homology provides a means to algorithmically
deduce topological structures from potentially noisy
numerical data, including with persistence a measure
of their dominance. In this section, we utilize persistent
homology of different types of filtrations constructed from
Polyakov loops and related algebra fields in order to
unravel relevant (de)confinement features. The latter
include the formation of spatial lumps of topological
density instead of extended, string-like configurations,
accompanied by probabilistic evidence for the occurance
of calorons and instanton-dyons. We stress that all of the
involved constructions are gauge-invariant without a priori
assumptions on the type of excitations under study.
We begin in Sec. III A with an intuitive introduction to

cubical complexes and persistent homology. In Sec. III B
we discuss persistent homology results of the sublevel set
filtration of topological densities computed from Polyakov
loops, first introducing the latter. Section III C is devoted to
signals of the confinement phase transition in the so-called
angle difference filtration applied to Polyakov loop algebra-
element norms.

A. A primer on persistent homology via sublevel
sets of the traced Polyakov loop

We introduce concepts of persistent homology with
the example of the traced Polyakov loop field PðxÞ ¼
ð1=2ÞTrPðxÞ and its sublevel set filtration of cubical
complexes.2 Technical details of mathematical construc-
tions are given in Appendix B. For more elaborate
introductions to persistent homology and computational
topology, we refer to the literature [31,70,71], similarly for
general introductions to algebraic topology [72,73].
The sublevel sets MPðνÞ of PðxÞ displayed in Fig. 1(a)

are subsets of the spatial lattice,

MPðνÞ ≔ P−1ð−∞; ν� ¼ fxjPðxÞ ≤ νg: ð6Þ

Superlevel sets are defined as

NPðνÞ ≔ P−1½ν;∞Þ ¼ fxjPðxÞ ≥ νg: ð7Þ

The lattice Polyakov loop PðxÞ approximates the con-
tinuum Polyakov loop in a cube3 xþ ½−1=2; 1=2�3.

FIG. 1. (a) Slices at constant x1 of the Polyakov loop PðxÞ
without cooling applied (top row) and with cooling applied
(bottom row), at different β. (b) Absolute value of the volume-
averaged Polyakov-loop expectation value versus β with
βc ≃ 2.3 indicated (grey, dashed line). Errors are smaller than
marker size. (c) Schematic, effective Polyakov loop potential in
the confined phase (solid line), at the phase transition (dashed-
dotted line) and in the deconfined phase (dashed line), derived
from leading-order contributions of a strong coupling expan-
sion and Haar measure (Vandermonde determinant) contribu-
tions [66]. (d) Probability densities of local Polyakov loop PðxÞ
values, for uncooled (left) and cooled configurations (right).
Data is given in lattice units.

2The values of PðxÞ scattering evenly around zero, we expect
similar results for superlevel instead of sublevel sets.

3To clarify notations:xþ ½−1=2; 1=2�3 ¼ fy ∈ R3jy − x ∈
½−1=2; 1=2�3g.
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The (point-set) topology of MPðνÞ and NPðνÞ merely
amounting to point counting, we seek to construct spaces
reflecting the cubical structures while still corresponding to
MPðνÞ, NPðνÞ.

1. Filtered cubical complexes

Particularly suitable for the algorithmic computation of
topological descriptors of pixelized data are cubical com-
plexes. Let C be the full cubical complex, consisting of one
cube xþ ½−1=2; 1=2�3 of top dimension (here, three) for
each spatial lattice point x. Every 3-cube comes with all its
faces, edges and vertices. In fact, it is a defining property of
cubical complexes to be closed under taking boundaries of
any of its top- and lower-dimensional cubes. The boundary
of a 3-cube is the union of all its six faces, the boundary of a
2-cube (face) is the union of its four boundary edges, the
boundary of a 1-cube (edge) consists of its two endpoints,
and the boundary of a 0-cube (point) is empty. The
boundary operator ∂ provides the map from a cube to its
boundary.
How can we equip the full cubical complex C with the

information contained in P? We inductively construct a
suitable map P̃∶C → R. Any 3-cube C ∈ C has a unique
lattice point x at its center. We set P̃ðCÞ ≔ PðxÞ. Any
2-cube D ∈ C is contained in the boundary of two 3-cubes.
For all 2-cubes D ∈ C we set

P̃ðDÞ ≔ minfP̃ðCÞjD ∈ ∂C;C ∈ C 3-cubeg: ð8Þ

Similarly, any 1-cube is contained in the boundaries of four
2-cubes, any 0-cube is contained in the boundaries of six
1-cubes. Equation (8) is applied to all 1-cubes instead of
2-cubes with values induced from 2-cubes, and finally to
all 0-cubes with values induced from 1-cubes, until P̃ is
defined on all cubes of all dimensions in C. Sublevel sets
of P̃,

CPðνÞ ≔ P̃−1ð−∞; ν� ¼ fC ∈ CjP̃ðCÞ ≤ νg; ð9Þ

are closed under taking boundaries, constituting cubical
complexes which correspond to pixelizations of the
lattice sublevel sets MPðνÞ. We define superlevel set
cubical complexes as

DPðνÞ ≔ C−Pð−νÞ; ð10Þ

corresponding to the lattice superlevel sets NPðνÞ.
All these constructions work analogously in higher
dimensions.
The sublevel set cubical complexes CPðνÞ form a

filtration of cubical complexes,

CPðνÞ ⊆ CPðμÞ; whenever ν ≤ μ: ð11Þ

With its construction, this filtration is called the lower-star
filtration. Analogously, a filtration of superlevel set cubical
complexes occurs,

DPðνÞ ⊇ DPðμÞ; whenever ν ≤ μ: ð12Þ
The lattice Λ consisting of finitely many points, these
filtrations consist of only finitely many distinct complexes.

2. Persistent homology: holes in complexes

Generically, the cubical complexes CPðνÞ do not contain
a cube for every spatial lattice point. Holes appear,
described by homology groups. Their elements, homology
classes, are constructed comparably to homotopy classes
and capture similar topological information [72], but are
algebraically much better accessible. In particular, homol-
ogy classes are also homotopy invariant, i.e., continuous
deformations of holes leave homology classes invariant.
For an impression of low-dimensional homology classes,
we refer to Fig. 2(a). Connected components are described
by dimension-zero homology classes. Planarlike holes,
circumscribed by a circle which cannot be continuously
deformed into a point within the cubical complex, belong to
the dimension-one homology group. The dimension-two
homology group captures enclosed volumes, described by a
2-sphere. Higher-dimensional homology classes corre-
spond to analogous higher-dimensional holes.
As in cubical complex filtrations the filtration parameter

ν is swept through, homology classes may be born and die
again. Persistent homology captures this. In Fig. 2(b) we
indicate two scenarios for superlevel sets of exemplary
functions on a surface. The left function shows three
distinct peaks. For ν larger than the maximum value of
the highest peak the cubical complex is empty with trivial
homology. As ν is lowered to exactly the latter value

FIG. 2. (a) Cubical complexes giving rise to homology classes of
dimensions zero to two from left to right. The enclosed volume in
dimension two is indicated in red. (b) Schematically, dimension-
zero and dimension-one persistent homology classes of superlevel
sets of a function with a two-dimensional domain. Exemplary
superlevel set cubical complexes are indicated by different colors;
birth and death of corresponding persistent homology classes are
indicated by b and d, respectively.
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(indicated in Fig. 2(b), left panel, by the green plane), a
zero-dimensional homology class is born, with birth b ¼ ν.
Lowering ν further (blue plane), the single 2-cube turns
into an accumulation of 2-cubes, nothing changing in
homology. At the ν-value indicated by the pink plane, a
second zero-dimensional homology class is born with the
second peak showing up in the complex. Again, for the first
homology class nothing changes. At the ν-value indicated
by the red plane, the two accumulations of 2-cubes merge
into one. The first homology class dies with d ¼ ν its death.
We call p ¼ d − b its persistence. The second homology
class dies later upon merging with the third peak (not
indicated). Turning to the right function in Fig. 2(b), for
ν-values larger than the one indicated by the blue plane,
different dimension-zero homology classes are born and die
upon merging with each other. For ν corresponding to the
blue plane, a circular structure surrounding a hole appears
in the corresponding complex; a one-dimensional homol-
ogy class is born. For ν between the pink and red planes, the
hole disappears, getting fully filled by 2-cubes. The homo-
logy class dies.
In higher dimensions, dimension-zero homology classes

can still be imagined as independent connected compo-
nents. Dimension-one homology classes correspond to
structures such as approximate circles or empty tori
surrounded by cubes. Dimension-two homology classes
are empty 3-volumes.
The lth persistence diagram DgmlðCPÞ consists of birth-

death pairs ðb; dÞ, one for each independent homology
class of dimension l in a given filtration such as CP. Betti
numbers βlðνÞ specify the number of independent
l-dimensional homology classes in CPðνÞ. They can be
obtained from DgmlðCPÞ as

βlðνÞ ¼ #fðb; dÞ ∈ DgmlðCPÞjb ≤ ν < dg: ð13Þ

From DgmlðCPÞ we may also obtain statistics such as
the number of independent homology classes with a given
birth b, BlðbÞ, or the number of independent homology
classes with a given persistence p, PlðpÞ. Note that
homology classes can have infinite persistence. For in-
stance, the full cubical complex C is one connected
component. Also, periodic boundaries turn the full complex
C into a 3-torus which has three independent dimension-
one and three independent dimension-two homology
classes, and even a one-dimensional homology group in
dimension three.
Statistically evaluating expectation values, throughout

this work persistent homology quantifiers are computed
from individual samples and subsequently averaged. The
investigated persistent homology descriptors can be con-
sistently defined in a statistical setting with limit theorems
for large-volume asymptotics existing [35,36]. Well-
defined thermodynamic limits actually require the latter.
Importantly, persistence diagrams are stable against

small perturbations of the input function P [32–34], which
facilitates the numerics. We compute persistent homology
of cubical complexes with periodic boundary conditions
using the Python and C++ interfaces of the versatile
computational topology library GUDHI [74].

3. Traced Polyakov loop results

Numerical Betti number distributions of different dimen-
sions of the sublevel set filtration CPðνÞ are displayed in
Fig. 3 for configurations without and with cooling applied,
for all inverse couplings squared from β ¼ 1.5 to β ¼ 3.0.
All Betti number distributions show a distinct peak, whose
position consistently shifts to larger filtration parameters ν
with increasing homology class dimensions. This is char-
acteristic to sublevel set filtrations; lowest in the filtration,
connected components form in order to merge into

FIG. 3. Betti number distributions of dimensions zero to two for the sublevel set filtration of PðxÞ ¼ TrPðxÞ=2 for (a) uncooled and
(b) cooled configurations.
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extended circular structures at larger filtration parameters,
similar to Fig. 2(b). Typically, enclosed voids form out of
pitted, hollow networks of cubes with many dimension-one
homology classes dying in order to form a dimension-two
homology class. This behavior usually continues to higher
dimensions.
Without cooling, we observe from Fig. 3(a) that Betti

number distributions approximately lay on top of each
other for β ≲ βc ≃ 2.3. For β ≳ βc and throughout dimen-
sions, peaks diminish in height with β and broaden. In
particular, in dimensions zero and two, an additional bump
occurs on the peak side pointing towards filtration param-
eter zero. As seen in Fig. 3(b), cooling enhances these
effects. The peaks already decrease in height for β > 1.8,
with moderately constant peak positions up to β ≃ 2.2. For
β ≳ 2.3, the peak splits up in two. Qualitatively, dimension-
zero and dimension-two Betti number distributions seem to
be mirrored at ν ¼ 0.
These observations can be understood from the effective

Polyakov loop potential VðLÞ, see Fig. 1(c). Below
βc ≃ 2.3, the Z2 center symmetry of L is unbroken: the
distribution of local PðxÞ-values is symmetric around zero
and approximately constant, see Fig. 1(d). The constancy of
uncooled βlðνÞ for β ≲ βc is a manifestation of this. Also,
the qualitative mirroring between dimension zero and
dimension two reflects this; in sublevel set filtrations, a
minimum shows up as a dimension-zero homology class. A
maximum shows up as a dimension-two homology class.
Both are expected to occur comparably likely if the Z2

symmetry is unbroken.
Above βc, the center symmetry is spontaneously broken,

see Fig. 1(a); individual samples acquire nonzero volume
averages L. Center symmetry is restored only in the
statistical limit. In Betti number distributions, the appear-
ance of additional bumps without cooling or two peaks
with cooling resembles the spontaneous symmetry break-
ing behavior and statistical restoration of center symmetry.
The decrease in the peak’s heights can be understood from
a homogenization of PðxÞ above βc; structures become
fewer. For cooled configurations, effects are enhanced due
to less ultraviolet fluctuations.
Domains of like-signed Polyakov loops forming, the

behavior is consistent with a percolation interpretation of
deconfinement [68]. Beyond that, can we identify topo-
logical excitations?

B. Sublevel sets of topological densities
from Polyakov loops

Topological excitations such as calorons are charac-
terized by nontrivial topological densities. However, in
typical Monte Carlo samples, topological densities con-
tain strong signatures of ultraviolet fluctuations and of
the lattice discretization. Effectively averaging temporal
fluctuations, Polyakov loops reveal less such fluctua-
tions. We consider in this section the sublevel set

filtration of the Polyakov loop topological density on
the lattice,

qPðxÞ ≔
1

24π2
εijkTr½ðP−1ðxÞ∂iPðxÞÞ

× ðP−1ðxÞ∂jPðxÞÞðP−1ðxÞ∂kPðxÞÞ�: ð14Þ

For comparison, we discuss the superlevel set filtration of
the usual topological density q ∼ TrE ·B in Sec. IV B.
Indeed, the nomenclature is justified. In a theory with

continuous space-time and periodic boundary conditions,
i.e., with space-time the 4-torus T4, the Polyakov loop P
is a map from the 3-torus T3 to SUð2Þ ≅ S3. Under
fairly general assumptions, its winding number may be
computed as

Qtop ¼
1

32π2

Z
T4

εαβμνTrFαβFμν ¼
Z
B4

qP ; ð15Þ

where εαβμν is the Levi-Civita symbol in four dimensions
and B4 ¼ fðx; τÞ ∈ T4jτ ¼ 0g [75]. For details on this
rewriting, we refer to Appendix D.
In Fig. 4, we display birth and persistence distributions

of the sublevel set filtration of qP for uncooled configu-
rations. Cooling barely has any effect on the shown
homological descriptors below βc and enhances the occur-
ring trends above βc, see Appendix D. We deduce that
topologically nontrivial excitations are mostly due to (near-
)classical configurations. Similar to the traced Polyakov
loop, the birth distributions in Fig. 4 reveal a single distinct
peak for each β. Birth distributions are constant for β ≲ βc.
Above βc, distributions broaden for increasing β.
Dimension-zero birth distributions have support below
birth b ¼ 0, dimension one around birth b ≈ 0, and
dimension two with a bias towards birth b > 0.
The dimension-zero and dimension-two persistence

distributions shown in Fig. 4(b) are almost identical in
shape. For most β-values, these distributions follow
nearly exponential behavior, approximately constant for
β ≲ βc. An exponential fit of the β ¼ 1.5 dimension-two
persistence distribution reveals P2ðpÞ ∼ expð−spÞ with
s ¼ 26.51� 0.04. The dimension-one persistence distribu-
tion does not show comparable behavior for persistences
p≳ 0.02 and quickly declines. Up to p ≈ 0.02 it looks
similar to dimensions zero and two.
Wemay interpret the similarity of persistence distributions

in dimensions zero and two analogously to the qualitative
similarity of Betti numbers of traced Polyakov loops in
Fig. 3(b); qP being statistically symmetric around zero,
minima and maxima occur comparably likely. While the
former show up as dimension-zero homology classes in the
qP-sublevel set filtration, the latter give rise to dimension-
two homology classes. qPðxÞ is governed by local accu-
mulations of nonzero topological density. Dimension-one
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homology classes originate primarily from (thermal) noise,
explaining the small-persistence support of P1ðpÞ.
For well-separated peaks, the persistence p of

dimension-zero and dimension-two homology classes pro-
vides a quantifier of their dominance. In [76] it has been
argued that for an instanton dyon-antidyon pair [of type
MM̄ or LL̄ in SU(2)] at large separation r, the due to time-
independence effectively three-dimensional action S3,

S ¼ 1

g2

Z
1=T

0

dτS3; ð16Þ

behaves as

S3 ¼ 8πvþ ðm1m2 − e1e2Þ
4π

r
; ð17Þ

with dyon magnetic charges m1, m2 and electric charges
e1, e2. The holonomy parameter v originates from
Aa
4ðx → ∞Þ → vr̂a for a given suð2Þ direction vector r̂a

in the instanton-dyon parametrization used [76]. If we
take T ¼ 1=g2, then for time-independent configurations
S3 ¼ S. For self-dual excitations, S further equates to
Qtop ¼

R
x qPðxÞ. One is tempted to observe that, at leading

order in 1=r, S3=v ≃ 8π ≃ 25.1 is close to the fitted value of
s ≃ 26.5 for the dimension-two persistence distribution in
the confining phase. Effects of the lattice discretization,
thermal noise, contributions from configurations with more

than two dyons,4 and in general g2T ≠ 1 are expected.
Nonetheless, we find that in the confining phase, persist-
ence distributions of qP resemble the exponential behavior
of the (semi)classical instanton-dyon occurrence probabil-
ity ∼ expð−SÞ. The behavior of PlðpÞ above βc shows
growing deviations from this. Other topological excitations
such as domain walls can show up in qP configurations
above βc due to spontaneous center symmetry breaking. It
is suggestive that growing persistences above βc are at least
partially triggered by these topological structures.

C. Angle-difference filtration
of local Polyakov holonomies

The SU(2)-valued Polyakov loop can be written in terms
of an algebra field as

PðxÞ ¼ expðiϕaðxÞTaÞ; ð18Þ

with Ta ¼ σa=2 the Hermitian suð2Þ generators given in
terms of the Pauli matrices σa. A 2π-periodic scalar field
can be defined as half the norm of the Polyakov loop Lie
algebra components,

ϕðxÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕ1ðxÞÞ2 þ ðϕ2ðxÞÞ2 þ ðϕ3ðxÞÞ2

q
: ð19Þ

FIG. 4. Homological quantifiers of the sublevel set filtration of the Polyakov loop topological density qPðxÞ. (a) Birth distributions for
dimensions zero to two. (b) Persistence distributions for dimensions zero to two. The exponential fit of the β ¼ 1.5 persistence
distribution reveals P2ðpÞ ∼ expð−spÞ with s ¼ 26.51� 0.04. Inset shows large persistence, dimension-two persistence distributions
for inverse couplings up to βc. No cooling has been applied in all data shown in this figure, though cooling leaves the data shown
approximately invariant for β ≲ βc ≃ 2.3. Results are given in lattice units.

4For in total n instanton-(anti)dyons it is expected that the 8πv
contribution is to be replaced by 4πnv [21].
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Then, PðxÞ¼TrPðxÞ=2¼ cosϕðxÞ. If the traced Polyakov
loop PðxÞ locally changes, this can give rise to nontrivial
spatial structures occurring in ϕðxÞ.
In [44], a filtration has been constructed, that is only

sensitive to local differences of periodic fields. The filtra-
tion differs from the lower-star filtration discussed so far
in that function values are assigned to edges instead of
top-dimensional cubes. Specifically, with C again the full
3-dimensional cubical complex as in Sec. III A 1, we
construct from ϕðxÞ a map ϕ̃∶C → ½0; π�, whose sublevel
sets then form cubical subcomplexes of C. Lattice points
x ∈ Λσ are mapped to vertices of the full complex C,
defining5 ϕ̃ðfxgÞ ≔ 0. With x and y nearest neighbors in
Λσ, we set

Δϕðx;yÞ≔minfjϕðxÞ−ϕðyÞj;2π− jϕðxÞ−ϕðyÞjg; ð20Þ

and define ϕ̃ðfx; ygÞ ≔ Δϕðx; yÞ with fx; yg the edge
connecting x with y. We extend to higher-dimensional
cubes via the upper-star filtration, i.e., we induce values
from lower-dimensional cubes,

ϕ̃ðCÞ ≔ maxfϕ̃ðDÞjD ∈ ∂Cg; ð21Þ

and apply this construction inductively until ϕ̃ is defined on
all C. Sublevel sets of ϕ̃ yield the angle-difference filtration,

ϕ̃−1½0; ν� ⊆ ϕ̃−1½0; μ�; whenever ν ≤ μ; ð22Þ

whose persistent homology we shall investigate.
By construction, the angle-difference filtration of ϕðxÞ

does not contain information on the volume-averaged
traced Polyakov loop expectation value L. Indeed, we
expand L in terms of ϕðxÞ:

L ¼ 1

N3
σ

�����
X
x∈Λσ

cosðϕðxÞÞ
����
�

¼ 1

N3
σ

�����
X∞
n¼0

ð−1Þn
ð2nÞ!

X
x∈Λσ

ϕ2nðxÞ
����
�
; ð23Þ

i.e., only volume-averages of even powers of ϕ enter L. The
spatial average

P
x∈Λσ

ϕðxÞ=N3
σ does not enter the angle-

difference filtration of the holonomy Lie algebra field ϕ
directly. In addition, the angle-difference filtration of ϕ is
by construction center symmetric (ϕ ↦ ϕþ π).
Betti number distributions of the angle-difference filtra-

tion for uncooled and cooled configurations are displayed
in Figs. 5(a) and 5(b), respectively. Points entering as
independent connected components at filtration parameter
ν ¼ 0 and merging at ν ¼ Δϕðx; yÞ into edges, by

construction dimension-zero Betti numbers monotonously
decrease with growing filtration parameters and contain
information on the statistics of nearest-neighbor Δϕðx; yÞ
values. Throughout dimensions, Betti number distributions
of uncooled configurations are constant for β ≲ βc. For β
near 1.5, cooling leaves the Betti number distributions
invariant [see the pink, dashed line in Fig. 5(b)].
Dimension-one Betti numbers show a distinct peak around
ν≡ Δϕ ≃ 2.2 for β ≲ βc, slightly wandering towards
smaller filtration parameters with increasing β. This behav-
ior is pronounced for cooled configurations and starts off
at smaller β already. Dimension-two Betti numbers of
uncooled configurations show a prominent peak around
ν ≃ 3.0. After cooling, it decreases vastly in height for
increasing β. A population of dimension-two homology
classes emerges at smaller ν for larger β.
The above observations can be understood as follows:

Below βc, Polyakov loop samples are dominated by vast
fluctuations between ≈ − 1 and ≈þ 1 on tiny length scales,
see Fig. 1(a). The formation of dimension-two persistent
homology classes in the angle-difference filtration thus
requires large phase jumps of order π to occur everywhere
around local minima or maxima, thus occurring in the
angle-difference filtration below βc primarily for ν ≈ π. As
discussed in Sec. III A 3, above βc, extended domains of
like-signed PðxÞ-values form, however without cooling
strongly overlaid by thermal fluctuations. Fewer dimen-
sion-two homology classes corresponding to extended
domains fit into the given lattice volume compared to
those originating from single-pixel fluctuations, explaining
the peak decline in β2ðνÞ in particular for cooled configu-
rations. On top of the like-signed domains forming
above βc, fluctuations occur. The population of dimen-
sion-two homology classes emerging for β ≳ βc below the
ν ≃ 3.0-peak may be understood as a signal of these.
Dimension-one Betti numbers show the strongest

β-dependence. In [44], the angle-difference filtration has
been employed to uncover the behavior of vortices in two
spatial dimensions. In three dimensions, these would show
up as closed vortex lines, which would manifest as signals
in dimension one Polyakov topological densities. It has
been a key finding of Sec. III B that qP-sublevel sets barely
show such signatures, but instead predominantly give rise
to local lumps of topological density. We thus expect that
the strong β-dependence of dimension-one Betti numbers
originates from locally large phase gradients spreading
through space around like-signed Polyakov loop regions
with fluctuations on top. Then, the angle-difference filtra-
tion yields at intermediate filtration parameters randomized
scaffoldlike cubical complexes with a variety of one-
dimensional homology classes occurring. This is qualita-
tively in accordance with space-filling instanton-dyon
positions in models of instanton-dyon ensembles [17,21].
Displayed in Fig. 5(c), maxima of Betti numbers of

uncooled configurations show a clear kink around βc, thus
5Strictly speaking, we here choose the 3-cubes of C to be

xþ ½0; 1�3 for lattice points x ∈ Λσ .
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providing an order parameter for the confinement-
deconfinement phase transition.
In Fig. 6, we display the number of homology classes

with high birth values in cooled configurations, in

dimension one with birth b ≥ 2.0, in dimension two with
birth b ≥ 2.8. We explicitly checked that the displayed
results are approximately independent in shape from the
choice of threshold values of comparable sizes. For β ≳ 2.6
the number of dimension-two homology classes is com-
patible with a power-law with exponent ≃ − 22=3. Linearly
mapping inverse couplings squared to temperatures, the
latter describes a dilute gas of instantons with semiclassical
instanton appearance probability

expð−SÞ ¼ exp

�
−

8π2

g2ðTÞ
�
∼
�
ΛUV

T

�
b
; ð24Þ

where ΛUV is a UV-cutoff scale and b ¼ 11Nc=3 from
the one-loop beta function for SUðNcÞ gauge theory [17],
Nc ¼ 2 in our case. The behavior of the semiclassical
instanton-dyon exponentiated action shows the same scal-
ing behavior with T [17,76]. One-dimensional homology
classes with large birth show similar behavior, though with
larger deviations from the T−22=3 behavior. Likely, they are
more affected by thermal fluctuations.

FIG. 5. Homological quantifiers of the angle difference filtration constructed from ϕðxÞ ¼ argðTrPðxÞ=2Þ. (a) Betti number
distributions of uncooled configurations for dimensions zero to two. (b) Betti number distributions of cooled configurations for
dimensions zero to two, the pink dashed line indicating the uncooled Betti number distribution for β ¼ 1.5. (c) Maxima of Betti number
distributions of dimensions zero to two versus β for uncooled (left axes) and cooled configurations (right axes).

FIG. 6. Number of homology classes in the angle difference
filtration constructed from ϕðxÞ ¼ argðTrPðxÞ=2Þ with birth
b ≥ 2.0 for dimension one and b ≥ 2.8 for dimension two,
compared to the semiclassical one-loop instanton appearance
probability scaling behavior ∼β−22=3.
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In Appendix E we display and discuss birth and
persistence distributions of the angle-difference filtration.

IV. ELECTRIC AND MAGNETIC FIELDS IN
PERSISTENT HOMOLOGY

We search for signatures of electric and magnetic
screening effects as well as self-duality in superlevel set
filtrations of the three gauge-invariant, rotationally-
invariant quadratic forms constructible from EðxÞ and
BðxÞ; TrE2ðxÞ, TrB2ðxÞ, and the topological density
qðxÞ ∼ TrðEðxÞ · BðxÞÞ.
On the lattice, SU(2)-valued electric and magnetic fields,

denoted EðxÞ and BðxÞ, can be defined via antisymmetric
averaging of four neighboring plaquettes. For these clover-
leaf variants the topological density reads

qðxÞ ¼ −
1

16π2
TrðEðxÞ ·BðxÞÞ ð25Þ

and has well-defined parity, see Appendix A 3. For an
impression of TrE2ðxÞ, TrB2ðxÞ, and TrðEðxÞ · BðxÞÞ ¼
−16π2qðxÞ, we display two-dimensional slices in Fig. 7 for
β ¼ 1.5 in the confined and β ¼ 3.0 in the deconfined
phase for cooled configurations. Throughout observables,
fewer structures are present for β ¼ 3.0 compared to
β ¼ 1.5 variants, also smaller by values. This effect is

pronounced for TrB2 compared to TrE2 and TrE ·B.
Barely any structural changes with β are visible without
cooling (not shown).
So far, persistent homology quantifiers have been con-

structed via cubical complexes in three dimensions.
Constructions work the same in higher dimensions. For
instance, the sublevel set filtration CTrE2 is constructed
by assigning to the 4-cube corresponding to each x ∈ Λ
the value TrE2ðxÞ, inductively expanding to lower-
dimensional cubes via the lower-star filtration, Eq. (8).
We define the corresponding superlevel set filtration as

DTrE2ðνÞ ≔ C−TrE2ð−νÞ: ð26Þ

TrðE2ðxÞÞ and TrðB2ðxÞÞ are restricted to positive
values. For better comparability of low-dimensional
persistent homology with unbounded filtrations such as
qðxÞ we investigate their superlevel set filtrations in this
section. For unbounded filtrations sublevel and super-
level set filtrations are expected to yield similar results.
Subsequently, we study topological density superlevel sets.

A. Superlevel sets of TrE2 and TrB2

We display Betti number distributions of dimension-zero
homology classes for the superlevel set filtrations of TrE2

and TrB2 in Fig. 8(a). Higher-dimensional Betti number
distributions look similar, see Appendix F. For cooled Betti

FIG. 7. Slices of TrE2ðxÞ, TrB2ðxÞ and qðxÞ for constant x1

and τ for a single cooled configuration. Data is given in lattice
units.

FIG. 8. (a) Dimension-zero Betti number distributions of
TrE2ðxÞ (left) and TrB2ðxÞ (right) superlevel set filtrations.
No cooling has been applied. Data is given in lattice units.
(b) Maxima of dimension-zero Betti number distributions for
uncooled (left) and cooled (right) configurations.
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number distributions of TrE2 and TrB2, we also refer to
Appendix F. For every β we observe a distinct peak in both
filtrations with positions shifting to lower ν for increasing
β. This is due to hTrE2ðxÞi and hTrB2ðxÞi decreasing in the
calculations. Starting slowly, shifts are enhanced at inter-
mediate β, slowing down again for β ≳ 2.7. This is
particularly visible in TrB2. Dimension-zero homology
classes—in the superlevel set filtration made up by local
maxima—occur in the TrB2 filtration mostly at larger
filtration parameters compared to TrE2. For both TrE2 and
TrB2, peaks are broadened for low β.
In Fig. 8(b) we compare β-dependencies of maximal

dimension-zero Betti numbers of TrE2 and TrB2 filtra-
tions, i.e., the maximal number of connected components
occurring as the filtration parameter is swept through. Both
uncooled and cooled configurations give rise to kink-like
behavior at βc, indicative of the confinement phase tran-
sition. Throughout, we observe a concave decline below βc.
For TrE2 the decline continues above βc with a smaller
slope; cooling enhances these effects without qualitative
changes. For TrB2 above βc we observe less of a further
decline compared to TrE2, both uncooled and cooled.
Inferred from correlations of TrE2 and TrB2 as detailed in

Appendix C 2, masses of TrE2 excitations are larger than for
TrB2 due to electric Debye screening outpacing magnetic
screening. Similarly, the mass of electric excitations is
expected to be larger than the magnetic mass, resulting
in hTrE2i < hTrB2i and explaining why magnetic field
homology classes persist to larger filtration parameters
compared to electric ones. TrE2 Betti number maxima in
Fig. 8(b) laying above TrB2 maxima indicates that TrE2

sublevel sets contain finer structures, irrespectively of on
average higher TrB2 values. This can already be seen for a
single sample in Fig. 7. The slow approach of maximal TrE2

and TrB2 Betti numbers for growing β ≳ βc suggests that
screening effects discriminate less between electric and
magnetic fields at larger inverse couplings. This is again
consistent with the approaching masses of TrE2 and TrB2

excitations.

Signatures of a higher dominance of self-dual excitations
in cooled configurations would manifest in maxima of
TrE2 and TrB2 which are closer to each other. This is at
least not significantly the case and barely visible in the
single-sample observables shown in Fig. 7.

B. Superlevel sets of topological densities

In Sec. III B, we study the persistent homology of
topological densities computed from Polyakov loops, qP .
In this section, we discuss the topological den-
sity qðxÞ ∼ TrEðxÞ ·BðxÞ, with domain the full four-
dimensional lattice Λ. We show persistence distributions
of topological density superlevel sets in Fig. 9 for uncooled
configurations. The distributions monotonously decrease
for all dimensions and inverse couplings β. However, their
support is reduced to 16π2p≲ 2.5 for dimensions one and
two, while ranging for dimension zero up to ≈4.0 and for
dimension three up to ≈5.0. The extended persistence of
dimension-zero and dimension-three homology classes
holds for all β and indicates that the topological density
forms peaks well-separated in space-time, similar to qP as
discussed in Sec. III B. Cooling barely affects persistence
distributions (not displayed). We conclude that lumps of
topological density are primarily due to (near-)classical
field configurations.
It has been a key finding of Sec. III B that top-

dimensional persistence distributions of qP follow an
exponential distribution which is compatible with
instanton-dyon predictions. Such exponential behavior is
not visible for q ∼ TrE ·B as displayed in Fig. 9. This
hints at qP providing a more suitable lattice approxima-
tion to continuous space-time topological densities than
q ∼ TrE ·B, less sensitive to temporal fluctuations
affected by lattice artifacts. Based on the exact equality
of

R
qP and

R
q in the continuum, as briefly discussed in

Appendix D, we expect that the information content of
both topological density variants becomes more similar
for larger and finer lattices.

FIG. 9. Persistence distributions of the topological density superlevel set filtration from dimensions zero to three. No cooling has been
applied; cooled configurations look similar. Results are given in lattice units.
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V. CONCLUSIONS

We show that persistent homology can be used for
unraveling topological structures in the confinement-
deconfinement phase transition of finite-temperature
Yang-Mills theory with gauge group SU(2). With persistent
homology analyses relying on a hierarchical, combinatorial
description of input data, a multitude of different cubical
complex filtrations constructed from sampled lattice field
configurations allows for the extraction of the multifaceted
picture of confinement. All filtrations constructed in the
present work are gauge-invariant and without an a priori
bias towards particular classical configurations. While
information about the confinement-deconfinement phase
transition may be extracted from a persistent homology
analysis of various observables such as the topological
density, the traces of electric and magnetic field strengths,
and the traced Polyakov loop, we find that amongst these
observables the traced Polyakov loop and in particular the
related algebra field (18) is best suited for an application of
persistent homology.
The respective Betti numbers potentially represent a

novel type of order parameter for this transition, showing
kinks at the critical inverse coupling. Strikingly, the
analysis reveals that lumps of the topological density
formulated in terms of the Polyakov loop dominate the
configurations, with persistence statistics indicative of the
instanton-dyon occurrence probability. Persistent homol-
ogy proves crucial for this observation. Filtering by the
Polyakov loop algebra field gives access to topological
scaling as present in an instanton gas approximation
above Tc; we show that homology follows the semiclassical
scaling arising from the exponential of the instanton action
with a (one-loop) running coupling; see Fig. 6. Unlike [46],
we do not specifically aim for particular field configura-
tions such as center vortices.
The main results are barely affected by the cooling

procedure. Smoothing in general dampens quantum fluc-
tuations beyond a cutoff scale and one has to make sure
that the physics of interest does not depend on the cutoff
when taking the continuum limit. Our observations suggest
that the relevant features are stable against the removal of
high-frequency modes, with cooling merely enhancing the
associated signatures. Nevertheless, a careful continuum
extrapolation and study of the cutoff dependence seems
appropriate to confirm that the limit can be taken consis-
tently. Ideally, extracting the features of interest via
topological data analysis should not require any smoothing
at all. This aspect deserves further investigation and will be
the subject of future work, alongside studying the depend-
ence on the ratio of temporal and spatial lattice extents.
The present approach to the topological structure of

phase transitions with persistent homology may also
support, or benefit from, the application of machine
learning techniques. Both supervised and unsupervised

learning approaches have been explored for analyzing
phase structure [77–84]. Representing quantum states in
variational approaches via neural networks can also be
possible [85,86]. Although studies have addressed the issue
of extracting explicit expressions for learned order param-
eters [87–90], interpreting neural networks remains chal-
lenging. Explainable machine learning techniques, as
employed in [89], are ideally suited for a combined
application with persistent homology. Furthermore,
gauge-equivariant neural network architectures [91–94]
could make use of the high sensitivity of persistent
homology to nonlocal structures by means of adding
appropriate topological layers.
In summary, we demonstrate that the study of homo-

logical excitations with persistent homology has great
potential for unraveling both dynamical and topological
information in QCD and beyond. Particularly appealing is
the potential access to topological information without the
necessity of cooling as the latter unavoidably removes
physical information in the process. A natural step beyond
the present work is its extension to the confinement-
deconfinement phase transition in SU(3) as well as QCD
with dynamical quarks. In short, persistent homology
may provide interpretable and accessible order parameters
sensitive to strongly suppressed structures in field configu-
rations, yet barely investigated and potentially of high
relevance to various areas of research in physics.
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APPENDIX A: DETAILS ON THE
LATTICE SETUP

In this appendix, we first discuss the HMC setup for our
lattice gauge theory calculations. Subsequently, we sum-
marize important aspects of the Wilson flow used for
cooling, and provide further details about clover-leaf fields.
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1. HMC details

We employ the standard HMC algorithm to sample
field configurations, using 10 leapfrog steps per trajec-
tory with a step size of 0.2. This results in acceptance
rates between 60% and 80%. First, for each of the
considered values of β, a single Markov chain is initial-
ized with a hot start and then thermalized. Sufficient
equilibration is confirmed by observing convergence of
the average plaquette and Polyakov loop. 100 samples
separated by 10 HMC steps are recorded for each β and
then further decorrelated in individual Markov chains
with 1000 steps each in order to ensure statistical
independence of the data.

2. Wilson flow details

A variety of heuristic algorithms for the smoothing of
ultraviolet fluctuations in lattice gauge field configurations
has been proposed in the literature, these are commonly
called cooling algorithms. The Wilson or gradient flow was
introduced as a more rigorous theoretical ansatz to achieve
the same goal. The central idea is similar in all approaches,
namely minimizing the Wilson gauge action locally in a
series of small steps.
For the Wilson flow in particular, this is achieved by

numerically solving the gradient flow equation [96]

∂tUμðx; tÞ ¼ −g2ð∂x;μS½UðtÞ�ÞUμðx; tÞ ðA1Þ

with a finite-step size approximation. Here, g is the bare
gauge coupling, t denotes the flow time, and the initial
condition Uμðx; 0Þ is given by a field configuration
obtained through sampling from expð−S½U�Þ as described
above. The link derivatives are defined in the usual way,

∂x;μfðUÞ ¼ i
X
a

Ta d
ds

fðeisXa
UÞjs¼0

≡ i
X
a

Ta
∂
ðaÞ
x;μfðUÞ; ðA2Þ

where the Ta are the Hermitian generators of the associated
suðNcÞ algebra (i.e., the Pauli spin matrices for Nc ¼ 2),
and

Xaðy; νÞ ¼
�
Ta if ðy; νÞ ¼ ðx; μÞ;
0 else:

ðA3Þ

This is equivalent to the computation of the forces in HMC.
Throughout this work, the cooled configurations used to
compute various results are obtained after 200 flow steps,
using a comparably small step size of δt ¼ 0.001 to avoid
discretization errors.

3. Clover-leaf electric and magnetic fields

Clover-leaf electric fields are the SU(2) elements

EiðxÞ ≔
1

4
Im½U4iðxÞ þ U†

i ðx − îÞU4iðx − îÞUiðx − îÞ þ U†
4ðx − 4̂ÞU4iðx − 4̂ÞU4ðx − 4̂Þ

þU†
4ðx − 4̂ÞU†

i ðx − î − 4̂ÞU4iðx − î − 4̂ÞUiðx − î − 4̂ÞU4ðx − 4̂Þ�; ðA4Þ

which transform under a local gauge transformation VðxÞ as EiðxÞ ↦ VðxÞEiðxÞV†ðxÞ. Clover-leaf magnetic fields are the
SU(2) elements

BiðxÞ ¼
1

8
εijkIm½UjkðxÞ þ U†

jðx − ĵÞUjkðx − ĵÞUjðx − ĵÞ þ U†
kðx − k̂ÞUjkðx − k̂ÞUkðx − k̂Þ

þU†
kðx − k̂ÞU†

jðx − ĵ − k̂ÞUjkðx − ĵ − k̂ÞUjðx − ĵ − k̂ÞUkðx − k̂Þ�; ðA5Þ

transforming as BiðxÞ ↦ VðxÞBiðxÞV†ðxÞ.

By spatial antisymmetrization the clover-leaf topological
density,

qðxÞ ¼ −
1

29π2
X�4

μνρσ¼�1

ε̃μνρσTrðUμνðxÞUρσðxÞÞ; ðA6Þ

has a well-defined parity [61,97]. The fully antisymmetric
ε̃μνρσ ¼ ε̃μνρσ is defined through 1 ¼ ε̃1234 ¼ −ε̃2134 ¼
−ε̃ð−1Þ234. Plaquettes for negative directions equate to

Uð−μÞνðxÞ ¼ U†
μðx − μ̂ÞU†

μνðx − μ̂ÞUμðx − μ̂Þ; ðA7aÞ

Uμð−νÞðxÞ ¼ U†
νðx − ν̂ÞU†

μνðx − ν̂ÞUνðx − ν̂Þ; ðA7bÞ

Uð−μÞð−νÞðxÞ ¼ U†
νðx − ν̂ÞU†

μðx − μ̂ − ν̂Þ
×Uμνðx − μ̂ − ν̂ÞUμðx − μ̂ − ν̂ÞUνðx − ν̂Þ:

ðA7cÞ
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A straightforward lattice computation confirms Eq. (25)
for qðxÞ in terms of EiðxÞ and BiðxÞ.

APPENDIX B: THE MATHEMATICS OF
PERSISTENT HOMOLOGY

In this appendix we discuss details of the construction of
cubical complexes as well as their homology and persistent
homology groups. Often in persistent homology so-called
simplicial complexes are used, which are in a way
triangular variants of cubical complexes.

1. Cubical complexes

Based on [98], cubical complexes are mathematically
defined as follows. A cubical complex is constructed from
elementary closed intervals of nondegenerate, ½n; nþ 1�, or
degenerate type, ½n; n�, n ∈ N. Chains of intervals are
formal superpositions of them. The boundaries of intervals
are defined as the chains ∂½n;nþ1�¼ ½nþ1;nþ1�− ½n;n�
and ∂½n; n� ¼ 0. An elementary cube C is a Cartesian
product of such elementary intervals, C ¼ I1 ×… × Im,
where each In may be nondegenerate or not. The dimension
of C is defined to be the number of nondegenerate intervals
present in the product. We refer to 0-cubes as vertices,
1-cubes as edges and 2-cubes as squares. The boundary ∂C
of a cube C is the chain

∂C ¼ ð∂I1 × I2 ×… × IdÞ þ ðI1 × ∂I2 ×… × IdÞ
þ…þ ðI1 × I2 ×… × ∂IdÞ: ðB1Þ

Given these constructions, a cubical complex C is a
collection of elementary cubes closed under taking boun-
daries this way. A cubical complex C has dimension d if d is
the maximal dimension of the cubes C ∈ C.

2. Homology groups

A cubical complex C being a topological space, its
homology groups HlðCÞ may be investigated. Their dimen-
sions dimHlðCÞ specify the number of l-dimensional
homological features present in the complex C. We consider
homology groups with coefficients in Z2. Corresponding
thus directly to the intuitive notion of chains of l-cubes,
we define chain groups ClðCÞ as the free Z2-modules over
the l-chains present in C. The already specified boundary
operator ∂ extends to chains of cubes, ∂l∶ ClðCÞ →
Cl−1ðCÞ. We find ∂l∘∂lþ1 ¼ 0, such that the chain groups
naturally form a chain complex; we may define the
cycle group ZlðCÞ ¼ ker ∂l and the boundary group
BlðCÞ ¼ im∂lþ1. For any cubical complex we find BlðCÞ ⊆
ZlðCÞ as subgroups, such that their quotient may be taken.
Homology groups are then defined as

HlðCÞ ≔ ZlðCÞ=BlðCÞ: ðB2Þ
Technically, the lth homology group contains equivalence
classes of l-cycles (closed l-chains of cubes) modulo

boundaries of (lþ 1) cycles. This directly allows for the
association of homology classes as corresponding to inde-
pendent holes of dimension l present in the cubical complex
of interest. The Z2-dimension ofHlðCÞ counts their number
and is called the lth Betti number,

βlðCÞ ≔ dimZ2
ðHlðCÞÞ: ðB3Þ

3. Persistent homology groups

Given a filtration of cubical complexes, i.e., a family
ðCrÞr∈R of cubical complexes with Cr ⊆ Cs for r ≤ s, their
individual homology groups ðHlðCrÞÞr may be computed.
In addition, the inclusion maps Cr → Cs, r ≤ s, induce
maps on homology group level

ιr;sl ∶ HlðCrÞ → HlðCsÞ; ðB4Þ

whenever r ≤ s. Such a map maps an l-dimensional
homology class present in Cr either to an l-dimensional
homology class in Cs or to zero, indicating that the
homology class is not present anymore in Cs. Also, the
ιr;sl can have nontrivial cokernels; new homology classes
can appear in Cs, not in the image of previous maps. Then,
for any ϵ > 0,

HlðCs−ϵÞ ⫋ HlðCsÞ: ðB5Þ

The collection ðHlðCrÞ; ιr;sl Þr≤s;l is called a persistence
module. If Eq. (B5) is true only for finitely many distinct s
we call the persistence module tame.
The structure theorem of persistent homology, proven

in [99,100], states that any tame persistence module is
isomorphic to a persistence diagram, i.e., a finite multiset of
birth-death pairs ðb; dÞ ∈ R2 with b < d. In a multiset the
same elements may appear multiple times. A birth-death
pair ðb; dÞ corresponds to an independent hole present in
the complexes Cr for r ∈ ½b; dÞ.
Different metrics are available on the space of persist-

ence diagrams, most importantly the so-called Bottleneck,
Wasserstein and interleaving distances. With respect to all
of these stability theorems have been established [32–34],
implying that if input data changes slightly, then persist-
ence diagrams computed from this data are also perturbed
only slightly.
Although averages of persistence diagrams as multisets

cannot be defined unambiguously [101], generic other
persistent homology quantifiers have this property [102].
If persistent homology observables are evaluated on a lattice
of finite extent such as in our work, their volume-averages
converge towards well-defined large-volume limits [35,36].

APPENDIX C: CORRELATION FUNCTIONS

In this appendix we discuss two-point correlation func-
tions of traced Polyakov loops PðxÞ and electric and
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magnetic fields squared. This will provide insights into
emergent screening masses and infrared behavior related to
confinement.
We focus on connected correlation functions and their

y-, z- and τ-direction zero modes. We define

Ē2ðnxÞ ≔
1

N2
σNτ

X
ny;nz;nτ

½TrE2ðnx; ny; nz; nτÞ

− hTrE2ðnx; ny; nz; nτÞi�; ðC1Þ

maintaining fluctuations depending on nx. Then, correla-
tions are computed as

hjTrE2ðpxÞj2ic ¼
X
x

Ē2ðnxÞĒ2ð0Þe−ipxnx ðC2Þ

for nx ∈ f0;…; Nσ − 1g and

px ∈
�
−π;−

ðNσ − 2Þπ
Nσ

;…;
ðNσ − 2Þπ

Nσ

	
; ðC3Þ

and analogously for TrB2ðxÞ and qðxÞ. For PðxÞ correla-
tions, temporal averaging is trivial. Correlations are dis-
played depending on physical momenta on the lattice,

p̃x ¼ 2 sin

�
px

2

�
: ðC4Þ

Due to the connectedness of the shown correlators,
values at px ¼ 0 are largely suppressed. Zero modes of
the correlators including disconnected contributions would
give rise to susceptibilies.

1. Polyakov loop correlations

In Fig. 10 we display Polyakov loop correlations for
uncooled (a) and cooled configurations (b) for the entire
β-range. A qualitative change can be observed around βc
for uncooled configurations. Below βc, the correlator is
constant in β and in p̃x up to fluctuations, indicative of
free quasiparticles dominating PðxÞ [15]. Above βc, a
peak emerges around the p̃x ¼ 0 mode, indicative of PðxÞ
excitations acquiring a screening mass due to spontaneous
center symmetry breaking. Above an intermediate regime
up to β ≃ 2.5, correlations stay approximately constant.
They level off for large momenta to baseline fluctuations.
Below βc, cooling smoothens the baseline fluctuations,

leaving their height unaltered. Thus, they are due to (near-)
classical configurations. With cooling, for smaller β than
before a peak emerges in the deep infrared, until it fully
developed for β ≃ 2.6. For such couplings, the momentum-
dependence of the peak tails is approximately exponential.
The peak decreases in overall height for large β above 2.7,
potentially indicative of the reduction of instantons with
increasing temperatures as observed already in Sec. III C.

2. Correlations of electric and magnetic excitations

In Figs. 11(a)–11(c) we display connected two-point
correlation functions of electric and magnetic fields
squared, TrE2 and TrB2, as well as of the topological
density q ∼ TrE ·B. First discussing configurations with-
out cooling, barely any β dependence is visible at low β
near 1.5. For intermediate values of β correlations decrease
in value, slowing down again for β values near 3.0. Electric
fields give rise to a slightly enhanced infrared peak at larger
inverse couplings squared. For magnetic fields this effect is
visible more clearly. Topological density correlations are
nearly flat for the entire β range.
The consequences of cooling are similar to the Polyakov

loop correlator. Deviations from the constant behavior for β
near 1.5 start to occur for β ≳ 1.8. Any behavior present for
larger inverse couplings is pronounced by cooling. This is
due to more dominant (near-)classical field configurations
after cooling.
All this can be understood from effective masses of the

excitations. We extract masses from correlators using a
least-squares fit to a Lorentz curve ∼m=ðp̃2

x þm2Þ. In
Fig. 11(d) we display correspondingly fitted masses,
comparing cooled and uncooled ones. Cooling reduces
masses, since less ultraviolet fluctuations enter self-
energies and effectively generate the masses. Masses of
TrE2 excitations are observed to be consistently larger than
masses of TrB2 excitations—a direct consequence of
Debye screening. In addition, a kink is visible in effective
masses near βc, suggesting that the relevant structures for
confinement enter self-energies, too. Fits of q-masses did
not converge for uncooled configurations. Masses of q
excitations after cooling lay somewhat between those of
TrE2 and TrB2 excitations. Their comparable height can be

FIG. 10. Connected Polyakov loop two-point correlation func-
tion jhjPðpxÞj2icj for (a) uncooled and (b) cooled configurations.
Data is given in lattice units.
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regarded as a signature of self-dual configurations playing
a role.

APPENDIX D: POLYAKOV LOOP
TOPOLOGICAL DENSITIES: MISCELLANEA

In this appendix, we first discuss the rewriting of
winding numbers using Polyakov loops, giving rise to
the Polyakov loop topological density qP. Subsequently,

we describe cooled birth and persistence distributions of
the qP filtration.

1. Rewriting winding numbers with Polyakov loops

In this appendix we briefly discuss the rewriting of the
winding number

Qtop ¼
1

32π2

Z
T4

εαβμνTrFαβFμν ðD1Þ

in terms of the Polyakov loop P∶T3 → SUð2Þ, based on
[75]. We take the 4-torus T4 to have extents Nx, Ny, Nz, Nτ,
analogously to the lattice of interest.
Starting from gauge potentials Aμ on the 4-torus T4,

transition functions defined on the entire R4 are defined via
the periodicity properties of T4, which manifests for all
x ∈ T4 and μ ¼ 1;…; 4 in

Aμðxþ NνÞ ¼ U−1
ν ðxÞAμðxÞUνðxÞ þ iU−1

ν ðxÞ∂μUνðxÞ:
ðD2Þ

The transition functions fulfil the cocycle condition

UμðxÞUνðxþ NμÞ ¼ UνðxÞUμðxþ NνÞ ðD3Þ
and transform under a gauge transformation VðxÞ as

UV
μ ðxÞ ¼ V−1ðxÞUμðxÞVðxþ NμÞ: ðD4Þ

Suppose the transition functions satisfy Uiðx;τ¼0Þ¼1
for all i ¼ 1, 2, 3 and U4 ¼ 1. Then, skipping derivation
steps detailed in [75], we find

Qtop ¼
1

24π2

Z
B4

ε0ijkTr½ðP−1
∂iPÞðP−1

∂jPÞðP−1
∂kPÞ�;

ðD5Þ

where B4 ¼ fðx; τÞ ∈ T4jτ ¼ 0g.

2. Cooled birth and persistence distributions

In Fig. 12 we display birth and persistence distributions
of the Polyakov loop topological density sublevel set
filtration for cooled configurations. Comparing to Fig. 4,
where uncooled variants are shown, we note that below βc
cooled distributions are similar to uncooled ones though
persistence distributions have larger support. Above βc,
major deviations occur. The broadening of uncooled birth
distributions transforms after cooling into an additional
peak in dimension zero and a novel shoulder in dimension
one after cooling. Dimension-two birth distributions above
βc reveal larger broadening towards positive qP-values.
This goes along with persistence distributions after cooling
spreading more towards larger persistences compared to
uncooled data.

FIG. 11. Connected two-point correlations of (a) electric and
(b) magnetic field strengths, as well as (c) topological densities
for uncooled (left) and cooled (right) configurations. The dip at
p̃x ¼ 0 is due to (approximately homogeneous) disconnected
contributions removed. (d) Effective masses of TrE2 (left), TrB2

(center) and q (right) excitations, deduced from a least-squares fit
to a Lorentz curve ∼m=ðp̃2

x þm2Þ. Zero modes are excluded
from fits; errorbars are extracted from the least-squares fit
covariance matrix. Fits did not converge for uncooled q. Data
is given in lattice units.
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While the similarity of cooled and uncooled
qP-structures below βc indicates that topological den-
sities are dominated by (near-)classical configura-
tions, above βc ultraviolet fluctuations show up more
often. Cooling reveals additional topological structures
above βc.

APPENDIX E: ANGLE-DIFFERENCE
FILTRATION: BIRTH AND PERSISTENCE

DISTRIBUTIONS

In Fig. 13(a) we display birth distributions of the angle-
difference filtration of the holonomy Lie algebra field

FIG. 12. Homological quantifiers of Polyakov loop topological density qP sublevel sets. (a) Birth distributions for dimensions zero to
two. (b) Persistence distributions for dimensions zero to two. Data is given in lattice units for cooled configurations.

FIG. 13. Homological quantifiers of the angle-difference filtration. (a) Birth distributions for dimensions one and two. All connected
components are born at zero in the angle-difference filtration, thus dimension zero birth distributions are not displayed. (b) Persistence
distributions for dimensions zero to two. Data is shown for cooled configurations.
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ϕðxÞ ¼ arccosðPðxÞÞ for cooled configurations. Zero-
dimensional birth distributions are not displayed, since
they are by construction trivial; all dimension-zero
homology classes are born at filtration parameter zero.
Dimension-one birth distributions at β ≈ 1.5 have two
peaks; one near b ≈ 0.9 and a second near b ≈ 2.1. The
latter strongly diminishes above βc, while the former gets
enhanced. The lower-Δϕ peak emerges in dimension-two
homology classes only above βc. Below, a single large peak
near Δϕ ≈ 3.0 is present, which strongly decreases in
height for β ≳ βc.
Persistence distributions are shown in Fig. 13(b) for

cooled configurations. Persistences of dimension-zero
homology classes in the angle-difference filtration monoto-
nously decrease, though with smaller β dependence for
lower β ≈ 1.5. In dimension one we see a second peak near
Δϕ ≈ 2.0 at low β, which vanishes above βc and gives rise
to a persistence peak near Δϕ ≈ 1.2. Noise results again
in a large number of homology classes with very low
persistences. Persistences of dimension-two homology
classes are mostly very low, which follows from compa-
rably large birth parameters and the phase difference
bound Δϕ ≤ π.

APPENDIX F: PERSISTENT HOMOLOGY OF
TrE2, TrB2 AND q SUPERLEVEL SETS

In this appendix we first discuss the persistent homology
for all dimensions zero to three of gauge-invariant electric
and magnetic field quadratic forms. A comparison with
cooled configurations follows.

1. Betti numbers of uncooled configurations

We display dimension-zero to dimension-three Betti
number distributions of the superlevel set filtrations of
TrE2 and TrB2 for uncooled configurations in Figs. 14(a)
and 14(b). The topological density Betti number distribu-
tions shown in Fig. 14(c) are discussed below. For every β
we observe a single peak, shifting to lower filtration
parameters with increasing dimension. This is due to the
superlevel set filtration. Decreasing the filtration parameter
ν, at first maxima appear as dimension-zero homology
classes. A multitude of these with saddle points in between
is required to form dimension-one homology classes;
they get born at lower ν. This trend continues to higher
dimensions. Finally, dimension-three homology classes
(enclosed 3-volumes) die if ν reaches corresponding mini-
mum values.

FIG. 14. Betti number distributions in dimensions zero to three of (a) TrE2, (b) TrB2, (c) q superlevel set filtrations for uncooled
configurations. Data is given in lattice units.
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For both TrE2 and TrB2 peak positions shift to lower ν
with increasing β due to hTrE2ðxÞi and hTrB2ðxÞi decreas-
ing in simulations. Topological structures of any dimension
occur in the TrB2 filtration mostly at larger filtration
parameters compared to TrE2. Across dimensions and
for both TrE2 and TrB2, peaks are broadened for low β.
All this is qualitatively similar to the dimension-zero
Betti numbers discussed in Sec. IV and consistent with
electric and magnetic screening masses as deduced in
Appendix C 2.
Topological densities not bounded from below as electric

and magnetic fields squared, their Betti number distribu-
tions in Fig. 14(c) are not limited to positive filtration
parameters. Instead, dimension-two distributions have
support around zero filtration parameters, dimension-three
distributions mostly at negative filtrations parameters. This
is indicative of local topological density values scattering

symmetrically around zero. Maximal values reveal kinklike
behavior around β ≈ βc and in overall numbers are com-
parable to the TrE2 filtration.

2. Betti numbers of cooled configurations

For cooled configurations we show Betti number dis-
tributions of all dimensions for TrE2 and TrB2 superlevel
set filtrations in Fig. 15. Similar plots have been shown in
Figs. 14(a) and 14(b) for configurations without cooling.
Upon comparison, we see that cooling has barely any effect
for low β ≈ 1.5. However, after cooling and for larger β
the number of homology classes is reduced compared to
uncooled configurations. Qualitative changes across all
dimensions occur near βc. For β ≳ βc maxima of Betti
number distributions saturate in height as indicated already
in Fig. 8(b). Cooled structures move to very small filtration
parameters compared to uncooled ones.
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