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We present the nonperturbatively renormalized nucleon gluon momentum fraction using ensembles with
2þ 1þ 1 flavors of highly improved staggered quarks (HISQ), generated by the MILC Collaboration. The
calculation is done using clover fermions for the valence action with three pion masses, 220, 310, and
690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm. The renormalization is done using RI/MOM
nonperturbative renormalization and using cluster-decomposition error reduction (CDER) to enhance the
signal-to-noise ratio of the renormalization constant. We find the CDER technique is particularly important
to improve the signal at the finer lattice ensembles where the lattice volume is larger. We extrapolate the
gluon momentum fraction to the continuum-physical limit and obtain hxig ¼ 0.502ð53ÞstatþNPRð50Þmixing in

the MS scheme at 2 GeV, where first error includes the statistical error and uncertainties in nonperturbative
renormalization, while the latter systematic error accounts for ignoring quark mixing. Our gluon
momentum fraction is consistent with other recent lattice-QCD results at physical pion mass.
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I. INTRODUCTION

The gluon momentum fraction hxig of the nucleon is
important to particle and nuclear physics. It can be
measured as the momentum fraction carried by gluons in
the infinite momentum frame and must satisfy the momen-
tum sum rule hxig þ hxiq ¼ 1 with the sum of the quark
momentum fraction. These momentum fractions are key
inputs to understanding the proton mass and spin decom-
position, which are major outstanding questions in had-
ronic physics. The gluon momentum fraction is connected
to the unpolarized nucleon gluon parton distribution
function (PDF) gðxÞ via

hxig ¼
Z

1

0

dx xgðxÞ: ð1Þ

The gluon PDF is an important input to many theory
predictions used in the hadron colliders [1–8]. For example,
gðxÞ needs to be known precisely to calculate the cross
section for processes in pp collisions, including the cross
section for Higgs-boson production and jet production at
the Large Hadron Collider (LHC) [9,10]. Ongoing and

future experiments, such as new experiments at the
Jefferson Lab 12-GeV facility and the U.S.-based
Electron-Ion Collider (EIC) [11], planned to be built at
Brookhaven National Lab, will further our knowledge of
the gluon PDF [12–14].
Lattice quantum chromodynamics (lattice QCD or

LQCD) is a theoretical method that can provide full
systematic control in calculating QCD quantities in the
nonperturbative regime and can provide useful information
for improving our knowledge of the gluon structure of the
nucleon, independent from experiments. There have been
many lattice calculations of the nucleon quark momentum
fraction hxiq (see reviews in Refs. [15,16]), but still
relatively few attempts for the gluon counterpart [17–20].
This is mainly due to the fact that any gluon observable on
the lattice is extremely noisy. Furthermore, the renormal-
ization for even the gluon-only momentum fraction has
been difficult to calculate nonperturbatively (at large
volumes). Early lattice-QCD studies calculated hxig of
the nucleon on quenched lattices using heavy pion masses
and gave hxig ∈ ½0.3; 0.6� [17–20]. There have been a
number of dynamical calculations of the gluon momentum
fraction of the nucleon using 2-flavor (degenerate up and
down sea quarks), 2þ 1-flavor (including strange quark),
and 2þ 1þ 1-flavor (including charm quark) lattice cal-
culations by ETMC, χQCD, and MIT lattice groups
[21–25]; see the summary in Table I. Additional smearing
and large numbers of statistical measurements are typically
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needed to produce a usable gluon signal. Since 2018,
χQCD and MIT lattice groups have used nonperturbative
renormalization on the gluon operators. There has been an
attempt by χQCD to study the lattice-spacing dependence
using 2þ 1-flavor ensembles using partially quenched
mixed actions (where the valence pion masses are allowed
to be different from the sea pion masses). Although
progress has been made in recent years, there is still
disagreement between the lattice determination of the gluon
momentum fraction and those obtained from taking the
integral of the global-fit gluon PDF in Eq. (1).
Reference [15] quoted numbers from multiple gluon
PDF determinations (NNPDF3.1, CT14, MMHT14,
ABMP16, CJ15, and HERAPDF2.0), yielding a
weighted-average gluon momentum fraction of 0.411(8).
Since then, JAM19 and CT18 have published updated
values, 0.403(2) and 0.413(8), respectively. More lattice
studies are needed to understand the potential discrepancy
between lattice calculations and global-fit results.
The gluon momentum fraction remains an important

calculation target despite recent developments in pseudo-
PDF [28] and quasi-PDF [29,30] approaches, which have
opened up opportunities to calculate the full x dependence
of the gluon PDF. The first attempt to determine the
nucleon gluon PDF in a lattice-QCD calculation was done
based on a quasi-PDF approach [31], but it did not obtain a
sufficient signal to reconstruct the gluon PDF gðxÞ. Lattice
calculations to access the nucleon, pion, and kaon gluon
PDFs gðxÞ followed [32–35] using the pseudo-PDF
approach. However, the calculation of the gluon PDF via
the pseudo-PDF method gives the ratio of xgðxÞ=hxig, and
one still needs a direct lattice calculation of hxig to extract

the gluon PDF by itself. Therefore, the lattice gluon
momentum fraction remains an important input in the
era of x-dependent PDF lattice hadronic calculations.
In this work, we present a lattice-QCD calculation of

gluon momentum fraction hxig in the physical-continuum
limit using clover fermions on Nf ¼ 2þ 1þ 1 HISQ
lattices with three lattice spacings, 0.09, 0.12, and
0.15 fm, and three pion masses, 690, 310, and
220 MeV. The rest of the paper is organized as follows.
In Sec. II, we present the lattice setup and examples of how
we extract the ground-state matrix elements from the lattice
correlators to obtain the bare gluon momentum fraction of
the nucleon. In Sec. III, the method and results of the
nonperturbative renormalization of the gluon momentum
fraction are discussed. In Sec. IV, we extrapolate the
renormalized gluon momentum fractions of different
ensembles to the physical pion mass and continuum limit
then compare our results with other lattice calculations and
global fits. We discuss possible systematics that may
contribute to additional uncertainties in our results. A
summary and the outlook for future calculations of the
nucleon gluon momentum fraction can be found in Sec. V.

II. LATTICE SETUP AND BARE GLUON MATRIX
ELEMENTS

We present our calculation of the nucleon gluon
PDFs using clover valence fermions on four ensembles
with Nf ¼ 2þ 1þ 1 highly improved staggered quarks
(HISQ) [36] generated by the MILC Collaboration [37]
with three different lattice spacings (a ≈ 0.9, 0.12, and
0.15 fm) and three pion masses (220, 310, and 690 MeV),

TABLE I. Summary of lattice dynamical calculations of the nucleon gluon moment sorted by year. The columns from left to right
show for each calculation: the number of flavors of quarks in the QCD vacuum (Nf), the lattice spacing (a) in fm, the valence pion mass
(Mval

π ) in MeV, the valence fermion action (“Fermion”), where “TM” stands for twisted-mass fermion action, the number of
measurements of the nucleon correlators (Nmeas), the renormalization method (“Renorm.”) indicating 1-loop perturbative calculations or
RI-MOM nonperturbative renormalization, the smearing technique used to improve the gluon signals (“G smearing”), and the obtained
gluon momentum fraction (hxig) renormalized at 2-GeV scale in MS scheme. The lattice errors coming from different sources are
marked as “stat.” for statistical, “cont.” for continuum-extrapolation (or lack thereof), “ES” for excited state contamination (but later
calculations remove them, folding this error into the statistical), “PT” for perturbative renormalization, “NPR” for nonperturbative
renormalization, and “mixing” for the mixing with the quark sector.

Group Nf a (fm) Mval
π (MeV) Fermion Nmeas Renorm. G smearing hxig

ETMC16 [21] 2þ 1þ 1 0.08 370 TM 34,470 1-loop 2-stout 0.284ð27Þstat.ð17ÞESð24ÞPT
ETMC16 [21] 2 0.09 131 TM 209,400 1-loop 2-stout 0.267ð22Þstat.ð19ÞESð24ÞPT
ETMC17 [22] 2 0.09 131 TM 209,400 1-loop 2-stout 0.267ð12Þstat.ð10ÞES
MIT18 [23] 2þ 1 0.12 450 Clover 572,663 RI-MOM Wilson flow 0.54ð8Þstat.
χQCD18a [24] 2þ 1 0.114 [135, 372]a Overlap 81 cfgs RI-MOM 1-HYP 0.47ð4Þstat.ð11ÞNPRþmixing

χQCD18b [26] 2þ 1 [0.08, 0.14] [140,400] Overlap [81, 309] cfgs RI-MOM 1-HYP 0.482ð69Þstat.ð48Þcont.
ETMC20 [25] 2þ 1þ 1 0.08 139.3 TM 48,000 1-loop 10-stout 0.427ð92Þstat.
χQCD21 [27] 2þ 1 0.14 [171, 391]b Overlap 8,200 RI-MOM 1-HYP 0.509ð20Þstat.ð23Þcont.
MSULat22 (this work) 2þ 1þ 1 [0.09,0.15] [220,700]c Clover 105–106 RI-MOM 5-HYP 0.502ð53Þstat.þNPRð50Þmixing

aPartially quenched calculation on domain-wall fermion Msea
π ¼ 140-MeV lattice.

bPartially quenched calculation on domain-wall fermion Msea
π ¼ 171-MeV lattice.

cClover-on-HISQ mixed action with valence pion masses tuned to lightest sea-quark ones.
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as shown in Table II. The masses of the clover quarks are
tuned to reproduce the lightest light and strange sea
pseudoscalar meson masses done by the PNDME
Collaboration [38–41]. PNDME calculated the nucleon
quark isovector, helicity, and transversity moments using
the clover-on-HISQ ensembles (“mixed action”) in
Ref. [42]; the quark momentum fraction results obtained
in Ref. [42] are consistent with the phenomenological
global-fit values. In this work, we use five HYP-smearing
[43] steps on the gluon loops to reduce the statistical
uncertainties, based on the study in Ref. [31]. Table II
shows the ensemble information, such as the lattice size
L3 × T and number of total two-point correlator measure-
ments Nmeas in this calculation. The number of measure-
ments varies 105–106 for different ensembles.
On the lattice, we calculate the two-point correlator for a

nucleon N via

C2pt
N ðPz; tÞ ¼ h0jΓ

Z
d3ye−iyzPzχðy⃗; tÞχð0⃗; 0Þj0i; ð2Þ

where Pz is the boosted nucleon momentum along
the spatial z direction, t is lattice Euclidean time, χðyÞ ¼
ϵlmn½uðyÞlTiγ4γ2γ5dmðyÞ�unðyÞ [where fl; m; ng are color
indices, uðyÞ and dðyÞ are the quark operators] is the
nucleon interpolation operator, and Γ ¼ 1

2
ð1þ γ4Þ is the

projection operator. To minimize the autocorrelations of
observables on these ensembles, we use random source
locations at each time slice. We check each ensemble to see
how the correlators vary for Nbin ∈ ½1; 10� and found
the variation to show signs of small autocorrelations.
We also calculate the three-point correlator to obtain the
matrix elements needed to extract the gluon momentum
fraction via

C3pt
N ðPz; tsep; tÞ ¼

Z
d3ye−iyzPzhχðy⃗; tsepÞjOg;ttðtÞjχð0⃗; 0Þi;

ð3Þ

where tsep is the source-sink separation and t is the gluon-
operator insertion time. The operator for the gluon momen-
tum fraction Og;ttðtÞ is

Og;μν ≡
X

i¼x;y;z;t

FμiFνi −
1

4

X
i;j¼x;y;z;t

FijFij; ð4Þ

where the field tensor Fμν is

Fμν ¼
i

8a2g
ðP½μ;ν� þ P½ν;−μ� þ P½−μ;−ν� þ P½−ν;μ�Þ; ð5Þ

with the plaquette Pμ;ν ¼ UμðxÞUνðxþ aμ̂ÞU†
μðxþ

aν̂ÞU†
νðxÞ and P½μ;ν� ¼ Pμ;ν − Pν;μ. The same gluon oper-

ator was also used in the recent calculation of the gluon
momentum fraction by the χQCD, ETMC, and MIT Lattice
Collaborations [21–26].
Using the two- and three-point correlators, we can

extract the ground-state nucleon matrix elements that lead
to the gluon momentum fraction. We use Gaussian
momentum smearing for the quark fields [44] qðxÞþ
α
P

j UjðxÞeið2πL Þkêjqðxþ êjÞ, so that we can calculate the
momentum fraction using Pz ≠ 0; these correlators have
been neglected in previous calculations due to their worse
signal-to-noise ratios relative to those obtained from
Pz ¼ 0. We fit the two-point and three-point correlators
to the energy-eigenstate expansion,

C2pt
N ðPz; tÞ ¼ jAN;0je−EN;0t þ jAN;1je−EN;1t þ…; ð6Þ

C3pt
N ðz;Pz; tsep; tÞ ¼ jAN;0j2h0jOg;ttj0ie−EN;0tsep

þ jAN;0jjAN;1jh0jOj1ie−EN;1ðtsep−tÞe−EN;0t

þ jAN;0jjAN;1jh1jOj0ie−EN;0ðtsep−tÞe−EN;1t

þ jAN;1j2h1jOj1ie−EN;1tsep þ…; ð7Þ

where the ground (first-excited) state amplitudes and
energies AN;0, EN;0 (AN;1, EN;1) are obtained from the
two-state fits of the two-point correlators. The parameters
h0jOj0i, h0jOj1i (h1jOj0i ¼ h0jOj1i�), and h1jOj1i are
the ground-state, the ground–excited-state, and the excited-
state matrix elements, respectively. The matrix elements
can be extracted by using the two-state simultaneous fits
(“two-sim fits”) of the three-point correlators using multi-
ple tsep inputs.
To visualize the quality of our fitted matrix-element

extraction, we use ratios composed of the three-point (C3pt
N )

to the two-point (C2pt
N ) correlator, RRatio, defined as

RRatio
N ðPz; tsep; tÞ ¼

C3pt
N ðPz; tsep; tÞ
C2pt
N ðPz; tsepÞ

; ð8Þ

if the excited-state contamination were small, we would see
the midpoints of t − tsep=2 approach the true ground state,

TABLE II. Lattice spacing a, valence pion mass Mval
π and ηs

mass Mval
ηs , lattice size L3 × T, number of configurations Ncfg,

number of total two-point correlator measurements N2pt
meas, and

source-sink separation tsep used in the three-point correlator fits of
Nf ¼ 2þ 1þ 1 clover valence fermions on HISQ ensembles
generated by the MILC Collaboration and analyzed in this study.

Ensemble a09m310 a12m220 a12m310 a15m310

a (fm) 0.0888(8) 0.1184(10) 0.1207(11) 0.1510(20)
L3 × T 323 × 96 323 × 64 243 × 64 163 × 48

Mval
π (MeV) 313.1(13) 226.6(3) 309.0(11) 319.1(31)

Mval
ηs (MeV) 698.0(7) N/A 684.1(6) 687.3(13)

Ncfg 1009 957 1013 900
Nmeas 387,456 1,466,944 324,160 259,200
tsep [8,12] [7,11] [7,11] [5,9]
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and these values would be independent of the tsep. Figures 1
and 2 show the bare matrix element extracted at Pz ¼ 2

lattice units (2πPz=ðaLÞ in physical units) from three-point
and two-point correlators of strange- and light-quark
nucleons, respectively, for all four ensembles studied in
this paper. The leftmost column of the figures shows the
fitted ground-state gluon matrix elements h0jOj0i (grey
band) with multiple source-sink separations of RRatio (red to
purple points) and the reconstruction of the fits to the ratio
plots (red to purple bands). We found that the RRatio has a
tendency to increase with larger source-sink separation tsep

and toward the ground-state matrix elements obtained from
the “two-sim” fit in Eq. (7) (the grey band). The second
column of Figs. 1 and 2 shows two-sim fits by fixing tmax

sep at
12, 11, 11, and 9 for the a09m310, a12m220, a12m310, and
a15m310 ensembles, respectively, while varying the tmin

sep .
We found that our ground-state matrix elements are
consistent among different choices of tmin

sep . Similarly, we
check the dependence on tmax

sep by fixing tmin
sep of two-sim fits

at 8, 7, 7, and 5 for the a09m310, a12m220, a12m310, and
a15m310 ensembles, respectively. The ground-state matrix
elements are mostly consistent with different choices tmax

sep .

FIG. 1. Example ratio plots (left), two-sim fits (right two columns) from the a09m310, a12m310, and a15m310 ensembles (from top to
bottom) with pion massMπ ≈ 690 MeV, respectively. The gray bands show the extracted ground-state matrix element h0jOj0i obtained
from a two-sim fit using tsep ∈ ½8; 12�, [7, 11] and [5, 9] for the a09m310, a12m310, and a15m310 ensembles, respectively. The first
column shows the ratio of the three-point to two-point correlators with the reconstructed fit bands from the two-sim fit, shown as
functions of t − tsep=2. The second (third) column shows the two-sim ground-state matrix element h0jOj0i results with fixed tmax

sep (tmin
sep )

inputs as shown in Table II while varying tmin
sep (tmax

sep ) to see how stable the ground-state matrix elements are.
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FIG. 2. Example ratio plots (left-most column), and two-sim fits (right 2 columns) from the a12m220, a09m310, a12m310, a15m310
ensembles (from top to bottom) with pion masses Mπ ≈ f220; 310; 310; 310g MeV, respectively. The gray bands show the extracted
ground-state matrix element h0jOj0i obtained from the two-sim fit using the tsep ∈ ½7; 11�, [8, 12], [7, 11], and [5, 9] for the a12m220,
a09m310, a12m310, and a15m310 ensembles, respectively. The first column shows the ratio of the three-point to two-point correlators
with the reconstructed fit bands from the two-sim fit, shown as functions of t − tsep=2. The second (third) column shows the two-sim
ground-state matrix element h0jOj0i results with fixed tmax

sep (tmin
sep ) inputs as shown in Table II while varying tmin

sep (tmax
sep ) to see how stable

the ground-state matrix elements are.
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Based on the above procedure, we choose the final source-
sink separation tsep (listed in Table II in lattice units) used in
the “two-sim” fits for the rest of this work.
The majority of our two-sim fits to the three-point

correlators using the parameters listed in Table II have
reasonable fits with χ2=d:o:f: < 1. The 690-MeV
a12m310 nucleon matrix elements suffer from slightly worse
fits with χ2=d:o:f: ≈ 1.7. We have varied the parameters
without much improvement in the quality of fit; however, the
obtained matrix elements remain consistent as long as
tmax
sep > 8. In later sections, we will see the impact of these
twomatrix elements in the continuum-physical extrapolation.
We repeat the same analysis routine for Pz ∈ ½0; 4� 2πL a−1

to take advantage of the momentum-averaged results. The
above bare ground-state matrix elements h0jOj0i obtained
from two-sim fits in Eq. (7) contain a kinematic factor

E0
3
4
E2
0
þ1

4
P2
z
. After dividing out this kinematic factor, we obtain

the bare gluon momentum fraction hxigbare (orange points)
for four ensembles and various boost momenta, as shown in
Figs. 3 and 4 for strange- and light-quark nucleons. We then
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FIG. 3. The bare gluon momentum fraction hxibareg and fitted
bands divided by kinematic factors as functions of momentum
Pz ¼ 2π × Nz=ðaLÞ for Mπ ≈ 690 MeV on a09m310, a12m310,
and a15m310 ensembles, respectively.
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FIG. 4. The bare gluon momentum fraction hxibareg and fitted
bands dividing by kinematic factors as functions of momentum
Pz ¼ 2π × Nz=ðaLÞ for Mπ ≈ f220; 310; 310; 310g MeV on
a12m220, a09m310, a12m310, and a15m310 ensembles,
respectively.
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fit the bare matrix elements of Pz ∈ ½0; 4� × 2π=ðaLÞ on
each ensemble to a constant, shown as a gray band in the
figures. The χ2=d:o:f: of the fits are smaller than 1.5 except
the a09m310 light nucleon fit, which is the noisiest dataset
and has χ2=d:o:f: ≈ 1.7. The final bare gluon momentum
fractions are listed in Table III.

III. NONPERTURBATIVELY RENORMALIZED
GLUON MOMENTUM FRACTION

After we determine the gluon bare momentum fraction
matrix element from lattice calculation, our next step is to
renormalize it. In this work, we will be using RI-MOM–
scheme NPR [45]. We then implement a perturbative
matching to convert the gluon momentum fraction into
the MS scheme as follows:

hxiMS
g ¼ ZMS

Og
ðμ2; μ2RÞhxigbare

¼ RMSðμ2; μ2RÞZRI
Og
ðμ2RÞhxigbare; ð9Þ

where ZMS
Og

ðμ2; μ2RÞ is the renormalization constant, and the

one-loop expression for the perturbative matching ratio

RMSðμ2; μ2RÞ, derived in Ref. [46], is

RMSðμ2; μ2RÞ ¼ 1 −
g2Nf

16π2

�
2

3
logðμ2=μ2RÞ þ

10

9

�

−
g2Nc

16π2

�
4

3
− 2ξþ ξ2

4

�
; ð10Þ

where the number of flavors Nf ¼ 4, the number of colors
Nc ¼ 3, the parameter from the Riemann zeta function
ξ ¼ 0 in the Landau gauge, g2 is 4παðμÞ [47–49], and
μ ¼ 2 GeV are used in our calculation. The RI-MOM
renormalization factor ZRI

Og
ðμ2RÞ can be obtained with the

condition,

Zgðp2ÞZRI
Og
ðp2ÞΛbare

Og
ðpÞðΛtree

Og
ðpÞÞ−1jp2¼μ2R

¼ 1; ð11Þ

where Zgðp2Þ is the gluon-field renormalization and

Λbare ðtreeÞ
Og

is the bare (tree-level) amputated Green function

for the operator Og in the Landau-gauge–fixed gluon state.
The NPR factor ZRI

Og
ðp2Þ of the operator in Eq. (4) is

derived in Refs. [23,24],

ðZRI
Og
Þ−1ðμ2RÞ

¼ p2hðOg;μμ −Og;ννÞTr½AτðpÞAτð−pÞ�i
2ðp2

μ−p2
νÞDg;ττðpÞ

����
p2¼μ2R;τ≠μ≠ν;pτ¼0

:

ð12Þ
Therefore, the gluon propagator Dg;μνðpÞ and bare gluon
amputated Green function Λbare

Og
ðpÞ need to be calculated

for the further calculation of the NPR factor,

Dg;μνðpÞ ¼ hTr½AμðpÞAνð−pÞ�i

Λbare
Og

ðpÞ ¼ hðOg;μμ −Og;ννÞTr½AτðpÞAτð−pÞ�iðN2
c − 1Þ2

4D2
g;ττðpÞ

;

ð13Þ
where τ; μ; ν ∈ fx; y; z; tg and τ ≠ μ ≠ ν. Following the

above procedure, ZMS
Og

ðμ2 ¼ 4 GeV2; p2Þ is calculated and

shown in Fig. 5 in light gray points by using the full lattice
of all ensembles listed in Table II. The signal-to-noise ratios
of the light gray points are smaller than 100% in most
cases, which gives us a useless renormalized gluon
momentum fraction. The relative errors also become larger
as the lattice spacing becomes smaller. For example, the

relative errors of ZMS
Og

ðμ2 ¼ 4 GeV2; p2Þ for a09m310

ensemble are ≈ 1.5 on 347 configurations. To achieve a
comparable relative error as the bare matrix elements of the
light nucleon (0.10) shown in Table III, we need 152 ×
347 ¼ 78; 075 configurations for the a09m310 NPR cal-
culation alone, which is very expensive to do in dynamical
gauge generation. Therefore, we need some technique to
reduce the error of the NPR factor without requiring a huge
number of configurations in the calculation.
In Refs. [24,50], χQCD introduces a technique called

cluster-decomposition error reduction (CDER) in order to
increase the signal-to-noise ratio of NPR factor, which has
not been widely used by other lattice groups. The reason for
such error reduction is that, for the operator insertions, the
correlator signal falls off exponentially with the distance,
while the error remains constant. Beyond a certain corre-
lation length, it will only increase the noise without gaining
any signal. χQCD introduced two additional cutoffs in the
CDER technique [24] for calculating the gluon NPR: r1
(r2) for the upper bound of the distance between the glue
operator and one of the gauge fields (the gauge fields in the
gluon propagator DgðpÞ) in the gluon amputated Green

TABLE III. The renormalization constant ðZMS
Og

Þ−1, the bare
gluon momentum fraction hxigbare, and the renormalized gluon

momentum fraction hxiMS
g for the four ensembles used in this

calculation. We use the a12m310 NPR factors for a12m220 hxiMS
g

calculation since the mass dependence is weak for the NPR
factors. In the final column, the first error is the statistical error
from the matrix element and the second error is due to the
NPR factor.

Ensemble Mval
π (MeV) hxigbare ðZMS

Og
Þ−1 hxiMS

g

a12m220 226.6(3) 0.710(45) 1.512(65) 0.470(30)(25)

a09m310
313.1(13) 0.622(63) 1.336(106) 0.466(46)(37)
698.0(7) 0.592(48) 1.336(106) 0.443(37)(35)

a12m310
309.0(11) 0.651(53) 1.512(65) 0.430(35)(19)
684.1(6) 0.637(41) 1.512(65) 0.421(27)(18)

a15m310
319.1(31) 0.475(38) 1.024(61) 0.464(37)(27)
687.3(13) 0.447(23) 1.024(61) 0.436(22)(26)
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function ΛOg
ðpÞ definition. With these two cutoffs, the

correlators in the gluon propagator and gluon amputated
Green function become

hTr½AμðpÞAνð−pÞ�i

≈
�Z

jr0j<r2
d4r0

Z
d4xeip·r

0
Tr½AμðxÞAνðxþ r0Þ�

�
; ð14Þ

hðOg;μμ −Og;ννÞTr½AτðpÞAτð−pÞ�i

≈
�Z

jrj<r1

d4r
Z
jr0j<r2

d4r0
Z

d4xeip·r
0

× ½Og;μμ −Og;νν�ðxþ rÞTr½AτðxÞAτðxþ r0Þ�
�
: ð15Þ

Reference [24] studies the gluon nonperturbative
renormalization on different types of gauge configurations:
2þ 1-flavor RBC/UKQCD domain-wall fermion (DWF)
with lattice spacing a ¼ 0.114 fm, mπ ¼ 140 MeV, a
quenched Wilson gauge ensemble of 0.098 fm, and two
volumes of 0.117 fm 450-MeV two-flavor clover fermion
as well. In their quenched and two-flavor clover fermion
studies, they compare the NPR-factor ZRI

Og
results using the

CDER technique and 100× statistics and show that they are
consistent within one sigma. They find that the CDER
technique provides improvements on the lattice with their
final choices of r1 ≈ 0.9 fm and r2 ≈ 1.3 fm, and such
improvements are insensitive to the lattice definition of
operators and the HYP smearing steps within their uncer-
tainties. In our work, instead of using the CDER radius
cutoffs from Ref. [51], we use 16 L4

c truncated lattices to

calculate the NPR factor ZMS
Og

ðμ2; μ2RÞ for each lattice
spacing, which means using a 4-D cubic cutoff instead
of a spherical cutoff and Lc ≈ 2r1 and 2r2. The details of
the number of measurements for each lattice spacing and Lc
can be found in Table IV.
The smallest cutoffs Lc we use are 8 lattice units, which

correspond to 0.72, 0.96, and 1.2 fm for the a09m310,
a12m310, and a15m310 ensembles, respectively; this
corresponds to 2r1 with similar smallest cutoff ≈ 0.8 fm

used in Ref. [24]. Figure 5 shows the ðZMS
Og

ðμ2 ¼
4 GeV2; p2ÞÞ−1 as a function of p2 for different cutoffs
Lc for three ensembles (also the full lattices in grey points).

The error of ZMS
Og

ðμ2 ¼ 4 GeV2; p2Þ becomes smaller as Lc

decreases, which is expected as per the χQCD results [24].
Different Lc results are consistent within a one sigma error
range except for the Lc ¼ 8 in a09m310 ensemble, likely
suffering from finite-volume effects. Our final choice of the
cutoffs are Lc ¼ f1.44; 1.44; 1.5g fm for a09m310,
a12m310, and a15m310 ensembles, respectively, where
L is the full lattice size. These cutoff lengths of

FIG. 5. The renormalization constants ðZMS
Og

Þ−1 (μ ¼
4 GeV2; p2) as a function of p2ðGeV2Þ for the a09m310,
a12m310, and a15m310 ensembles are shown in the first second,
and last rows, respectively. Different color points represent
different cutoffs Lc and the lighter gray large error bar points
are from the full lattice calculations.

TABLE IV. The truncation length Lc in lattice units and the
number of configurations Ncfg and measurements Nmeas used for
different lattice-spacing ensembles. We used 16 sources for the
truncation on each configuration; thus, Nmeas is 16 × Ncfg.

Ensemble a09m310 a12m310 a15m310

Lc f8; 12; 16; 20; 24g f8; 12; 16; 20g f8; 10; 12g
Ncfg 347 409 394
Nmeas 5552 6544 6304
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Lc ∈ ½1.44; 1.5� fm which correspond to r1 ≈ 0.7 fm are
shown to be consistent with the full lattice NPR factors in
the χQCD work [24].
We fit the p2-dependent renormalization factor accord-

ing to the form,

ðZMS
Og

Þ−1ðμ2 ¼ 4 GeV2; p2Þ ¼ ðZMS
Og

Þ−1 þ c1p2 þ c2p4;

ð16Þ

where ðZMS
Og

Þ−1 on the right-hand side of the equation is

the renormalization factor at μ2 ¼ 4 GeV2 and p2 ¼ 0.
Figure 6 shows examples with our choice of Lc for all three
lattice spacings and the corresponding fit bands using
Eq. (16) with (c2 ≠ 0) and without (c2 ¼ 0) the quadratic
term for large and small p2 ranges used in the fit. We only
use p larger than 1.5, 2.0, and 2.4 GeV for a ≈ 0.15, 0.12,
and 0.09 fm, respectively, based on the pmin used in quark
momentum fractions on the same mixed-action study by
PNDME [42]. (PNDME only used constant fits to deter-
mine the renormalization constants.) For the largest lattice
spacing (a15m310 ensemble), the renormalization con-

stants ðZMS
Og

Þ−1ðμ2 ¼ 4 GeV2; p2Þ are quite linear as a

function of p2. Therefore, different fit bands are consistent
for different fit ranges of p2 with (c2 ≠ 0) and without the

(c2 ¼ 0) the quadratic term. The fit bands of ðZMS
Og

Þ−1ðμ2 ¼
4 GeV2; p2Þ of the a12m310 ensemble are still consistent
with each other within the one-sigma error despite the large
error for the smallest p2 range p ∈ ½2; 5.2� GeV. The fit

bands of ðZMS
Og

Þ−1ðμ2 ¼ 4 GeV2; p2Þ of the a12m310

ensemble deviate at large p2, because the ðZMS
Og

Þ−1ðμ2 ¼
4 GeV2; p2Þ points increase and then decrease from small

to large p2, which shows that ðZMS
Og

Þ−1ðμ2 ¼ 4 GeV2; p2Þ is
not so linear as a function of p2. Finally, the fit results of

a09m310 ðZMS
Og

Þ−1ðμ2 ¼ 4GeV2; p2Þ at p2 ¼ 0 start to

converge at ranges with larger maximum p2 chosen for
the fit. Thus, we can choose p ∈ ½2.4; 7� GeV as the fit
range for later calculations. To summarize, we use the
quadratic fits with p ranges [1.5, 6], [2, 6.5], and
[2.4, 7] GeV for each Lc to extract the renormalization

constants. The renormalization constants ðZMS
Og

Þ−1 for the

three ensembles are listed in Table III. Using Eq. (9), we

obtain the renormalized gluon momentum fraction hxiMS
g

results on four ensembles for both light and strange
nucleons, listed in Table III.

IV. RESULTS AND DISCUSSION

Combining the results from Secs. II and III, we obtain
renormalized gluon momentum fractions hxiMS

g at three
lattice spacings and three pion masses as shown in Fig. 7.
The points in Fig. 7 have two kinds of error bars; the darker
smaller bars include only the statistical error for the gluon
momentum fraction, while the lighter larger bars include
both the statistical errors and the errors from the gluon NPR

factor. Our renormalized hxiMS
g shows weak pion-mass and

lattice-spacing dependence. Therefore, we use a simple
quadratic ansatz for Mπ and a in the physical-continuum
extrapolation to the physical pion mass Mphys

π ¼ 135 MeV
and continuum limit a ¼ 0,

FIG. 6. The renormalization constants ðZMS
Og

Þ−1ðμ2¼4GeV2;p2Þ
as a function of p2 for the a09m310 Lc ¼ 16, a12m310 Lc ¼ 12,
and a15m310 Lc ¼ 8 with various fit momentum ranges are
shown from top to bottom, respectively. The lower limits of the fit
range of the momentum are chosen to be the same as in Ref. [42].
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hxiMS
g ðMπ; aÞ ¼ hxiMS;cont

g þ kMðM2
π − ðMphys

π Þ2Þ þ kaa2:

ð17Þ

In the fits depending on Mπ and a, both the statistical errors
and the NPR errors are considered. With the a15m310,
a12m310, and a09m310 ensembles, since we have the same
number of measurements for both strange and light quarks,
within each ensemble, we bootstrap the light and strange
renormalized matrix elements in the same way to keep the
correlations. Across different ensembles, the data are inde-
pendent. The physical-continuum limit gluon momentum

fraction hxiMS;cont
g fit result is 0.502(53). The fitted parameters

kM ¼ −8.1ð5.2Þ × 10−5 GeV−2 and ka ¼ −0.034ð31Þfm−2

are very small, consistent with zero within two sigma.
The reconstructed fit bands at selected Mπ ∈
f135; 310; 690g MeV as functions of a are shown in the
left plot of Fig. 7. There is a slight trend toward higher gluon
momentum fractions as one approaches the physical pion
mass. TheMπ ¼ 690 MeV band deviates from the other two
bands, while the Mπ ¼ 135 and 310 MeV bands almost
coincide. One can also see that the fit form well describes the
data since these bands go through the Mπ ¼ 220- and
310-MeV data points. On the right-hand side of Fig. 7, we
show reconstructed results at a ∈ f0; 0.09; 0.12; 0.15g fm as
functions ofMπ . Each color band representingdifferent lattice
spacings agrees well with the same-color data points. The
central values of continuum extrapolation favor higher gluon
momentum fractions but remain within one sigma of the
bands from all three lattice spacings.
So far, we have been missing a systematic error

associated with the mixing from the quark sector. The
bare operator in Eq. (4) can mix with the singlet quark

operators Obare
q and couple with the renormalized gluon

operator via Og ¼ ZggObare
g þ Zgq

P
i¼u;d;s O

bare
q;i . The mix-

ing for quark operators is expected to be small, based on
past lattice works. The ETM Collaboration [21,22,25] used
one-loop perturbative renormalization and estimated the
mixing coefficients to be a fraction of their statistical errors.
The effect of the mixing of the quark operator into the
gluon operator is about 2%–10%, as shown in Ref. [21].
An MIT group also ignored the quark mixing because
it is assumed to be smaller than the statistical uncertain-
ties [23]. We conservatively estimate a 10% systematic
error from quark mixing for this calculation; thus, our final

hxiMS;cont
g at physical pion mass and continuum limit

is 0.502ð53ÞstatþNPRð50Þmixing.
We compare our results with prior dynamical lattice

work and global fits. As shown in Table I, the majority of
nucleon gluon momentum fractions hxig from lattice
dynamical calculations were done using a single lattice
spacing. These results range from 0.4 to 0.55 for the most
recent calculations (except the ETMC16 and ETMC17
results) and have statistical errors varying from 5%–20%.
The χQCD Collaboration studied the systematic errors
from continuum extrapolation and assigned it a 10%
relative error in Ref. [26] and a 5% relative error in their
most recent paper [27]. Overall, we find good consistency
with lattice determinations from the last four years. We
summarize the dynamical lattice-QCD results extrapolated
to or directly calculated at physical pion mass, along with
the global-fit results since 2014, in Fig. 8. The lattice results
currently are much larger than with those from global fits,
with central values closer to 0.5, rather than around 0.4,
where global fits prefer. Higher-precision lattice

FIG. 7. The renormalized gluon momentum fraction hxiMS
g obtained from each ensemble along with the physical-continuum

extrapolation as functions of lattice spacing a (left) and pion massM2
π (right). Each data point in the plot has two errors: the darker inner

bar indicates the statistical error, while the lighter outer bar includes combined errors from both the statistical and renormalization error.
The vertical dashed line in the right plot goes through M2

π ¼ ð0.135 GeVÞ2, and the different color points near this line represent the
extrapolated values at different lattice spacings a at physical pion mass. To increase visibility, we plot theMπ ∈ f220; 310g-MeV points
shifted by þ0.001 fm in the left plot. The reconstructed fit bands at selected Mπ ∈ f135; 310; 690g MeV as functions of a and at
selected a ∈ f0; 0.09; 0.12; 0.15g fm as functions of Mπ are also shown in the left- and right-side plots, respectively.
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calculations are needed with order-of-magnitude increases
in computational resources to reduce the errors to be
comparable with those from global fits (using more than
60 years of experimental data).

V. CONCLUSION AND OUTLOOK

We present the first Nf ¼ 2þ 1þ 1 continuum-limit
lattice calculation of the gluon momentum fraction. We use
high-statistics nucleon two-point correlators ranging from
0.26–1.5 million measurements with three lattice spacings
and the lightest pion mass being 220 MeV. We apply a two-
state fit to multiple source-sink separations to extract

ground-state matrix elements. We nonperturbatively calcu-
late renormalization factors for these operators in the RI/
MOM scheme, following the traditional NPR approach.
For the ensembles at pion mass 310 MeV, even though the
spatial volumes are roughly the same among our three
lattice spacings, the finest lattice spacing, a ≈ 0.09 fm,
yields much noisier results. To improve this, we apply
cluster-decomposition error reduction (CDER). The renor-
malized gluon momentum fractions show mild lattice-
spacing and pion-mass dependence (within our statistical
and NPR errors); thus, we use a simple ansatz to extra-
polate to the physical-continuum limit. Our final gluon
momentum fraction is 0.502ð53ÞstatþNPRð50Þmixing, where
the mixing systematic is estimated from upper bounds
determined in previous lattice work. Our lattice results are
consistent with lattice work from the last four years using
single lattice spacings and Nf ¼ 2þ 1 mixed action, and
they are consistent with those from global fits within two
sigma. Future calculations will include ensembles at the
physical pion mass and lattice calculations of the quark
moments.
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