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The γ⋆γ⋆ → ππ scattering amplitude plays a key role in a wide range of phenomena, including
understanding the inner structure of scalar resonances as well as constraining the hadronic contributions
to the anomalous magnetic moment of the muon. In this work, we explain how the infinite-volume
Minkowski amplitude can be constrained from finite-volume Euclidean correlation functions. The
relationship between the finite-volume Euclidean correlation functions and the desired amplitude holds
up to energies where 3π states can go on shell, and is exact up to exponentially small corrections that scale
like Oðe−mπLÞ, where L is the spatial extent of the cubic volume and mπ is the pion mass. In order to
implement this formalism and remove all power-law finite volume errors, it is necessary to first obtain
ππ → ππ, πγ⋆ → π, γ⋆ → ππ, and ππγ⋆ → ππ amplitudes; all of which can be determined via lattice
quantum chromodynamic calculations.
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I. INTRODUCTION

Several outstanding puzzles within the Standard Model
of particle physics involve electroweak interactions of low-
energy nuclear systems. One of the more pressing issues is
the discrepancy between theoretical predictions and exper-
imental measurements of the anomalous magnetic moment
of the muon [1], which is presently estimated to be at the
3–4σ deviation level [2]. If this tension persists, it would
serve as indirect evidence of physics beyond the Standard
Model. Nonperturbative effects from quantum chromody-
namics (QCD) presently dominate the theoretical uncer-
tainty, in particular, the QCD contributions to the hadronic
vacuum polarization (HVP) and the hadronic light-by-light
(HLbL) processes [3–12]. Estimating the size of these
contributions from low-energy QCD is challenging,
however, advancements in both phenomenology and
theory have made substantial progress in decreasing their
uncertainties. In the case of the HLbL tensor, dispersive
representations are used to write the HLbL amplitude in

terms of hadronic matrix elements such as γ⋆γ⋆ →
π0; η; η0; ππ; KK̄;…, etc, which are in turn constrained
from data-driven analyses [13–17].1
In general, these two-photon processes can be obtained

from the evaluation of matrix elements of time-separated
products of electromagnetic currents, J μ, overlapping
between the QCD vacuum and the desired final state,
∼houtjJ μðtÞJ νð0ÞjΩi. Accessing these classes of matrix
elements directly from QCD requires a nonperturbative
approach in order to correctly capture the low-energy
physics of hadrons. Lattice QCD is a rigorous and con-
trolled approximation to QCD where correlation functions
are estimated using Monte Carlo techniques in a discrete
Euclidean spacetime, confined in a finite volume. In recent
years, there has been tremendous progress from the lattice
QCD community, particularly in constraining increasingly
complicated low-energy hadronic processes. This progress
is largely due to three key components: (a) access to
powerful high-performance computing resources, (b) devel-
opment of sophisticated algorithms, and (c) development
of nonperturbative formalisms that connect quantities
directly accessed via lattice QCD and the desired scattering
observables. The work presented here falls in the third
category, enabling us to extract information on γ⋆γ⋆ → ππ
from lattice QCD calculations.
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1For complimentary lattice QCD efforts aimed at directly
calculating the full HLbL contribution to the anomalous magnetic
moment of the muon, we point the reader to Refs. [18–20].
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Before discussing the conceptual challenges addressed in
this work that would pave the way toward future determi-
nations of the γ⋆γ⋆ → ππ amplitude from lattice QCD, it is
worth remarking one additional motivation for this ampli-
tude. One of the earliest nonperturbative predictions of
QCD is the presence of glueball states in the spectrum of the
theory. In a pure Yang-Mills theory, these are hadronic states
composed of bound gluons with no sea quarks. Several
predictions have been performed in quenched calculations
of the theory [21–28]. Unfortunately, given the mixing
between gluons and quark-antiquark pairs in QCD, the
identification of glueball states in the unquenched theory
has proven to be an outstanding challenge, and to this day a
“smoking gun” that is not model-dependent is missing.
Given the fact that glueballs would necessarily be neutral
states, one can expect that sensible quantitative measure-
ments of glueballs include their radiative transitions. In
particular, a large glueball component is expected to
produce a small γγ coupling, as photons do not couple
directly to gluons. The lowest-lying glueball candidate is
expected to have JPC ¼ 0þþ quantum numbers and a mass
of around 1.5 to 2 GeV. It couples to a myriad of final
states, including ππ, mixing with the inelastic f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ resonances to a varying degree.
Furthermore, in scattering processes, their lineshapes over-
lap, which makes the glueball identification very challeng-
ing [29–40]. As a result, the γ⋆γ⋆ → ππ amplitude can help
provide some constraints on the inner structure of some
glueball candidates.2

Having motivated the desired amplitude, we can now
discuss why this is challenging to access via lattice QCD.
To have confidence in the determination of the γ⋆γ⋆ → ππ
amplitude, the QCD contribution must be treated non-
perturbatively. Meanwhile, it is sufficient to treat the
quantum electrodynamic (QED) contribution perturba-
tively using two electromagnetic currents inserted at
arbitrary time separations. Directly computing such a
process proves to be naïvely impossible in lattice QCD
because calculations are necessarily done in a finite,
Euclidean spacetime. The fact that the space is finite,
results in the absence of asymptotic states, including the
asymptotic ππ state. While the Euclidean nature of the
calculation generally prohibits the access of Minkowski
matrix elements that explicitly depend on time, necessary
for the product of previously discussed currents. However,
here we discuss an indirect path toward accessing such an
amplitude using Euclidean correlators in a finite volume.
This work builds from an extensive program aimed at

determining purely hadronic as well electroweak ampli-
tudes via lattice QCD. Here we review the key work
that makes this possible and provides evidence that the

formalism is sufficiently mature to consider such a
complex reaction as γ⋆γ⋆ → ππ. As is discussed in great
detail in the remainder of this work, the formalism
presented here requires inputs from a variety of scattering
observables. The simplest of which are the purely had-
ronic two-body scattering amplitudes. These amplitudes
are not directly accessible in a finite spacetime. Instead,
one can construct exact relations between the finite-
volume spectrum, which is accessible via lattice QCD,
and infinite-volume scattering amplitudes. This observa-
tion was first made by Lüscher for nonperturbative
theories involving identical bosons at rest [42], and it
has since been generalized to arbitrarily complicated two-
body system [43–54]. This has allowed for numerous
successful numerical calculations of scattering amplitudes
[55–72]. In particular, all that will be needed from this
formalism are the ππ → ππ partial-wave amplitudes.
The second class of quantities needed are electromag-

netic amplitudes involving a single current insertion cou-
pling to π and/or ππ states. In general, one can derive
nonperturbative relations between finite-volume matrix
elements of local external currents (J ) and these classes
of infinite-volume amplitudes where the electromagnetic
contribution is treated perturbatively. In this direction, it
has been shown how J → 2, 1þ J → 2 [73–78] and
2þ J → 2 [79,80]3 transition amplitudes may be con-
strained from finite-volume matrix elements. Albeit chal-
lenging, successful numerical results have already been
obtained for various processes [81–85]. In particular, the
specific amplitudes that will be needed to be constrained
are πγ⋆ → π, γ⋆ → ππ, and ππγ⋆ → ππ.4

The amplitude considered here, which falls under a call
of amplitudes we generically label as J þ J → 2 proc-
esses, involves two currents that are displaced in time, and
as a result in general the product cannot be considered to
be local. Matrix elements of nonlocal currents are
already being studied via lattice QCD. Notable examples
include two-photon radiative decays of single-hadron
states [88,89]. The first theoretical attempt to formally
understand how long-range processes where intermediate
multi-particle states can go on-shell was presented in
Ref. [90] in the context of K0 − K̄0 mixing, where there
can be intermediate ππ states. This work was later
generalized for arbitrary reactions of the form 1þ J →
1þ J [91] where intermediate two particles can go on-
shell up to the first three-particle threshold.5

The outstanding challenge that was not addressed in
Ref. [91] for studying processes of the form of J þ J → 2

2For a review on the role of two-photon couplings in
elucidating the nature of light hadrons, we point the reader to
Ref. [41] and references therein.

3Here, 1 and 2 refer to the number of stable hadrons present in
the asymptotic states.

4Although to date no calculations of ππγ⋆ → ππ have been
obtained via lattice QCD, various nontrivial tests have been
presented in the existing formalism [86,87].

5We point the reader to Ref. [92] for a recent review on these
topics.
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is associated with the fact that one can not only have on-shell
two-particle states between the two currents but also in the
final states. This leads to new classes of power-law finite-
volume effects that must be isolated. As will be shown in
detail, these can be isolated and they depend on physical
subprocesses that can be constrained for simpler finite-
volume Euclidean correlation functions. In short, we provide
an exact formalism that relates the γ⋆γ⋆ → ππ amplitude to a
combination of quantities that can be obtained from finite-
volume Euclidean correlation functions.
The rest of this manuscript is organized as follows. In

Sec. II, we give an overview of the work and present our
main result in Eq. (6). In Sec. III, we review the form of
the infinite-volume Minkowski amplitude of interest as
derived in Ref. [93]. In Sec. IV, we derive the main result
mentioned before. In particular, we give the exact linear
combination of quantities that can be used to constrain the
nontrivial piece of the γ⋆γ⋆ → ππ amplitude. These include
the ππ → ππ, πγ⋆ → π, and γ⋆ → ππ amplitudes and the
finite, Euclidean spacetime analogue of the desired
Minkowski matrix elements, all of which can be obtained

via lattice QCD. In Sec. V we derive the finite volume
correction to the amplitude. Finally, in Sec. VI we provide a
summary of this work and an outlook.

II. OVERVIEW

Herewe present an extension of the framework inRef. [91]
in order to accessJ þ J → 2 long-rangeprocess from finite-
volume matrix elements. We focus on the specific reaction
γ⋆γ⋆ → ππ where the ππ final state is projected to some
definite angular momentum quantum numbers J;mJ.
Therefore, we consider only conserved electromagnetic
currents J μ. The goal of this work is to derive the formalism
that will allow for the determination of this amplitude from
lattice QCD correlation functions, for kinematics where two-
particle intermediate states may go on-shell.
We define the amplitude of interest T μν, depicted

diagrammatically in Fig. 1, as the Fourier transform of
the corresponding Minkowski-signature time-ordered
matrix element of two local currents

T μνðP;q1Þ≡ i
Z

d4x e−iq1·x−ϵjx0jhππðJ;mJÞ; P; outjTfJ μðxÞJ νð0ÞgjΩi; ð1Þ

where P ¼ ðE;PÞ is the four-momentum of the asymptotic
outgoing ππ scattering state, q1 ¼ ðω;q1Þ is the momen-
tum being carried by one of the currents, and T is the
standard time-ordering operator in Minkowski space. Four-
momentum conservation requires that the unspecified
current carries a momentum q2 ¼ P − q1. The local con-
served currents are functions of the Minkowski spacetime
point x ¼ ðx0;xÞ, with one current located at the origin to
eliminate the overall momentum-conserving delta function.
In Eq. (1), we have explicitly introduced ϵ, which should
ultimately be taken to zero after integration.6

As was derived in Ref. [93], this amplitude can be
written in terms of purely on-shell quantities and physical
singularities in the form

iT μνðP;p̂⋆;q1Þ≡
X
fiwμ

oniDiH̄νgþ iT μν
df ðP;p̂⋆;q1Þ: ð2Þ

Here we have not yet projected the final state to a definite
JP, thus the amplitude depends on the relative orientation
of the pions p̂⋆ where the ⋆ indicates we evaluate the
momentum in the center-of-momentum (CM) frame of the
pions. The first term in Eq. (2) contains simple poles that
depend on the πγ⋆ → π and γ⋆ → ππ amplitudes (denoted
by wμ

on and H̄ν, respectively), both of which can be
accessed via lattice QCD through previously derived
formalisms [75,77,78,84]. A discussion on the specifics
of these functions is given in Sec. III. In the context of the
γ⋆γ⋆ → ππ amplitude, this term represents the pion-pole
contribution [1,4–6,15,94], which we describe in more
detail in Appendix A. From the viewpoint of this work,
these are previously determined functions, and thus the
only quantity that is otherwise unconstrained is T μν

df .

FIG. 1. Shown is the diagrammatic definition of the γ⋆γ⋆ → ππ amplitude, defined in Eq. (1). The “wiggly”-lines represent virtual
photons with Lorentz indices μ and ν. Solid lines represent π lines. The open circles are kernels, with properties described in the text, and
black circles are amplitudes defined subsequently in Fig. 2. The “∞” symbol emphasizes that these loops are being evaluated in an
infinite volume. The “½q1; μ ↔ q2; ν�” symbol denotes the presence of diagrams identical to the ones shown except with the labels of the
virtual photons swapped.

6Note that we keep the dependence on angular momentum for
T μνðP; q1Þ implicit.
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The subscript “df” stands for divergence free, which refers
to the fact that the amplitude does not contain any
kinematic or spurious singularities, which are encapsulated
by the first term of Eq. (2), but does contain dynamical
singularities such as two-particle production branch cuts,
and possible bound and resonance state pole singularities.
This subscript appears in other amplitudes introduced
below and has a similar definition.
We then project the decomposition to a definite partial

wave in order to link Eq. (2) to the definition (1). The
partial-wave projection can be found by integrating over the
solid angle subtended by the ππ CM relative momentum,
weighted by an appropriate spherical harmonic,

T μνðP; q1Þ ¼
1ffiffiffiffiffiffi
4π
p

Z
dp̂⋆ Y�JmJ

ðp̂⋆ÞT μνðP; p̂⋆; q1Þ; ð3Þ

where mJ is the total angular momentum projection along
some fixed z axis. The projection of the first term of Eq. (2)
will contribute known kinematic singularities similar to
those discussed in Ref. [95], and the second term simply
produces the projection T μν

df ðP; q1Þ. In Sec. III we outline
an exact definition of this quantity in terms of scattering
amplitudes of physical subprocesses, known kinematic
functions, and unknown nonsingular dynamical functions
that are purely real.
The central result of this work relates the infinite

volume amplitude T μν
df to finite-volume Euclidean-

signature matrix elements which we can compute, e.g.,
using lattice QCD. We work in a finite-cubic-volume
with side length L and periodic boundary conditions,
which imposes that spatial momenta are quantized as
P ¼ 2πn=L where n ∈ Z3. We assume that the size of the
volume is such that mL ≫ 1, where m is the mass of the
pion. We define the finite-volume Euclidean spacetime
matrix element which closely resembles the infinite-
volume counterpart of Eq. (1) as

Mμν
L ðτ; Pn;q1Þ

≡
Z
L
d3x eiq1·xhPn; LjTEfJ μ

Eðτ;xÞJ ν
Eð0ÞgjΩi; ð4Þ

where τ is Euclidean time. The matrix element depends on
the finite volume spectrum En for the nth state at a given
total momentum P, with Pn ¼ ðEn;PÞ.7 Finite-volume
eigenstates are normalized to unity,

hPm; LjP0n; Li ¼ δmnδPP0 ;

which differs from the relativistic normalization of infin-
ite-volume single-particle states.8 The local currents J E
here translate in Euclidean time as

J μ
Eðτ;xÞ ¼ eHLτJ μð0;xÞe−HLτ;

where HL is the finite-volume QCD Hamiltonian, and TE
is the Euclidean time-ordering operator, which orders the
current insertion depending on the values of τ and 0.
Although computationally challenging, these matrix

elements can in principle be computed from time-displaced
Euclidean-signature correlation functions. This is the case
in lattice QCD studies of two-photon radiative decays
of QCD-stable hadrons [88,89]. Since we are ultimately
interested in momentum-space long-range matrix elements,
which do not depend on the temporal signature, we should
integrate Eq. (4) over Euclidean time τ with an exponential
weight that depends on the desired frequency of the
external current, i.e.,

R
dτ eωτ. Unfortunately, the resulting

integral is in general not equivalent to the Fourier transform
of the Minkowski spacetime matrix element T μνðP;q1Þ for
two reasons. First, the finite-volume states are not expo-
nentially close to the infinite-volume ones. Second,
depending on the kinematics of the external states and
the current, the resulting integral does not converge. We
first address the second issue, which was discussed in
Ref. [91]. The first of these issues amounts to finite-volume
corrections which are discussed in Sec. V, while the second
is the subject of Sec. IV.
Intuitively, the integral fails to converge when inter-

mediate states created in the long-range process can go on-
shell. Fortunately, the contribution from these intermediate
states can be determined completely from the spectrum and
matrix elements of the physical subprocesses. In particular,
in the long-range process of interest, γ⋆γ⋆ → ππ, the
physical subprocess that can lead to intermediate on-shell
states is γ⋆ → ππ → γ⋆ππ. In other words, one must
determine the ππ spectrum, extract the ππ → ππ scattering
amplitude [43,44,96], and the finite-volume matrix ele-
ments corresponding to γ⋆ → ππ [75,77] and ππ → γ⋆ππ
[79,80] processes. These three subprocesses are diagram-
matically defined in Fig. 2. Reference [91] proposed that
these divergent contributions be removed from the
τ-dependent correlation function. We label the divergent
contribution as Mμν;<

L , where “<” indicates that the con-
tribution from a number of states that lie below some finite
cutoff is included in the subtraction.
Following Ref. [91], we define the subtracted Euclidean

time-dependent matrix element, Mμν;>
L , as

Mμν;>
L ðτ;Pn;q1Þ≡Mμν

L ðτ;Pn;q1Þ−Mμν;<
L ðτ;Pn;q1Þ: ð5Þ

7Note that the spectrum implicitly depends on the volume and
momentum, En ¼ EnðL;PÞ, as well as other quantum numbers
such as those dictated by the representation of the system under
the cubic group.

8Infinite-volume single-particle states are normalized as
hp0jpi ¼ ð2πÞ32ωpδ

ð3Þðp0 − pÞ where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
.
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This function does not contain any on-shell processes,
and thus its integral over τ converges. The resulting
correlation function, although unphysical, is insensitive
to the time signature used to access it. This means, that it
coincides with a contribution to the desired Minkowski
correlation function, and it can be qualitatively under-
stood as the short-distance contribution to the quantity
T μν

L , the finite-volume analogue of Eq. (1). After this
procedure, we restore the long-distance modes from the
divergent terms which depend on the aforementioned
γ⋆ → ππ and ππ → γ⋆ππ matrix elements and the ππ
spectrum. As detailed in Sec. IV, this can be made explicit
by summing over simple poles associated with finite-
volume states, and we denote this contribution as T μν;<

L .
Because this last contribution is in frequency-space, the
resulting correlation function can be directly linked to the
Minkowski quantity of interest, Eq. (1).
Since the T μν;<

L term depends explicitly on the finite-
volume spectrum, it has power-law finite-volume artifacts
which we need to remove in order to identify the relation-
ship to the desired T μν

df . The procedure is similar to that
outlined in Ref. [91], where we sum the finite-volume
correlation function to all orders, and isolate contributions
that lead to power-law volume-dependent effects. Since we
work with two-particle final states, as opposed to the
single-particle states of Ref. [91], additional corrections
arise from their rescattering. In Sec. V, a complete deriva-
tion of the isolation of the finite-volume correction to T μν

df
is given. Combining this result with the aforementioned
separation of long-distance modes in the Euclidean matrix
element, our result can be succinctly summarized by the
following relation,

rn
!ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p · T μν
df ðPn; q1Þ

¼
Z

dτ eωτ Mμν;>
L ðτ; Pn;q1Þ

þ
�
T μν;<

L ðPn; q1Þ þ
rn
!ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p · ΔT μν
L;dfðPn; q1Þ

�
;

ð6Þ

which holds at the finite-volume energies En and ignores
corrections which scale like Oðe−mLÞ. Here we introduce
r⃗n, which is related to the well-known Lellouch-Lüscher
factor [97] as first written in Ref. [74]. These factors serve
to correct finite-volume effects arising from the final ππ
state, and we provide an exact definition in Eq. (31) where
we follow the notation introduced in Ref. [76]. The additive
correction, ΔT μν

L;df , is the desired finite-volume correction
which depends on the physical quantities associated with
the πγ⋆ → π, γ⋆ → ππ, and ππγ⋆ → ππ subprocesses. An
exact expression of ΔT μν

L;df is given in Eq. (45). We group
the terms T μν;<

L and ΔT μν
L;df to emphasize the fact that these

terms must use the same parametrization used for ΔT
because otherwise these poles will not exactly cancel, and
can lead to unphysical behavior of the amplitude.

III. ON-SHELL REPRESENTATION
OF THE AMPLITUDE

We briefly review the general on-shell formalism pre-
sented in Ref. [93] for the specific amplitude of interest,
T μν. Generally, the amplitude can be written to all orders
within some generic relativistic effective field theory as a
self-consistent equation in terms of short-distance kernels
which do not have singularities for the kinematic range of
interest. This self-consistent equation is shown diagram-
matically in Fig. 1 for iT μν, where the kernels are shown
with white open circles connected to electromagnetic
currents denoted by “wiggly” lines. The kernels are
integrated over four-dimensional momentum loops of pion
propagators (shown by solid straight lines) with 2 → 2
scattering and 2þ J → 2 transition amplitudes, called M
and Wμ, respectively. These amplitudes are subsequently
defined in terms of their own self-consistent equations in
Fig. 2. The amplitude T μν also contains a contribution from
the J → 2 production amplitude, called Hμ, where one of
the pions subsequently interacts with the other current. This
interaction leads to a new kernel associated with the one-
body matrix element 1þ J → 1 transition. Note that in
Fig. 1 we have only shown the diagrams where the currents
are inserted in a particular time order and have left the other
time ordering implicit, as indicated by “½q1; μ ↔ q2; ν�”.
Reference [93] shows the projection of these generic

relations to their on-shell form, which separates all
long-range intermediate state singularities from all short-
distance physics which are absorbed into unknown non-
singular functions. These results hold for a kinematic
region where only two-particle states can be produced in
the kinematic variable P2, and the virtualities of the
currents are such that higher-number particle production
thresholds are prohibited. This procedure results in Eq. (2),
and the remainder of this section details each of the
building blocks.
The first term, iwμ

oniD iH̄ν, includes infrared pole sin-
gularities associated with individual currents coupling to
one of the external particles. Here, iwμ

on refers to a specific
definition of the single-particle matrix elements for
πγ⋆ → π introduced in Ref. [80]. In particular, this defi-
nition places the single-particle form factors on-shell, while
allowing for the kinematic prefactors to be off-shell. For
charged pions, this is explicitly given by

iwμ
onðkf; kiÞ ¼ ðkf þ kiÞμifðQ2Þ; ð7Þ

where f is the physical form factor, Q2 ¼ −ðkf − kiÞ2 is
the momentum-transfer-squared to the pion, and ki (kf)
denote the incoming (outgoing) momentum of the pion,
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respectively. In this framework, k2i and k
2
f need not coincide

with m2. The next quantity that appears in the first term of
Eq. (2) is iD, which is the pole piece of the single pion
propagator defined as

iDðkÞ≡ i
k2 −m2 þ iϵ

: ð8Þ

The last piece in the divergent term of Eq. (2) is H̄μ,
which is closely related to the γ⋆ → ππ transition amplitude
Hμ.9 We depict the self-consistent relation for Hμ in
Fig. 2(b). The difference between H̄μ and Hμ is the
addition of kinematic barrier factors in the definition of
H̄μ. These barrier factors cancel in the limit where the
particle coupling to the current goes on-shell, but as
discussed in, for example, Ref. [93], the barrier factors
are necessary to remove unphysical singularities present in
the spherical harmonics. In Appendix A, we give an explicit
definition of H̄μ. Note that associated with the divergent
piece is the summation notation “

P
”. As discussed in

Refs. [93,95], this indicates a sum over all external legs
where the current could be inserted. For example, if the
final state is composed of πþπ−, the electromagnetic

current can couple to both the πþ and the π−, resulting
in four such contributions when accounting for the
[q1; μ ↔ q2; ν] crossed channel. For this scenario, the
kinematically divergent term is depicted in Fig. 3 and is
explicitly given by

X
fiwμ

oniDiH̄νg
¼ iwν

on;þðP − p;q1 − pÞiDðq1 − pÞiH̄μðq1 − p; q1Þ
þ iwν

on;−ðp;p − q2ÞiDðp − q2ÞiH̄μðp − q2; q1Þ
þ ½q1; μ ↔ q2; ν�; ð9Þ

where won;þ and won;− are the matrix elements for the πþ

and π−, respectively, which are on their mass-shell
ðP − pÞ2 ¼ p2 ¼ m2. In Appendix A, we explain in detail
how this term can be projected to definite angular
momentum.
Having defined the kinematically divergent term in

Eq. (2), we now move toward the description of the
divergence-free amplitude T μν

df , which is the object we
need to constrain from the finite-volume formalism. It was
derived in Ref. [93] that T μν

df has an on-shell representation
given by

iT μν
df ðP; q1Þ≡ iWμ

dfðP; q2ÞAν
20ðq2Þ þ iWν

dfðP; q1ÞAμ
20ðq1Þ

þ iMðP2ÞBμν
20ðP; q1Þ; ð10Þ

(a) (b)

(c)

FIG. 2. Shown are the diagrammatic representation of the (a) ππ → ππ, (b) γ⋆ → ππ, and (c) ππγ⋆ → ππ amplitudes and their all-
orders expressions. The open circles represent real-valued, nonsingular functions, whose properties are discussed in the main text. As
discussed in detail in the text, the “

P
” symbol represents the sum over all possible insertion of the current in the external legs. An

example of this is shown explicitly for the pole piece of T is shown diagrammatically in Fig. 3.

FIG. 3. The kinematically divergent term, Eq. (9), for the γ⋆γ⋆ → πþπ− amplitude of Eq. (2). The dashed line indicates the pole piece
of the propagator iD in Eq. (8).

9Although the process πγ⋆ → π is related to the crossed
channel γ⋆ → ππ, we use different symbols to indicate that in
our kinematic region of interest, these amplitudes produce
different physical effects.
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where q2 ¼ P − q1, M is the purely hadronic ππ → ππ
partial wave scattering amplitude, and Wdf is related to
the ππγ⋆ → ππ amplitude, denoted as Wμ. We show
diagrammatic depictions of these amplitudes, as well as
their self-consistent equations, in Figs. 2(a) and (c) for M
and Wμ, respectively. In particular, Ref. [95] showed that
the full ππγ⋆ → ππ amplitude Wμ satisfies an equation
similar to Eq. (2),

iWμðPf; p̂⋆
f ;Pi; p̂⋆

i Þ
≡X

fiwμ
oniDiMg þ iWμ

dfðPf; p̂⋆
f ;Pi; p̂⋆

i Þ; ð11Þ

where the first term, similar to the one in Eq. (2), accounts
for explicit kinematic singularities from the current probing
the external state withM related to the hadronic amplitude
M up to the same barrier factors needed in the definition
of H̄μ. Here, Pi and Pf are the total initial and final state
momentum flows for this process, while p̂⋆

i and p̂⋆
f are the

relative CM orientations for the initial and final state,
respectively. The partial waveWμ

dfðPf;PiÞ is found similar
to that of Eq. (3), except we need to project both the initial
and final states. The appearance of two terms associated
with the ππγ⋆ → ππ accounts for the ½q1; μ ↔ q2; ν� cross-
ing in the amplitude.
Every term in Eq. (10) contains a real-valued, non-

singular10 short-distance function which we denote as Aμ
20

and Bμν
20. Each Aμ

20 can be constrained from γ⋆ → ππ
transitions [75], and are defined by the on-shell form for
Hμ, e.g., for the q1 kinematic variable,

Hμðq1Þ ¼Mðq21ÞAμ
20ðq1Þ: ð12Þ

Therefore, we will treat Aμ
20 as a “known” function which

is determined from a previously defined formalism as given
in Refs. [75,77], leaving Bμν

20 as the only unconstrained
function in T μν

df . Therefore, coupled with the finite-volume
framework presented in this work, this unknown dynamical
function can be constrained from lattice QCD studies.
The M and Wμ

df amplitudes can similarly be written in
terms of known kinematic singular functions and unknown
real, nonsingular functions, see Ref. [95] for a detailed
discussion. For M, it is well known that the unknown
dynamical contribution can be written in terms of the K
matrix, or equivalently phase shifts and mixing angles,
while the kinematic singularities are encoded in the phase-
space of the two-particle system. Reference [95], derived
the on-shell representation for theWμ

df amplitudes, where it
was found that in addition to phase-space singularities,
Wμ

df also contains triangle singularities which are isolated
exactly. Again, from the perspective of this work, the

M andWμ amplitudes are “known,” and therefore the only
new object that our framework constrains in T μν

df is Bμν
20.

Once this object is determined, then combining it with the
various on-shell relations in this section provides a com-
plete description of the J þ J → 2 amplitude.
While we have simplified the problem to one of

determining a real-valued nonsingular function Bμν
20,

in general, it is still a complicated object due to the
Lorentz structure. It is useful to decompose the object,
and even the full amplitude T μν, into scalar form-factors
associated with some known kinematic Lorentz structure,
the form of which depends on the final state quantum
numbers. Therefore, we can further reduce the problem
to that of finding the individual scalar form-factors.
Appendix A provides a summary of the Lorentz decom-
position for the amplitude, as well as an explicit example
for the JP ¼ 0þ sector.
As a final comment, the T μν amplitude must satisfy the

Ward-Takahashi identity for conserved vector currents. It
was shown in Ref. [93] that this identity places a constraint
on the unknown Bμν

20 function in terms of the other lower-
point functions in the limit where one of the photon
momenta vanishes. We do not state the constraint here,
and point the reader to Eqs. (38) and (39) of Ref. [93] for
details, but note that this constraint can aid in developing
parametrizations for the Bμν

20 object for numerical applica-
tions as they must all collapse to the same result in the
vanishing photon momentum limit.

IV. RELATING EUCLIDEAN AND MINKOWSKI
MATRIX ELEMENTS

In this section, we summarize the details of the
procedure which relates the Euclidean matrix element,
Eq. (4), to T μν

L;df . For convenience, we repeat the definition
of Eq. (4) here

Mμν
L ðτ;P;q1Þ≡

Z
L
d3xeiq1·xhP;LjTEfJ μ

Eðτ;xÞJ ν
Eð0ÞgjΩi;

where we recall that the finite-volume states jP;Li have the
quantum numbers of a two-pion state with total momentum
P in a finite-volume and have unit normalization. For
notational convenience, we write the momentum of the
state P ¼ ðE;PÞ instead of Pn ¼ ðEn;PÞ as we had in
Sec. II, but we stress that it has the same interpretation as a
quantized spectrum. We noted that a trivial frequency-
dependent weighted integration over the Euclidean time τ
does not converge due to long-range modes in the kin-
ematic region of on-shell processes of interest. Therefore,
a trivial identification of the Fourier transformed matrix
element T μν is not possible. Following Ref. [91], the
resolution involved removing the divergent contributions
to render the integral convergent and reintroducing these
modes via a spectral reconstruction.

10Up to potential trivial barrier factors for higher partial waves,
see Refs. [93,95] for discussions.
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The divergent contribution is denoted as Mμν;<
L , where

we remind the reader that the symbol “<” indicates
that only a “small” subset of poles have been calculated
explicitly. Particularly, Mμν;<

L can be written using the
spectral decomposition as

Mμν;<
L ðτ; P;q1Þ≡

XN−1

n¼0
cμνn ΘðτÞe−½EnðL;P−q1Þ−E�jτj

þ
XN̄−1

n̄¼0
c̄νμn̄ Θð−τÞe−En̄ðL;q1Þjτj; ð13Þ

where jn; Li and jn̄; Li denote arbitrary finite-volume
states satisfying hn̄; Ljn; Li ¼ δn̄n, Θ is the Heaviside step
function, n and n̄ are integers enumerating the possible
discrete states, En and En̄ are their respective energies, and
cμνn and c̄νμn̄ are their corresponding matrix elements,

cμνn ≡
Z

d3x eiq1·xhP;LjJ μð0;xÞjn; Lihn; LjJ νð0ÞjΩi;

ð14Þ

c̄νμn̄ ≡
Z

d3x eiq1·xhP;LjJ νð0Þjn̄; Lihn̄; LjJ μð0;xÞjΩi:

ð15Þ

Note, that we suppress the total momentum dependence of
the ππ finite-volume states for simplicity. The minimal
number of terms needed to be included in the sums of
Eq. (13) is defined by those states that can go-shell in
the desired kinematics, which we denote by N and N̄. In
principle, one can include even more states. But the critical
point is that Mμν;<

L can be completely defined in terms of
the low-lying spectra and finite-volume spectra that can be
determined from two- and three-point functions involving a
single current insertion.
With this spectral definition, we define the subtracted

time-dependent matrix element Mμν;>
L in Eq. (5), repeated

here for the reader

Mμν;>
L ðτ; P;q1Þ≡Mμν

L ðτ; P;q1Þ −Mμν;<
L ðτ; P;q1Þ:

We make use of this definition to write the finite-volume
Minkowski amplitude, T μν

L , in terms of the integral of
Mμν;>

L and an additive piece that depends on the same low-
lying spectra and matrix elements that are necessary for
defining Mμν;<

L . We derive this identity starting from the
definition of T μν

L ,

T μν
L ðP;q1Þ ¼ i

Z
L
d4xe−iq1·x−ϵjx0jhP;LjTfJ μðxÞJ νð0ÞgjΩi;

≡ T μν;>
L ðω;P;q1Þþ T μν;<

L ðω;P;q1Þ; ð16Þ

where we have separated the short-and long-distance
modes, defining the short-distance contribution T μν;>

L as

T μν;>
L ðω; P;q1Þ

≡ i
Z
L
d4x e−iq1·x−ϵjx0j½hP; LjTfJ μðxÞJ νð0ÞgjΩi

−
XN−1

n¼0
hP;LjJ μðxÞjn; Lihn; LjJ νð0ÞjΩiΘðtÞ

−
XN̄−1

n̄¼0
hP;LjJ νð0Þjn̄; Lihn̄; LjJ μðxÞjΩiΘð−tÞ�;

¼
Z

dτ eωτ½Mμν
L ðτ; P;q1Þ −Mμν;<

L ðτ; P;q1Þ�; ð17Þ

where the second line follows from evaluating the spatial
integral analytically, Wick-rotating to Euclidean time, and
identifying the matrix elements we have defined in Eqs. (4)
and (13). With the short-distance modes encapsulated
by T μν;>

L , the remaining terms constitute the long-range
contribution T μν;<

L arising from low-lying states

T μν;<
L ðP; q1Þ

≡ i
Z

∞

−∞
dt e−iωt−jtjϵ

�XN−1

n¼0
cμνn ΘðtÞ e−i½EnðL;P−q1Þ−E�t

þ
XN̄−1

n̄¼0
c̄νμn̄ Θð−tÞ eiEn̄ðL;q1Þt

�
ϵ¼0

¼
XN−1

n¼0

cμνn
EnðL;P − q1Þ − ðE − ωÞ þ

XN̄−1

n̄¼0

c̄νμn̄
En̄ðL;q1Þ − ω

:

ð18Þ
This separation follows from the spectral representation
for the Minkowski matrix element, similar to the Euclidean
case shown in Eq. (13), and isolating the high-energy states
that cannot go on shell. Subsequently, we evaluated the
spatial integrals, and in the long-range contribution T μν;<

L
we performed the final temporal integral.
Equation (16) relates the Euclidean-signature matrix

elements, in terms of computable correlation functions
and spectral reconstructions of the low-lying modes. Up to
this point, the steps needed are similar to those considered
in Ref. [91] for simpler processes. As one would expect, the
final step, which amounts to corrections for the power-law
finite-volume artifacts is specific to the process of interest,
and will necessarily differ from the expression found in
Ref. [91]. In particular, 1þ J → 1þ J amplitudes have
single-particle final states, so there is no finite-volume
correction coming from these objects. However, in this
work we are dealing with a two-particle final state, thus the
relation between T μν

L and T μν
df must know about the finite-

volume effects of these final states. In Sec. V we show that
T μν

L satisfies
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T μν
L ðPn; q1Þ ¼

rn
!ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p · ðT μν
df ðPn;q1Þ − ΔT μν

L;dfðPn; q1ÞÞ;

ð19Þ

where as mentioned in Sec. II, r⃗n is related to the well-
known Lellouch-Lüscher factor [97] and ΔT μν

L;df is the
finite-volume correction, both of which are defined in
Sec. V. We have also reintroduced Pn ¼ ðEn;PÞ as this
relation only holds at the finite-volume spectrum.
Combining all the pieces, we arrive at the main result of

this work,

rn
!ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p · T μν
df ðPn; q1Þ

¼
Z

dτ eωτ Mμν;>
L ðτ; Pn;q1Þ þ T μν;<

L ðPn; q1Þ

þ rn
!ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p · ΔT μν
L;dfðPn;q1Þ;

which is exactly Eq. (6) as stated in Sec. II. Therefore,
the desired T μν

df amplitude can be constrained from a linear
combination of the previously introduced quantities and
computable functions.
It is worth emphasizing that r⃗n makes explicit the

reduction of rotational symmetry present in a finite volume
by mixing amplitudes associated with different angular
momentum. In fact, it is a vector in the space of partial
waves. For example, if the ππ state has spatial total
momentum P ¼ 0 and it has the quantum number of the
Aþ1 irreducible representation of the cubic group, then it is
well known that the J ¼ 0; 4; 6;… can mix with each other.
One would then find that ðr⃗nÞAþ

1
would have nonzero

components only for those specific partial waves. In
practice, for moderate energies, only a finite number of
partial-wave contributions of T μν

df will be expected to be
statistically nonzero.

V. DERIVATION OF FINITE-VOLUME
CORRECTION

In this section, we outline the derivation of the finite-
volume correction for the long-range matrix element T L.
The primary object considered is the three-point correlation
function11

CμνL ðP;q1Þ

≡−
Z
L
d4x

Z
L
d4ye−iq1·x eiP·yhΩjTfOðyÞJ μðxÞJ νð0ÞgjΩi;

ð20Þ

where we work in Minkowski spacetime, and O is an
interpolating operator with quantum numbers of the two-
pion system. The spatial integrations are over the finite-
cubic-volume, while the temporal component is over
an infinite range. To derive the finite-volume correction,
we first identify the spectral decomposition of Eq. (20) in
terms of the matrix element desired, T μν

L . Then, we analyze
the same correlation function using some generic relativ-
istic effective field theory to generate an all-orders repre-
sentation. By using the procedure introduced in Ref. [44],
we then isolate all finite-volume contributions which have
power-law dependence on L, which as we show, arise from
on-shell two-particle intermediate states. Identifying these
contributions allows us to write the desired matrix element
in terms of its infinite-volume counterpart and a correction
that can be written in terms of known amplitudes and
geometric functions.
As we show in Sec. V B, the correlation function CμνL has

pole singularities when the final two-particle states have
energies that coincide with those allowed in a finite volume.
These are well-known to be described by the two-particle
quantization condition [42–46,49,50,53]

det ½F−1ðP;LÞ þMðP2Þ�P¼Pn
¼ 0; ð21Þ

where F is a well-known geometric function, defined in
Appendix B,M is the infinite-volume two-particle scatter-
ing amplitude shown in Fig. 2, and the determinant is over
the space of angular momenta. The residue of CμνL at these
poles can be related to the finite-volume matrix element
T μν

L through a multiplicative factor controlled by the two-
particle correlation function. Therefore, to isolate the
matrix element, we first summarize the analysis as outlined
in Ref. [74] to isolate finite-volume corrections of the two-
point correlation function, and identify the scaling behavior
near the energies of the finite-volume spectrum.

A. Two-point correlation function and residues

In order to analyze the three-point function Eq. (20), we
first review the spectral content and finite-volume correc-
tions for the two-point function of the two-particle inter-
polation operator O. We follow the procedure outlined
in Refs. [44,53] and point the reader there for details. We
evaluate the finite-volume Minkowski-signature two-point
correlation function iCL defined as

CLðPÞ≡ i
Z
L
d4x eiP·x−ϵjx0jhΩjTfOðxÞO†ð0ÞgjΩi; ð22Þ

where it is assumed ϵ → 0þ after integration. We construct
the spectral decomposition by inserting a complete set
of finite-volume states jPn; Li between the interpolating
operators for both time orderings. Identifying O as a
Heisenberg operator, we evaluate the spatial and temporal
integrals to obtain

11We follow the convention of Ref. [91] that operators are
associated with a factor of i.
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CLðPÞ ¼ −L3
X
n

ZnZ�n
E − En

þ L3
X
n

Z�nZn

Eþ En
; ð23Þ

where Zn ¼ hΩjOð0ÞjPn; Li is the overlap factor for the
operator O on the state n. For notational convenience, we
suppress the dependence of Zn on L and P. Ultimately, we
are interested in the correlation functions near a given
finite-volume state n with a given energy En. As can be
seen from Eq. (23), in the vicinity of the given eigenstate
jPn; Li for some fixed L and P, the correlation function
behaves like

CLðPÞ ∼ −L3
ZnZ�n
E − En

; ð24Þ

as E ∼ En. Thus, the correlation diverges as a pole
singularity in the energy near the nth eigenstate.
We now express the same correlation function to all

orders in our generic relativistic quantum field theory.
Summing to all-orders, we find that iCL can be written
diagrammatically as shown in Fig. 4(a), where the

vacuum-to-two-particle kernels, which we denote as iσ,
are represented by white open circles. The black square is a
finite-volume analogue of the off-shell 2 → 2 amplitude
ML, defined diagrammatically in Fig. 5(a). Note that the
loops shown in these figures are not integrations over the
temporal components of momenta, but finite-volume sums
over the quantized spatial components of momenta, which
is indicated by the “V” in the figures.
To extract the finite-volume correction to the infinite-

volume correlation function iC∞, we note that power-law
finite-volume effects are understood to arise from on-shell
intermediate states. Therefore, we do not need to make
assumptions about the explicit forms of the short-distance
kernels or propagators. Instead, all that is needed is to
identify that in the vicinity of a given particle going on-
shell, the propagator behaves as iΔ ∼ iD as k2 ∼m2, where
iD is defined in Eq. (8), and we can project the kernels to
their on-shell counterpart by expanding about this point.
Using this fact, we systematically replace each finite-
volume loop with an infinite-volume loop plus the
difference between the two. The difference between the

(a) (b)

FIG. 5. Shown is the diagrammatic definition of the finite-volume analogues of the (a) ππ → ππ, (b) γ⋆ → ππ amplitudes. The “V”
symbol emphasizes that the loops are being evaluated in a finite volume. The open circles are the same kernels appearing in the
definition of the infinite-volume amplitudes, shown in Fig. 2.

(a)

(b)

FIG. 4. (a) Shown is the all-orders expression for the finite-volume two-point correlation function defined in Eq. (22). (b) Explicitly
shown are the direct diagrams contributing to the three-point correlation function coupling ππ (solid lines) to two electromagnetic
currents, cf. Eq. (20). The crossed-channel contributions are left implicit by the “½q1; μ ↔ q2; ν�” symbol. All objects appearing were
previously shown in Figs. 1 and 2, except for the black squares which are finite-volume analogs of their corresponding infinite volume
amplitude, and the open circle coupling the vacuum to the intermediate two-particle states. The former is defined in Fig. 5, while the
latter is understood as the undressed overlap between the two-particle operator and the finite-volume two-particle state.

BRICEÑO, JACKURA, RODAS, and GUERRERO PHYS. REV. D 107, 034504 (2023)

034504-10



finite- and infinite-volume loops, shown in Fig. 6(a), can be
shown to satisfy the relation [44,53]

ξ

�
1

L3

X
k

−
Z

d3k
ð2πÞ3

�Z
dk0

2π
iσðP;kÞiΔðkÞiΔðP−kÞiσ†ðP;kÞ

¼ iσonðPÞ ·iFðP;LÞ ·iσ†onðPÞ; ð25Þ

where iσ† is the overlap between the creation operator and
the two-particle state before dressing to all orders, iΔ
denotes the fully dressed propagator for an individual
particle, ξ is a symmetry factor that is equal to 1=2 if
the particles are identical or 1 otherwise, and F is the
known finite-volume function defined in Appendix B. The
subscript “on” emphasizes that the functions have been
placed on-shell and partial-wave projected. The · represents
matrix multiplication in angular momentum space.
Equation (25) holds up to Oðe−mLÞ corrections, which
we ignore throughout this work as we assume mL ≫ 1.
Following this procedure to all orders, for identical two-

pion initial and final states, one finds that the two-point
correlation function can be decomposed as [44]12

iCLðPÞ ¼ iC∞ðPÞ þ iAðPÞ · iFLðP;LÞ · iA†ðPÞ; ð26Þ

where A is the fully-dressed vacuum to the ππ amplitude
that encodes the rescattering physics applied to iσon,
and FL is defined as

FLðP;LÞ≡ 1

F−1ðP;LÞ þMðP2Þ : ð27Þ

The function FL is the result of summing the geometric
series that arises when we use the loop difference identity
Eq. (25) to all orders, as discussed in Refs. [44,53].
Near the vicinity of the nth eigenstate with energy En, the

correlation function diverges as E ∼ En. We identify that
these poles must occur when det ½F−1

L ðPn; LÞ� ¼ 0 since
the remaining functions are infinite-volume quantities,

which gives the Lüscher quantization condition as stated
in Eq. (21). For E ∼ En, we can rewrite FL in terms of its
residue near the nth state

FLðP;LÞ ∼
R̃n

2EnðE − EnÞ
; ð28Þ

where the residue R̃n is the generalized Lellouch-Lüscher
factor as presented in Ref. [74].13 Note that the residue
implicitly depends on L and P. For practical applications,
it is convenient to write the residue as an eigendecompo-
sition of the matrix F−1 þM [76],

R̃n ¼
�
−
2E⋆

n

μ⋆0 0
�
M−1w0 ⊗ w⊤

0 M
−1; ð29Þ

where E⋆
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
n − P2

p
is the CM energy of the nth state,

μ⋆0 is the vanishing eigenvalue of F−1 þM at this finite-
volume energy, w0 is the corresponding eigenvector, and

μ⋆0 0 ≡ dμ⋆0
dE⋆

����
E⋆¼E⋆

n

: ð30Þ

Note that M−1 in Eq. (29) is evaluated at Pn.
We simplify the expression further by introducing a

compact notation for the finite-volume residue

rn
!≡

ffiffiffiffiffiffiffiffiffiffiffiffi
−
2E⋆

n

μ⋆0 0

s
w⊤

0 M
−1; ð31Þ

where the arrow is to remind the reader that this is a vector
in the space of the degrees of freedom of the scattering
systems, which in this case we assume to only be
angular momentum. With this definition, Eq. (29) can be
rewritten as

R̃n ¼ rn
 ⊗ rn

!: ð32Þ

This factorized residue allows us to write the correlation
function near the pole as

(a) (b)

FIG. 6. (a) Shown is a diagrammatic representation of Eq. (25), which relates the finite-volume loops, infinite-volume loops, and the
finite-volume F function defined in Eq. (B1). (b) Shows the diagrammatic definition of the finite-volume G½μ� function as given in
Eq. (40) and subsequently in Eq. (B3).

12Note, the factor of i appearing in the left-hand side of
Eq. (26) is consistent with Eq. (22). It is easy to convince oneself
that the diagrammatic representations can be identified with iCL if
one has a factor of i for each vertex shown in the diagrams,
including vertices associated with interpolating operators and
current insertions.

13Here we choose a more convenient normalization for the
residue as compared to Ref. [74], which was denoted by R. The
connection between normalizations is R̃n ¼ 2EnRn.
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iCL ∼ iAðPnÞ ·
iðrn ⊗ rn

!Þ
2EnðE − EnÞ

· iA†ðPnÞ ¼ −L3
iZnZ�n
E − En

;

ð33Þ
where in the last equality we have used the spectral
decomposition from Eq. (24). Comparing the residue of
the spectral decomposition to that derived from the all-
orders representation allows us to relate the overlap factors
Zn involving the creation operations to the infinite-volume
vacuum-to-two-pion amplitude A,14

Zn ≡AðPnÞ ·
rn
 ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p : ð34Þ

As we show in the following section, this relation allows
us to isolate the matrix element T L from the three-point
function.

B. Three-point correlation function

We proceed to perform a similar investigation on the
three-point correlation function of interest, defined in
Eq. (20). Once again we start by briefly sketching its
spectral decomposition, obtained by inserting complete sets
of states jPn; Li between the interpolating operators. Since
we have three operators inside the time-ordering operator,
the spectral decomposition of the three-point correlation
function is slightly more complicated. For simplicity,
we focus our attention on those terms that lead to the
desired simple-pole contribution in the vicinity of E ∼ En.
These come from those associated with y0 > x0 > 0 and
y0 > 0 > x0. To simplify the algebra, let us define
z0 ¼ maxðx0; 0Þ. Then, it is easy to see that the pole
contribution we are after can be written as

CμνL ðP; q1Þ≡ −
Z
L
d4x

Z
L
d4y e−iq1·x−ϵjx0j eiP·y−ϵjy0jhΩjTfOðyÞJ μðxÞJ νð0ÞgjΩi;

∼ −L3
Zn

E − En
i
Z
L
d4x e−iq1·x−ϵjx0j eiðE−EnÞ·z0hPn; LjTfJ μðxÞJ νð0ÞgjΩi: ð35Þ

In the second line, we consider E ∼ En and ignore time-orderings that do not give the pole structure we are after. One sees
that in the vicinity of the nth pole, the z0-dependent phase vanishes, and one arrives at the simplified function

CμνL ðP; q1Þ ∼ −L3
Zn

E − En
i
Z
L
d4x e−iq1·x−ϵjx0jhPn; LjTfJ μðxÞJ νð0ÞgjΩi;

≡ −L3
Zn

E − En
T μν

L ðPn;q1Þ; ð36Þ

where T μν
L is the desired quantity introduced in Eq. (16).

We can now proceed to study the all-orders represen-
tation of this correlation function, which is diagrammati-
cally depicted in Fig. 4(b). It is convenient to break up
the correlation function into sectors of topologically
similar diagrams. We write iCμνL as the sum of three
contributions,

iCμνL ðP; q1Þ ¼ iCμνL;1ðP; q1Þ þ iCμνL;2ðP; q1Þ þ iCμνL;3ðP; q1Þ:
ð37Þ

The first contribution, iCμνL;1, is given by the first two terms
of Fig. 4(b) which involves currents coupling to two-
particle states via a short-distance kernel. Next, iCμνL;2

comes from the sum of the third and fourth terms of
Fig. 4(b) which contains a short-distance ππγ⋆ → ππ
kernel and the finite-volume analogue of the γ⋆ → ππ
amplitude which is diagrammatically defined in Fig. 5(b).
The last contribution, iCμνL;3, constitutes the final two terms
of Fig. 4(b) which involves the πγ⋆ → π kernel in the
loops. Note that Eq. (37) also includes contributions from
the ½q1; μ ↔ q2; ν� crossed channel diagrams in the CμνL;2
and CμνL;3 terms.15

We start by focusing our attention on CμνL;1, the first
two diagrams in Fig. 4(b) where the short-distance kernel
involved currents coupling to two-pions. The classes of
finite-volume diagrams are the same appearing in the two-
point function considered in the previous section. Using
the identity given in Fig. 6, one sees that all power-law
finite-volume corrections are encoded in the previously

14Note that, although in general unphysical, we can write an
on-shell representation for A, similar to Hμ in Eq. (12), in
which one would arrive at the two-particle scattering amplitude
M multiplying some smooth function. From this, we find that
M cancels M−1 in the definition of r⃖n given similarly to
Eq. (31).

15In principle there can be additional terms that represent pure
short-distance objects, such as two currents annihilating the
vacuum. We ignore such terms as they do not contribute to
the leading finite-volume behavior of the correlation function.

BRICEÑO, JACKURA, RODAS, and GUERRERO PHYS. REV. D 107, 034504 (2023)

034504-12



introduced F function. Therefore, we can immediately
write the contribution from the first two diagrams as

iCμνL;1ðP; q1Þ ¼ iCμν∞;1ðP;q1Þ
þ iAðPÞ · iFLðP;LÞ · iT μν

df;1ðP; q1Þ; ð38Þ

where T μν
df;1 is a contribution to the divergence-free infinite-

volume γ⋆γ⋆ → ππ amplitude as defined in Sec. II. This
object comes from summing a subset of the infinite-volume
diagrams contributing to T μν

df , which are shown explicitly in
Fig. 7(a).
Next, we look at the diagrams which include current

insertions separated by two-particle loops as defined in

iCμνL;2. When summed to all orders, these diagrams produce
two different kinds of finite-volume corrections. The first
one is proportional to another contribution to T μν

df , which
we label T μν

df;2 and is shown diagrammatically in Fig. 7(b).
The second class of finite-volume corrections is propor-
tional to Wμ

df;1 and Hν amplitudes. The γ⋆ → ππ transition
amplitude, Hν, was previously defined and shown dia-
grammatically in Fig. 2(b). The Wμ

df;1 function gives one
contribution to theWμ

df amplitude introduced in Sec. III. In
particular, as shown Fig. 8(a), this includes all diagrams
that contain a ππγ⋆ → ππ short-distance kernel. Having
introduced these objects, the second class of terms con-
tributing to iCμνL can be written as,

iCμνL;2ðP; q1Þ ¼ iCμν∞;2ðP; q1Þ þ iAðPÞ · iFLðP;LÞ · iT μν
df;2ðP; q1Þ

þ iAðPÞ · iFLðP;LÞ · iWν
df;1ðP; q1Þ · iFLðq1; LÞ · iHμðq1Þ þ ½q1; μ ↔ q2; ν�; ð39Þ

where ½q1; μ ↔ q2; ν� affects only the third term on the
right-hand side.
Finally, the last set of diagrams contributing to CμνL

involves a new class of finite-volume functions, produced
by the current coupling to one-particle states that can go on-
shell. These are the finite-volume analogue of the triangle
functions [79,80]. The difference between the finite- and
infinite-volume triangle diagrams is shown in Fig. 6(b).

Following a similar analysis, as was done in Eq. (25) to the
simple s-channel loop, one can show that the difference is
given by three terms. Two of these terms depend solely on
the F function, while the third new term depends on the
finite-volume triangle function. Since here we consider the
insertion of a conserved vector current, this geometric
function has an explicit dependence on the Lorentz index of
the current. In Ref. [80], this function was shown to be

(a) (b)

FIG. 8. Shown are the two contributions toWμ
df arising from (a) the two-body coupling to the current and (b) the one-body coupling to

the current.

(a) (b)

(c)

FIG. 7. Shown are the three contributions to the all-orders definition of T μν
df . Each term is distinguished by the types of kernels

coupling the currents to the particles.
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written in terms of two irreducible geometric functions.
Labeling this geometric function as G½ν�, we can write it as

G½ν�ðPf;Pi;LÞ≡ ðPf þPiÞνGðPf;Pi;LÞ− 2GνðPf;Pi;LÞ;
ð40Þ

where Pi and Pf denote generic incoming and outgoing
momenta flowing through the function. The G and Gν

functions are closely related, with Gν depending explicitly
on a νth-component of the internal particle four-momentum

kν that does not couple directly to the external current. In
Appendix B, we give explicit expressions for these func-
tions, cf. Eq. (B3).
The resulting contribution to the correlation function,

which we labeled CμνL;3, depend on the remaining pieces of
the T μν

df andW
ν
df amplitudes, which we denote as T μν

df;3 and
Wν

df;2, respectively. These include the triangle singularities
and are depicted in Figs. 7(c) and 8(b), respectively. The
remaining finite-volume correction to CμνL;3 depends on G

½ν�,
Hμ, and M. Altogether, CμνL;3 can be written as

iCμνL;3ðP; q1Þ ¼ iCμν∞;3ðP; q1Þ þ iAðPÞ · iFLðP;LÞ · iT μν
df;3ðP;q1Þ

þ iAðPÞ · iFLðP;LÞ · iWν
df;2ðP; q1Þ · iFLðq1; LÞ · iHμðq1Þ

− iAðPÞ · iFLðP; LÞ · iMðP2Þ · ifG½ν�ðP; q1; LÞ · ½1þ iMðq21Þ · iFLðq1; LÞ� · iHμðq1Þ
þ ½q1; μ ↔ q2; ν�; ð41Þ

where f ¼ fðQ2
2Þ is the on-shell form factor of pion and ½q1; μ ↔ q2; ν� affect only the third and fourth terms on the right-

hand side.
Combining Eqs. (38), (39), and (41) into Eq. (37), we arrive at an analytic expression to the finite-volume correction

to CμνL ,

ΔiCμνL ðP; q1Þ≡ iCμνL ðP; q1Þ − iCμν∞ðP; q1Þ
¼ iAðPÞ · iFLðP;LÞ · ðiT μν

df ðP; q1Þ − iMðPÞ · ifG½ν�ðP; q1; LÞ · iHμðq1ÞÞ
þ iAðPÞ · iFLðP;LÞ · ðiWν

L;dfðP; q1Þ · iFLðq1; LÞ · iHμðq1ÞÞ þ ½q1; μ ↔ q2; ν�; ð42Þ
where we followed Eq. (97) of Ref. [79] and introduced

iWν
L;dfðP; q1Þ≡ ðiWν

dfðP; q1Þ − iMðPÞ · ifG½ν�ðP; q1; LÞ · iMðq21ÞÞ: ð43Þ
Note that ½q1; μ ↔ q2; ν� in Eq. (42) applies to all terms except the one which contains T df . Using Eq. (28) for the behavior
of FL near the Lüscher poles, Eq. (32) for the expression for the residue, Eq. (34) for Zn, and the spectral representation for
CμνL given in Eq. (36), we find that the scaling behavior at the nth eigenstate gives the matrix element

T LðPn; q1Þ≡ rn
!ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p · ðT μν
df ðPn; q1Þ − ΔT μν

L;dfðPn; q1ÞÞ; ð44Þ

where we define the correction ΔT μν
L;df as

ΔT μν
L;dfðP; q1Þ ¼ ðWν

L;dfðP; q1Þ · FLðq1; LÞ −MðsÞ · fðq22ÞG½ν�ðP; q1; LÞÞ ·Hμðq1Þ þ ½q1; μ ↔ q2; ν�: ð45Þ

This is the necessary quantity to correct the finite-volume
effects of the linear combination of correlators, as defined
in Eq. (6). In particular, what is needed is the product
r⃗n · ΔT

μν
L;dfðPn; q1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EnL3

p
, which is the final and main

result of this section.
As a first theoretical test of our result, we provide a

simple consistency check of the formalism in Appendix C
when the two-pion system forms a deep bound state and no
intermediate states can go on shell. There, we show that
Eq. (45) coincides with the infinite-volume matrix elements

up to the necessary relativistic normalization for a single-
particle state.

VI. CONCLUSIONS

In this work, we have derived a framework, defined by
our main result in Eq. (6), which allows us to access the
γ⋆γ⋆ → ππ amplitude from quantities that can be con-
strained directly via lattice QCD. The formalism outlined
here relates three-point correlation functions of currents
displaced in time with the desired long-range amplitude.
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This approach is model-independent and follows similar
steps to previous formalism derived for a simpler class of
amplitudes of the form 1þ J → 2 → 1þ J [91].
The desired amplitude can be decomposed in terms of

different on-shell quantities describing possible physical
subprocesses, namely ππ → ππ, πγ⋆ → π, and γ⋆ → ππ.
The analytic structure of the amplitudes for the subpro-
cesses is well-understood [93,95], and it is now well-known
how these may be constrained via lattice QCD.
Equation (6) removes all power-law finite-volume arti-

facts associated with the intermediate and final ππ states. It
is exact up to suppressed effects that scale as Oðe−mπLÞ.
This formalism provides a key step toward extracting
more complicated phenomena from lattice QCD correlation
functions. For example, extensions of this work will
provide a framework for determining long-range nucleon-
nucleon processes from lattice QCD, including neutrinoless
double-beta transitions [98].16 Furthermore, given the
tremendous progress in extending finite-volume formal-
isms for three-particle systems [102–105] and the recent
lattice calculation of such processes [106–109], it is not
hard to imagine extending the kinematic region of appli-
cability of this work to energies above three-particle
thresholds where, for example, γ⋆ → 3π þ γ⋆ → 2π can
lead to a new class of power-law effects.
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APPENDIX A: T μν LORENTZ DECOMPOSITION

In this section, we discuss the Lorentz decomposition for
the most immediately relevant case where the final ππ state
has been projected onto the JPC ¼ 0þþ channel. For this
channel, only the l ¼ 0 component of T μν and Bμν

20

contribute. Because of the quantum numbers of the current,
the only allowed long-range processes must involve inter-
mediate ππ states that have the quantum number of the
ρð770Þ, 1−−. This means that the only contributing pieces
forHμ

lm would beHμ
1m, wherem can run over −1, 0, and 1.

The γ⋆γ⋆ → ðππÞ0þþ amplitude can in general bewritten in
termsof two s-dependent form factors.Onecan show this in at
least two ways. Arguably the simplest is to first construct all
possible kinematic structures that may couple a vector-vector
state to scalar one. In total, there are five such tensors leading
to five unknown form factors. By then imposing the Ward-
Takahashi identities, this is reduced to two.
Alternatively, one can begin by identifying the general

γ⋆γ⋆ → ππ amplitude and imposing the Ward-Takahashi
identities. Following this procedure, one finds that the
amplitude can be written in terms of only five different
s-, and t-dependent form factors [4,6,15]. One can then
proceed to project the subsequent amplitude to the desired
angular momentum.
Given that the later amplitudes aremost commonly used in

the literature, here we explain how these are projected to 0þþ
and are related to the desired T df . We begin by rewriting the
known Lorentz decomposition of the amplitude [4,6,15],

T μνðP; p̂⋆; q1Þ ¼
X5
j¼1

hjðs; tÞKμν
j ; ðA1Þ

where s ¼ ðq1 þ q2Þ2; t ¼ ðq1 − p1Þ2 are the Mandelstam
variables, Kμν

j are known kinematic tensors, and hjðs; tÞ are
unknown form factors. The tensor structures can be conven-
iently chosen as [15]

Kμν
1 ¼ qν1q

μ
2 − ðq1 · q2Þgμν;

Kμν
2 ¼ ðΔ2ðq1 · q2Þ − 2ðq1 · ΔÞðq2 · ΔÞÞgμν − Δ2qν1q

μ
2 − 2ðq1 · q2ÞΔμΔν þ 2ðq2 · ΔÞqν1Δμ þ 2ðq1 · ΔÞqμ2Δν;

Kμν
3 ¼ ðt − uÞ

�
ðQ2

1ðq2 · ΔÞ −Q2
2ðq1 · ΔÞÞ

�
gμν −

qν1q
μ
2

q1 · q2

�

−
�
Δν −

ðq2 · ΔÞqν1
q1 · q2

�
ðQ2

1q
μ
2 þ qμ1ðq1 · q2ÞÞ þ

�
Δμ −

ðq1 · ΔÞqμ2
q1 · q2

�
ðQ2

2q
ν
1 þ qν2ðq1 · q2ÞÞ

�
Kμν

4 ¼ Q2
1Q

2
2g

μν þQ2
1q

μ
2q

ν
2 þQ2

2q
μ
1q

ν
1 þ qμ1q

ν
2ðq1 · q2Þ;

Kμν
5 ¼ ðQ2

1Δμ þ ðq1 · ΔÞqμ1ÞðQ2
2Δν þ ðq2 · ΔÞqν2Þ; ðA2Þ

16For ongoing formal developments in this direction using a nonrelativistic effective field theory approach, we point the reader to
Refs. [99–101].
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with Δ≡ p1 − p2 ¼ P − 2p, with qμi ; p
μ
i being the photon

and pion four-momenta, respectively.
In order to then project Eq. (A1), we first expand the

form factors in Eq. (A1) over partial waves

hjðs; tÞ ¼
X
l

ð2lþ 1Þhj;lðsÞPlðcos θÞ; ðA3Þ

where hj;lðsÞ are defined to have definite angular momen-
tum l and cos θ is the scattering angle of the ππ system in
its CM frame.
Although the Lorentz decomposition above holds in

general, it is convenient to write Eq. (A1) in the CM of the
system, denoted by ⋆, where

qμ1 ¼ ðω⋆; 0; 0; q⋆Þ; ðA4Þ

qμ2 ¼ ð
ffiffiffi
s
p

− ω⋆; 0; 0;−q⋆Þ; ðA5Þ

pμ
1 ¼ ð

ffiffiffi
s
p

=2; p⋆ sin θ cosϕ; p⋆ sin θ sinϕ; p⋆ cos θÞ; ðA6Þ

pμ
2 ¼ ð

ffiffiffi
s
p

=2;−p⋆ sin θ cosϕ;−p⋆ sin θ sinϕ;−p⋆ cos θÞ;
ðA7Þ

where the fact that pions are on-shell implies that
p2
1 ¼ p2

2 ¼ m2, or equivalently p⋆2 ¼ s=4 −m2. Using
this and Eq. (A3), one can integrate over the solid angle,
as dictated by Eq. (3), to find the 0þþ component of the
amplitude. Following this procedure and writing the final
expression in terms of Lorentz tensors, one finds that the
amplitude can be decomposed as

T μνðP; q1Þ ¼ ĥ1ðsÞKμν
1 þ ĥ2ðsÞK̂μν

2 ; ðA8Þ

where the tensor K̂μν
2 is

K̂μν
2 ¼ ðq1 · q2Þqμ1qν2 þQ2

1q
μ
2q

ν
2 þQ2

2q
μ
1q

ν
1 þ

Q2
1Q

2
2q

μ
2q

ν
1

q1 · q2
:

ðA9Þ

The s-dependent form factors, ĥ1 and ĥ2, can be written in
term of the hj;l as

ĥ1¼h1;0−
Q2

1Q
2
2

q1 ·q2
h4;0þ

8p⋆2Q2
1Q

2
2

6ðq1 ·q2Þ
ðh5;0−h5;2Þ

−
2p⋆2

3sðq1 ·q2Þ
½λðs;−Q2

1;−Q2
2Þ−2sðq1 ·q2Þ�ðh2;0þ2h2;2Þ

−
2p⋆2

3sðq1 ·q2Þ
ðQ2

1þQ2
2Þλðs;−Q2

1;−Q2
2Þðh3;0þ2h3;2Þ;

ðA10aÞ

ĥ2¼h4;0−
8p⋆2
3s
ðh2;0þ2h2;2Þþ

8p⋆2
3
ðh3;0þ2h3;2Þ

þ2p⋆2
3s
ðQ2

1þQ2
2−sÞðh5;0þ2h5;2Þ

þ 16p⋆2
λðs;−Q2

1;−Q2
2Þ
½2ðq1 ·q2Þh2;2−Q2

1Q
2
2h5;2�; ðA10bÞ

where 2ðq1 · q2Þ ¼ sþQ2
1 þQ2

2, and λða; b; cÞ ¼
a2 þ b2 þ c2 − 2ðabþ bcþ caÞ is the Källén triangle
function.
Hence, as was expected, if the isoscalar-scalar wave is

dominant, the γ⋆γ⋆ → ππ amplitude can be parameterized
simply by two form factors. However, T μν

df is the quantity
that may be most readily accessible from lattice QCD,
not T μν. Nonetheless, as explained in Eq. (2), we can relate
the two through the pion-pole pieces

P fiwμ
oniDiHνg.

These contributions contain explicit angular dependence on
the intermediate state produced by the exchange of an off-
shell pion either in the t or u channels. This process must be
projected onto the S-wave final state to be related to the
formulas above. There are a total of four possible pion-pole
contributions. The first two account for q1; μ on the initial
state, where q2; ν can be inserted in either final-state pion
line, the other two include the permutation ½q1; μ ↔ q2; ν�.
The first two contributions are explicitly written in Eq. (9).
In the following we compute the explicit expression for

one of the terms. This contribution, depicted in Fig. 9, is
associated with the virtual photon with momentum q1 and
Lorentz indice μ produces an on-shell pion with momentum
p1 and an off-shell pion with momentum k ¼ q1 − p1. It is
this off-shell pion that subsequently couples to the other
virtual photon, with momentum q2 and Lorentz index ν.
For simplicity, we omit the more explicit notation used in

(a) (b)

FIG. 9. Kinematics for the (a) γ⋆γ⋆ → ππ system evaluated in the final CM frame (P ¼ 0 with ⋆ indicators), and (b) the γ⋆ → ππ sub-
process evaluated both in the final state CM frame (left) and boosted to the intermediate state CM frame (q1 ¼ 0 with • indicators).
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Eq. (9) labeling the charge associated with wν
on matrix

element. More precisely

iT μν
p ¼ iwν

onðp2; p2 − q2ÞiDðp2 − q2ÞiH̄μðp2 − q2; q1Þ;
ðA11Þ

where wν
on and D were previously defined in Eqs. (7)

and (8), and H̄μ is defined as

iH̄μðk; q1Þ ¼
ffiffiffiffiffiffi
4π
p X

mJ¼−1;0;1

�
k•

k•on

�
Y1mJ
ðk̂•ÞiHμ

1mJ
ðq1Þ:

ðA12Þ
As previously discussed, the difference between H̄μ andHμ

is due to barrier factors defined in the CM frame of the two-
particle subsystem coupling to the current depicted here by
the • symbol. Note that, in this formula, k•on represents the
on-shell two-particle momentum, whereas k• is the momen-
tum of the off-shell particle. In general, this frame will
differ from the CM ππ frame, defined in defined by
Eqs. (A4)–(A7).
It is worth noting that we have chosen wμ

onðp2; p1Þ ¼
ðp1 þ p2ÞμfðQ2

2Þ for both on- and off-shell pions. In this
sense wμ

on does not respect the Ward-Takahashi identities
unless both pions are on-shell. On the contrary, H̄ν is

described in terms of the on-shell pieces Hμ
JmJ
ðq1Þ. As a

result qμH̄μ ¼ 0 for both on- and off-shell pions. This is
in contrast to customary calculations where the long-
range contribution is chosen so that H̄μðp2; p⃗1

⋆; q1Þ ¼
ðp1 − p2Þμfð−Q2

1Þ even for off-shell pions.
In order to explicit partial wave project the pole con-

tribution, which will be done in the CM frame of the ππ
system, we first write the k•μ momenta in terms of k⋆μ using
a standard Lorentz boost. In particular, k•μ ¼ ½Λ−β�μνk⋆ν,
where the boost vector points along the ẑ axis and has
magnitude β ¼ q⋆=ω. Additionally, we make use of the
relation between spherical harmonics and Cartesian coor-
dinates to write everything in terms of the ππ CM coor-
dinates. For example,

ffiffiffiffiffiffi
4π

3

r
k•Y1;0ðθ•;ϕ•Þ ¼ k•z ¼ ½Λ−β�zνk⋆ν: ðA13Þ

In this way, we established a simple relation between the
θ•;ϕ• angles and k⋆ν, which contains the explicit θ;ϕ
dependence on its frame.
Once the spherical harmonics have been rewritten

following this approach, the next step is to perform the
partial-wave projection onto the scalar state by means of the
formula

iT μν
p;0þþ ¼

1

4π

Z
1

−1
d cos θ

Z
2π

0

dϕ iwν
onðp2; p2 − q2ÞiDðp2 − q2ÞiHμðp2 − q2;q1Þ; ðA14Þ

It is advantageous to decompose both vector expressions in the right-hand side by polarization vectors. These provide a
compact expression for the current insertion term. After performing the integrations we can regroup all terms as

T μν
p;0þþ ¼ fðQ2

2Þfð−Q2
1Þ½c0ϵμ�0 ðq1Þϵν�0 ð0Þ þ c1ðϵμ�þ ϵν�− þ ϵμ�− ϵν�þ Þ þ cLϵ

μ�
0 ðq1Þϵν�L �; ðA15Þ

where k• is the intermediate off-shell pion momentum on the CM frame of the q1 photon and

ϵμ0ðqÞ ¼
1ffiffiffiffiffiffiffiffiffi
−Q2

1

p ðq⋆; 0; 0;ω⋆Þ;

ϵμL ¼ ð1; 0; 0; 0Þ;

ϵμ� ¼
∓1ffiffiffi
2
p ð0; 1;�i; 0Þ: ðA16Þ

Finally, the scalar functions are given by

c0 ¼
ð3 ffiffiffi

s
p

q⋆2 þ 4p⋆2ω⋆ÞQ0ðzÞ − 6p⋆q⋆ð ffiffiffi
s
p þ ω⋆ÞQ1ðzÞ þ 8p⋆2ω⋆Q2ðzÞ

6p⋆q⋆
ffiffiffiffiffiffiffiffiffi
−Q2

1

p ;

c1 ¼ −
2p⋆½Q0ðzÞ −Q2ðzÞ�

3q⋆ ;

cL ¼
ω⋆½ ffiffiffi

s
p

q⋆Q0ðzÞ − 2p⋆ω⋆Q1ðzÞ�
2p⋆q⋆

ffiffiffiffiffiffiffiffiffi
−Q2

1

p ; ðA17Þ

where QlðzÞ are the Legendre functions of the second kind, which have an argument z ¼ ðQ2
1 þ

ffiffiffi
s
p

ω⋆Þ=ð2p⋆q⋆Þ, where
q⋆ ¼ λ1=2ðs;−Q2

1;−Q2
2Þ=ð2

ffiffiffi
s
p Þ. As a final remark, it is worth noting that the term proportional to ϵνL is the one that

explicitly violates the Ward-Takahashi identities.

PROSPECTS FOR γ⋆γ⋆ → ππ VIA … PHYS. REV. D 107, 034504 (2023)

034504-17



APPENDIX B: FINITE-VOLUME FUNCTIONS:
F, G, AND Gμ

In this appendix, we give the exact forms of the finite-
volume geometric functions described in the text. The first
function is FðP; LÞ defined implicitly in Eq. (25) and
depicted diagrammatically in Fig. 6. This has been well

described in the literature, and here we follow the definition
first introduced in Ref. [44]. In general, this is a matrix over
open channels and partial waves. Assuming a single open
channel of identical scalar particles of mass m, this is a
matrix in angular momentum space with components
given by

Flml;l0m0l
ðP;LÞ≡ ξ

�
1

L3

X
k

−
Z

d3k
ð2πÞ3

�
1

2ωk
Y�lml

ðk⋆; PÞDðP − kÞYl0m0l
ðk⋆; PÞ

����
k0¼ωk

; ðB1Þ

where the sum of k is over the quantized momenta k ¼
2πn=L for n ∈ Z3, ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2
p

is the on-shell energy,
D is the pole piece of the single-particle propagator defined
in Eq. (8), and Ylml

are modified spherical harmonics,

Ylml
ðk⋆; PÞ≡ ffiffiffiffiffiffi

4π
p

Ylml
ðk̂⋆Þ

�
k⋆
q⋆
�

l
; ðB2Þ

with q⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=4 −m2

p
being the on-shell relative momen-

tum in the CM frame. Note that angular momentum is not a

good quantum number in a cubic volume. This is man-
ifested here by the fact that F is a nondiagonal matrix in
lml;l0m0l space, which can be seen by the sum term in
Eq. (B1) which in general does not vanish for different
angular momenta.
The other geometric function needed is G½μ�ðPf; Pi; LÞ,

which was written in Eq. (40) in terms of two functions,
GðPf; Pi; LÞ and GμðPf; Pi; LÞ. These class of functions
were studied in detail in Ref. [80], and are defined for equal
mass scalar particles as

Glml;l0m0l
ðPf; Pi; LÞ ¼

�
1

L3

X
k

−
Z

d3k
ð2πÞ3

�
1

2ωk
Y�lml

ðk⋆
f; PfÞDðkfÞDðkiÞYl0m0l

ðk⋆
i ; PiÞ

����
k0¼ωk

;

Gμ
lml;l0m0l

ðPf; Pi; LÞ ¼
�
1

L3

X
k

−
Z

d3k
ð2πÞ3

�
kμ

2ωk
Y�lml

ðk⋆
f; PfÞDðkfÞDðkiÞYl0m0l

ðk⋆
i ; PiÞ

����
k0¼ωk

; ðB3Þ

where ki ¼ Pf − k and ki ¼ Pi − k, and k⋆
i (k⋆

f) is the
summation/integration momentum k evaluated in the CM
frame of the initial (final) state. We point the reader to
Ref. [80] for further details on efficient numerical tech-
niques for evaluating this class of functions.

APPENDIX C: THE DEEPLY BOUND
STATE LIMIT

Here we consider a simple limit to check the normali-
zation appearing in the main result, Eq. (6). In particular,
we assume the presence of a deeply bound state with mass
mB and four-momentum PB ¼ ðEB;PÞ. This could be, for
example, the σ for unphysically heavy quark masses, where
lattice QCD calculations observe it to be bound (see, for
example, Ref. [62]). We will choose the volume such that
κBL ≫ 1, where κB is the binding momentum of the two-
particle state. This allows us to ignore exponentially

suppressed effects associated with the size of the bound
state that scale as Oðe−κBLÞ. Furthermore, we will restrict
the momenta of the currents such that no intermediate states
can go on shell. One simple example is to fix q1 ¼ PB=2.
This was the limit previously considered in Ref. [86].

There it was shown that both F and G½μ� scale as
Oðe−κBLÞ. Ignoring such terms allows us to simplify
Eq. (6) substantially. In particular, ΔT μν

L;df , given in
Eq. (45), can be approximated to be equal to zero.
Furthermore, because of the kinematics chosen, no
intermediate states can go on shell. As a result, there
is no need to subtract any terms from the time-dependent
correlation function.
With these two observations, Eq. (6) simplifies down to

rBffiffiffiffiffiffiffiffiffiffiffiffiffi
2EBL3

p · T μν
df ðP; q1Þ ¼

Z
dτ eωτ Mμν

L ðτ; P;q1Þ; ðC1Þ
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where we have ignored all partial waves other than the one
coupling to the bound state, making r⃗n in a multiplicative
factor denoted rB. Reference [93] showed that for such a
case, T μν

df must have a pole associated with the bound state
given by

lim
s→m2

B

ðs −m2
BÞT μν

df ðP; q1Þ ¼ −g FμνðPB; q1Þ; ðC2Þ

where s ¼ P2, the momentum of the bound state where
P2
B ¼ m2

B, F
μνðP; q1Þ is the two-current form factor for the

bound state, and g is the coupling to the bound state to
the two-particle scattering system. The latter is given from
the residue of the two-particle scattering amplitude at the
bound state pole,

lim
s→m2

B

ðs −m2
BÞMðP2Þ ¼ −g2: ðC3Þ

Given that the right-hand side of Eq. (C1) is by definition
finite, this means that rB must vanish in this limit as s −m2

B.
Here we reproduce the calculation showing that this is
indeed the case, and we show that the resulting normali-
zation is the correct one for such bound state. We proceed
from the definition of rB, which follows from Eqs. (28),
(32), and (27). Because this vanishes as s −m2

B, we will
calculate the factor multiplying s −m2

B,

rB
s −m2

B
¼

ffiffiffiffiffiffiffiffi
2EB
p
s −m2

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − EB

F−1ðP;LÞ þMðP2Þ

s ����
E¼EB

;

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−2EB
p

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − EB

FðP;LÞ þM−1ðP2Þ

s ����
E¼EB

;

≈
1

g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

E2 − E2
B

M−1ðP2Þ

s ����
E¼EB

;

¼ 1

g
; ðC4Þ

where in the second line we use the fact that at the pole
F ¼ −M−1, and also used the behavior of M near its
pole, Eq. (C3). In the third line, we ignore higher-order
terms proportional to Oðe−κBLÞ. Putting this together with
Eq. (C2), we obtain

−FμνðPB; q1Þffiffiffiffiffiffiffiffiffiffiffiffiffi
2EBL3

p ¼
Z

dτ eωτ Mμν
L ðτ; PB;q1Þ: ðC5Þ

The overall sign is not physical and can be ignored. The
remaining factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2EBL3

p
is exactly what is needed to

fix the normalization of the finite-volume state that was
assumed to be normalized to 1. Accordingly, we conclude
that the main result, Eq. (6), reproduces the expected
behavior for a long-range matrix element involving a
bound state in the final state.
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