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Quantum simulations of bosonic field theories require a truncation in field space to map the theory onto
finite quantum registers. Ideally, the truncated theory preserves the symmetries of the original model and
has a critical point in the same universality class. In this paper, we explore two different truncations that
preserve the symmetries of the 1þ 1-dimensional Oð3Þ nonlinear σ model—one that truncates the Hilbert
space for the unit sphere by setting an angular momentum cutoff and a fuzzy sphere truncation inspired by
noncommutative geometry. We compare the spectrum of the truncated theories in a finite box with the full
theory. We use open boundary conditions, a novel method that improves on the correlation lengths
accessible in our calculations. We provide evidence that the angular-momentum truncation fails to
reproduce the σ model and that the antiferromagnetic fuzzy model agrees with the full theory.
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I. INTRODUCTION

Recent developments in quantum computing promise to
open new areas of investigations for quantum field theories
(QFTs). Of particular interest are real-time evolution and
properties of high-density matter, where simulations on
classical computers are very challenging due to the sign
problem.
Typically to study a QFT numerically, the theory is

regularized using a lattice discretization with the fields
sampled on a regular spatial grid. The physical degrees of
freedom at every site are then mapped onto qubits. If we are
interested in real-time dynamics for this system, the unitary
evolution expð−iHtÞ can be implemented using a sequence
of quantum gates. For a local Hamiltonian, this method
leads to a circuit that has a fixed depth per unit time, and the
number of gates increases only linearly with the number of
points in the grid. Compare this scaling with the classical
computer methods for which the numerical cost increases
exponentially with the size of the grid, since the size of the
matrix representing H grows exponentially with the vol-
ume. Quantum computers have a definite advantage here.

For this program to work, one must first deal with a
subtle complication. While for fermionic fields the Hilbert
space at each site is finite and can be mapped faithfully onto
a set of qubits, for bosonic fields this Hilbert space is
infinite and mapping it to qubits requires a truncation
(qubitization). To recover physical results from such a
program, one expects a priori that an ordered double limit
needs to be performed: first to remove the bosonic
truncation, and then to remove the lattice regulator (i.e.,
the continuum limit). This double limit is not only cum-
bersome and expensive in the number of qubits and gates
required; it is, in some contexts, not even possible since the
truncation cannot be made arbitrarily fine [1,2].
In a previous study we proposed to rely on universality to

circumvent the double-limit problem [3]. To understand the
proposal, recall that to perform the continuum limit for
lattice QFTs, we tune the system to criticality, where the
correlation length in lattice units goes to infinity. On this
“critical surface,” the discretization artifacts vanish, yield-
ing continuum results. In fact, many different discretiza-
tions will have the same critical behavior—such theories
are said to lie in the same universality class. As a design
principle, it is believed that two theories differing only at
short distances and possessing the same symmetries belong
to the same universality class. In line with this philosophy,
we proposed that even a truncated bosonic theory could
have the desired continuum behavior, so long as its critical
point is on the same critical surface as the desired theory.
However, the above design principle has only suggestive
power; preserving the symmetries is neither necessary
nor sufficient to have the correct continuum limit. What
needs to be verified on a case-by-case basis is that, first,
the truncated theory has a critical point, and, second,
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simulations close to the relevant critical point recover the
right continuum results [4,5].
In this paper, we explore this idea using the 1þ 1-

dimensional Oð3Þ σ model. This model is asymptotically
free with a mass gap. The usual representation in Euclidean
time involves fields that take values on the unit 2-sphere
and the action is invariant under global Oð3Þ rotations in
this space. We mention in passing that one possible
truncation for this model involves sampling the field values
at a finite subset of points [6,7], breaking the Oð3Þ
symmetry. Whether this truncation has a critical point that
reproduces the full theory results is still debated [8,9].
In Sec. II, we outline two truncation strategies preserving

Oð3Þ invariance that we will analyze in this paper. Awidely
used proposal is to truncate the Hilbert space of complex
wave functions on the sphere using an angular-momentum
cutoff lmax [10,11].1 Here, we study the truncated model
with lmax ¼ 1, which requires the same number of qubits
per site as the other proposal we analyze, the fuzzy sphere
truncation [1], inspired by ideas from noncommutative
geometry [12].
In Sec. III, we describe how to compute the low-lying

spectrum for the truncated Hamiltonians, employing the
matrix-product state (MPS) ansatz with open-boundary
conditions, which can better accommodate MPS calcula-
tions. We then describe how to extract the corresponding
energies in Monte Carlo simulations of the full σ model
with open boundaries.
In Sec. IV, for both truncations, we compare the

energy of the lowest states in a finite volume with the full
σ-model results. We show that the commonly used angular-
momentum truncation does not reproduce the σ-model
spectrum (at least for lmax ¼ 1), in contrast with the
antiferromagnetic fuzzy model, which agrees with the full
theory results up to the largest correlation length reached,
ξ ≈ 66 lattice units. This check improves on our previous
work [5], by showing that the qubitization agrees more
deeply in the ultraviolet (i.e., for energy scales much larger
than the mass gap) with the full theory. Finally, in Sec. V,
we discuss how our analysis of these models may assist in
the general effort to successfully qubitize bosonic gauge
theories.

II. TRUNCATED MODELS

The action of the continuum Oð3Þ σ-model is

Sσ ¼
1

2g2

Z
dx dt∂μnðx; tÞ · ∂μnðx; tÞ; ð1Þ

where the field variables take values on a sphere (S2), i.e.,
n ¼ ðn1; n2; n3Þ satisfies n21 þ n22 þ n23 ¼ 1, and g is the

coupling. For simulations on a quantum computer, how-
ever, we use the Hamiltonian of the discretized theory:

Hσ ¼
X
x

�
−
g2

2
∇2ðxÞ − 1

g2a2
nðxþ 1Þ · nðxÞ

�
; ð2Þ

where −∇2 is the Laplace-Beltrami operator on S2 and a is
the lattice spacing.The fullHillbert space at each lattice site is
the space of complex functions on a sphere, which is infinite
dimensional. In order to represent this model on finitely
many qubits, we need to truncate the local Hilbert space.

A. Angular-momentum truncation

A standard way to truncate the Hilbert space of the
model is to expand functions on the sphere in terms of
spherical harmonics and set an angular-momentum cutoff,
lmax [10,11]. States for one site are then of the form

Ψðθ;ϕÞ ¼
Xlmax

l¼0

Xl
m¼−l

ψlmYm
l ðθ;ϕÞ; ð3Þ

where ðθ;ϕÞ are the spherical angles corresponding to n,
Ym
l ðθ;ϕÞ are the spherical harmonics on S2, and ψ lm are the

expansion coefficients. The complete set of functions on
the unit sphere is recovered as we take the limit lmax → ∞.
This method of truncation is easily generalizable not only
to anyOðNÞ σ model, but also to σ models defined on other
manifolds, like group manifolds and homogeneous spaces
[13]. For the Oð3Þ σ model we discuss here, we consider
the lowest nontrivial truncation lmax ¼ 1. We choose an
ordered basis fjYiig ¼ fY0

0; Y
−1
1 ; Y0

1; Y
1
1g for the resulting

four-dimensional local Hilbert space at each site. Thus, to
represent this model on a quantum computer, two qubits are
required for each lattice site.
Because the spherical harmonics are eigenfunctions of

the Laplace-Beltrami operator,

−∇2Ym
l ¼ lðlþ 1ÞYm

l ; ð4Þ

we can easily write the action of −∇2=2 on the basis jYii;
the kinetic term in the Hamiltonian isHc

0 ¼ diagð0; 1; 1; 1Þ.
The action of nðxÞ, restricted to the subspace spanned by Y,
is represented by matrices yk (k ¼ 1, 2, 3), the matrix
elements of which are defined as

ðykÞab ¼ hYajnkjYbi ¼
Z

dΩY�
aðθ;ϕÞnkYbðθ;ϕÞ; ð5Þ

where the integral is over S2;
R
dΩ ¼ R

2π
0

R
π
0 sinðθÞdθdϕ.

We note that nk, the coordinates of the field variables, are
linear combinations of l ¼ 1 spherical harmonics, imply-
ing the ðykÞab can be obtained from Clebsch-Gordan
coefficients. Higher angular-momentum states which result
from the addition of two l ¼ 1 states are dropped in order

1In fact, Ref. [10] provides evidence that the standard lattice
discretization of the σ model can be reproduced in the limit of
lmax → ∞.
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to remain in the Hilbert space spanned by the l ¼ 0, 1
states. Explicitly, the yk are

y1 ¼
1ffiffiffi
6

p

0
BBB@

0 1 0 −1
1 0 0 0

0 0 0 0

−1 0 0 0

1
CCCA;

y2 ¼
iffiffiffi
6

p

0
BBB@

0 −1 0 −1
1 0 0 0

0 0 0 0

1 0 0 0

1
CCCA;

y3 ¼
1ffiffiffi
3

p

0
BBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCA: ð6Þ

Putting the pieces together into Eq. (2), the resulting
truncated theory Hamiltonian for N sites is

Hlmax¼1¼ ηg2
XN
x¼1

Hc
0ðxÞ�

η

g2
XN−1

x¼1

X3
k¼1

ykðxÞykðxþ1Þ; ð7Þ

where the first term is a single-site kinetic term and the
second is a nearest-neighbor interaction. We stress that here
we work with open-boundary conditions, in which we do
not include the wraparound link ykðNÞykð1Þ in the second
term. For g2 > 0, the relative sign� between the two terms
corresponds to antiferromagnetic/ferromagnetic coupling.
Also, we introduce a new useful parameter η > 0, which
sets an overall scale for the Hamiltonian, the tuning of
which will be discussed in Sec. III B 2.
The Hamiltonian presented in Eq. (7) is symmetric under

Oð3Þ rotations, as is the σ model. Because the relative sign
between the two terms of the Hamiltonian does not affect
the Oð3Þ symmetry of the truncated model, we should
consider studying the universality of both the antiferro-
magnetic and the ferromagnetic phases. However, for an
even N number of sites in the system, there exists a
mapping between the two phases that implies they have
identical spectra and similar eigenstates (at some fixed g2),
which we observe numerically. To define the mapping, we
introduce a global operator

O ¼ ⨂
N=2

n¼1

ðU2n−1 ⊗ 12nÞ; ð8Þ

where the operator U is applied at every other site and has
the property:

UHc
0U

† ¼ Hc
0 and UykU† ¼ −yk ð9Þ

for all k ¼ 1, 2, 3. In the case of theHamiltonian in Eq. (7), it
is easy to see that such a U exists, we can take, for example
U ¼ diagð1;−1;−1;−1Þ. This argument can be extended to
any lmax, so this equivalence between the ferromagnetic and
antiferromagnetic couplings remains valid.

B. Fuzzy sphere truncation

An alternative way of truncating the field space of the σ
model is to replace S2 by a fuzzy sphere [3]—a non-
commutative approximation of the sphere [12,14]. The
coordinates of the sphere themselves are mapped to non-
commuting matrices: nk ↦ Jk and angular-momentum
operators to commutators: −iεijkni∇j ↦ ½Jk; •�. If we take
Ji as the generators of spin-j irreducible representation of
SUð2Þ, the spectrum of these noncommuting operators
provides an approximation of the action of the original
operators, which becomes exact in the limit j → ∞.
The Hilbert space of functions on the sphere is then

replaced by the Hilbert space of ð2jþ 1Þ × ð2jþ 1Þ
matrices. The action of the new operators is represented
by matrix multiplication by Ji and the action of the angular-
momentum operators by the commutators ½Ji; •�.
Here, we study the fuzzy sphere with j ¼ 1=2, for which

the local Hilbert space at each site is again four-dimen-
sional—the space of 2 × 2 complex matrices with inner
product hψ jϕi≡ trðψ†ϕÞ. In this case, we use Jk ¼ σk=

ffiffiffi
3

p
,

i.e., the Pauli matrices with a normalization factor. We
compute the Hamiltonian in the orthonormal basis
fjJ iig ¼ fi= ffiffiffi

2
p

1;
ffiffiffiffiffiffiffiffi
3=2

p
Jig. Following the construction

in Ref. [3], we write the kinetic term of the Hamiltonian on
jJ i as a double commutator:

ðHf
0Þab¼−

1

2
hJ bj∇2jJ ai¼

κ

2

X3
i¼1

trðJ †
b½Ji;½Ji;J a��Þ; ð10Þ

with a normalization constant κ. In fact, if κ ¼ jðjþ 1Þ ¼
3=4, then we find that Hf

0 ¼ diagð0; 1; 1; 1Þ reproduces the
first four Laplacian eigenvalues on the sphere exactly, as in
the truncated angular-momentum model. The matrix ele-
ments for the fuzzy sphere coordinates Jk in this basis are

ðjkÞab ¼ hJ ajJkjJ bi ¼ trðJ †
aJkJ bÞ: ð11Þ

These 4 × 4 matrices are explicitly

j1 ¼
1⊗ σ2ffiffiffi

3
p ; j2 ¼

σ2 ⊗ σ3ffiffiffi
3

p ; j3 ¼
σ2 ⊗ σ1ffiffiffi

3
p : ð12Þ

The fuzzy truncated theory Hamiltonian is thus given by

HF ¼ ηg2
XN
x¼1

Hf
0ðxÞ �

3η

4g2
XN−1

x¼1

X3
k¼1

jkðxÞjkðxþ 1Þ: ð13Þ
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This form resembles the Hamiltonian with the lmax-
truncation in Eq. (7). Furthermore, this Hamiltonian is
also symmetric under Oð3Þ rotations [3], and we use open-
boundary conditions. However, for this model the anti-
ferromagnetic and ferromagnetic phases are distinct [5].
Here, we only consider the antiferromagnetic phase since
the ferromagnetic case was shown not to reproduce the σ
model [5].

III. METHODS

To check whether the truncated models are in the same
universality class as the full theory, we compute the
energies of the lowest-lying states in a finite box as a
function of the volume. For large enough boxes (i.e.,
L ≫ 1=m), the volume shift in the energy is determined
by two-particle elastic-scattering phase shifts at momenta
of order ∼1=L [15]. The same shift in small boxes
(L ≪ 1=m) probes the ultraviolet behavior of the theory.
The MPS formalism we use here to analyze the different

qubitizations is much more efficient when using open-
boundary conditions, so their use will allow us to probe
more deeply into the ultraviolet regime than was permitted
by periodic boundary conditions in Ref. [5]. In Sec. III A
we summarize the MPS formalism and discuss how to
determine correlation lengths. The tuning of η required to
recover a relativistic theory is discussed in Sec. III B.
Lastly, in Sec. III C, we describe how we use Monte Carlo
methods to obtain scaling results for the σ model as a basis
of comparison for each truncation.

A. Matrix product states

We use a variational MPS algorithm to compute low-
lying eigenstates and eigenvalues of each Hamiltonian [16].
The MPS ansatz for states of an N-site system is

jΨi ¼
X

a1;…;aN

Aa1
1 � � �AaN

N ja1;…; aNi; ð14Þ

where an ¼ 1;…; p (spanning the dimension p of the local
Hilbert space), ja1;…; aNi are basis states, and Aan

n are
Dn−1 ×Dn matrices. In the open-boundary case, the ends
of the MPS chain Aa1

1 and AaN
N are 1 ×D1 and DN−1 × 1,

i.e., row and column vectors, respectively.
This ansatz can describe any state exactly, if we allow

these “bond” dimensions Dn to grow to pminðn;N−nÞ [17].
Expressing arbitrary N-site states in a MPS form relies on
iterative singular value decompositions (SVDs), and the
ranks of the Aan

n matrices may grow by p at every step
towards the center of the chain, in general. However, for
states with more limited entanglement, as is the case for the
ground states of gapped systems, we can produce a very
good MPS approximation with relatively small matrix
dimensions. In practical calculations, the dimensions of
the MPS matrices are determined dynamically, based upon

the singular values that appear in the SVD, and they are
capped to a chosen maximum D, so that Dn ≤ D. Also,
while the MPS approximation generically becomes exact in
the limit that the MPS space approaches the size of the full
Hilbert space of the N-site system pN (i.e., D approaches
pbN=2c), low-energy observables follow an area law and
also converge quickly in D for gapped systems. In
particular, the ground state jΨ0i and its energy aÊ0 can
be obtained by iteratively minimizing the expectation value
of H with respect to the Aan

n [18]. Excited states jΨki and
energies aÊk are obtained via a similar algorithm, but with
the additional constraints that the excited states are
orthogonal to the lower-lying states hΨjjΨkij<k ¼ 0.
The systematic error due to the bond-dimension cutoffD

constitutes the main source of error of the MPS algorithm.
As such, final estimates for measured quantities must be
extrapolated. For the energy gap aΔ ≔ aÊ1 − aÊ0, we find
that a power law ΔðDÞ ¼ Δþ A=DB yields suitable fits for
the range of D we use. A typical fit and extrapolation in D
are presented in Fig. 1. Following Ref. [10], we define our
error on the observable as half of the distance between the
extrapolated value for D → ∞ and the value determined by
our largest-D calculation.
The main motivation for considering open-boundary

conditions is that the computational cost for contracting
the tensors in the MPS ansatz in Eq. (14) is significantly
lower than that of the periodic boundary condition:
OðNpD3Þ vs OðNpD5Þ [19]. This speed-up of OðD2Þ
becomes significant when probing closer to the continuum
limit of our Hamiltonian models, where large bond
dimensions are required to accurately find states of large
systems with large correlation lengths. Using open-
boundary conditions allows us to study the models deeper
into the ultraviolet regime than previous studies using
periodic boundary conditions [5]. Furthermore, there are
well-established and performance-optimized libraries for

FIG. 1. Energy gap for the antiferromagnetic fuzzy model for
g2 ¼ 0.53 andN ¼ 800 as a function of the MPS bond dimension
D together with the D → ∞ extrapolation. The error bar on the
extrapolation is determined by the distance between the value
obtained from our largest choice of D and the extrapolated value.
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executing open-boundary MPS algorithms, such as ITensor
[20], which we utilize.

B. Taking the continuum limit

Equipped with a method of obtaining lowest-lying
eigenstates of our Hamiltonian lattice theories, we proceed
by demonstrating how these results may be used to
compare each Hamiltonian model with the σ model.
Specifically, we determine correlation lengths for a given
set of parameters in each model in Sec. III B 1, and
prescribe a method to tune the overall normalization factor
η in Sec. III B 2.

1. Spatial correlation lengths

To take the continuum limit, we need to tune the
parameters of the model to a critical point, where the
correlation length diverges. For the models discussed in
Sec. II, we expect that this point corresponds to g2 → 0,
similar to the original σ model. Motivated by this obser-
vation, we scan this region in our calculations.
We determine the spatial correlation length by comput-

ing the point-to-point correlation function of the field
operator in the ground state jΨ0i; the correlation function
is defined by

Cðx; yÞ ¼ hΨ0jOðxÞOðyÞjΨ0iζx−y; ð15Þ

where O ¼ y3 for the angular-momentum truncation and
O ¼ j3 for the fuzzy sphere. We set ζ ¼ 1 for the
ferromagnetic case and ζ ¼ −1 for the antiferromagnetic
case to remove the possible alternating sign in this
correlator. The ground state for open-boundary conditions
is not translationally invariant, and the walls distort the
correlation function. Importantly, the boundary effects
diminish exponentially with distance from the walls. To
minimize such wall effects, for a given distance r, we
compute CðrÞ ¼ Cðx; y ¼ xþ rÞ using the two points x
and y equally distanced from the center of the box.2

Once CðrÞ is obtained, we perform a series of two-
parameter fits of the correlator to its expected form in 1þ 1
dimensions:

CðrÞ ¼ AK0ððamÞrÞ; ð16Þ

where A is an amplitude, am ¼ 1=ξ is the inverse spatial
correlation length, and K0 is the zeroth-order modified
Bessel function of the second kind. By fitting the correlator
on an interval ½x0; x0 þ w� for a window size w, one expects
the extracted fit parameter am as a function of x0 to form a

plateau at large distances, where the correlator is a pure
Bessel function.
This procedure is illustrated in Fig. 2. In the top plot, we

compare the correlator with the fitted function by plotting
the effective mass, i.e., its logarithmic derivative. For a
purely exponential correlator, the effective mass should
have a plateau; however, the data clearly indicate that the
correlator never approaches a pure exponential. On the
other hand, the Bessel function form fits the data quite well,
at least asymptotically. The bottom plot identifies the fitted
value for am as a function of the fit window. This mass
estimate varies significantly less as we vary the fit window,
compared to the effective mass above, and it develops a
plateau for large x0 values.
The correlation function also suffers from finite-D

effects, as the correlator at large distances converges more
slowly. Our fitting strategy is the following: we compute
mðDÞ as the minimum value extracted from fitting the
correlator over all fit ranges. The mass is extrapolated using
a power law, mðDÞ ¼ mþ A=DB, just as with the energy
gaps in Sec. III A. The error on the extrapolation is also
defined in the same fashion: ϵm ¼ ½m −mðDmaxÞ�=2.

2. Parameter tuning

The Hamiltonians for the truncated systems of Sec. II are
defined only up to a normalization factor η. This positive
normalization factor does not affect the ground state of the
system or its properties, such as the correlation length.

FIG. 2. A typical ground-state correlator and the mass extracted
from the fit window with the left edge at position x0 along the
chain. Specifically, we show results from the antiferromagnetic
fuzzy model at g2 ¼ 0.75, N ¼ 60, and D ¼ 800. The top plot
shows the effective mass (the logarithmic derivative, for the sake
of visibility), and the bottom plot shows the mass extracted from
the fit to the form in Eq. (16). The black points represents the
particular fit range used (above) and the value of am extracted for
that range (below). As x0 approaches 40, the fit range starts
including data points close to the wall, and so the value of the
mass extracted from the fit increases.

2For even N and even values of r this goal is not possible, as
one of the points must be closer to the center of the box by one.
For this case, we take the average over two setups with either x or
y closer to the center.
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Moreover, this factor only changes the energies (linearly).
We note that this normalization is not specific to the
truncated models; it is required for the original σ-model
Hamiltonian as well [10,21]. In a relativistic theory, the
inverse correlation length ξ ¼ 1=m is given by the mass of
the particle, which in the infinite volume is given by Δ. We
can enforce this relation by choosing η so that

ηðg2Þ ¼ amðg2Þ
aΔðg2Þ ; ð17Þ

where Δðg2Þ is the energy gap, Δ ¼ Ê1 − Ê0, at a given g2,
in the infinite-volume limit, computed from a Hamiltonian
with η set to 1. The renormalized energies are then
Ek ≔ ηÊk, and in particular, this definition guarantees that
the renormalized energy gap in infinite volume ηaΔ equals
amðg2Þ. In other words, the continuum limit is obtained by
sending g2 → 0 along a line in (g2; η) space such that the
infinite-volume energy gap coincides with the inverse
spatial correlation length.
We can estimate ηðg2Þ nonperturbatively by obtaining

estimates for the spatial correlation length ξ and infinite-
volume gaps. In particular, we estimate ξ in the manner
described in Sec. III B 1. Additionally, to obtain an infinite-
volume gap Δ, we obtain the energy gap at various lattice
sizes N and perform an extrapolation in N.
For periodic boundary conditions [5], one could use

Lüscher’s formula for the one-particle finite-volume cor-
rections [22] to fit the gaps to known finite-volume
behavior and extrapolate to the infinite volume. The
finite-volume behavior depends on the scattering phase
shifts of the theory, and they are exactly known for theOð3Þ
σ model [23].
On the other hand, for open-boundary conditions,

Lüscher’s original formulation does not apply. Instead,
we expect that the finite-volume gap of an open-boundary
system can differ from the infinite-volume gap by a power
of the inverse volume. To motivate this claim, we observe
that, perturbatively, the finite-volume change in a particle
mass is given by the difference between loop diagrams
computed in infinite and finite volumes or, in momentum
space, by integrals or discrete loop sums. For the one-
particle irreducible diagrams relevant to the mass, this
difference behaves asymptotically like an exponential
∼e−mL when periodic boundary conditions are used.
Open-boundary conditions, on the other hand, eliminate
the zero-mode p ¼ 0 that contributes a power of 1=L.
Therefore, we extrapolate the energy gaps to infinite

volume using a power law,

aΔðNÞ ¼ aΔþ A
NB ; ð18Þ

where A, B, and aΔ are fit parameters. Small exponential
corrections to Eq. (18) are ignored, since we consider only

system sizes where these corrections are negligible. To
ensure this restriction, we performed the fits only in the
range mL ¼ N=ξ≳ 5. An example of such an infinite-
volume extrapolation is presented in Fig. 3. For the data
included in this figure, the fit form describes the finite-
volume energy gap data quite well for a large range of sizes,
down to N=ξ ∼ 2.
Additionally, in the antiferromagnetic fuzzy sphere

model, there is evidence that Lüscher’s formula [24] for
the Oð3Þ σ model captures the finite-volume behavior of
periodic boundary systems well [5]. Consequently, we
check for several cases that the infinite-volume gaps aΔ
obtained by extrapolating open-boundary, finite-volume
gaps using Eq. (18) are consistent (within errors) with those
obtained by extrapolating periodic boundary, finite-volume
gaps using Lüscher’s formula (see Fig. 5).

C. Monte Carlo

The results obtained from the truncated models using
MPS are compared to lattice Monte Carlo calculations of
the original σ model, using the same open-boundary
conditions. Numerical methods are used, since the exact
results obtained using the thermodynamic Bethe ansatz
[25,26] are not available for the open-boundary conditions,
which are more convenient for the MPS formalism.
We use the lattice action given by

S¼−β
X
t;x

½nðt;xÞ ·nðtþ1;xÞþnðt;xÞ ·nðt;xþ1Þ�; ð19Þ

where nðt; xÞ are unit vectors. The boundary conditions
are periodic in the time direction, but open in the space

FIG. 3. A typical infinite volume extrapolation for the single-
particle energy gap, as described in Sec. III B. Specifically, we
show results from the antiferromagnetic fuzzy model with
g2 ¼ 0.53. The solid (black) points in particular represent the
data used in the fit range, and the curve in the result of this fit.
The horizontal line is the infinite-volume result from the fit, while
the vertical line corresponds to mL ¼ 1. The error bars for the
gaps are present in this plot, but they are smaller than the size of
the symbols.
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direction; on an Nt × Nx lattice, “open” in the x direction
means that no neighbor term couples x ¼ Nx and x ¼ 0.
Further, we carried out simulations at β ¼ 1.4, 1.5, 1.65, 1.7,
1.8, using the Wolff cluster algorithm [27]. Ensemble sizes
ranged from10million to 1.8billion statistically independent
n-field configurations, as these large statistics were required
to achieve precision comparable to the MPS method.
Estimates for the finite-volume energy gaps EðLÞ ≔

E1ðLÞ − E0ðLÞ in lattice units were obtained by computing
time-slice correlators,

CðtÞ ¼ 1

N2
x

X
x;y

hnðt; xÞ · nð0; yÞi; ð20Þ

and fitting them to an exponential expð−EðLÞtÞ. Since the
finite-temperature T ¼ 1=ðaNtÞ effects are of the order
expð−m=TÞ, we may keep these effects negligible by
selecting Nt such that amNt ¼ m=T ≈ 8.
We note that the boundary conditions make the extrac-

tion of EðLÞ particularly challenging. As a consequence of
the lack of translation invariance, it is impossible to project
to zero-momentum states, while the spectrum of states
present in the correlation function is quite dense. To make
this point clear, note that the time-slice correlator for a free
scalar field in a Dirichlet box is given by

CðtÞ ¼
X
n¼odd

Ane−ωnðLÞt; ð21Þ

where ωnðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

nðLÞ
p

, pnðLÞ ¼ nπ=L, and An ¼
ð2L=nπÞ2=ωn. The lowest-order exponential in this
correlator becomes dominant when tδE ≫ 1, with δE ¼
ω3ðLÞ − ω1ðLÞ ≈ 8π2=ðmL2Þ. To address this issue, we
carried out simulations using Nt ≈ 8=ðaδEÞ.
From our simulations, we compute the step-scaling curve,

which determines how the finite-volume energy responds to
a doubling in the size of the system. The results for our
Monte Carlo simulations are presented in Fig. 4. As we
increase β, the correlation length increases and the scaling
curves approach a common envelope, which is the step-
scaling curve in the continuum limit. It is clear from the plot
that for 1=LEðLÞ ≤ 0.8, at the level of the stochastic error
bars, the scaling curve in the continuum limit is already well
described by the data produced at β ¼ 1.65. We fit these data
to a simple parametrization, the ratio of two quadratic
polynomials with free coefficient 1. This fit is indicated in
the figure by the blue band. This will be the reference data
used to compare the truncated models against.

IV. RESULTS

As a preliminary check for whether the truncated models
are valid qubitizations of the Oð3Þ σ model, we first
compute inverse spatial correlation lengths am at various
values of g2. A requirement for the model to be a valid

qubitization is to have a critical point or continuum limit
where the correlation length diverges am → 0. To search
for the critical points of our truncated models, we fit am as
a function of g2 by its expected functional form [21,25]:

amðg2Þ ¼ A
g2

e
− B
g2 : ð22Þ

Figure 5 presents these calculations for both models. We
find that the antiferromagnetic fuzzy model gives amðg2Þ

FIG. 4. Step-scaling curve for the Oð3Þ σ model using open-
boundary conditions. The data points at each value of β are joined
using a second-order interpolation, to guide the eye. The solid
(blue) band is the result of a fit to the envelope and represents our
estimate for the step-scaling curve in the continuum limit.

FIG. 5. The inverse correlation lengths am plotted as a function
of g2 for each truncation model. The diamond points and
overlapping curve (blue) are results from the lmax truncation,
for which the correlation length stays finite (≈15 in lattice units)
as g2 approaches zero. The circular data points and overlapping
curve (black) are results from the antiferromagnetic fuzzy model
with a fit to Eq. (22). The data suggest that the fuzzy model has a
continuum limit at g2 → 0. The error bars are included but are too
small to be seen at this scale. To obtain each curve, we fit simple
models to the two lowest g2 points (filled symbols). For the
lmax-truncation line we use a quadratic function in g2. The cross-
data points (also black) are results from a previous study that
employed periodic boundary conditions [5].
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results which fit Eq. (22) well, suggesting a continuum
limit indeed exists as g2 → 0. In contrast, the correlation
length of the lmax-truncated model remains finite in this
region, yielding strong evidence that this model does not
have a continuum limit and therefore is not in the same
universality class as the σ model. We also include the
results for amðg2Þ as computed for the fuzzy model with
periodic boundary conditions [5]; as expected, the results
agree, which confirms the methodology used to extract
these masses.
A further test of these models, over a wide range of

energy scales, is to compare the step-scaling curves [28,29]
to the full σ model. Here, each curve is a plot of
EðLÞ=Eð2LÞ as a function of 1=ðLEðLÞÞ. In the continuum
limit, the curve should be the same for all models of the
same universality class. In Fig. 6, we plot the zero-
temperature scaling curve of the Oð3Þ σ model determined
in the previous section against the scaling curves for the
angular-momentum truncations with lmax ¼ 1 and anti-
ferromagnetic fuzzy models. For clarity, rightmost points
on each curve correspond to the smallest lattice sizes
(N ∼ 4), while leftmost points correspond to the largest
lattices (the sizes of which varied for different g2).
For both models, all constant-g2 curves converge toward

the Monte Carlo curve in the infrared regime (leftmost
points), demonstrating a limited universality holding for the
long-distance properties of each theory. On the other hand,
we expect that truncated models in general will exhibit
nonuniversal behavior as the scale of their lattice spacing is
approached (namely, small N for any fixed g2). Indeed,
rightmost points on each g2-constant curve typically are far
from the full-model curve. Note that we have seen similar
behavior in Monte Carlo simulations of the lattice σ model.
However, we observe that as g2 decreases, the curves for the
antiferromagnetic fuzzy model overlap with the full-model
curve further into the ultraviolet region, suggesting that

more of the high-energy physics of the σ model is
reproduced. For the lmax truncation, as g2 decreases there
is a trend towards the full-model curve, but this trend stops
as the correlation length stops changing, consistent with the
data in Fig. 5.
We note here that since we used open-boundary con-

ditions, we were able to explore much larger correlation
lengths and show that the trend toward the full-model curve
continues up to correlation lengths 1=am ≈ 66.5, providing
stronger evidence that the antiferromagnetic fuzzy model
and σ model are likely in the same universality class.

V. DISCUSSION

We studied two different truncations of the field space of
the 1þ 1-dimensional Oð3Þ σ model, both preserving the
symmetries of the full model. The first is an expansion of
functions on S2 in spherical harmonics with an angular-
momentum cutoff lmax, such that the full Hilbert space of
complex functions on a sphere is recovered as we take
lmax → ∞. Here, we explored the model with lmax ¼ 1.
Another approach is to approximate S2 by a fuzzy sphere
where the components of the position operator do not
commute. Both models have the same dimension of Hilbert
space at each site and would require the same number of
quantum registers to implement the real-time evolution.
To assess whether these models lie in the same univer-

sality class as the σ model, we calculated the finite-volume,
single-particle energies in boxes with open-boundary con-
ditions. We used these results to compute the step-scaling
curves and compare them with the results from the σ model.
The step-scaling curve for the fuzzy sphere truncation
agrees with that of the Oð3Þ σ model over a wide range of
scales in the antiferromagnetic case, while the commutative
sphere truncation fails to capture the σ-model behavior at
energies beyond the deep infrared.

FIG. 6. Step-scaling curves for the antiferromagnetic fuzzy model (left) and lmax truncation (right), compared with the Oð3Þ σ-model
scaling curve computed fromMonte Carlo simulations with open-boundary conditions (the blue band). Curves are interpolated between
points with constant g2. Rightmost points on each curve correspond to ðN; 2NÞ pairs for the smallest lattice sizes (N ∼ 4), while leftmost
points correspond to the largest lattices (the sizes of which varied for different g2). Points computed with the same g2 are interpolated to
make the envelope of the curves clear.
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It is possible that higher truncations lmax > 1will exhibit
more desirable scaling properties than the one considered
here did. For example, to converge to the expected gap for
β ¼ 1.8 in the lattice σmodel, where the correlation length is
similar to the largest one considered for the fuzzy model in
this study, we need lmax ≳ 3 [10]. However, we point out
that for quantum simulations—the main motivation for
developing these truncations—–these truncations quickly
become impractical. To implement a single time-step
evolution, expð−iHδtÞ, the number of quantum gates
increases very quickly with lmax. Using methods presented
in Ref. [30], we can design quantum circuits to evolve a two-
site system: for lmax ¼ 1, 2, and 3 we need 60, 3826, and
11826 Controlled NOT gates, respectively [31]. Hence, this
strategy of removing the truncation by repeating calcula-
tions with increasing lmax is not feasible. We stress that this
rapid increase in complexity of the quantum circuits with the
size of the Hilbert space is a generic feature, not particular to
the σmodel. As such, for quantum simulations to be feasible
for bosonic field theories, small size qubitizations are
crucial.
For the fuzzy sphere truncation in the antiferromagnetic

case, we find that the finite-volume energy for the single-
particle states agrees very well with the expectations from
the σ model. This observation provides further evidence

that this model is in the same universality class. Moreover,
this model requires only two qubits per site and has a very
compact time-evolution circuit [3]. We note that another
qubitization was proposed using spin-ladder operators that
has the same number of qubits per site [32]. For the σ
model, these truncations are likely to be the most eco-
nomical ones for quantum simulations.
For other quantum field theories that include bosonic

degrees of freedom—quantum chromodynamics being a
prime example—designing appropriate qubitizations is cru-
cial for simulating them on quantum computers. One
important ingredient is to preserve the symmetries of the
original model as much as possible. However, it is clear that
this requirement is not sufficient, and discovering what other
design principles are required is an important research task.

ACKNOWLEDGMENTS

Thisworkwas supported in part by theU.S.Department of
Energy, Office of Nuclear Physics under Awards No. DE-
SC0021143,No.DE-FG02-93ER40762, andNo.DE-FG02-
95ER40907. The numerical results were produced in
part with resources provided by the High Performance
Computing Cluster at The George Washington University,
Research Technology Services.

[1] A. Alexandru, P. F. Bedaque, S. Harmalkar, H. Lamm,
S. Lawrence, and N. C. Warrington (NuQS Collaboration),
Phys. Rev. D 100, 114501 (2019).

[2] A. Alexandru, P. F. Bedaque, R. Brett, and H. Lamm, Phys.
Rev. D 105, 114508 (2022).

[3] A. Alexandru, P. F. Bedaque, H. Lamm, and S. Lawrence
(NuQS Collaboration), Phys. Rev. Lett. 123, 090501 (2019).

[4] T. Bhattacharya, A. J. Buser, S. Chandrasekharan, R. Gupta,
and H. Singh, Phys. Rev. Lett. 126, 172001 (2021).

[5] A. Alexandru, P. F. Bedaque, A. Carosso, and A. Sheng,
Phys. Lett. B 832, 137230 (2022).

[6] A. Patrascioiu and E. Seiler, Phys. Lett. B 430, 314 (1998).
[7] P. Hasenfratz and F. Niedermayer, Nucl. Phys. B596, 481

(2001).
[8] S. Caracciolo, A. Montanari, and A. Pelissetto, Phys. Lett. B

513, 223 (2001).
[9] P. Hasenfratz and F. Niedermayer, Proc. Sci., HEP2001

(2001) 229.
[10] F. Bruckmann, K. Jansen, and S. Kühn, Phys. Rev. D 99,

074501 (2019).
[11] H. Liu and S. Chandrasekharan, Symmetry 14, 305 (2022).
[12] J. Madore, Classical Quantum Gravity 9, 69 (1992).
[13] E. Zohar and M. Burrello, Phys. Rev. D 91, 054506 (2015).
[14] B. de Wit, J. Hoppe, and H. Nicolai, Nucl. Phys. B305, 545

(1988).
[15] M. Lüscher, Commun. Math. Phys. 104, 177 (1986).

[16] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[17] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[18] R. Orús, Ann. Phys. (Amsterdam) 349, 117 (2014).
[19] P. Pippan, S. R. White, and H. G. Evertz, Phys. Rev. B 81,

081103(R) (2010).
[20] M. Fishman, S. R. White, and E. M. Stoudenmire, arXiv:

2007.14822.
[21] J. Shigemitsu and J. Kogut, Nucl. Phys. B190, 365 (1981).
[22] M. Lüscher, Commun. Math. Phys. 105, 153 (1986).
[23] A. B. Zamolodchikov and A. B. Zamolodchikov, Nucl.

Phys. B133, 525 (1978).
[24] T. R. Klassen and E. Melzer, Nucl. Phys. B362, 329

(1991).
[25] P. Hasenfratz, M. Maggiore, and F. Niedermayer, Phys. Lett.

B 245, 522 (1990).
[26] J. Balog and A. Hegedus, J. Phys. A 37, 1881 (2004).
[27] U. Wolff, Phys. Rev. Lett. 62, 361 (1989).
[28] S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto,

and A. D. Sokal, Phys. Rev. Lett. 74, 2969 (1995).
[29] S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D.

Sokal, Phys. Rev. Lett. 75, 1891 (1995).
[30] E. M. Murairi, M. J. Cervia, H. Kumar, P. F. Bedaque, and

A. Alexandru, Phys. Rev. D 106, 094504 (2022).
[31] E. M. Murairi (private communication).
[32] H. Singh and S. Chandrasekharan, Phys. Rev. D 100,

054505 (2019).

QUBITIZATION STRATEGIES FOR BOSONIC FIELD … PHYS. REV. D 107, 034503 (2023)

034503-9

https://doi.org/10.1103/PhysRevD.100.114501
https://doi.org/10.1103/PhysRevD.105.114508
https://doi.org/10.1103/PhysRevD.105.114508
https://doi.org/10.1103/PhysRevLett.123.090501
https://doi.org/10.1103/PhysRevLett.126.172001
https://doi.org/10.1016/j.physletb.2022.137230
https://doi.org/10.1016/S0370-2693(98)00528-0
https://doi.org/10.1016/S0550-3213(00)00696-9
https://doi.org/10.1016/S0550-3213(00)00696-9
https://doi.org/10.1016/S0370-2693(01)00674-8
https://doi.org/10.1016/S0370-2693(01)00674-8
https://doi.org/10.22323/1.007.0229
https://doi.org/10.22323/1.007.0229
https://doi.org/10.1103/PhysRevD.99.074501
https://doi.org/10.1103/PhysRevD.99.074501
https://doi.org/10.3390/sym14020305
https://doi.org/10.1088/0264-9381/9/1/008
https://doi.org/10.1103/PhysRevD.91.054506
https://doi.org/10.1016/0550-3213(88)90116-2
https://doi.org/10.1016/0550-3213(88)90116-2
https://doi.org/10.1007/BF01211589
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevB.81.081103
https://doi.org/10.1103/PhysRevB.81.081103
https://arXiv.org/abs/2007.14822
https://arXiv.org/abs/2007.14822
https://doi.org/10.1016/0550-3213(81)90567-8
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/0550-3213(78)90239-0
https://doi.org/10.1016/0550-3213(78)90239-0
https://doi.org/10.1016/0550-3213(91)90566-G
https://doi.org/10.1016/0550-3213(91)90566-G
https://doi.org/10.1016/0370-2693(90)90685-Y
https://doi.org/10.1016/0370-2693(90)90685-Y
https://doi.org/10.1088/0305-4470/37/5/027
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.74.2969
https://doi.org/10.1103/PhysRevLett.75.1891
https://doi.org/10.1103/PhysRevD.106.094504
https://doi.org/10.1103/PhysRevD.100.054505
https://doi.org/10.1103/PhysRevD.100.054505

