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In this work, we study the nonperturbative renormalization of the supercurrent operator in N ¼ 1

supersymmetric Yang-Mills theory, using a gauge-invariant renormalization scheme (GIRS). The proposed
prescription addresses successfully the unwanted mixing of the supercurrent with other operators of equal
or lower dimension, which respect the same global symmetries. This mixing is introduced by the
unavoidable breaking of supersymmetry on the lattice. In GIRS all gauge-noninvariant operators, which
mix with the supercurrent, are excluded from the renormalization procedure. The one remaining mixing
operator is accessible by numerical simulations. We present results for the renormalization of the
supercurrent using GIRS. We also compute at one-loop order the conversion matrix which relates the
nonperturbative renormalization factors in GIRS to the reference scheme MS.
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I. INTRODUCTION

Supersymmetric (SUSY) theories have long been con-
sidered a promising completion of the Standard Model
with appealing properties like natural explanations for dark
matter. Unbroken supersymmetry implies that particles
arrange themselves into multiplets with the same number
of fermionic and bosonic degrees of freedom. The super-
symmetric partners of the Standard Model particles have
not been observed in experiments so far. An unknown
breaking mechanism is therefore required in a realistic
extension of the Standard Model. In order to understand
possible breaking scenarios, it is essential to investigate the
nonperturbative regime of SUSY theories.

Another important motivation for nonperturbative inves-
tigations of SUSY theories are theoretical conjectures about
the confinement mechanism and relations to gauge/gravity
duality. These have their foundations in the enhanced
symmetries of SUSY gauge theories and it would be
interesting to extend and relate them to QCD or Yang-
Mills theory. This requires more general insights into the
nonperturbative regime of SUSY theories.
Numerical lattice simulations would be an ideal gen-

eral nonperturbative first principles tool to investigate
SUSY gauge theories. However, it is unavoidable to
break SUSY in any nontrivial theory on the lattice. In
general, fine-tuning is required to restore supersymmetry
in the continuum limit, which can be guided by signals
provided by the SUSY Ward identities. The analysis of
SUSY Ward identities requires the renormalization of the
supercurrent, which mixes due to broken supersymmetry
with other operators of the same or lower dimension. In
our current studies, we investigate how to determine the
mixing in a perturbative and nonperturbative way. The
first step is a study of N ¼ 1 supersymmetric Yang-Mills
theory (SYM).
In Ref. [1] Curci and Veneziano have shown that only a

tuning of the gluino mass is required to restore supersym-
metry in the continuum limit with Wilson fermions. There
is even a very basic connection between chiral symmetry
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and supersymmetry in SYM, as shown in [2]. The theory
has been successfully simulated using this approach and
the results show consistency with supersymmetry [3,4],
where the low energy spectrum was obtained in the
continuum limit. The tuning has been done based on
chiral symmetry, confirming a consistency with super-
symmetric Ward identities (WI) afterwards [5–7]. On the
lattice the renormalized WI get corrections due to mixing
of the supercurrent with all possible operators of the
same or lower dimension that respect all unbroken
symmetries on the lattice and share the same quantum
numbers. Mixing also accounts for an additive renorm-
alization of the fermion mass [1]. The fermion mass
renormalization provides a signal for the gluino mass
tuning. The mixing of the supercurrent appears as an
additional undetermined parameter. In the standard
approach, mixing and mass renormalization have to be
determined simultaneously from the same set of numeri-
cally determined WI. In previous investigations, the
mixing has also been determined to one loop order in
perturbation theory [8].
This approach, despite being successful for SYM, has

limitations when applied to more general SUSY gauge
theories. The number of tuning parameters and mixing
coefficients is significantly larger in this case. Therefore
it is essential to find alternative ways to determine the
renormalization of the supercurrent and reduce the
number of parameters that need to be determined from
the WI. In this work, we explore an alternative way of
renormalizing the supercurrent on the lattice, using a
gauge-invariant renormalization scheme (GIRS).
GIRS has been employed in recent studies of operator

mixing regarding the renormalization of the traceless
gluon and quark energy-momentum tensor operators in
QCD [9] and the gluino-glue operator in SYM theory [10].
In the spirit of X-space scheme [11–14], GIRS involves
Green’s functions of two or more gauge-invariant oper-
ators in coordinate space. The main advantage of this
scheme is that all gauge-noninvariant operators appearing
in the set of mixing operators are automatically excluded
from the renormalization procedure since their Green’s
functions are zero. In order to set appropriate conditions
in GIRS, which are applicable in both continuum and
lattice, we first perform a perturbative calculation of
certain Green’s functions involving all the gauge-invariant
mixing operators in a continuum regularization. Our final
goal is to renormalize the supercurrent in the MS scheme,
which is the typical scheme used in the analysis of
experimental data. Since MS is defined perturbatively in
dimensional regularization (DR), we employ DR and we
extract the one-loop conversion matrix between GIRS
and MS. The renormalization factors and mixing coef-
ficients of the supercurrent in MS on the lattice will be
extracted at the end by combining our results for the

perturbative conversion matrix with the nonperturbative
GIRS mixing matrix on the lattice.
The paper is organized as follows: Sec. II contains the

formulation of our calculation including the N ¼ 1 SYM
action, the set of operators under study, as well as an
introduction to the GIRS renormalization prescription
and to the Green’s functions calculated in this work.
In Sec. III, we present our perturbative calculation in
dimensional regularization and we provide one-loop
results for the Green’s functions, the renormalization
factors/mixing coefficients, and the conversion matrix
between the GIRS and MS schemes. A description of
the lattice setup along with the nonperturbative results for
the renormalization of the supercurrent is presented in
Sec. IV. Finally, we conclude in Sec. V with a summary
and a discussion of our results and possible future
extensions of our work.

II. GIRS IN SUPERSYMMETRIC
YANG-MILLS THEORY

In this section, we introduce the setup of our calculation.
We provide details on the action, the operators and the
Green’s functions that we calculate in this work.

A. The action of supersymmetric Yang-Mills theory

In our study, we consider N ¼ 1 SYM with gauge
group SU(Nc) in the continuum and on the lattice. By
applying the Wess-Zumino gauge [15] and by eliminating
auxiliary fields of the theory, we end up with the following
gauge-fixed continuum action in Euclidean space

SSYM ¼
Z

d4x

�
1

4
uαμνðxÞuαμνðxÞ þ

1

2
λ̄αðxÞγμDμλ

αðxÞ

−
1

2ξ
ð∂μuαμðxÞÞ2 − c̄αðxÞ∂μDαβ

μ cβðxÞ
�
; ð1Þ

where uαμðxÞ (λαðxÞ, cαðxÞ) is the gluon (gluino, ghost)
field, uαμν is the gluon field-strength tensor, and ξ is the
gauge parameter [ξ ¼ 1ð0Þ corresponds to Feynman
(Landau) gauge]. The gluino field is a Majorana fermion,
and thus λ and λ̄ are related through a charge conjugation
transformation. Since supersymmetry is broken in all
known regularizations (including dimensional and lattice
regularizations) at intermediate steps, we choose the
gauge-fixing and ghost terms arising from the Faddeev-
Popov procedure to be the same as in the nonsupersym-
metric case. Due to the gauge fixing, the total action is no
longer gauge invariant, but it is Becchi-Rouet-Stora-Tyutin
(BRST) invariant. On the lattice, we employ a tree-level
Symanzik improved gauge action [16] and Wilson/clover
fermions [17] for the gluino fields; the action reads1

1trc denotes trace over color matrices.
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SL
SYM ¼ a4

X
x

�
2

g2

�
5

3

X
plaq

Re trcð1 −UplaqÞ

−
1

12

X
rect

Re trcð1 −UrectÞ
�

þ
X
μ

�
trcðλ̄γμDμλÞ −

ar
2
trcðλ̄D2λÞ

�

−
X
μ;ν

�
cSWa
4

λ̄ασμνF̂
αβ
μνλβ

�
þm0trcðλ̄λÞ

�
; ð2Þ

where rðcSWÞ is the Wilson (clover) parameter, σμν ¼
1
2
½γμ; γν�, UplaqðUrectÞ denotes the 1 × 1 (2 × 1) rectangular

Wilson loops, F̂αβ
μν is the clover definition of the field

strength tensor in the adjoint representation, and m0 is the
Lagrangian mass. The explicit definitions of Uplaq, Urect,

F̂αβ
μν in terms of link variables UμðxÞ, and the covariant

derivatives are standard2; they can be found in, e.g.,
Ref. [18]. Note that gauge-fixing and ghost terms must
be added in the above action, as well as a “measure” term
coming from the change of integration variables Uμ → uμ.
These terms are chosen to be equal to the corresponding
terms in the nonsupersymmetric case (see, e.g., [19]).

B. Supercurrent and mixing operators

In standard notation, the supercurrent [20] is defined as3

SμðxÞ≡ −σνργμtrcðuνρðxÞλðxÞÞ; σνρ ¼
1

2
½γν; γρ�: ð3Þ

The supercurrent is the conserved quantity associated
with SUSY. When SUSY is broken (as is the case in both
dimensional and lattice regularizations), SμðxÞ is no longer
conserved and must be renormalized. SμðxÞ can mix
with other operators of the same or lower dimensionality
that respect the same global symmetries. On general
grounds [21], such operators can be separated into four
classes:

(i) Class G: Gauge-invariant operators.
(ii) Class A: BRST variations of some operator.

(iii) Class B: Operators which vanish by the equations of
motion.

(iv) Class C: Any other operators which share the same
global symmetries, but do not belong to the above
classes; these can at most have finite mixing
with SμðxÞ.

Mixing with gauge-noninvariant (classes A–C) operators
results from the introduction of a gauge-fixing term in the
action. A list of all possible candidate operators that can
mix with SμðxÞ can be found in Refs. [22,23].

C. Supercurrent renormalization in GIRS

To simplify the mixing problem, we implement a renor-
malization scheme in which only gauge-invariant Green’s
functions are considered; thus a nonperturbative imple-
mentation of such a scheme avoids gauge fixing altogether.
In particular, by extending the X-space scheme [11–14], we
consider Green’s functions of products of gauge-invariant
operators (at different spacetime points, in a way as to avoid
potential contact singularities), e.g.,

hSμðxÞSνðyÞi; ðx ≠ yÞ: ð4Þ

In the case of multiplicatively renormalizable operators
A, a typical condition has the following form (see, e.g.,
Refs. [11–14]):

ðZGIRS
A Þ2hAðxÞAðyÞijx−y¼z ¼ hAðxÞAðyÞitreejx−y¼z; ð5Þ

where z is a nonzero renormalization four-vector scale.
When operator mixing occurs, we need to consider a set of
conditions involving more than one Green’s functions of
two or more gauge-invariant operators, each of which has a
similar form to Eq. (5), i.e., the renormalized Green’s
functions are set to their tree-level values when the
operators’ space-time separations equal to specific refer-
ence scales (for an application in the renormalization of the
QCD traceless energy-momentum tensor, see Ref. [9]).
The case at hand does not require Green’s functions

containing products of more than two operators, whose
evaluation is more demanding, both perturbatively and
nonperturbatively. Moreover, the gauge-noninvariant oper-
ators of classes A–C cannot contribute to such Green’s
functions and they need not be considered any further. As a
consequence, the set of mixing operators in GIRS is greatly
reduced and includes only gauge-invariant operators, which
are accessible by lattice simulations.
There is only one gauge-invariant operator TμðxÞ (see

Ref. [6] and references therein) that can mix with the
supercurrent:

TμðxÞ≡ 2γνtrcðuμνðxÞλðxÞÞ: ð6Þ

Thus, we construct a 2 × 2mixing matrix, which relates the
bare (B) to the renormalized (R) operators:

2The definitions of the covariant derivatives are as follows:

DμλðxÞ≡ 1

2a
½UμðxÞλðxþ aμ̂ÞU†

μðxÞ
− U†

μðx − aμ̂Þλðx − aμ̂ÞUμðx − aμ̂Þ�;

D2λðxÞ≡ 1

a2
X
μ

½UμðxÞλðxþ aμ̂ÞU†
μðxÞ − 2λðxÞ

þU†
μðx − aμ̂Þλðx − aμ̂ÞUμðx − aμ̂Þ�:

3For ease of notation, we leave out the one free Dirac index in
all operators appearing in the text. Similarly, we drop the two
Dirac indices from all the Green’s functions appearing in the
sequel.
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�
SRμ ðxÞ
TR
μ ðxÞ

�
¼
�
ZB;R
SS ZB;R

ST

ZB;R
TS ZB;R

TT

��
SBμ ðxÞ
TB
μ ðxÞ

�
: ð7Þ

[The index B refers to dimensional (DR) or lattice (L)
regularization, and R ¼ MS;GIRS to the renormalization
scheme. For simplicity, the renormalization functions ZB;R

will be often denoted merely as Z.]
The determination of the four elements of the mixing

matrix requires four conditions. A maximum of three
conditions can be imposed by considering expectation
values between the two mixing operators:

GSS
μνðx; yÞ≡ hSμðxÞS̄νðyÞi; ð8Þ

GTT
μν ðx; yÞ≡ hTμðxÞT̄νðyÞi; ð9Þ

GST
μν ðx; yÞ≡ hSμðxÞT̄νðyÞi; ð10Þ

GTS
μν ðx; yÞ≡ hTμðxÞS̄νðyÞi; ð11Þ

where

S̄μðxÞ≡ trcðλ̄ðxÞuνρðxÞÞγμσνρ; ð12Þ
T̄μðxÞ≡ 2trcðλ̄ðxÞuμνðxÞÞγν: ð13Þ

For convenience, we choose to express the “bar” operators
in terms of λ̄ rather than λ. The bar operators Ā ¼ S̄μ; T̄μ are
related to the original operators A ¼ Sμ; Tμ through charge
conjugation transformations, as follows:

Ā≡ AT
CC

T; A ¼ CĀT
C; ð14Þ

where AC is the operator A with its fields replaced by their
charge conjugates, and C is the charge conjugation matrix
satisfying CγμC−1 ¼ −γTμ . The transformations of fields
under charge conjugation are given below:

uμ → −uTμ ; ð15Þ
λ → Cλ̄T; ð16Þ

λ̄ → −λTC−1: ð17Þ
A fourth condition can be obtained by considering two-

point Green’s functions involving products of SμðxÞ orTμðxÞ
with the Gluino-Glue operatorOðxÞ, which is the only other
gauge-invariant operator of equal or lower dimension:

GSO
μ ðx; yÞ≡ hSμðxÞŌðyÞi; ð18Þ

GTO
μ ðx; yÞ≡ hTμðxÞŌðyÞi; ð19Þ

GOS
μ ðx; yÞ≡ hOðxÞS̄μðyÞi; ð20Þ

GOT
μ ðx; yÞ≡ hOðxÞT̄μðyÞi; ð21Þ

where

OðxÞ≡ σμνtrcðuμνðxÞλðxÞÞ; ð22Þ

ŌðxÞ≡ trcðλ̄ðxÞuμνðxÞÞσμν: ð23Þ

ŌðxÞ satisfies Eq. (14). The operator OðxÞ is multiplica-
tively renormalizable in GIRS [10] and its renormalization
factor is obtained by considering the following Green’s
function:

GOOðx; yÞ≡ hOðxÞŌðyÞi: ð24Þ

Given Eq. (14), the above Green’s functions are related
among themselves through charge conjugation transforma-
tions, as follows:

hAðxÞB̄ðyÞi ¼ ChBðyÞĀðxÞiTC−1; ð25Þ

where A;B ¼ Sμ; Tμ;O. Note that for determining the
mixing matrix, we may not need to implement all choices
of Lorentz/Dirac indices in a nonperturbative evaluation
of the above Green’s functions; the exact choice of the
renormalization conditions will dictate which components
of the Green’s functions are needed. However, in order to
determine a consistent and solvable set of nonperturbative
renormalization conditions, we need to calculate all
Green’s functions perturbatively in dimensional regulari-
zation. Also, since there is no unique way of selecting
solvable conditions in GIRS, a perturbative calculation of
all the above Green’s functions will be useful for determin-
ing conversion factors from all possible variants of GIRS to
the MS scheme.

III. PERTURBATIVE CALCULATION
IN DIMENSIONAL REGULARIZATION

In this section we investigate the mixing problem in
the continuum by regularizing the theory in d≡ 4 − 2ε
dimensions. We apply both MS and GIRS and we extract

the conversion matrix, CGIRS;MS, between the two
schemes to one loop. The conversion matrix, along with
the lattice mixing matrix in GIRS, ZL;GIRS (computed
nonperturbatively), allows us to determine the lattice

mixing matrix in the MS scheme, ZL;MS, through the
following relation:

 
ZL;MS
SS ZL;MS

ST

ZL;MS
TS ZL;MS

TT

!

¼
 
CGIRS;MS
SS CGIRS;MS

ST

CGIRS;MS
TS CGIRS;MS

TT

! 
ZL;GIRS
SS ZL;GIRS

ST

ZL;GIRS
TS ZL;GIRS

TT

!
: ð26Þ
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A. One-loop calculation in the MS scheme

First, we present our results for the MS-renormalized
Green’s functions. Due to the 2 × 2 mixing, the renormal-
ized Green’s functions are linear combinations of bare
Green’s functions, which are given below in matrix form:

�
GSS;R

μν GST;R
μν

GTS;R
μν GTT;R

μν

�
¼
�
ZSS ZST

ZTS ZTT

��
GSS;B

μν GST;B
μν

GTS;B
μν GTT;B

μν

�

×

�
ZSS ZTS

ZST ZTT

�
; ð27Þ

�
GSO;R

μ

GTO;R
μ

�
¼ ZO

�
ZSS ZST

ZTS ZTT

��
GSO;B

μ

GTO;B
μ

�
; ð28Þ

�
GOS;R

μ

GOT;R
μ

�
¼ ZO

�
ZSS ZST

ZTS ZTT

��
GOS;B

μ

GOT;B
μ

�
; ð29Þ

GOO;R ¼ ðZOÞ2GOO;B: ð30Þ

The evaluation of the corresponding bareGreen’s functions at
tree-level and to one-loop order in DR involve, respectively,
the one-loop and two-loop Feynman diagrams of Fig. 1.
As is standard practice, the pole terms (1=εn, n ∈ Zþ) are

removed by defining theMSmixingmatrix elements to have

only negative integer powers of ε, i.e., ZDR;MS
ij ¼ δij þ

g2ðzij=εÞ þOðg4Þ, where i; j ¼ S, T and ZDR;MS
O ¼ 1þ

g2ðzO=εÞ þOðg4Þ. Our results for ZDR;MS
ij , ZDR;MS

O read as
follows:

ZDR;MS
SS ¼ 1þOðg4Þ; ð31Þ

ZDR;MS
ST ¼ Oðg4Þ; ð32Þ

ZDR;MS
TS ¼ g2

16π2
3Nc

2ε
þOðg4Þ; ð33Þ

ZDR;MS
TT ¼ 1 −

g2

16π2
3Nc

ε
þOðg4Þ; ð34Þ

ZDR;MS
O ¼ 1 −

g2

16π2
3Nc

ε
þOðg4Þ; ð35Þ

which agree with our recent one-loop calculations of
Refs. [18,23], where gauge-noninvariant Green’s functions
of all mixing operators with external elementary fields are
considered. The one-loop expressions for the MS-renormal-
ized Green’s functions are given below:

GSS;MS
μν ðx; yÞ ¼ −

2ðN2
c − 1Þ

3π4ðz2Þ4
�
3 − 5

g2
MS

16π2
Nc

�
ð4s½3�μν þ s½4�μνÞ; ð36Þ

GTT;MS
μν ðx; yÞ ¼ −

ðN2
c − 1Þ

6π4ðz2Þ4
��

3 − 5
g2
MS

16π2
Nc

�
ð4s½3�μν − 2s½4�μνÞ

þ 9
g2
MS

16π2
Ncð2s½1�μν þ 2s½2�μν − 3ð3þ 4γE þ 2 lnðμ̄2z2=4ÞÞs½4�μνÞ

�
; ð37Þ

FIG. 1. One-loop and two-loop Feynman diagrams contributing to the tree-level and one-loop two-point Green’s functions of
Eqs. (8)–(11), (18)–(21), and (24). Awavy (solid, dashed) line represents gluons (gluinos, ghosts). The two crosses denote the insertions
of operators Sμ; Tν;O appearing in the definition of each two-point function.
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GST;MS
μν ðx; yÞ ¼ −

ðN2
c − 1Þ

3π4ðz2Þ4
��

3 − 5
g2
MS

16π2
Nc

�
ð4s½3�μν þ s½4�μνÞ þ 18

g2
MS

16π2
Ncðs½2�μν − s½4�μνÞ

�
; ð38Þ

GTS;MS
μν ðx; yÞ ¼ −

ðN2
c − 1Þ

3π4ðz2Þ4
��

3 − 5
g2
MS

16π2
Nc

�
ð4s½3�μν þ s½4�μνÞ þ 18

g2
MS

16π2
Ncðs½1�μν − s½4�μνÞ

�
; ð39Þ

GSO;MS
μ ðx; yÞ ¼ −

ðN2
c − 1Þ

π4ðz2Þ4 12
g2
MS

16π2
Ncs

½6�
μ ; ð40Þ

GOS;MS
μ ðx; yÞ ¼ −

ðN2
c − 1Þ

π4ðz2Þ4 12
g2
MS

16π2
Ncs

½6�
μ ; ð41Þ

GTO;MS
μ ðx; yÞ ¼ −

ðN2
c − 1Þ

π4ðz2Þ4
��

3þ 2
g2
MS

16π2
Ncð8þ 18γE þ 9 lnðμ̄2z2=4ÞÞ

�
ðs½5�μ þ s½6�μ Þ − 6

g2
MS

16π2
Ncs

½5�
μ

�
; ð42Þ

GOT;MS
μ ðx; yÞ ¼ −

ðN2
c − 1Þ

π4ðz2Þ4
��

3þ 2
g2
MS

16π2
Ncð8þ 18γE þ 9 lnðμ̄2z2=4ÞÞ

�
ð−s½5�μ þ s½6�μ Þ þ 6

g2
MS

16π2
Ncs

½5�
μ

�
; ð43Þ

GOO;MSðx; yÞ ¼ −
2ðN2

c − 1Þ
π4ðz2Þ4

�
3þ 2

g2
MS

16π2
Ncð5þ 18γE þ 9 lnðμ̄2z2=4ÞÞ

�
=z; ð44Þ

where z≡ x − y,

s½1�μνðzÞ≡ γμzν; s½2�μνðzÞ≡ γνzμ; s½3�μνðzÞ≡
�
δμν − 2

zμzν
z2

�
=z; ð45Þ

s½4�μνðzÞ≡ γμ=zγν; s½5�μ ðzÞ≡ zμ1; s½6�μ ðzÞ≡ σμρzρ: ð46Þ

If a gluino mass were present, then the above Green’s
functions would also contain the structures of Eqs. (45) and
(46) multiplied by an extra =z.

B. Renormalization conditions in GIRS

Next, we define appropriate renormalization conditions
in GIRS, which must be applicable in both continuum and
lattice. There is, a priori, wide flexibility in determining
conditions in GIRS. In our study we consider the following
set of conditions in which we integrate over the spatial
components of z ¼ x − y ¼ ðz⃗; tÞ:Z

d3z⃗Tr½GSS;GIRS
μν ðx; yÞPνμ� ¼

Z
d3z⃗Tr½GSS;tree

μν ðx; yÞPνμ�;

ð47ÞZ
d3z⃗Tr½GTT;GIRS

μν ðx; yÞPνμ� ¼
Z

d3z⃗Tr½GTT;tree
μν ðx; yÞPνμ�;

ð48ÞZ
d3z⃗Tr½GST;GIRS

μν ðx; yÞPνμ� ¼
Z

d3z⃗Tr½GST;tree
μν ðx; yÞPνμ�;

ð49ÞZ
d3z⃗Tr½GSO;GIRS

μ ðx; yÞPμ� ¼
Z

d3z⃗Tr½GSO;tree
μ ðx; yÞPμ�;

ð50Þ

where

Pνμ ¼ γνγ4γμ; Pμ ¼ γ4γμ; ð51Þ

and the repeated indices μ, ν are not summed over.
The tree-level values in the rhs of Eqs. (47)–(50) are
given below:

Z
d3z⃗Tr½GSS;tree

μν ðx; yÞPνμ�

¼ −
ðN2

c − 1Þt
π2jtj5 ð1 − δμ4 − δν4 − 3δμν þ 4δμ4δν4Þ; ð52Þ

Z
d3z⃗Tr½GTT;tree

μν ðx; yÞPνμ�

¼ ðN2
c − 1Þt

4π2jtj5 ð2þ δμ4 þ δν4 þ 3δμν − 4δμ4δν4Þ; ð53Þ

Z
d3z⃗Tr½GST;tree

μν ðx; yÞPνμ�

¼ −
ðN2

c − 1Þt
2π2jtj5 ð1 − δμ4 − δν4 − 3δμν þ 4δμ4δν4Þ; ð54Þ

Z
d3z⃗Tr½GSO;tree

μ ðx; yÞPμ� ¼ 0: ð55Þ
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On the lattice, integration over time slices is replaced by
summation, which is expected to reduce statistical errors in
the nonperturbative data of the numerical simulations. The
explicit form of the corresponding conditions on the lattice
can be found in the next section.
Alternative definitions of the GIRS conditions may

involve higher moments of the Green’s functions, e.g.,R
d3z⃗zμzνTr½GAB

μν Pνμ�; ðA;B¼ S;TÞ. Such choices can affect
statistical error either positively, since some contributions
from positive and negative directions will now add up, rather
than cancel, or negatively, since contributions from larger
values of z, which are expected to be more noisy, will now
appear multiplied by extra powers of z.

While in MS the renormalization factors for each
operator are independent of Lorentz components, in
GIRS different choices of the Lorentz components (spatial
or temporal) for each operator can, in principle, give
different renormalization factors. Thus, in order to deter-
mine a consistent set of conditions in GIRS, we need to
use the same components (spatial or temporal) for each
operator in all conditions. Also, due to the integration
over the spatial components of z, the possible choices of
Lorentz indices in each operator that give a solution to the
system of conditions are further limited. By writing down
the conditions of Eqs. (47)–(50) in terms of bare Green’s
functions4:

Z2
SSTr½GSS

μνPνμ� þ ZSSZSTðTr½GST
μνPνμ� þ Tr½GTS

μνPνμ�Þ þ Z2
STTr½GTT

μν Pνμ� ¼ Tr½GSS;tree
μν Pνμ�; ð56Þ

Z2
TSTr½GSS

μνPνμ� þ ZTSZTTðTr½GST
μνPνμ� þ Tr½GTS

μνPνμ�Þ þ Z2
TTTr½GTT

μν Pνμ� ¼ Tr½GTT;tree
μν Pνμ�; ð57Þ

ZSSðZTSTr½GSS
μνPνμ� þ ZTTTr½GST

μνPνμ�Þ þ ZSTðZTSTr½GTS
μνPνμ� þ ZTTTr½GTT

μν Pνμ�Þ ¼ Tr½GST;tree
μν Pνμ�; ð58Þ

ZOðZSSTr½GSO
μ Pμ� þ ZSTTr½GTO

μ Pμ�Þ ¼ Tr½GSO;tree
μ Pμ� ¼ 0; ð59Þ

we conclude that indices μ and νmust be both spatial; the choice of a temporal component in Eq. (56) gives a vanishing tree-
level value [see Eq. (52)], which in combination with Eq. (59) results in either vanishing or indeterminate values for ZSS and
ZST . There is no restriction in choosing which spatial components μ and ν will be in each condition (same or different).
However, some choices may be preferable from the simulation point of view. In particular, we set μ ¼ ν ¼ i in Eq. (56),
μ ¼ ν ¼ j in Eq. (57), μ ¼ ν ¼ k in Eq. (58), and μ ¼ l in Eq. (59), where i; j; k;l can be equal or different among
themselves (of course, at least two of the four indices will be equal). These choices of indices give larger signal-to-noise
ratios, as is observed in our nonperturbative study described in the next section. Also, averages over i; j; k;l can be
employed for improving the signal.
Equations (56) and (59) lead to a second degree equation from which ZSS (and subsequently ZST) can be determined.

Following that, Eqs. (57) and (58) lead to another second degree equation for ZTT (and also ZTS). We thus obtain the
following:

ZSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cfTr½GSS

ii Pii� − ðTr½GST
ii Pii� þ Tr½GTS

ii Pii�ÞR1 þ Tr½GTT
ii Pii�R2

1g−1
q

; ð60Þ

ZST ¼ −ZSSR1; ð61Þ

ZTT ¼ R4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
4 þ R5

q
; ð62Þ

ZTS ¼ Z−1
SSR2 − ZTTR3; ð63Þ

where

c≡ ðN2
c − 1Þt
π2jtj5 ; ð64Þ

R1 ≡ Tr½GSO
l Pl�

Tr½GTO
l Pl�

; ð65Þ

4Integration over spatial components of z is understood in each trace.
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R2 ≡ c
Tr½GSS

kkPkk� − Tr½GTS
kk Pkk�R1

; ð66Þ

R3 ≡ Tr½GST
kk Pkk� − Tr½GTT

kk Pkk�R1

Tr½GSS
kkPkk� − Tr½GTS

kk Pkk�R1

; ð67Þ

R4 ≡ R2f2Tr½GSS
jj Pjj�R3 − ðTr½GST

jj Pjj� þ Tr½GTS
jj Pjj�Þg

2ZSSfTr½GSS
jj Pjj�R2

3 − ðTr½GST
jj Pjj� þ Tr½GTS

jj Pjj�ÞR3 þ Tr½GTT
jj Pjj�g

; ð68Þ

R5 ≡ ð5=4Þc − Tr½GSS
jj Pjj�Z−2

SSR
2
2

Tr½GSS
jj Pjj�R2

3 − ðTr½GST
jj Pjj� þ Tr½GTS

jj Pjj�ÞR3 þ Tr½GTT
jj Pjj�

: ð69Þ

The choice of plus/minus signs for the square roots appearing in the solutions of the second degree equations [Eqs. (56)–(59)]
is dictated by the requirement that theZmatrix be equal to the unitmatrix at tree level. Because of the zero tree-level value in the
rhs of Eq. (59), the renormalization factor ZO is eliminated and thus does not enter the solution.

C. Results for the conversion matrix

The final step in our perturbative calculation is the evaluation of the conversion matrix CGIRS;MS between GIRS and MS
scheme. Given that the conversion factors between two renormalization schemes are regularization independent, we

calculate CGIRS;MS by using results for the mixing matrix in dimensional regularization, instead of lattice regularization,
through the following relation:

 
CGIRS;MS
SS CGIRS;MS

ST

CGIRS;MS
TS CGIRS;MS

TT

!
¼
 
ZL;MS
SS ZL;MS

ST

ZL;MS
TS ZL;MS

TT

!
·

 
ZL;GIRS
SS ZL;GIRS

ST

ZL;GIRS
TS ZL;GIRS

TT

!−1

;

¼
 
ZDR;MS
SS ZDR;MS

ST

ZDR;MS
TS ZDR;MS

TT

!
·

 
ZDR;GIRS
SS ZDR;GIRS

ST

ZDR;GIRS
TS ZDR;GIRS

TT

!−1

: ð70Þ

By combining our one-loop results for the mixing matrix in
GIRS [Eqs. (60)–(63)] and MS [Eqs. (31)–(34)], we extract
the one-loop conversion matrix elements5:

CGIRS;MS
SS ¼ 1 −

g2
MS

16π2
17Nc

6
þOðg4

MS
Þ; ð71Þ

CGIRS;MS
ST ¼

g2
MS

16π2
4Nc þOðg4

MS
Þ; ð72Þ

CGIRS;MS
TS ¼ −

g2
MS

16π2
3Nc

2

�
2

3
þ 2γE þ lnðμ̄2t2Þ

�
þOðg4

MS
Þ;

ð73Þ

CGIRS;MS
TT ¼ 1þ

g2
MS

16π2
Nc

�
7

6
þ6γEþ3 lnðμ̄2t2Þ

�
þOðg4

MS
Þ:

ð74Þ

The results in Eqs. (71)–(74) are independent of the choices
of spatial indices (i; j; k;l) in the GIRS renormalization
conditions.

IV. NONPERTURBATIVE CALCULATION

The GIRS renormalization conditions [Eqs. (56)–(59)],
involving only Green’s functions between gauge-invariant
operators, provide a scheme that can be used for a non-
perturbative determination of the supercurrent renormali-
zation factors, Eq. (7), on the lattice. The conversion matrix
[Eqs. (71)–(74)] allows to translate the results from GIRS to
the MS scheme.
In the following we apply this approach on a first set of

test ensembles selected from the ones presented in [3,4].
For comparison, we consider the two gauge groups SU(2)
and SU(3) and two different lattice actions. The simulations
of SU(2) SYM have been done with a tree-level Symanzik
improved gauge action and unimproved Wilson fermions
(cSW ¼ 0, r ¼ 1). One level of stout smearing is used
for the gauge links in the Dirac-Wilson operator in the SU
(2) case. The SU(3) simulations use an unimproved gauge
action and clover improved Wilson fermions where cSW

5Terms of the form lnðμ̄2t2Þ have arisen as a result of
integrating lnðμ̄2z2=4Þ=ðz2Þ4 [cf. Eqs. (36)–(44)] over spatial
z components.
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determined by one-loop perturbation theory [24]. The
lattice action has been introduced in Eq. (2). The lattice
Wilson operator is represented in terms of the hopping
parameter κ ≡ 1=ð2m0 þ 8Þ

DW ¼ 1 − κ½ð1 − γμÞðVμðxÞÞδxþμ;y

þ ð1þ γμÞðV†
μðx − μÞÞδx−μ;y�; ð75Þ

where the links VμðxÞ in the adjoint representation are
given by Vab

μ ¼ 2trc½U†
μðxÞTaUμðxÞTb�. The clover term is

included in a similar way.
Details of the ensembles of gauge configurations can

be found in earlier publications [3,25]. For SU(2) SYM
we selected ensembles of two different lattice sizes,
one with V ≡ L3 × T ¼ 243 × 48 and a larger one with
V ¼ 323 × 64. Antiperiodic boundary conditions have
been implemented in the temporal direction and the gauge
coupling constant β ¼ 2Nc=g2 is β ¼ 1.75 in both cases.
In order to investigate possible effects of the finite gluino
mass, we considered κ ¼ 0.14920 and κ ¼ 0.14925 for
the small lattice, while for the larger one we have selected
κ ¼ 0.1494. In case of SU(3) SYM we selected only a
single test ensemble with β¼5.6, κ¼0.1655, cSW ¼ 1.587,
and V ¼ 243 × 48.
The Dirac-Wilson operator breaks supersymmetry and

chiral symmetry, but the critical point κcðβÞ can be
extrapolated according to signals for a vanishing renor-
malized gluino mass. Supersymmetry and chiral sym-
metries are recovered in the continuum limit at this
point. As explained in our previous studies, the adjoint
pion mass provides a signal for chiral symmetry breaking.
In the selected ensembles, the pion mass and lattice artifacts
are already quite small and nearly degenerate supersym-
metry multiplets are observed. For reference, we provide
the parameters in Table I.
The parameters of these ensembles have been checked

extensively in previous investigations. Finite size effects
and the Pfaffian sign are under control. The lattice spacing
is small enough to induce only a rather small supersym-
metry breaking, while effects like topological freezing
become relevant at even smaller lattice spacings [3].

A. Correlators

The supercurrent operators Sμ, Tμ and the gluino-glue

operator O are generated from clover plaquettes F̂αβ
μνðx; tÞ

and gluino fields. Their correlators, after integrating out the
gluino fields and omitting Lorentz and color indices for
clarity, take the following form:

hAðt1ÞB̄ðt2Þi≡
X
x⃗;y⃗

hAðx⃗;t1ÞB̄ðy⃗;t2Þi

¼
X
x⃗;y⃗

hTr½ΓF̂ðx⃗;t1ÞD−1ðx⃗;t1jy⃗;t2ÞF̂ðy⃗;t2ÞΓ0�i;

ð76Þ

where Γ;Γ0 are combinations of gamma matrices coming
from the respective operators A;B ¼ Sμ; Tμ;O and the
inverse of the Dirac operator D−1ðx⃗; tjy⃗; t0Þ propagates a
gluino from the point ðx; t1Þ to ðy; t2Þ. To estimate these
correlators, the sinks were summed over the spatial
positions and we introduced wall sources at a randomly
chosen source time coordinate t2. The correlator depends
only on the distance t1 − t2, which is determined by a
second point t1 (including a sign factor for the antiperiodic
boundary conditions, if t1 > Nt).
It is worth noting that the definition of the gluino-glue

operator, Eq. (23), includes both spatial and temporal
directions for the gauge links. This symmetric choice of
the operatorO is in contrast to earlier works; in particular it
is different from the insertion operator chosen in the WI
analysis [5,6]. The symmetric choice is, however, more
natural in GIRS as only operators that transform as fully
covariant tensors mix with the supercurrent.
The spatial projectors Pi ¼ γ4γi and Pij ¼ γiγ4γj with

i ¼ 1, 2, 3 are the most suitable to use numerically, as they
lead to a solvable set of GIRS conditions [Eqs. (56)–(59)]
and a better signal-to-noise ratio. We plot the results for two
of the correlators in Fig. 2 to show the quality of the
numerical signal. In order to alleviate the noise as much as
possible, we use lattice symmetries to average different
components of the correlators. Taking hOðtÞSið0ÞPii as an

TABLE I. Value of the Z renormalization factors of the supercurrents obtained nonperturbatively on the GIRS and then translated to

the MS scheme by using the conversion matrix CGIRS;MS. The errors presented here are purely statistical, resulting from a jackknife
analysis. For reference, the parameters of the different ensembles are also provided. Each simulation has been done on an L3 × T lattice
and the adjoint pion mass is provided in units of the gradient flow scale w0;χ extrapolated to the chiral limit [w0;χ=a ¼ 3.411ð18Þ for SU
(2) SYM and w0;χ=a ¼ 3.485ð71Þ for SU(3) SYM].

Gauge group β κ w0;χmπ Scheme L T ZSS ZST ZTS ZTT ZST=ZSS

SU(2) 1.75 0.14920 0.6915(62) MS 24 48 0.745(20) −0.0362ð48Þ 0.1759(12) 0.3518(30) −0.0499ð55Þ
SU(2) 1.75 0.14925 0.6467(92) MS 24 48 0.783(24) −0.0312ð26Þ 0.201(16) 0.3612(67) −0.0404ð38Þ
SU(2) 1.75 0.14940 0.5471(80) MS 48 64 0.877(25) −0.0417ð38Þ 0.275(20) 0.275(20) −0.0477ð44Þ
SU(3) 5.6 0.16550 1.204(27) MS 24 48 1.127(43) −0.0703ð56Þ 0.323(20) 0.4302(25) −0.0640ð55Þ
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example (no sum over i), we can average all the different
spatial directions μ; ν ¼ x, y, z

hOðtÞS̄ið0ÞPii

→
hOðtÞS̄xð0ÞPxi þ hOðtÞS̄yð0ÞPyi þ hOðtÞS̄zð0ÞPzi

3
:

ð77Þ

Secondly, because all the correlators are even under time
reversal6 one can also perform the average

hOðtÞSið0ÞPii →
hOðtÞS̄ið0ÞPii þ hOðNt − tÞS̄ið0ÞPii

2
:

ð78Þ

Finally due to charge conjugation [Eq. (25)] the following
relation between Green’s functions holds

Tr½hOðtÞS̄ið0ÞiPi� ¼ Tr½ChSið0ÞŌðtÞiTC−1Pi�
¼ Tr½hSiðtÞŌð0ÞiPi�; ð79Þ

so that one can also average the reverse ordered operators,

Tr½hOðtÞS̄ið0ÞiPi�

→
Tr½hOðtÞS̄ið0ÞiPi� þ Tr½hSiðtÞŌð0ÞiPi�

2
: ð80Þ

The same arguments hold for the rest of the Green’s
functions. The signal can improve substantially after the
averaging procedure. Due to possible autocorrelation we
have only considered every eighth configuration of the
ensemble.

B. Renormalization coefficients

For our choice of spatial projectors and after applying a
summation over x⃗, the GIRS conditions on the lattice take
the following form7:

1

3L3

X
x⃗;y⃗

X
i

Tr½GSS;GIRS
ii ððx⃗; tÞ; ðy⃗;0ÞÞγiγ4γi� ¼

2ðN2
c − 1Þt

π2jtj5 ;

ð81Þ

1

3L3

X
x⃗;y⃗

X
i

Tr½GTT;GIRS
ii ððx⃗; tÞ; ðy⃗;0ÞÞγiγ4γi� ¼

5ðN2
c − 1Þt

4π2jtj5 ;

ð82Þ

1

3L3

X
x⃗;y⃗

X
i

Tr½GST;GIRS
ii ððx⃗; tÞ; ðy⃗; 0ÞÞγiγ4γi� ¼

ðN2
c − 1Þt
π2jtj5 ;

ð83Þ

1

3L3

X
x⃗;y⃗

X
i

Tr½GSO;GIRS
i ððx⃗; tÞ; ðy⃗; 0ÞÞγ4γi� ¼ 0: ð84Þ

The renormalized Green’s functions appearing in
Eqs. (81)–(84) are related to the bare Green’s functions
extracted from lattice simulations via Eqs. (56)–(59), where
the Z factors stand for ZL;GIRS.
The GIRS renormalization conditions, Eqs. (56)–(59),

are enough to solve for all the renormalization factors of the
supercurrents using the Green’s functions computed on the
lattice. The results for ZST=ZSS after jackknife analysis
are shown on the left side of Fig. 3. Due to gauge links
extending in the temporal direction, short range effects
persist to larger time separation t. On the other hand for
large t intervals t > 9 the noise starts to become dominant

FIG. 2. Correlators TrhOðtÞSið0ÞPii and TrhOðtÞTið0ÞPii computed numerically on the ensemble with κ ¼ 0.14925 and β ¼ 1.75
of the V ¼ 243 × 48 lattice.

6This is opposite to the behavior of Eqs. (36)–(44), due to the
antiperiodic boundary conditions.

7The results on the right-hand side of Eqs. (81)–(84) have been
obtained on a lattice of infinity volume, as is usually done in
lattice perturbation theory.
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FIG. 3. ZST=ZTT in the GIRS (left) and in the MS scheme (right) as a function of time for the first time slices. The filled dots represent
the regime where the effects of contact terms and noise are minor. The color bands correspond to the linear extrapolation using the
plateau interval.
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and so the relevant signal is contained in only a rather small
t window (filled dots).
As already anticipated, all Z factors in GIRS can be

translated to the MS scheme by applying the conversion
factors Eqs. (71)–(74). All MS renormalization functions
should turn out to be independent of the GIRS renormal-
ization scale t and a plateaulike behavior of all the Z factors
in the MS scheme is expected. Note from Eqs. (71)–(74)
that some Z factors (ZTT; ZTS) when converted to MS will
depend also on the μ̄ renormalization scale, because the
operator T is not a conserved current, while other Z factors

(ZSS; ZST) will not. The ratio ZL;MS
ST =ZL;MS

SS is of particular
interest: it is the relevant one for the studies of super-
symmetric Ward identities [5,7], it is μ̄ independent, and it
is a stable quantity in the sense that perturbatively ZST ∼
Oðg2Þ and ZSS ∼ 1þOðg2Þ.
Combining the nonperturbative result for the GIRS

mixing matrix ZL;GIRS with the perturbative result for the

conversion matrix CGIRS;MS, the ratio ZL;MS
ST =ZL;MS

SS is
extracted through the following relation:

ZL;MS
ST

ZL;MS
SS

¼ CGIRS;MS
SS ZL;GIRS

ST þ CGIRS;MS
ST ZL;GIRS

TT

CGIRS;MS
SS ZL;GIRS

SS þ CGIRS;MS
ST ZL;GIRS

TS

; ð85Þ

where we substituted the coupling constant g2
MS

on the
conversion factors Eqs. (71)–(74) by the bare coupling
constant of the lattice action, β ¼ 2Nc=g2, since the differ-
ence would be Oðg4

MS
Þ. For comparison of the results, the

lattice spacing can be estimated using the QCD Sommer
scale value r0 ¼ 0.5 fm, which leads to a lattice spacing of
0.0554(11) fm for SU(2) and 0.0532(8) fm for SU(3) SYM.

The numerical values obtained for the ratio ZL;MS
ST =ZL;MS

SS
are presented on the right side of Fig. 3. The final values are
determined by a constant fit in the plateaulike interval
t ∈ ½tmin; tmax� marked by filled dots. tmin was chosen as the
first point of the region where the expected plateau was
observed. At tmax the signal gets dominated by noise and no
reliable estimate is possible. The results are collected in

Table I. ZL;MS
ST =ZL;MS

SS is much smaller than the perturbative
predictions with even a change of sign. Our perturbative

estimate for SU(2) SYM is ZL;MS
ST =ZL;MS

SS ¼ 0.100809, but
compared to the nonperturbative simulations it does not
include stout smearing. The value for SU(3) SYM without

clover improvement is ZL;MS
ST =ZL;MS

SS ¼ 0.0656238. In a
consistent truncation at a given order in the coupling
constant, one would use the tree-level clover coefficient

(cSW ¼ 1.0) and obtain ZL;MS
ST =ZL;MS

SS ¼ 0.0508682; with
the one-loop improved value used in the actual simulations

(cSW ¼ 1.587), one obtains ZL;MS
ST =ZL;MS

SS ¼ 0.0373759.

The one-loop expressions for ZL;MS
ST and ZL;MS

SS are

explicitly shown in Ref. [23], where the number of colors,
Nc, the coupling constant g, and the clover parameter, cSW
are left unspecified.
Note that the perturbative estimates are positive, while

the nonperturbative determination leads to a negative value.
We have checked that the numerically determined corre-
lators have the same sign as their perturbative counterparts.
Consequently the effect cannot be due to some different
overall sign factors. Nonperturbative effects should be
relevant and our parameter range is most likely far outside
the perturbative regime where the one-loop computations
can be reliable. In order to provide a further illustration for
the importance of higher perturbative or nonperturbative
corrections, we derived an alternative determination of

ZL;MS
ST =ZL;MS

SS using the substitution on the conversion

matrix Cðg2ÞGIRS;MS → C−1ð−g2ÞGIRS;MS. At one-loop
order this amounts to taking the inverse twice and so the
result should be left invariant. Due to higher order
corrections, this equivalence is, however, significantly
violated as shown in Fig. 4.
In order to reduce higher loop corrections one would

ideally like to simulate at smaller couplings close to the
perturbative regime, however the cost of such simulations
can increase rather fast. As an exploratory and alternative
approach we have done measurements on smeared con-
figurations to investigate how much the noise is reduced
and whether the results get closer to the perturbative
predictions. We applied six levels of stout smearing with
smearing parameter ρ ¼ 0.15 and adjusted the mass
parameter such that the pion mass in lattice units stays
approximately the same. The resulting ratio ZST=ZSS is
presented in Fig. 5 both in GIRS and in the MS scheme. We
can observe that the noise is drastically decreased and a
plateaulike intermediate t range becomes much more

FIG. 4. ZMS
ST =Z

MS
SS computed with Cðg2ÞGIRS;MS (blue dots) and

C−1ð−g2ÞGIRS;MS (orange squares). The difference between the

two computations ΔðZMS
ST =Z

MS
SS Þ ¼ 0.0277 is due to higher loop

corrections.
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visible. In GIRS we observe a clear t dependence that is
erased in the MS scheme by the conversion factors up to a
certain t, where higher order corrections of the conversion
matrix seem to become relevant. We note that the fitted
value has now moved away even further from the pertur-
bative result; however, a faithful comparison would require
performing perturbative computation with smeared gauge
links, which we have not done so far.
For improving the estimates, one may employ a tree-

level correction by subtracting tree-level discretization
effects from the correlators. This can be useful especially
for small values of t, where large cutoff effects are pre-
sent. An equivalent procedure (up to higher-order effects) is
to replace the continuum tree-level values in the rhs of
Eqs. (81)–(84) with the corresponding lattice tree-level

values, which include artifacts to all orders in the lattice
spacing a. We examine the effect of this tree-level correction
by calculating the ratio between the lattice and conti-
nuum tree-level values: RABðtÞ≡ Tr½ðGAB

ii ðtÞÞtree latγiγ4γi�=
Tr½ðGAB

ii ðtÞÞtree contγiγ4γi�, where A; B ¼ S, T. In Fig. 6,
we show the ratios RSSðtÞ; RSTðtÞ and RTTðtÞ. We observe
that the most important differences between Oða0Þ and all
orders in a corrections of tree-level values regard very small
values of t, for which results in ZST=ZSS are far from a
plateau; thus these differences do not significantly affect the
plateau values.

V. DISCUSSION

In this paper, we have presented a concrete prescrip-
tion to renormalize nonperturbatively the supercurrent
operator in N ¼ 1 SYM on the lattice, using GIRS. The
employed scheme addresses the mixing between the super-
current and all gauge-invariant operators which respect the
same global symmetries and share the same quantum
numbers. An advantageous feature of GIRS is that whole
classes of gauge-noninvariant operators, which, in prin-
ciple, can and will mix with the supercurrent, have zero
contributions to the gauge-invariant Green’s functions of
GIRS. In this respect, the set of mixing operators that one
needs to study within GIRS is greatly reduced. This
makes GIRS a good alternative for renormalizing oper-
ators in the presence of mixing, compared to more
standard methods, such as employing Ward identities
on the lattice.
We have employed GIRS on two lattices of SU(2) SYM

with three different values of critical mass parameter, on a
smeared ensemble, and on an ensemble based on the gauge
group SU(3). We have presented nonperturbative results for
the mixing matrix. In parallel, we have performed a one-
loop perturbative calculation of the mixing matrix in both
GIRS and MS schemes in order to deduce the conversion

FIG. 5. V ¼ 243 × 48 lattice at κ ¼ 0.14920 with smearing. The fitted value corresponds to ZST=ZSS ¼ −0.0848ð15Þ. A more
pronounced plateau is observed in the MS data, as expected.

FIG. 6. Ratios between lattice (all orders in a) and con-
tinuum tree-level values: RABðtÞ≡ Tr½ðGAB

ii ðtÞÞtree latγiγ4γi�=
Tr½ðGAB

ii ðtÞÞtree contγiγ4γi�, for AB ¼ SS; ST; TT. For better vis-
ibility, RSTðtÞ and RTTðtÞ are shifted in t by þ0.25 and þ0.50,
respectively.
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matrix between the two schemes. At the end, we have
combined the nonperturbative data with the one-loop
conversion matrix and we have extracted the MS mixing

matrix. Our result for the ratio ZL;MS
ST =ZL;MS

SS is different
from our previous perturbative computation at one
loop [23]. However, the parameter regime for our first
test is most likely far outside the perturbative regime. It is
worth reiterating at this point that the determination of

ZL;MS
ST =ZL;MS

SS via GIRS, despite the present discrepancy
with perturbative estimates, stands to be very useful in the
study of more complicated theories, such as supersym-
metric QCD, for the purpose of reducing the number of
undetermined parameters in Ward identities.
One means of improving the nonperturbative estimates is

further elimination of the discretization errors. For small
values of t, large cutoff effects are present in our calcu-
lation. In order to address this issue, a higher-loop
perturbative evaluation of lattice artifacts, to all orders in
the lattice spacing, for different values of t, could be
performed. As has been observed in other contexts [26–31],
subtraction of the unwanted contributions of the finite
lattice spacing from the nonperturbative estimates can lead
to a more rapid convergence to the continuum limit. Such a
procedure has been successfully employed to Green’s
functions of operators in momentum space up to one loop.
However, in a coordinate-space scheme, such as GIRS, a
one-loop computation involves two-loop Feynman dia-
grams, which make the application of this subtraction in
GIRS more difficult.
A second improvement is the elimination of truncation

effects coming from the conversion matrix. For large
values of t, the one-loop conversion matrix is not
enough to guarantee convergence, since strong higher-loop
logarithmic divergences in t are present. A natural con-
tinuation of the present work is the two-loop calculation of
the conversion matrix; given that this calculation only

requires continuum perturbation theory, and thus does not
depend on the lattice discretization, it is a feasible albeit
complicated task, without any conceptual hindrances.
From the numerical point of view, more statistics,

especially for larger values of t, can enlarge the window
of time that can be used for reaching the plateau in the
renormalization factors. Finally simulating closer to a
perturbative regime would be a very useful way to see if
one can match the perturbative with the nonperturbative
result. For such a match one would of course need to
introduce stout smearing in the perturbative computation;
this is a formidable endeavor beyond one or two smearing
steps, but these can be sufficient to exhibit convergence
quantitatively.
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